1 /*
   2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "code/debugInfo.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/oopMap.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/locknode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/output.hpp"
  37 #include "opto/regalloc.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "opto/type.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "utilities/xmlstream.hpp"
  43 
  44 extern uint size_java_to_interp();
  45 extern uint reloc_java_to_interp();
  46 extern uint size_exception_handler();
  47 extern uint size_deopt_handler();
  48 
  49 #ifndef PRODUCT
  50 #define DEBUG_ARG(x) , x
  51 #else
  52 #define DEBUG_ARG(x)
  53 #endif
  54 
  55 extern int emit_exception_handler(CodeBuffer &cbuf);
  56 extern int emit_deopt_handler(CodeBuffer &cbuf);
  57 
  58 //------------------------------Output-----------------------------------------
  59 // Convert Nodes to instruction bits and pass off to the VM
  60 void Compile::Output() {
  61   // RootNode goes
  62   assert( _cfg->_broot->_nodes.size() == 0, "" );
  63 
  64   // The number of new nodes (mostly MachNop) is proportional to
  65   // the number of java calls and inner loops which are aligned.
  66   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  67                             C->inner_loops()*(OptoLoopAlignment-1)),
  68                            "out of nodes before code generation" ) ) {
  69     return;
  70   }
  71   // Make sure I can find the Start Node
  72   Block_Array& bbs = _cfg->_bbs;
  73   Block *entry = _cfg->_blocks[1];
  74   Block *broot = _cfg->_broot;
  75 
  76   const StartNode *start = entry->_nodes[0]->as_Start();
  77 
  78   // Replace StartNode with prolog
  79   MachPrologNode *prolog = new (this) MachPrologNode();
  80   entry->_nodes.map( 0, prolog );
  81   bbs.map( prolog->_idx, entry );
  82   bbs.map( start->_idx, NULL ); // start is no longer in any block
  83 
  84   // Virtual methods need an unverified entry point
  85 
  86   if( is_osr_compilation() ) {
  87     if( PoisonOSREntry ) {
  88       // TODO: Should use a ShouldNotReachHereNode...
  89       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
  90     }
  91   } else {
  92     if( _method && !_method->flags().is_static() ) {
  93       // Insert unvalidated entry point
  94       _cfg->insert( broot, 0, new (this) MachUEPNode() );
  95     }
  96 
  97   }
  98 
  99 
 100   // Break before main entry point
 101   if( (_method && _method->break_at_execute())
 102 #ifndef PRODUCT
 103     ||(OptoBreakpoint && is_method_compilation())
 104     ||(OptoBreakpointOSR && is_osr_compilation())
 105     ||(OptoBreakpointC2R && !_method)
 106 #endif
 107     ) {
 108     // checking for _method means that OptoBreakpoint does not apply to
 109     // runtime stubs or frame converters
 110     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
 111   }
 112 
 113   // Insert epilogs before every return
 114   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 115     Block *b = _cfg->_blocks[i];
 116     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
 117       Node *m = b->end();
 118       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
 119         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 120         b->add_inst( epilog );
 121         bbs.map(epilog->_idx, b);
 122         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
 123       }
 124     }
 125   }
 126 
 127 # ifdef ENABLE_ZAP_DEAD_LOCALS
 128   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
 129 # endif
 130 
 131   ScheduleAndBundle();
 132 
 133 #ifndef PRODUCT
 134   if (trace_opto_output()) {
 135     tty->print("\n---- After ScheduleAndBundle ----\n");
 136     for (uint i = 0; i < _cfg->_num_blocks; i++) {
 137       tty->print("\nBB#%03d:\n", i);
 138       Block *bb = _cfg->_blocks[i];
 139       for (uint j = 0; j < bb->_nodes.size(); j++) {
 140         Node *n = bb->_nodes[j];
 141         OptoReg::Name reg = _regalloc->get_reg_first(n);
 142         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 143         n->dump();
 144       }
 145     }
 146   }
 147 #endif
 148 
 149   if (failing())  return;
 150 
 151   BuildOopMaps();
 152 
 153   if (failing())  return;
 154 
 155   Fill_buffer();
 156 }
 157 
 158 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
 159   // Determine if we need to generate a stack overflow check.
 160   // Do it if the method is not a stub function and
 161   // has java calls or has frame size > vm_page_size/8.
 162   return (stub_function() == NULL &&
 163           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
 164 }
 165 
 166 bool Compile::need_register_stack_bang() const {
 167   // Determine if we need to generate a register stack overflow check.
 168   // This is only used on architectures which have split register
 169   // and memory stacks (ie. IA64).
 170   // Bang if the method is not a stub function and has java calls
 171   return (stub_function() == NULL && has_java_calls());
 172 }
 173 
 174 # ifdef ENABLE_ZAP_DEAD_LOCALS
 175 
 176 
 177 // In order to catch compiler oop-map bugs, we have implemented
 178 // a debugging mode called ZapDeadCompilerLocals.
 179 // This mode causes the compiler to insert a call to a runtime routine,
 180 // "zap_dead_locals", right before each place in compiled code
 181 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
 182 // The runtime routine checks that locations mapped as oops are really
 183 // oops, that locations mapped as values do not look like oops,
 184 // and that locations mapped as dead are not used later
 185 // (by zapping them to an invalid address).
 186 
 187 int Compile::_CompiledZap_count = 0;
 188 
 189 void Compile::Insert_zap_nodes() {
 190   bool skip = false;
 191 
 192 
 193   // Dink with static counts because code code without the extra
 194   // runtime calls is MUCH faster for debugging purposes
 195 
 196        if ( CompileZapFirst  ==  0  ) ; // nothing special
 197   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 198   else if ( CompileZapFirst  == CompiledZap_count() )
 199     warning("starting zap compilation after skipping");
 200 
 201        if ( CompileZapLast  ==  -1  ) ; // nothing special
 202   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 203   else if ( CompileZapLast  ==  CompiledZap_count() )
 204     warning("about to compile last zap");
 205 
 206   ++_CompiledZap_count; // counts skipped zaps, too
 207 
 208   if ( skip )  return;
 209 
 210 
 211   if ( _method == NULL )
 212     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 213 
 214   // Insert call to zap runtime stub before every node with an oop map
 215   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 216     Block *b = _cfg->_blocks[i];
 217     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
 218       Node *n = b->_nodes[j];
 219 
 220       // Determining if we should insert a zap-a-lot node in output.
 221       // We do that for all nodes that has oopmap info, except for calls
 222       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 223       // and expect the C code to reset it.  Hence, there can be no safepoints between
 224       // the inlined-allocation and the call to new_Java, etc.
 225       // We also cannot zap monitor calls, as they must hold the microlock
 226       // during the call to Zap, which also wants to grab the microlock.
 227       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 228       if ( insert ) { // it is MachSafePoint
 229         if ( !n->is_MachCall() ) {
 230           insert = false;
 231         } else if ( n->is_MachCall() ) {
 232           MachCallNode* call = n->as_MachCall();
 233           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 234               call->entry_point() == OptoRuntime::new_array_Java() ||
 235               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 236               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 237               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 238               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 239               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 240               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 241               ) {
 242             insert = false;
 243           }
 244         }
 245         if (insert) {
 246           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 247           b->_nodes.insert( j, zap );
 248           _cfg->_bbs.map( zap->_idx, b );
 249           ++j;
 250         }
 251       }
 252     }
 253   }
 254 }
 255 
 256 
 257 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 258   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 259   CallStaticJavaNode* ideal_node =
 260     new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
 261          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 262                             "call zap dead locals stub", 0, TypePtr::BOTTOM);
 263   // We need to copy the OopMap from the site we're zapping at.
 264   // We have to make a copy, because the zap site might not be
 265   // a call site, and zap_dead is a call site.
 266   OopMap* clone = node_to_check->oop_map()->deep_copy();
 267 
 268   // Add the cloned OopMap to the zap node
 269   ideal_node->set_oop_map(clone);
 270   return _matcher->match_sfpt(ideal_node);
 271 }
 272 
 273 //------------------------------is_node_getting_a_safepoint--------------------
 274 bool Compile::is_node_getting_a_safepoint( Node* n) {
 275   // This code duplicates the logic prior to the call of add_safepoint
 276   // below in this file.
 277   if( n->is_MachSafePoint() ) return true;
 278   return false;
 279 }
 280 
 281 # endif // ENABLE_ZAP_DEAD_LOCALS
 282 
 283 //------------------------------compute_loop_first_inst_sizes------------------
 284 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 285 // of a loop. When aligning a loop we need to provide enough instructions
 286 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 287 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 288 // By default, the size is set to 999999 by Block's constructor so that
 289 // a loop will be aligned if the size is not reset here.
 290 //
 291 // Note: Mach instructions could contain several HW instructions
 292 // so the size is estimated only.
 293 //
 294 void Compile::compute_loop_first_inst_sizes() {
 295   // The next condition is used to gate the loop alignment optimization.
 296   // Don't aligned a loop if there are enough instructions at the head of a loop
 297   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 298   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 299   // equal to 11 bytes which is the largest address NOP instruction.
 300   if( MaxLoopPad < OptoLoopAlignment-1 ) {
 301     uint last_block = _cfg->_num_blocks-1;
 302     for( uint i=1; i <= last_block; i++ ) {
 303       Block *b = _cfg->_blocks[i];
 304       // Check the first loop's block which requires an alignment.
 305       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
 306         uint sum_size = 0;
 307         uint inst_cnt = NumberOfLoopInstrToAlign;
 308         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 309 
 310         // Check subsequent fallthrough blocks if the loop's first
 311         // block(s) does not have enough instructions.
 312         Block *nb = b;
 313         while( inst_cnt > 0 &&
 314                i < last_block &&
 315                !_cfg->_blocks[i+1]->has_loop_alignment() &&
 316                !nb->has_successor(b) ) {
 317           i++;
 318           nb = _cfg->_blocks[i];
 319           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 320         } // while( inst_cnt > 0 && i < last_block  )
 321 
 322         b->set_first_inst_size(sum_size);
 323       } // f( b->head()->is_Loop() )
 324     } // for( i <= last_block )
 325   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 326 }
 327 
 328 //----------------------Shorten_branches---------------------------------------
 329 // The architecture description provides short branch variants for some long
 330 // branch instructions. Replace eligible long branches with short branches.
 331 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size) {
 332 
 333   // fill in the nop array for bundling computations
 334   MachNode *_nop_list[Bundle::_nop_count];
 335   Bundle::initialize_nops(_nop_list, this);
 336 
 337   // ------------------
 338   // Compute size of each block, method size, and relocation information size
 339   uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
 340   uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
 341   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
 342   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
 343   blk_starts[0]    = 0;
 344 
 345   // Initialize the sizes to 0
 346   code_size  = 0;          // Size in bytes of generated code
 347   stub_size  = 0;          // Size in bytes of all stub entries
 348   // Size in bytes of all relocation entries, including those in local stubs.
 349   // Start with 2-bytes of reloc info for the unvalidated entry point
 350   reloc_size = 1;          // Number of relocation entries
 351 
 352   // Make three passes.  The first computes pessimistic blk_starts,
 353   // relative jmp_end and reloc_size information.  The second performs
 354   // short branch substitution using the pessimistic sizing.  The
 355   // third inserts nops where needed.
 356 
 357   Node *nj; // tmp
 358 
 359   // Step one, perform a pessimistic sizing pass.
 360   uint i;
 361   uint min_offset_from_last_call = 1;  // init to a positive value
 362   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
 363   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
 364     Block *b = _cfg->_blocks[i];
 365 
 366     // Sum all instruction sizes to compute block size
 367     uint last_inst = b->_nodes.size();
 368     uint blk_size = 0;
 369     for( uint j = 0; j<last_inst; j++ ) {
 370       nj = b->_nodes[j];
 371       uint inst_size = nj->size(_regalloc);
 372       blk_size += inst_size;
 373       // Handle machine instruction nodes
 374       if( nj->is_Mach() ) {
 375         MachNode *mach = nj->as_Mach();
 376         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 377         reloc_size += mach->reloc();
 378         if( mach->is_MachCall() ) {
 379           MachCallNode *mcall = mach->as_MachCall();
 380           // This destination address is NOT PC-relative
 381 
 382           mcall->method_set((intptr_t)mcall->entry_point());
 383 
 384           if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
 385             stub_size  += size_java_to_interp();
 386             reloc_size += reloc_java_to_interp();
 387           }
 388         } else if (mach->is_MachSafePoint()) {
 389           // If call/safepoint are adjacent, account for possible
 390           // nop to disambiguate the two safepoints.
 391           if (min_offset_from_last_call == 0) {
 392             blk_size += nop_size;
 393           }
 394         }
 395       }
 396       min_offset_from_last_call += inst_size;
 397       // Remember end of call offset
 398       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 399         min_offset_from_last_call = 0;
 400       }
 401     }
 402 
 403     // During short branch replacement, we store the relative (to blk_starts)
 404     // end of jump in jmp_end, rather than the absolute end of jump.  This
 405     // is so that we do not need to recompute sizes of all nodes when we compute
 406     // correct blk_starts in our next sizing pass.
 407     jmp_end[i] = blk_size;
 408     DEBUG_ONLY( jmp_target[i] = 0; )
 409 
 410     // When the next block starts a loop, we may insert pad NOP
 411     // instructions.  Since we cannot know our future alignment,
 412     // assume the worst.
 413     if( i<_cfg->_num_blocks-1 ) {
 414       Block *nb = _cfg->_blocks[i+1];
 415       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 416       if( max_loop_pad > 0 ) {
 417         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 418         blk_size += max_loop_pad;
 419       }
 420     }
 421 
 422     // Save block size; update total method size
 423     blk_starts[i+1] = blk_starts[i]+blk_size;
 424   }
 425 
 426   // Step two, replace eligible long jumps.
 427 
 428   // Note: this will only get the long branches within short branch
 429   //   range. Another pass might detect more branches that became
 430   //   candidates because the shortening in the first pass exposed
 431   //   more opportunities. Unfortunately, this would require
 432   //   recomputing the starting and ending positions for the blocks
 433   for( i=0; i<_cfg->_num_blocks; i++ ) {
 434     Block *b = _cfg->_blocks[i];
 435 
 436     int j;
 437     // Find the branch; ignore trailing NOPs.
 438     for( j = b->_nodes.size()-1; j>=0; j-- ) {
 439       nj = b->_nodes[j];
 440       if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
 441         break;
 442     }
 443 
 444     if (j >= 0) {
 445       if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
 446         MachNode *mach = nj->as_Mach();
 447         // This requires the TRUE branch target be in succs[0]
 448         uint bnum = b->non_connector_successor(0)->_pre_order;
 449         uintptr_t target = blk_starts[bnum];
 450         if( mach->is_Branch() ) {
 451           int offset = target-(blk_starts[i] + jmp_end[i]);
 452           if (_matcher->is_short_branch_offset(mach->rule(), offset)) {
 453             // We've got a winner.  Replace this branch.
 454             MachNode* replacement = mach->short_branch_version(this);
 455             b->_nodes.map(j, replacement);
 456             mach->subsume_by(replacement);
 457 
 458             // Update the jmp_end size to save time in our
 459             // next pass.
 460             jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
 461             DEBUG_ONLY( jmp_target[i] = bnum; );
 462             DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 463           }
 464         } else {
 465 #ifndef PRODUCT
 466           mach->dump(3);
 467 #endif
 468           Unimplemented();
 469         }
 470       }
 471     }
 472   }
 473 
 474   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
 475   // of a loop. It is used to determine the padding for loop alignment.
 476   compute_loop_first_inst_sizes();
 477 
 478   // Step 3, compute the offsets of all the labels
 479   uint last_call_adr = max_uint;
 480   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
 481     // copy the offset of the beginning to the corresponding label
 482     assert(labels[i].is_unused(), "cannot patch at this point");
 483     labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
 484 
 485     // insert padding for any instructions that need it
 486     Block *b = _cfg->_blocks[i];
 487     uint last_inst = b->_nodes.size();
 488     uint adr = blk_starts[i];
 489     for( uint j = 0; j<last_inst; j++ ) {
 490       nj = b->_nodes[j];
 491       if( nj->is_Mach() ) {
 492         int padding = nj->as_Mach()->compute_padding(adr);
 493         // If call/safepoint are adjacent insert a nop (5010568)
 494         if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
 495             adr == last_call_adr ) {
 496           padding = nop_size;
 497         }
 498         if(padding > 0) {
 499           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
 500           int nops_cnt = padding / nop_size;
 501           MachNode *nop = new (this) MachNopNode(nops_cnt);
 502           b->_nodes.insert(j++, nop);
 503           _cfg->_bbs.map( nop->_idx, b );
 504           adr += padding;
 505           last_inst++;
 506         }
 507       }
 508       adr += nj->size(_regalloc);
 509 
 510       // Remember end of call offset
 511       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 512         last_call_adr = adr;
 513       }
 514     }
 515 
 516     if ( i != _cfg->_num_blocks-1) {
 517       // Get the size of the block
 518       uint blk_size = adr - blk_starts[i];
 519 
 520       // When the next block is the top of a loop, we may insert pad NOP
 521       // instructions.
 522       Block *nb = _cfg->_blocks[i+1];
 523       int current_offset = blk_starts[i] + blk_size;
 524       current_offset += nb->alignment_padding(current_offset);
 525       // Save block size; update total method size
 526       blk_starts[i+1] = current_offset;
 527     }
 528   }
 529 
 530 #ifdef ASSERT
 531   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
 532     if( jmp_target[i] != 0 ) {
 533       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
 534       if (!_matcher->is_short_branch_offset(jmp_rule[i], offset)) {
 535         tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
 536       }
 537       assert(_matcher->is_short_branch_offset(jmp_rule[i], offset), "Displacement too large for short jmp");
 538     }
 539   }
 540 #endif
 541 
 542   // ------------------
 543   // Compute size for code buffer
 544   code_size   = blk_starts[i-1] + jmp_end[i-1];
 545 
 546   // Relocation records
 547   reloc_size += 1;              // Relo entry for exception handler
 548 
 549   // Adjust reloc_size to number of record of relocation info
 550   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 551   // a relocation index.
 552   // The CodeBuffer will expand the locs array if this estimate is too low.
 553   reloc_size   *= 10 / sizeof(relocInfo);
 554 }
 555 
 556 //------------------------------FillLocArray-----------------------------------
 557 // Create a bit of debug info and append it to the array.  The mapping is from
 558 // Java local or expression stack to constant, register or stack-slot.  For
 559 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 560 // entry has been taken care of and caller should skip it).
 561 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 562   // This should never have accepted Bad before
 563   assert(OptoReg::is_valid(regnum), "location must be valid");
 564   return (OptoReg::is_reg(regnum))
 565     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 566     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 567 }
 568 
 569 
 570 ObjectValue*
 571 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 572   for (int i = 0; i < objs->length(); i++) {
 573     assert(objs->at(i)->is_object(), "corrupt object cache");
 574     ObjectValue* sv = (ObjectValue*) objs->at(i);
 575     if (sv->id() == id) {
 576       return sv;
 577     }
 578   }
 579   // Otherwise..
 580   return NULL;
 581 }
 582 
 583 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 584                                      ObjectValue* sv ) {
 585   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 586   objs->append(sv);
 587 }
 588 
 589 
 590 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 591                             GrowableArray<ScopeValue*> *array,
 592                             GrowableArray<ScopeValue*> *objs ) {
 593   assert( local, "use _top instead of null" );
 594   if (array->length() != idx) {
 595     assert(array->length() == idx + 1, "Unexpected array count");
 596     // Old functionality:
 597     //   return
 598     // New functionality:
 599     //   Assert if the local is not top. In product mode let the new node
 600     //   override the old entry.
 601     assert(local == top(), "LocArray collision");
 602     if (local == top()) {
 603       return;
 604     }
 605     array->pop();
 606   }
 607   const Type *t = local->bottom_type();
 608 
 609   // Is it a safepoint scalar object node?
 610   if (local->is_SafePointScalarObject()) {
 611     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 612 
 613     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
 614     if (sv == NULL) {
 615       ciKlass* cik = t->is_oopptr()->klass();
 616       assert(cik->is_instance_klass() ||
 617              cik->is_array_klass(), "Not supported allocation.");
 618       sv = new ObjectValue(spobj->_idx,
 619                            new ConstantOopWriteValue(cik->constant_encoding()));
 620       Compile::set_sv_for_object_node(objs, sv);
 621 
 622       uint first_ind = spobj->first_index();
 623       for (uint i = 0; i < spobj->n_fields(); i++) {
 624         Node* fld_node = sfpt->in(first_ind+i);
 625         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 626       }
 627     }
 628     array->append(sv);
 629     return;
 630   }
 631 
 632   // Grab the register number for the local
 633   OptoReg::Name regnum = _regalloc->get_reg_first(local);
 634   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 635     // Record the double as two float registers.
 636     // The register mask for such a value always specifies two adjacent
 637     // float registers, with the lower register number even.
 638     // Normally, the allocation of high and low words to these registers
 639     // is irrelevant, because nearly all operations on register pairs
 640     // (e.g., StoreD) treat them as a single unit.
 641     // Here, we assume in addition that the words in these two registers
 642     // stored "naturally" (by operations like StoreD and double stores
 643     // within the interpreter) such that the lower-numbered register
 644     // is written to the lower memory address.  This may seem like
 645     // a machine dependency, but it is not--it is a requirement on
 646     // the author of the <arch>.ad file to ensure that, for every
 647     // even/odd double-register pair to which a double may be allocated,
 648     // the word in the even single-register is stored to the first
 649     // memory word.  (Note that register numbers are completely
 650     // arbitrary, and are not tied to any machine-level encodings.)
 651 #ifdef _LP64
 652     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 653       array->append(new ConstantIntValue(0));
 654       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
 655     } else if ( t->base() == Type::Long ) {
 656       array->append(new ConstantIntValue(0));
 657       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 658     } else if ( t->base() == Type::RawPtr ) {
 659       // jsr/ret return address which must be restored into a the full
 660       // width 64-bit stack slot.
 661       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 662     }
 663 #else //_LP64
 664 #ifdef SPARC
 665     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 666       // For SPARC we have to swap high and low words for
 667       // long values stored in a single-register (g0-g7).
 668       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 669       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 670     } else
 671 #endif //SPARC
 672     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 673       // Repack the double/long as two jints.
 674       // The convention the interpreter uses is that the second local
 675       // holds the first raw word of the native double representation.
 676       // This is actually reasonable, since locals and stack arrays
 677       // grow downwards in all implementations.
 678       // (If, on some machine, the interpreter's Java locals or stack
 679       // were to grow upwards, the embedded doubles would be word-swapped.)
 680       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 681       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 682     }
 683 #endif //_LP64
 684     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 685                OptoReg::is_reg(regnum) ) {
 686       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
 687                                    ? Location::float_in_dbl : Location::normal ));
 688     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 689       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
 690                                    ? Location::int_in_long : Location::normal ));
 691     } else if( t->base() == Type::NarrowOop ) {
 692       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
 693     } else {
 694       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
 695     }
 696     return;
 697   }
 698 
 699   // No register.  It must be constant data.
 700   switch (t->base()) {
 701   case Type::Half:              // Second half of a double
 702     ShouldNotReachHere();       // Caller should skip 2nd halves
 703     break;
 704   case Type::AnyPtr:
 705     array->append(new ConstantOopWriteValue(NULL));
 706     break;
 707   case Type::AryPtr:
 708   case Type::InstPtr:
 709   case Type::KlassPtr:          // fall through
 710     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 711     break;
 712   case Type::NarrowOop:
 713     if (t == TypeNarrowOop::NULL_PTR) {
 714       array->append(new ConstantOopWriteValue(NULL));
 715     } else {
 716       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 717     }
 718     break;
 719   case Type::Int:
 720     array->append(new ConstantIntValue(t->is_int()->get_con()));
 721     break;
 722   case Type::RawPtr:
 723     // A return address (T_ADDRESS).
 724     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 725 #ifdef _LP64
 726     // Must be restored to the full-width 64-bit stack slot.
 727     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 728 #else
 729     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 730 #endif
 731     break;
 732   case Type::FloatCon: {
 733     float f = t->is_float_constant()->getf();
 734     array->append(new ConstantIntValue(jint_cast(f)));
 735     break;
 736   }
 737   case Type::DoubleCon: {
 738     jdouble d = t->is_double_constant()->getd();
 739 #ifdef _LP64
 740     array->append(new ConstantIntValue(0));
 741     array->append(new ConstantDoubleValue(d));
 742 #else
 743     // Repack the double as two jints.
 744     // The convention the interpreter uses is that the second local
 745     // holds the first raw word of the native double representation.
 746     // This is actually reasonable, since locals and stack arrays
 747     // grow downwards in all implementations.
 748     // (If, on some machine, the interpreter's Java locals or stack
 749     // were to grow upwards, the embedded doubles would be word-swapped.)
 750     jint   *dp = (jint*)&d;
 751     array->append(new ConstantIntValue(dp[1]));
 752     array->append(new ConstantIntValue(dp[0]));
 753 #endif
 754     break;
 755   }
 756   case Type::Long: {
 757     jlong d = t->is_long()->get_con();
 758 #ifdef _LP64
 759     array->append(new ConstantIntValue(0));
 760     array->append(new ConstantLongValue(d));
 761 #else
 762     // Repack the long as two jints.
 763     // The convention the interpreter uses is that the second local
 764     // holds the first raw word of the native double representation.
 765     // This is actually reasonable, since locals and stack arrays
 766     // grow downwards in all implementations.
 767     // (If, on some machine, the interpreter's Java locals or stack
 768     // were to grow upwards, the embedded doubles would be word-swapped.)
 769     jint *dp = (jint*)&d;
 770     array->append(new ConstantIntValue(dp[1]));
 771     array->append(new ConstantIntValue(dp[0]));
 772 #endif
 773     break;
 774   }
 775   case Type::Top:               // Add an illegal value here
 776     array->append(new LocationValue(Location()));
 777     break;
 778   default:
 779     ShouldNotReachHere();
 780     break;
 781   }
 782 }
 783 
 784 // Determine if this node starts a bundle
 785 bool Compile::starts_bundle(const Node *n) const {
 786   return (_node_bundling_limit > n->_idx &&
 787           _node_bundling_base[n->_idx].starts_bundle());
 788 }
 789 
 790 //--------------------------Process_OopMap_Node--------------------------------
 791 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
 792 
 793   // Handle special safepoint nodes for synchronization
 794   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 795   MachCallNode      *mcall;
 796 
 797 #ifdef ENABLE_ZAP_DEAD_LOCALS
 798   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
 799 #endif
 800 
 801   int safepoint_pc_offset = current_offset;
 802   bool is_method_handle_invoke = false;
 803   bool return_oop = false;
 804 
 805   // Add the safepoint in the DebugInfoRecorder
 806   if( !mach->is_MachCall() ) {
 807     mcall = NULL;
 808     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 809   } else {
 810     mcall = mach->as_MachCall();
 811 
 812     // Is the call a MethodHandle call?
 813     if (mcall->is_MachCallJava()) {
 814       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 815         assert(has_method_handle_invokes(), "must have been set during call generation");
 816         is_method_handle_invoke = true;
 817       }
 818     }
 819 
 820     // Check if a call returns an object.
 821     if (mcall->return_value_is_used() &&
 822         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
 823       return_oop = true;
 824     }
 825     safepoint_pc_offset += mcall->ret_addr_offset();
 826     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 827   }
 828 
 829   // Loop over the JVMState list to add scope information
 830   // Do not skip safepoints with a NULL method, they need monitor info
 831   JVMState* youngest_jvms = sfn->jvms();
 832   int max_depth = youngest_jvms->depth();
 833 
 834   // Allocate the object pool for scalar-replaced objects -- the map from
 835   // small-integer keys (which can be recorded in the local and ostack
 836   // arrays) to descriptions of the object state.
 837   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 838 
 839   // Visit scopes from oldest to youngest.
 840   for (int depth = 1; depth <= max_depth; depth++) {
 841     JVMState* jvms = youngest_jvms->of_depth(depth);
 842     int idx;
 843     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 844     // Safepoints that do not have method() set only provide oop-map and monitor info
 845     // to support GC; these do not support deoptimization.
 846     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 847     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 848     int num_mon  = jvms->nof_monitors();
 849     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 850            "JVMS local count must match that of the method");
 851 
 852     // Add Local and Expression Stack Information
 853 
 854     // Insert locals into the locarray
 855     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 856     for( idx = 0; idx < num_locs; idx++ ) {
 857       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 858     }
 859 
 860     // Insert expression stack entries into the exparray
 861     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 862     for( idx = 0; idx < num_exps; idx++ ) {
 863       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 864     }
 865 
 866     // Add in mappings of the monitors
 867     assert( !method ||
 868             !method->is_synchronized() ||
 869             method->is_native() ||
 870             num_mon > 0 ||
 871             !GenerateSynchronizationCode,
 872             "monitors must always exist for synchronized methods");
 873 
 874     // Build the growable array of ScopeValues for exp stack
 875     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
 876 
 877     // Loop over monitors and insert into array
 878     for(idx = 0; idx < num_mon; idx++) {
 879       // Grab the node that defines this monitor
 880       Node* box_node = sfn->monitor_box(jvms, idx);
 881       Node* obj_node = sfn->monitor_obj(jvms, idx);
 882 
 883       // Create ScopeValue for object
 884       ScopeValue *scval = NULL;
 885 
 886       if( obj_node->is_SafePointScalarObject() ) {
 887         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
 888         scval = Compile::sv_for_node_id(objs, spobj->_idx);
 889         if (scval == NULL) {
 890           const Type *t = obj_node->bottom_type();
 891           ciKlass* cik = t->is_oopptr()->klass();
 892           assert(cik->is_instance_klass() ||
 893                  cik->is_array_klass(), "Not supported allocation.");
 894           ObjectValue* sv = new ObjectValue(spobj->_idx,
 895                                 new ConstantOopWriteValue(cik->constant_encoding()));
 896           Compile::set_sv_for_object_node(objs, sv);
 897 
 898           uint first_ind = spobj->first_index();
 899           for (uint i = 0; i < spobj->n_fields(); i++) {
 900             Node* fld_node = sfn->in(first_ind+i);
 901             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
 902           }
 903           scval = sv;
 904         }
 905       } else if( !obj_node->is_Con() ) {
 906         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
 907         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
 908           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
 909         } else {
 910           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
 911         }
 912       } else {
 913         const TypePtr *tp = obj_node->bottom_type()->make_ptr();
 914         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
 915       }
 916 
 917       OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
 918       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
 919       while( !box_node->is_BoxLock() )  box_node = box_node->in(1);
 920       monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
 921     }
 922 
 923     // We dump the object pool first, since deoptimization reads it in first.
 924     debug_info()->dump_object_pool(objs);
 925 
 926     // Build first class objects to pass to scope
 927     DebugToken *locvals = debug_info()->create_scope_values(locarray);
 928     DebugToken *expvals = debug_info()->create_scope_values(exparray);
 929     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
 930 
 931     // Make method available for all Safepoints
 932     ciMethod* scope_method = method ? method : _method;
 933     // Describe the scope here
 934     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
 935     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
 936     // Now we can describe the scope.
 937     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
 938   } // End jvms loop
 939 
 940   // Mark the end of the scope set.
 941   debug_info()->end_safepoint(safepoint_pc_offset);
 942 }
 943 
 944 
 945 
 946 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
 947 class NonSafepointEmitter {
 948   Compile*  C;
 949   JVMState* _pending_jvms;
 950   int       _pending_offset;
 951 
 952   void emit_non_safepoint();
 953 
 954  public:
 955   NonSafepointEmitter(Compile* compile) {
 956     this->C = compile;
 957     _pending_jvms = NULL;
 958     _pending_offset = 0;
 959   }
 960 
 961   void observe_instruction(Node* n, int pc_offset) {
 962     if (!C->debug_info()->recording_non_safepoints())  return;
 963 
 964     Node_Notes* nn = C->node_notes_at(n->_idx);
 965     if (nn == NULL || nn->jvms() == NULL)  return;
 966     if (_pending_jvms != NULL &&
 967         _pending_jvms->same_calls_as(nn->jvms())) {
 968       // Repeated JVMS?  Stretch it up here.
 969       _pending_offset = pc_offset;
 970     } else {
 971       if (_pending_jvms != NULL &&
 972           _pending_offset < pc_offset) {
 973         emit_non_safepoint();
 974       }
 975       _pending_jvms = NULL;
 976       if (pc_offset > C->debug_info()->last_pc_offset()) {
 977         // This is the only way _pending_jvms can become non-NULL:
 978         _pending_jvms = nn->jvms();
 979         _pending_offset = pc_offset;
 980       }
 981     }
 982   }
 983 
 984   // Stay out of the way of real safepoints:
 985   void observe_safepoint(JVMState* jvms, int pc_offset) {
 986     if (_pending_jvms != NULL &&
 987         !_pending_jvms->same_calls_as(jvms) &&
 988         _pending_offset < pc_offset) {
 989       emit_non_safepoint();
 990     }
 991     _pending_jvms = NULL;
 992   }
 993 
 994   void flush_at_end() {
 995     if (_pending_jvms != NULL) {
 996       emit_non_safepoint();
 997     }
 998     _pending_jvms = NULL;
 999   }
1000 };
1001 
1002 void NonSafepointEmitter::emit_non_safepoint() {
1003   JVMState* youngest_jvms = _pending_jvms;
1004   int       pc_offset     = _pending_offset;
1005 
1006   // Clear it now:
1007   _pending_jvms = NULL;
1008 
1009   DebugInformationRecorder* debug_info = C->debug_info();
1010   assert(debug_info->recording_non_safepoints(), "sanity");
1011 
1012   debug_info->add_non_safepoint(pc_offset);
1013   int max_depth = youngest_jvms->depth();
1014 
1015   // Visit scopes from oldest to youngest.
1016   for (int depth = 1; depth <= max_depth; depth++) {
1017     JVMState* jvms = youngest_jvms->of_depth(depth);
1018     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1019     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1020     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1021   }
1022 
1023   // Mark the end of the scope set.
1024   debug_info->end_non_safepoint(pc_offset);
1025 }
1026 
1027 
1028 
1029 // helper for Fill_buffer bailout logic
1030 static void turn_off_compiler(Compile* C) {
1031   if (CodeCache::largest_free_block() >= CodeCacheMinimumFreeSpace*10) {
1032     // Do not turn off compilation if a single giant method has
1033     // blown the code cache size.
1034     C->record_failure("excessive request to CodeCache");
1035   } else {
1036     // Let CompilerBroker disable further compilations.
1037     C->record_failure("CodeCache is full");
1038   }
1039 }
1040 
1041 
1042 //------------------------------Fill_buffer------------------------------------
1043 void Compile::Fill_buffer() {
1044 
1045   // Set the initially allocated size
1046   int  code_req   = initial_code_capacity;
1047   int  locs_req   = initial_locs_capacity;
1048   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1049   int  const_req  = initial_const_capacity;
1050   bool labels_not_set = true;
1051 
1052   int  pad_req    = NativeCall::instruction_size;
1053   // The extra spacing after the code is necessary on some platforms.
1054   // Sometimes we need to patch in a jump after the last instruction,
1055   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1056 
1057   uint i;
1058   // Compute the byte offset where we can store the deopt pc.
1059   if (fixed_slots() != 0) {
1060     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1061   }
1062 
1063   // Compute prolog code size
1064   _method_size = 0;
1065   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1066 #ifdef IA64
1067   if (save_argument_registers()) {
1068     // 4815101: this is a stub with implicit and unknown precision fp args.
1069     // The usual spill mechanism can only generate stfd's in this case, which
1070     // doesn't work if the fp reg to spill contains a single-precision denorm.
1071     // Instead, we hack around the normal spill mechanism using stfspill's and
1072     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1073     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1074     //
1075     // If we ever implement 16-byte 'registers' == stack slots, we can
1076     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1077     // instead of stfd/stfs/ldfd/ldfs.
1078     _frame_slots += 8*(16/BytesPerInt);
1079   }
1080 #endif
1081   assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
1082 
1083   // Create an array of unused labels, one for each basic block
1084   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
1085 
1086   for( i=0; i <= _cfg->_num_blocks; i++ ) {
1087     blk_labels[i].init();
1088   }
1089 
1090   if (has_mach_constant_base_node()) {
1091     // Fill the constant table.
1092     // Note:  This must happen before Shorten_branches.
1093     for (i = 0; i < _cfg->_num_blocks; i++) {
1094       Block* b = _cfg->_blocks[i];
1095 
1096       for (uint j = 0; j < b->_nodes.size(); j++) {
1097         Node* n = b->_nodes[j];
1098 
1099         // If the node is a MachConstantNode evaluate the constant
1100         // value section.
1101         if (n->is_MachConstant()) {
1102           MachConstantNode* machcon = n->as_MachConstant();
1103           machcon->eval_constant(C);
1104         }
1105       }
1106     }
1107 
1108     // Calculate the offsets of the constants and the size of the
1109     // constant table (including the padding to the next section).
1110     constant_table().calculate_offsets_and_size();
1111     const_req = constant_table().size();
1112   }
1113 
1114   // Initialize the space for the BufferBlob used to find and verify
1115   // instruction size in MachNode::emit_size()
1116   init_scratch_buffer_blob(const_req);
1117   if (failing())  return; // Out of memory
1118 
1119   // If this machine supports different size branch offsets, then pre-compute
1120   // the length of the blocks
1121   if( _matcher->is_short_branch_offset(-1, 0) ) {
1122     Shorten_branches(blk_labels, code_req, locs_req, stub_req);
1123     labels_not_set = false;
1124   }
1125 
1126   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1127   int exception_handler_req = size_exception_handler();
1128   int deopt_handler_req = size_deopt_handler();
1129   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1130   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1131   stub_req += MAX_stubs_size;   // ensure per-stub margin
1132   code_req += MAX_inst_size;    // ensure per-instruction margin
1133 
1134   if (StressCodeBuffers)
1135     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1136 
1137   int total_req =
1138     const_req +
1139     code_req +
1140     pad_req +
1141     stub_req +
1142     exception_handler_req +
1143     deopt_handler_req;               // deopt handler
1144 
1145   if (has_method_handle_invokes())
1146     total_req += deopt_handler_req;  // deopt MH handler
1147 
1148   CodeBuffer* cb = code_buffer();
1149   cb->initialize(total_req, locs_req);
1150 
1151   // Have we run out of code space?
1152   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1153     turn_off_compiler(this);
1154     return;
1155   }
1156   // Configure the code buffer.
1157   cb->initialize_consts_size(const_req);
1158   cb->initialize_stubs_size(stub_req);
1159   cb->initialize_oop_recorder(env()->oop_recorder());
1160 
1161   // fill in the nop array for bundling computations
1162   MachNode *_nop_list[Bundle::_nop_count];
1163   Bundle::initialize_nops(_nop_list, this);
1164 
1165   // Create oopmap set.
1166   _oop_map_set = new OopMapSet();
1167 
1168   // !!!!! This preserves old handling of oopmaps for now
1169   debug_info()->set_oopmaps(_oop_map_set);
1170 
1171   // Count and start of implicit null check instructions
1172   uint inct_cnt = 0;
1173   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1174 
1175   // Count and start of calls
1176   uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1177 
1178   uint  return_offset = 0;
1179   int nop_size = (new (this) MachNopNode())->size(_regalloc);
1180 
1181   int previous_offset = 0;
1182   int current_offset  = 0;
1183   int last_call_offset = -1;
1184 
1185   // Create an array of unused labels, one for each basic block, if printing is enabled
1186 #ifndef PRODUCT
1187   int *node_offsets      = NULL;
1188   uint  node_offset_limit = unique();
1189 
1190 
1191   if ( print_assembly() )
1192     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1193 #endif
1194 
1195   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1196 
1197   // Emit the constant table.
1198   if (has_mach_constant_base_node()) {
1199     constant_table().emit(*cb);
1200   }
1201 
1202   // ------------------
1203   // Now fill in the code buffer
1204   Node *delay_slot = NULL;
1205 
1206   for( i=0; i < _cfg->_num_blocks; i++ ) {
1207     Block *b = _cfg->_blocks[i];
1208 
1209     Node *head = b->head();
1210 
1211     // If this block needs to start aligned (i.e, can be reached other
1212     // than by falling-thru from the previous block), then force the
1213     // start of a new bundle.
1214     if( Pipeline::requires_bundling() && starts_bundle(head) )
1215       cb->flush_bundle(true);
1216 
1217     // Define the label at the beginning of the basic block
1218     if (labels_not_set) {
1219       MacroAssembler(cb).bind(blk_labels[b->_pre_order]);
1220     } else {
1221       assert(blk_labels[b->_pre_order].loc_pos() == cb->insts_size(),
1222              err_msg("label position does not match code offset: %d != %d",
1223                      blk_labels[b->_pre_order].loc_pos(), cb->insts_size()));
1224     }
1225 
1226     uint last_inst = b->_nodes.size();
1227 
1228     // Emit block normally, except for last instruction.
1229     // Emit means "dump code bits into code buffer".
1230     for( uint j = 0; j<last_inst; j++ ) {
1231 
1232       // Get the node
1233       Node* n = b->_nodes[j];
1234 
1235       // See if delay slots are supported
1236       if (valid_bundle_info(n) &&
1237           node_bundling(n)->used_in_unconditional_delay()) {
1238         assert(delay_slot == NULL, "no use of delay slot node");
1239         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1240 
1241         delay_slot = n;
1242         continue;
1243       }
1244 
1245       // If this starts a new instruction group, then flush the current one
1246       // (but allow split bundles)
1247       if( Pipeline::requires_bundling() && starts_bundle(n) )
1248         cb->flush_bundle(false);
1249 
1250       // The following logic is duplicated in the code ifdeffed for
1251       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1252       // should be factored out.  Or maybe dispersed to the nodes?
1253 
1254       // Special handling for SafePoint/Call Nodes
1255       bool is_mcall = false;
1256       if( n->is_Mach() ) {
1257         MachNode *mach = n->as_Mach();
1258         is_mcall = n->is_MachCall();
1259         bool is_sfn = n->is_MachSafePoint();
1260 
1261         // If this requires all previous instructions be flushed, then do so
1262         if( is_sfn || is_mcall || mach->alignment_required() != 1) {
1263           cb->flush_bundle(true);
1264           current_offset = cb->insts_size();
1265         }
1266 
1267         // align the instruction if necessary
1268         int padding = mach->compute_padding(current_offset);
1269         // Make sure safepoint node for polling is distinct from a call's
1270         // return by adding a nop if needed.
1271         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
1272           padding = nop_size;
1273         }
1274         assert( labels_not_set || padding == 0, "instruction should already be aligned");
1275 
1276         if(padding > 0) {
1277           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1278           int nops_cnt = padding / nop_size;
1279           MachNode *nop = new (this) MachNopNode(nops_cnt);
1280           b->_nodes.insert(j++, nop);
1281           last_inst++;
1282           _cfg->_bbs.map( nop->_idx, b );
1283           nop->emit(*cb, _regalloc);
1284           cb->flush_bundle(true);
1285           current_offset = cb->insts_size();
1286         }
1287 
1288         // Remember the start of the last call in a basic block
1289         if (is_mcall) {
1290           MachCallNode *mcall = mach->as_MachCall();
1291 
1292           // This destination address is NOT PC-relative
1293           mcall->method_set((intptr_t)mcall->entry_point());
1294 
1295           // Save the return address
1296           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1297 
1298           if (mcall->is_MachCallLeaf()) {
1299             is_mcall = false;
1300             is_sfn = false;
1301           }
1302         }
1303 
1304         // sfn will be valid whenever mcall is valid now because of inheritance
1305         if( is_sfn || is_mcall ) {
1306 
1307           // Handle special safepoint nodes for synchronization
1308           if( !is_mcall ) {
1309             MachSafePointNode *sfn = mach->as_MachSafePoint();
1310             // !!!!! Stubs only need an oopmap right now, so bail out
1311             if( sfn->jvms()->method() == NULL) {
1312               // Write the oopmap directly to the code blob??!!
1313 #             ifdef ENABLE_ZAP_DEAD_LOCALS
1314               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1315 #             endif
1316               continue;
1317             }
1318           } // End synchronization
1319 
1320           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1321                                            current_offset);
1322           Process_OopMap_Node(mach, current_offset);
1323         } // End if safepoint
1324 
1325         // If this is a null check, then add the start of the previous instruction to the list
1326         else if( mach->is_MachNullCheck() ) {
1327           inct_starts[inct_cnt++] = previous_offset;
1328         }
1329 
1330         // If this is a branch, then fill in the label with the target BB's label
1331         else if ( mach->is_Branch() ) {
1332 
1333           if ( mach->ideal_Opcode() == Op_Jump ) {
1334             for (uint h = 0; h < b->_num_succs; h++ ) {
1335               Block* succs_block = b->_succs[h];
1336               for (uint j = 1; j < succs_block->num_preds(); j++) {
1337                 Node* jpn = succs_block->pred(j);
1338                 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
1339                   uint block_num = succs_block->non_connector()->_pre_order;
1340                   Label *blkLabel = &blk_labels[block_num];
1341                   mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1342                 }
1343               }
1344             }
1345           } else {
1346             // For Branchs
1347             // This requires the TRUE branch target be in succs[0]
1348             uint block_num = b->non_connector_successor(0)->_pre_order;
1349             mach->label_set( &blk_labels[block_num], block_num );
1350           }
1351         }
1352 
1353 #ifdef ASSERT
1354         // Check that oop-store precedes the card-mark
1355         else if( mach->ideal_Opcode() == Op_StoreCM ) {
1356           uint storeCM_idx = j;
1357           int count = 0;
1358           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1359             Node *oop_store = mach->in(prec);  // Precedence edge
1360             if (oop_store == NULL) continue;
1361             count++;
1362             uint i4;
1363             for( i4 = 0; i4 < last_inst; ++i4 ) {
1364               if( b->_nodes[i4] == oop_store ) break;
1365             }
1366             // Note: This test can provide a false failure if other precedence
1367             // edges have been added to the storeCMNode.
1368             assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1369           }
1370           assert(count > 0, "storeCM expects at least one precedence edge");
1371         }
1372 #endif
1373 
1374         else if( !n->is_Proj() ) {
1375           // Remember the beginning of the previous instruction, in case
1376           // it's followed by a flag-kill and a null-check.  Happens on
1377           // Intel all the time, with add-to-memory kind of opcodes.
1378           previous_offset = current_offset;
1379         }
1380       }
1381 
1382       // Verify that there is sufficient space remaining
1383       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1384       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1385         turn_off_compiler(this);
1386         return;
1387       }
1388 
1389       // Save the offset for the listing
1390 #ifndef PRODUCT
1391       if( node_offsets && n->_idx < node_offset_limit )
1392         node_offsets[n->_idx] = cb->insts_size();
1393 #endif
1394 
1395       // "Normal" instruction case
1396       n->emit(*cb, _regalloc);
1397       current_offset  = cb->insts_size();
1398       non_safepoints.observe_instruction(n, current_offset);
1399 
1400       // mcall is last "call" that can be a safepoint
1401       // record it so we can see if a poll will directly follow it
1402       // in which case we'll need a pad to make the PcDesc sites unique
1403       // see  5010568. This can be slightly inaccurate but conservative
1404       // in the case that return address is not actually at current_offset.
1405       // This is a small price to pay.
1406 
1407       if (is_mcall) {
1408         last_call_offset = current_offset;
1409       }
1410 
1411       // See if this instruction has a delay slot
1412       if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1413         assert(delay_slot != NULL, "expecting delay slot node");
1414 
1415         // Back up 1 instruction
1416         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1417 
1418         // Save the offset for the listing
1419 #ifndef PRODUCT
1420         if( node_offsets && delay_slot->_idx < node_offset_limit )
1421           node_offsets[delay_slot->_idx] = cb->insts_size();
1422 #endif
1423 
1424         // Support a SafePoint in the delay slot
1425         if( delay_slot->is_MachSafePoint() ) {
1426           MachNode *mach = delay_slot->as_Mach();
1427           // !!!!! Stubs only need an oopmap right now, so bail out
1428           if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
1429             // Write the oopmap directly to the code blob??!!
1430 #           ifdef ENABLE_ZAP_DEAD_LOCALS
1431             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1432 #           endif
1433             delay_slot = NULL;
1434             continue;
1435           }
1436 
1437           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1438           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1439                                            adjusted_offset);
1440           // Generate an OopMap entry
1441           Process_OopMap_Node(mach, adjusted_offset);
1442         }
1443 
1444         // Insert the delay slot instruction
1445         delay_slot->emit(*cb, _regalloc);
1446 
1447         // Don't reuse it
1448         delay_slot = NULL;
1449       }
1450 
1451     } // End for all instructions in block
1452 
1453     // If the next block is the top of a loop, pad this block out to align
1454     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1455     if( i<_cfg->_num_blocks-1 ) {
1456       Block *nb = _cfg->_blocks[i+1];
1457       uint padding = nb->alignment_padding(current_offset);
1458       if( padding > 0 ) {
1459         MachNode *nop = new (this) MachNopNode(padding / nop_size);
1460         b->_nodes.insert( b->_nodes.size(), nop );
1461         _cfg->_bbs.map( nop->_idx, b );
1462         nop->emit(*cb, _regalloc);
1463         current_offset = cb->insts_size();
1464       }
1465     }
1466 
1467   } // End of for all blocks
1468 
1469   non_safepoints.flush_at_end();
1470 
1471   // Offset too large?
1472   if (failing())  return;
1473 
1474   // Define a pseudo-label at the end of the code
1475   MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
1476 
1477   // Compute the size of the first block
1478   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1479 
1480   assert(cb->insts_size() < 500000, "method is unreasonably large");
1481 
1482   // ------------------
1483 
1484 #ifndef PRODUCT
1485   // Information on the size of the method, without the extraneous code
1486   Scheduling::increment_method_size(cb->insts_size());
1487 #endif
1488 
1489   // ------------------
1490   // Fill in exception table entries.
1491   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1492 
1493   // Only java methods have exception handlers and deopt handlers
1494   if (_method) {
1495     // Emit the exception handler code.
1496     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1497     // Emit the deopt handler code.
1498     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1499 
1500     // Emit the MethodHandle deopt handler code (if required).
1501     if (has_method_handle_invokes()) {
1502       // We can use the same code as for the normal deopt handler, we
1503       // just need a different entry point address.
1504       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1505     }
1506   }
1507 
1508   // One last check for failed CodeBuffer::expand:
1509   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1510     turn_off_compiler(this);
1511     return;
1512   }
1513 
1514 #ifndef PRODUCT
1515   // Dump the assembly code, including basic-block numbers
1516   if (print_assembly()) {
1517     ttyLocker ttyl;  // keep the following output all in one block
1518     if (!VMThread::should_terminate()) {  // test this under the tty lock
1519       // This output goes directly to the tty, not the compiler log.
1520       // To enable tools to match it up with the compilation activity,
1521       // be sure to tag this tty output with the compile ID.
1522       if (xtty != NULL) {
1523         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1524                    is_osr_compilation()    ? " compile_kind='osr'" :
1525                    "");
1526       }
1527       if (method() != NULL) {
1528         method()->print_oop();
1529         print_codes();
1530       }
1531       dump_asm(node_offsets, node_offset_limit);
1532       if (xtty != NULL) {
1533         xtty->tail("opto_assembly");
1534       }
1535     }
1536   }
1537 #endif
1538 
1539 }
1540 
1541 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1542   _inc_table.set_size(cnt);
1543 
1544   uint inct_cnt = 0;
1545   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1546     Block *b = _cfg->_blocks[i];
1547     Node *n = NULL;
1548     int j;
1549 
1550     // Find the branch; ignore trailing NOPs.
1551     for( j = b->_nodes.size()-1; j>=0; j-- ) {
1552       n = b->_nodes[j];
1553       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1554         break;
1555     }
1556 
1557     // If we didn't find anything, continue
1558     if( j < 0 ) continue;
1559 
1560     // Compute ExceptionHandlerTable subtable entry and add it
1561     // (skip empty blocks)
1562     if( n->is_Catch() ) {
1563 
1564       // Get the offset of the return from the call
1565       uint call_return = call_returns[b->_pre_order];
1566 #ifdef ASSERT
1567       assert( call_return > 0, "no call seen for this basic block" );
1568       while( b->_nodes[--j]->is_MachProj() ) ;
1569       assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" );
1570 #endif
1571       // last instruction is a CatchNode, find it's CatchProjNodes
1572       int nof_succs = b->_num_succs;
1573       // allocate space
1574       GrowableArray<intptr_t> handler_bcis(nof_succs);
1575       GrowableArray<intptr_t> handler_pcos(nof_succs);
1576       // iterate through all successors
1577       for (int j = 0; j < nof_succs; j++) {
1578         Block* s = b->_succs[j];
1579         bool found_p = false;
1580         for( uint k = 1; k < s->num_preds(); k++ ) {
1581           Node *pk = s->pred(k);
1582           if( pk->is_CatchProj() && pk->in(0) == n ) {
1583             const CatchProjNode* p = pk->as_CatchProj();
1584             found_p = true;
1585             // add the corresponding handler bci & pco information
1586             if( p->_con != CatchProjNode::fall_through_index ) {
1587               // p leads to an exception handler (and is not fall through)
1588               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1589               // no duplicates, please
1590               if( !handler_bcis.contains(p->handler_bci()) ) {
1591                 uint block_num = s->non_connector()->_pre_order;
1592                 handler_bcis.append(p->handler_bci());
1593                 handler_pcos.append(blk_labels[block_num].loc_pos());
1594               }
1595             }
1596           }
1597         }
1598         assert(found_p, "no matching predecessor found");
1599         // Note:  Due to empty block removal, one block may have
1600         // several CatchProj inputs, from the same Catch.
1601       }
1602 
1603       // Set the offset of the return from the call
1604       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1605       continue;
1606     }
1607 
1608     // Handle implicit null exception table updates
1609     if( n->is_MachNullCheck() ) {
1610       uint block_num = b->non_connector_successor(0)->_pre_order;
1611       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1612       continue;
1613     }
1614   } // End of for all blocks fill in exception table entries
1615 }
1616 
1617 // Static Variables
1618 #ifndef PRODUCT
1619 uint Scheduling::_total_nop_size = 0;
1620 uint Scheduling::_total_method_size = 0;
1621 uint Scheduling::_total_branches = 0;
1622 uint Scheduling::_total_unconditional_delays = 0;
1623 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1624 #endif
1625 
1626 // Initializer for class Scheduling
1627 
1628 Scheduling::Scheduling(Arena *arena, Compile &compile)
1629   : _arena(arena),
1630     _cfg(compile.cfg()),
1631     _bbs(compile.cfg()->_bbs),
1632     _regalloc(compile.regalloc()),
1633     _reg_node(arena),
1634     _bundle_instr_count(0),
1635     _bundle_cycle_number(0),
1636     _scheduled(arena),
1637     _available(arena),
1638     _next_node(NULL),
1639     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1640     _pinch_free_list(arena)
1641 #ifndef PRODUCT
1642   , _branches(0)
1643   , _unconditional_delays(0)
1644 #endif
1645 {
1646   // Create a MachNopNode
1647   _nop = new (&compile) MachNopNode();
1648 
1649   // Now that the nops are in the array, save the count
1650   // (but allow entries for the nops)
1651   _node_bundling_limit = compile.unique();
1652   uint node_max = _regalloc->node_regs_max_index();
1653 
1654   compile.set_node_bundling_limit(_node_bundling_limit);
1655 
1656   // This one is persistent within the Compile class
1657   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1658 
1659   // Allocate space for fixed-size arrays
1660   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1661   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1662   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1663 
1664   // Clear the arrays
1665   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1666   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1667   memset(_uses,               0, node_max * sizeof(short));
1668   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1669 
1670   // Clear the bundling information
1671   memcpy(_bundle_use_elements,
1672     Pipeline_Use::elaborated_elements,
1673     sizeof(Pipeline_Use::elaborated_elements));
1674 
1675   // Get the last node
1676   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1677 
1678   _next_node = bb->_nodes[bb->_nodes.size()-1];
1679 }
1680 
1681 #ifndef PRODUCT
1682 // Scheduling destructor
1683 Scheduling::~Scheduling() {
1684   _total_branches             += _branches;
1685   _total_unconditional_delays += _unconditional_delays;
1686 }
1687 #endif
1688 
1689 // Step ahead "i" cycles
1690 void Scheduling::step(uint i) {
1691 
1692   Bundle *bundle = node_bundling(_next_node);
1693   bundle->set_starts_bundle();
1694 
1695   // Update the bundle record, but leave the flags information alone
1696   if (_bundle_instr_count > 0) {
1697     bundle->set_instr_count(_bundle_instr_count);
1698     bundle->set_resources_used(_bundle_use.resourcesUsed());
1699   }
1700 
1701   // Update the state information
1702   _bundle_instr_count = 0;
1703   _bundle_cycle_number += i;
1704   _bundle_use.step(i);
1705 }
1706 
1707 void Scheduling::step_and_clear() {
1708   Bundle *bundle = node_bundling(_next_node);
1709   bundle->set_starts_bundle();
1710 
1711   // Update the bundle record
1712   if (_bundle_instr_count > 0) {
1713     bundle->set_instr_count(_bundle_instr_count);
1714     bundle->set_resources_used(_bundle_use.resourcesUsed());
1715 
1716     _bundle_cycle_number += 1;
1717   }
1718 
1719   // Clear the bundling information
1720   _bundle_instr_count = 0;
1721   _bundle_use.reset();
1722 
1723   memcpy(_bundle_use_elements,
1724     Pipeline_Use::elaborated_elements,
1725     sizeof(Pipeline_Use::elaborated_elements));
1726 }
1727 
1728 //------------------------------ScheduleAndBundle------------------------------
1729 // Perform instruction scheduling and bundling over the sequence of
1730 // instructions in backwards order.
1731 void Compile::ScheduleAndBundle() {
1732 
1733   // Don't optimize this if it isn't a method
1734   if (!_method)
1735     return;
1736 
1737   // Don't optimize this if scheduling is disabled
1738   if (!do_scheduling())
1739     return;
1740 
1741   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1742 
1743   // Create a data structure for all the scheduling information
1744   Scheduling scheduling(Thread::current()->resource_area(), *this);
1745 
1746   // Initialize the space for the BufferBlob used to find and verify
1747   // instruction size in MachNode::emit_size()
1748   init_scratch_buffer_blob(MAX_const_size);
1749   if (failing())  return;  // Out of memory
1750 
1751   // Walk backwards over each basic block, computing the needed alignment
1752   // Walk over all the basic blocks
1753   scheduling.DoScheduling();
1754 }
1755 
1756 //------------------------------ComputeLocalLatenciesForward-------------------
1757 // Compute the latency of all the instructions.  This is fairly simple,
1758 // because we already have a legal ordering.  Walk over the instructions
1759 // from first to last, and compute the latency of the instruction based
1760 // on the latency of the preceding instruction(s).
1761 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1762 #ifndef PRODUCT
1763   if (_cfg->C->trace_opto_output())
1764     tty->print("# -> ComputeLocalLatenciesForward\n");
1765 #endif
1766 
1767   // Walk over all the schedulable instructions
1768   for( uint j=_bb_start; j < _bb_end; j++ ) {
1769 
1770     // This is a kludge, forcing all latency calculations to start at 1.
1771     // Used to allow latency 0 to force an instruction to the beginning
1772     // of the bb
1773     uint latency = 1;
1774     Node *use = bb->_nodes[j];
1775     uint nlen = use->len();
1776 
1777     // Walk over all the inputs
1778     for ( uint k=0; k < nlen; k++ ) {
1779       Node *def = use->in(k);
1780       if (!def)
1781         continue;
1782 
1783       uint l = _node_latency[def->_idx] + use->latency(k);
1784       if (latency < l)
1785         latency = l;
1786     }
1787 
1788     _node_latency[use->_idx] = latency;
1789 
1790 #ifndef PRODUCT
1791     if (_cfg->C->trace_opto_output()) {
1792       tty->print("# latency %4d: ", latency);
1793       use->dump();
1794     }
1795 #endif
1796   }
1797 
1798 #ifndef PRODUCT
1799   if (_cfg->C->trace_opto_output())
1800     tty->print("# <- ComputeLocalLatenciesForward\n");
1801 #endif
1802 
1803 } // end ComputeLocalLatenciesForward
1804 
1805 // See if this node fits into the present instruction bundle
1806 bool Scheduling::NodeFitsInBundle(Node *n) {
1807   uint n_idx = n->_idx;
1808 
1809   // If this is the unconditional delay instruction, then it fits
1810   if (n == _unconditional_delay_slot) {
1811 #ifndef PRODUCT
1812     if (_cfg->C->trace_opto_output())
1813       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1814 #endif
1815     return (true);
1816   }
1817 
1818   // If the node cannot be scheduled this cycle, skip it
1819   if (_current_latency[n_idx] > _bundle_cycle_number) {
1820 #ifndef PRODUCT
1821     if (_cfg->C->trace_opto_output())
1822       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1823         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1824 #endif
1825     return (false);
1826   }
1827 
1828   const Pipeline *node_pipeline = n->pipeline();
1829 
1830   uint instruction_count = node_pipeline->instructionCount();
1831   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1832     instruction_count = 0;
1833   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1834     instruction_count++;
1835 
1836   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1837 #ifndef PRODUCT
1838     if (_cfg->C->trace_opto_output())
1839       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1840         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1841 #endif
1842     return (false);
1843   }
1844 
1845   // Don't allow non-machine nodes to be handled this way
1846   if (!n->is_Mach() && instruction_count == 0)
1847     return (false);
1848 
1849   // See if there is any overlap
1850   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1851 
1852   if (delay > 0) {
1853 #ifndef PRODUCT
1854     if (_cfg->C->trace_opto_output())
1855       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1856 #endif
1857     return false;
1858   }
1859 
1860 #ifndef PRODUCT
1861   if (_cfg->C->trace_opto_output())
1862     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1863 #endif
1864 
1865   return true;
1866 }
1867 
1868 Node * Scheduling::ChooseNodeToBundle() {
1869   uint siz = _available.size();
1870 
1871   if (siz == 0) {
1872 
1873 #ifndef PRODUCT
1874     if (_cfg->C->trace_opto_output())
1875       tty->print("#   ChooseNodeToBundle: NULL\n");
1876 #endif
1877     return (NULL);
1878   }
1879 
1880   // Fast path, if only 1 instruction in the bundle
1881   if (siz == 1) {
1882 #ifndef PRODUCT
1883     if (_cfg->C->trace_opto_output()) {
1884       tty->print("#   ChooseNodeToBundle (only 1): ");
1885       _available[0]->dump();
1886     }
1887 #endif
1888     return (_available[0]);
1889   }
1890 
1891   // Don't bother, if the bundle is already full
1892   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
1893     for ( uint i = 0; i < siz; i++ ) {
1894       Node *n = _available[i];
1895 
1896       // Skip projections, we'll handle them another way
1897       if (n->is_Proj())
1898         continue;
1899 
1900       // This presupposed that instructions are inserted into the
1901       // available list in a legality order; i.e. instructions that
1902       // must be inserted first are at the head of the list
1903       if (NodeFitsInBundle(n)) {
1904 #ifndef PRODUCT
1905         if (_cfg->C->trace_opto_output()) {
1906           tty->print("#   ChooseNodeToBundle: ");
1907           n->dump();
1908         }
1909 #endif
1910         return (n);
1911       }
1912     }
1913   }
1914 
1915   // Nothing fits in this bundle, choose the highest priority
1916 #ifndef PRODUCT
1917   if (_cfg->C->trace_opto_output()) {
1918     tty->print("#   ChooseNodeToBundle: ");
1919     _available[0]->dump();
1920   }
1921 #endif
1922 
1923   return _available[0];
1924 }
1925 
1926 //------------------------------AddNodeToAvailableList-------------------------
1927 void Scheduling::AddNodeToAvailableList(Node *n) {
1928   assert( !n->is_Proj(), "projections never directly made available" );
1929 #ifndef PRODUCT
1930   if (_cfg->C->trace_opto_output()) {
1931     tty->print("#   AddNodeToAvailableList: ");
1932     n->dump();
1933   }
1934 #endif
1935 
1936   int latency = _current_latency[n->_idx];
1937 
1938   // Insert in latency order (insertion sort)
1939   uint i;
1940   for ( i=0; i < _available.size(); i++ )
1941     if (_current_latency[_available[i]->_idx] > latency)
1942       break;
1943 
1944   // Special Check for compares following branches
1945   if( n->is_Mach() && _scheduled.size() > 0 ) {
1946     int op = n->as_Mach()->ideal_Opcode();
1947     Node *last = _scheduled[0];
1948     if( last->is_MachIf() && last->in(1) == n &&
1949         ( op == Op_CmpI ||
1950           op == Op_CmpU ||
1951           op == Op_CmpP ||
1952           op == Op_CmpF ||
1953           op == Op_CmpD ||
1954           op == Op_CmpL ) ) {
1955 
1956       // Recalculate position, moving to front of same latency
1957       for ( i=0 ; i < _available.size(); i++ )
1958         if (_current_latency[_available[i]->_idx] >= latency)
1959           break;
1960     }
1961   }
1962 
1963   // Insert the node in the available list
1964   _available.insert(i, n);
1965 
1966 #ifndef PRODUCT
1967   if (_cfg->C->trace_opto_output())
1968     dump_available();
1969 #endif
1970 }
1971 
1972 //------------------------------DecrementUseCounts-----------------------------
1973 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
1974   for ( uint i=0; i < n->len(); i++ ) {
1975     Node *def = n->in(i);
1976     if (!def) continue;
1977     if( def->is_Proj() )        // If this is a machine projection, then
1978       def = def->in(0);         // propagate usage thru to the base instruction
1979 
1980     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
1981       continue;
1982 
1983     // Compute the latency
1984     uint l = _bundle_cycle_number + n->latency(i);
1985     if (_current_latency[def->_idx] < l)
1986       _current_latency[def->_idx] = l;
1987 
1988     // If this does not have uses then schedule it
1989     if ((--_uses[def->_idx]) == 0)
1990       AddNodeToAvailableList(def);
1991   }
1992 }
1993 
1994 //------------------------------AddNodeToBundle--------------------------------
1995 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
1996 #ifndef PRODUCT
1997   if (_cfg->C->trace_opto_output()) {
1998     tty->print("#   AddNodeToBundle: ");
1999     n->dump();
2000   }
2001 #endif
2002 
2003   // Remove this from the available list
2004   uint i;
2005   for (i = 0; i < _available.size(); i++)
2006     if (_available[i] == n)
2007       break;
2008   assert(i < _available.size(), "entry in _available list not found");
2009   _available.remove(i);
2010 
2011   // See if this fits in the current bundle
2012   const Pipeline *node_pipeline = n->pipeline();
2013   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2014 
2015   // Check for instructions to be placed in the delay slot. We
2016   // do this before we actually schedule the current instruction,
2017   // because the delay slot follows the current instruction.
2018   if (Pipeline::_branch_has_delay_slot &&
2019       node_pipeline->hasBranchDelay() &&
2020       !_unconditional_delay_slot) {
2021 
2022     uint siz = _available.size();
2023 
2024     // Conditional branches can support an instruction that
2025     // is unconditionally executed and not dependent by the
2026     // branch, OR a conditionally executed instruction if
2027     // the branch is taken.  In practice, this means that
2028     // the first instruction at the branch target is
2029     // copied to the delay slot, and the branch goes to
2030     // the instruction after that at the branch target
2031     if ( n->is_Mach() && n->is_Branch() ) {
2032 
2033       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2034       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2035 
2036 #ifndef PRODUCT
2037       _branches++;
2038 #endif
2039 
2040       // At least 1 instruction is on the available list
2041       // that is not dependent on the branch
2042       for (uint i = 0; i < siz; i++) {
2043         Node *d = _available[i];
2044         const Pipeline *avail_pipeline = d->pipeline();
2045 
2046         // Don't allow safepoints in the branch shadow, that will
2047         // cause a number of difficulties
2048         if ( avail_pipeline->instructionCount() == 1 &&
2049             !avail_pipeline->hasMultipleBundles() &&
2050             !avail_pipeline->hasBranchDelay() &&
2051             Pipeline::instr_has_unit_size() &&
2052             d->size(_regalloc) == Pipeline::instr_unit_size() &&
2053             NodeFitsInBundle(d) &&
2054             !node_bundling(d)->used_in_delay()) {
2055 
2056           if (d->is_Mach() && !d->is_MachSafePoint()) {
2057             // A node that fits in the delay slot was found, so we need to
2058             // set the appropriate bits in the bundle pipeline information so
2059             // that it correctly indicates resource usage.  Later, when we
2060             // attempt to add this instruction to the bundle, we will skip
2061             // setting the resource usage.
2062             _unconditional_delay_slot = d;
2063             node_bundling(n)->set_use_unconditional_delay();
2064             node_bundling(d)->set_used_in_unconditional_delay();
2065             _bundle_use.add_usage(avail_pipeline->resourceUse());
2066             _current_latency[d->_idx] = _bundle_cycle_number;
2067             _next_node = d;
2068             ++_bundle_instr_count;
2069 #ifndef PRODUCT
2070             _unconditional_delays++;
2071 #endif
2072             break;
2073           }
2074         }
2075       }
2076     }
2077 
2078     // No delay slot, add a nop to the usage
2079     if (!_unconditional_delay_slot) {
2080       // See if adding an instruction in the delay slot will overflow
2081       // the bundle.
2082       if (!NodeFitsInBundle(_nop)) {
2083 #ifndef PRODUCT
2084         if (_cfg->C->trace_opto_output())
2085           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2086 #endif
2087         step(1);
2088       }
2089 
2090       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2091       _next_node = _nop;
2092       ++_bundle_instr_count;
2093     }
2094 
2095     // See if the instruction in the delay slot requires a
2096     // step of the bundles
2097     if (!NodeFitsInBundle(n)) {
2098 #ifndef PRODUCT
2099         if (_cfg->C->trace_opto_output())
2100           tty->print("#  *** STEP(branch won't fit) ***\n");
2101 #endif
2102         // Update the state information
2103         _bundle_instr_count = 0;
2104         _bundle_cycle_number += 1;
2105         _bundle_use.step(1);
2106     }
2107   }
2108 
2109   // Get the number of instructions
2110   uint instruction_count = node_pipeline->instructionCount();
2111   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2112     instruction_count = 0;
2113 
2114   // Compute the latency information
2115   uint delay = 0;
2116 
2117   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2118     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2119     if (relative_latency < 0)
2120       relative_latency = 0;
2121 
2122     delay = _bundle_use.full_latency(relative_latency, node_usage);
2123 
2124     // Does not fit in this bundle, start a new one
2125     if (delay > 0) {
2126       step(delay);
2127 
2128 #ifndef PRODUCT
2129       if (_cfg->C->trace_opto_output())
2130         tty->print("#  *** STEP(%d) ***\n", delay);
2131 #endif
2132     }
2133   }
2134 
2135   // If this was placed in the delay slot, ignore it
2136   if (n != _unconditional_delay_slot) {
2137 
2138     if (delay == 0) {
2139       if (node_pipeline->hasMultipleBundles()) {
2140 #ifndef PRODUCT
2141         if (_cfg->C->trace_opto_output())
2142           tty->print("#  *** STEP(multiple instructions) ***\n");
2143 #endif
2144         step(1);
2145       }
2146 
2147       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2148 #ifndef PRODUCT
2149         if (_cfg->C->trace_opto_output())
2150           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2151             instruction_count + _bundle_instr_count,
2152             Pipeline::_max_instrs_per_cycle);
2153 #endif
2154         step(1);
2155       }
2156     }
2157 
2158     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2159       _bundle_instr_count++;
2160 
2161     // Set the node's latency
2162     _current_latency[n->_idx] = _bundle_cycle_number;
2163 
2164     // Now merge the functional unit information
2165     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2166       _bundle_use.add_usage(node_usage);
2167 
2168     // Increment the number of instructions in this bundle
2169     _bundle_instr_count += instruction_count;
2170 
2171     // Remember this node for later
2172     if (n->is_Mach())
2173       _next_node = n;
2174   }
2175 
2176   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2177   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2178   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2179   // into the block.  All other scheduled nodes get put in the schedule here.
2180   int op = n->Opcode();
2181   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2182       (op != Op_Node &&         // Not an unused antidepedence node and
2183        // not an unallocated boxlock
2184        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2185 
2186     // Push any trailing projections
2187     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2188       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2189         Node *foi = n->fast_out(i);
2190         if( foi->is_Proj() )
2191           _scheduled.push(foi);
2192       }
2193     }
2194 
2195     // Put the instruction in the schedule list
2196     _scheduled.push(n);
2197   }
2198 
2199 #ifndef PRODUCT
2200   if (_cfg->C->trace_opto_output())
2201     dump_available();
2202 #endif
2203 
2204   // Walk all the definitions, decrementing use counts, and
2205   // if a definition has a 0 use count, place it in the available list.
2206   DecrementUseCounts(n,bb);
2207 }
2208 
2209 //------------------------------ComputeUseCount--------------------------------
2210 // This method sets the use count within a basic block.  We will ignore all
2211 // uses outside the current basic block.  As we are doing a backwards walk,
2212 // any node we reach that has a use count of 0 may be scheduled.  This also
2213 // avoids the problem of cyclic references from phi nodes, as long as phi
2214 // nodes are at the front of the basic block.  This method also initializes
2215 // the available list to the set of instructions that have no uses within this
2216 // basic block.
2217 void Scheduling::ComputeUseCount(const Block *bb) {
2218 #ifndef PRODUCT
2219   if (_cfg->C->trace_opto_output())
2220     tty->print("# -> ComputeUseCount\n");
2221 #endif
2222 
2223   // Clear the list of available and scheduled instructions, just in case
2224   _available.clear();
2225   _scheduled.clear();
2226 
2227   // No delay slot specified
2228   _unconditional_delay_slot = NULL;
2229 
2230 #ifdef ASSERT
2231   for( uint i=0; i < bb->_nodes.size(); i++ )
2232     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2233 #endif
2234 
2235   // Force the _uses count to never go to zero for unscheduable pieces
2236   // of the block
2237   for( uint k = 0; k < _bb_start; k++ )
2238     _uses[bb->_nodes[k]->_idx] = 1;
2239   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2240     _uses[bb->_nodes[l]->_idx] = 1;
2241 
2242   // Iterate backwards over the instructions in the block.  Don't count the
2243   // branch projections at end or the block header instructions.
2244   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2245     Node *n = bb->_nodes[j];
2246     if( n->is_Proj() ) continue; // Projections handled another way
2247 
2248     // Account for all uses
2249     for ( uint k = 0; k < n->len(); k++ ) {
2250       Node *inp = n->in(k);
2251       if (!inp) continue;
2252       assert(inp != n, "no cycles allowed" );
2253       if( _bbs[inp->_idx] == bb ) { // Block-local use?
2254         if( inp->is_Proj() )    // Skip through Proj's
2255           inp = inp->in(0);
2256         ++_uses[inp->_idx];     // Count 1 block-local use
2257       }
2258     }
2259 
2260     // If this instruction has a 0 use count, then it is available
2261     if (!_uses[n->_idx]) {
2262       _current_latency[n->_idx] = _bundle_cycle_number;
2263       AddNodeToAvailableList(n);
2264     }
2265 
2266 #ifndef PRODUCT
2267     if (_cfg->C->trace_opto_output()) {
2268       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2269       n->dump();
2270     }
2271 #endif
2272   }
2273 
2274 #ifndef PRODUCT
2275   if (_cfg->C->trace_opto_output())
2276     tty->print("# <- ComputeUseCount\n");
2277 #endif
2278 }
2279 
2280 // This routine performs scheduling on each basic block in reverse order,
2281 // using instruction latencies and taking into account function unit
2282 // availability.
2283 void Scheduling::DoScheduling() {
2284 #ifndef PRODUCT
2285   if (_cfg->C->trace_opto_output())
2286     tty->print("# -> DoScheduling\n");
2287 #endif
2288 
2289   Block *succ_bb = NULL;
2290   Block *bb;
2291 
2292   // Walk over all the basic blocks in reverse order
2293   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2294     bb = _cfg->_blocks[i];
2295 
2296 #ifndef PRODUCT
2297     if (_cfg->C->trace_opto_output()) {
2298       tty->print("#  Schedule BB#%03d (initial)\n", i);
2299       for (uint j = 0; j < bb->_nodes.size(); j++)
2300         bb->_nodes[j]->dump();
2301     }
2302 #endif
2303 
2304     // On the head node, skip processing
2305     if( bb == _cfg->_broot )
2306       continue;
2307 
2308     // Skip empty, connector blocks
2309     if (bb->is_connector())
2310       continue;
2311 
2312     // If the following block is not the sole successor of
2313     // this one, then reset the pipeline information
2314     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2315 #ifndef PRODUCT
2316       if (_cfg->C->trace_opto_output()) {
2317         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2318                    _next_node->_idx, _bundle_instr_count);
2319       }
2320 #endif
2321       step_and_clear();
2322     }
2323 
2324     // Leave untouched the starting instruction, any Phis, a CreateEx node
2325     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2326     _bb_end = bb->_nodes.size()-1;
2327     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2328       Node *n = bb->_nodes[_bb_start];
2329       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2330       // Also, MachIdealNodes do not get scheduled
2331       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2332       MachNode *mach = n->as_Mach();
2333       int iop = mach->ideal_Opcode();
2334       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2335       if( iop == Op_Con ) continue;      // Do not schedule Top
2336       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2337           mach->pipeline() == MachNode::pipeline_class() &&
2338           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2339         continue;
2340       break;                    // Funny loop structure to be sure...
2341     }
2342     // Compute last "interesting" instruction in block - last instruction we
2343     // might schedule.  _bb_end points just after last schedulable inst.  We
2344     // normally schedule conditional branches (despite them being forced last
2345     // in the block), because they have delay slots we can fill.  Calls all
2346     // have their delay slots filled in the template expansions, so we don't
2347     // bother scheduling them.
2348     Node *last = bb->_nodes[_bb_end];
2349     if( last->is_Catch() ||
2350        // Exclude unreachable path case when Halt node is in a separate block.
2351        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2352       // There must be a prior call.  Skip it.
2353       while( !bb->_nodes[--_bb_end]->is_MachCall() ) {
2354         assert( bb->_nodes[_bb_end]->is_MachProj(), "skipping projections after expected call" );
2355       }
2356     } else if( last->is_MachNullCheck() ) {
2357       // Backup so the last null-checked memory instruction is
2358       // outside the schedulable range. Skip over the nullcheck,
2359       // projection, and the memory nodes.
2360       Node *mem = last->in(1);
2361       do {
2362         _bb_end--;
2363       } while (mem != bb->_nodes[_bb_end]);
2364     } else {
2365       // Set _bb_end to point after last schedulable inst.
2366       _bb_end++;
2367     }
2368 
2369     assert( _bb_start <= _bb_end, "inverted block ends" );
2370 
2371     // Compute the register antidependencies for the basic block
2372     ComputeRegisterAntidependencies(bb);
2373     if (_cfg->C->failing())  return;  // too many D-U pinch points
2374 
2375     // Compute intra-bb latencies for the nodes
2376     ComputeLocalLatenciesForward(bb);
2377 
2378     // Compute the usage within the block, and set the list of all nodes
2379     // in the block that have no uses within the block.
2380     ComputeUseCount(bb);
2381 
2382     // Schedule the remaining instructions in the block
2383     while ( _available.size() > 0 ) {
2384       Node *n = ChooseNodeToBundle();
2385       AddNodeToBundle(n,bb);
2386     }
2387 
2388     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2389 #ifdef ASSERT
2390     for( uint l = _bb_start; l < _bb_end; l++ ) {
2391       Node *n = bb->_nodes[l];
2392       uint m;
2393       for( m = 0; m < _bb_end-_bb_start; m++ )
2394         if( _scheduled[m] == n )
2395           break;
2396       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2397     }
2398 #endif
2399 
2400     // Now copy the instructions (in reverse order) back to the block
2401     for ( uint k = _bb_start; k < _bb_end; k++ )
2402       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2403 
2404 #ifndef PRODUCT
2405     if (_cfg->C->trace_opto_output()) {
2406       tty->print("#  Schedule BB#%03d (final)\n", i);
2407       uint current = 0;
2408       for (uint j = 0; j < bb->_nodes.size(); j++) {
2409         Node *n = bb->_nodes[j];
2410         if( valid_bundle_info(n) ) {
2411           Bundle *bundle = node_bundling(n);
2412           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2413             tty->print("*** Bundle: ");
2414             bundle->dump();
2415           }
2416           n->dump();
2417         }
2418       }
2419     }
2420 #endif
2421 #ifdef ASSERT
2422   verify_good_schedule(bb,"after block local scheduling");
2423 #endif
2424   }
2425 
2426 #ifndef PRODUCT
2427   if (_cfg->C->trace_opto_output())
2428     tty->print("# <- DoScheduling\n");
2429 #endif
2430 
2431   // Record final node-bundling array location
2432   _regalloc->C->set_node_bundling_base(_node_bundling_base);
2433 
2434 } // end DoScheduling
2435 
2436 //------------------------------verify_good_schedule---------------------------
2437 // Verify that no live-range used in the block is killed in the block by a
2438 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2439 
2440 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2441 static bool edge_from_to( Node *from, Node *to ) {
2442   for( uint i=0; i<from->len(); i++ )
2443     if( from->in(i) == to )
2444       return true;
2445   return false;
2446 }
2447 
2448 #ifdef ASSERT
2449 //------------------------------verify_do_def----------------------------------
2450 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2451   // Check for bad kills
2452   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2453     Node *prior_use = _reg_node[def];
2454     if( prior_use && !edge_from_to(prior_use,n) ) {
2455       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2456       n->dump();
2457       tty->print_cr("...");
2458       prior_use->dump();
2459       assert(edge_from_to(prior_use,n),msg);
2460     }
2461     _reg_node.map(def,NULL); // Kill live USEs
2462   }
2463 }
2464 
2465 //------------------------------verify_good_schedule---------------------------
2466 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2467 
2468   // Zap to something reasonable for the verify code
2469   _reg_node.clear();
2470 
2471   // Walk over the block backwards.  Check to make sure each DEF doesn't
2472   // kill a live value (other than the one it's supposed to).  Add each
2473   // USE to the live set.
2474   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2475     Node *n = b->_nodes[i];
2476     int n_op = n->Opcode();
2477     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2478       // Fat-proj kills a slew of registers
2479       RegMask rm = n->out_RegMask();// Make local copy
2480       while( rm.is_NotEmpty() ) {
2481         OptoReg::Name kill = rm.find_first_elem();
2482         rm.Remove(kill);
2483         verify_do_def( n, kill, msg );
2484       }
2485     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2486       // Get DEF'd registers the normal way
2487       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2488       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2489     }
2490 
2491     // Now make all USEs live
2492     for( uint i=1; i<n->req(); i++ ) {
2493       Node *def = n->in(i);
2494       assert(def != 0, "input edge required");
2495       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2496       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2497       if( OptoReg::is_valid(reg_lo) ) {
2498         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2499         _reg_node.map(reg_lo,n);
2500       }
2501       if( OptoReg::is_valid(reg_hi) ) {
2502         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2503         _reg_node.map(reg_hi,n);
2504       }
2505     }
2506 
2507   }
2508 
2509   // Zap to something reasonable for the Antidependence code
2510   _reg_node.clear();
2511 }
2512 #endif
2513 
2514 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2515 static void add_prec_edge_from_to( Node *from, Node *to ) {
2516   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2517     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2518     from = from->in(0);
2519   }
2520   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2521       !edge_from_to( from, to ) ) // Avoid duplicate edge
2522     from->add_prec(to);
2523 }
2524 
2525 //------------------------------anti_do_def------------------------------------
2526 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2527   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2528     return;
2529 
2530   Node *pinch = _reg_node[def_reg]; // Get pinch point
2531   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2532       is_def ) {    // Check for a true def (not a kill)
2533     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2534     return;
2535   }
2536 
2537   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2538   debug_only( def = (Node*)0xdeadbeef; )
2539 
2540   // After some number of kills there _may_ be a later def
2541   Node *later_def = NULL;
2542 
2543   // Finding a kill requires a real pinch-point.
2544   // Check for not already having a pinch-point.
2545   // Pinch points are Op_Node's.
2546   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2547     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2548     if ( _pinch_free_list.size() > 0) {
2549       pinch = _pinch_free_list.pop();
2550     } else {
2551       pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
2552     }
2553     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2554       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2555       return;
2556     }
2557     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
2558     _reg_node.map(def_reg,pinch); // Record pinch-point
2559     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2560     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2561       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2562       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2563       later_def = NULL;           // and no later def
2564     }
2565     pinch->set_req(0,later_def);  // Hook later def so we can find it
2566   } else {                        // Else have valid pinch point
2567     if( pinch->in(0) )            // If there is a later-def
2568       later_def = pinch->in(0);   // Get it
2569   }
2570 
2571   // Add output-dependence edge from later def to kill
2572   if( later_def )               // If there is some original def
2573     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2574 
2575   // See if current kill is also a use, and so is forced to be the pinch-point.
2576   if( pinch->Opcode() == Op_Node ) {
2577     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2578     for( uint i=1; i<uses->req(); i++ ) {
2579       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2580           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2581         // Yes, found a use/kill pinch-point
2582         pinch->set_req(0,NULL);  //
2583         pinch->replace_by(kill); // Move anti-dep edges up
2584         pinch = kill;
2585         _reg_node.map(def_reg,pinch);
2586         return;
2587       }
2588     }
2589   }
2590 
2591   // Add edge from kill to pinch-point
2592   add_prec_edge_from_to(kill,pinch);
2593 }
2594 
2595 //------------------------------anti_do_use------------------------------------
2596 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2597   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2598     return;
2599   Node *pinch = _reg_node[use_reg]; // Get pinch point
2600   // Check for no later def_reg/kill in block
2601   if( pinch && _bbs[pinch->_idx] == b &&
2602       // Use has to be block-local as well
2603       _bbs[use->_idx] == b ) {
2604     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2605         pinch->req() == 1 ) {   // pinch not yet in block?
2606       pinch->del_req(0);        // yank pointer to later-def, also set flag
2607       // Insert the pinch-point in the block just after the last use
2608       b->_nodes.insert(b->find_node(use)+1,pinch);
2609       _bb_end++;                // Increase size scheduled region in block
2610     }
2611 
2612     add_prec_edge_from_to(pinch,use);
2613   }
2614 }
2615 
2616 //------------------------------ComputeRegisterAntidependences-----------------
2617 // We insert antidependences between the reads and following write of
2618 // allocated registers to prevent illegal code motion. Hopefully, the
2619 // number of added references should be fairly small, especially as we
2620 // are only adding references within the current basic block.
2621 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2622 
2623 #ifdef ASSERT
2624   verify_good_schedule(b,"before block local scheduling");
2625 #endif
2626 
2627   // A valid schedule, for each register independently, is an endless cycle
2628   // of: a def, then some uses (connected to the def by true dependencies),
2629   // then some kills (defs with no uses), finally the cycle repeats with a new
2630   // def.  The uses are allowed to float relative to each other, as are the
2631   // kills.  No use is allowed to slide past a kill (or def).  This requires
2632   // antidependencies between all uses of a single def and all kills that
2633   // follow, up to the next def.  More edges are redundant, because later defs
2634   // & kills are already serialized with true or antidependencies.  To keep
2635   // the edge count down, we add a 'pinch point' node if there's more than
2636   // one use or more than one kill/def.
2637 
2638   // We add dependencies in one bottom-up pass.
2639 
2640   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2641 
2642   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2643   // register.  If not, we record the DEF/KILL in _reg_node, the
2644   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2645   // "pinch point", a new Node that's in the graph but not in the block.
2646   // We put edges from the prior and current DEF/KILLs to the pinch point.
2647   // We put the pinch point in _reg_node.  If there's already a pinch point
2648   // we merely add an edge from the current DEF/KILL to the pinch point.
2649 
2650   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2651   // put an edge from the pinch point to the USE.
2652 
2653   // To be expedient, the _reg_node array is pre-allocated for the whole
2654   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2655   // or a valid def/kill/pinch-point, or a leftover node from some prior
2656   // block.  Leftover node from some prior block is treated like a NULL (no
2657   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2658   // it being in the current block.
2659   bool fat_proj_seen = false;
2660   uint last_safept = _bb_end-1;
2661   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2662   Node* last_safept_node = end_node;
2663   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2664     Node *n = b->_nodes[i];
2665     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2666     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2667       // Fat-proj kills a slew of registers
2668       // This can add edges to 'n' and obscure whether or not it was a def,
2669       // hence the is_def flag.
2670       fat_proj_seen = true;
2671       RegMask rm = n->out_RegMask();// Make local copy
2672       while( rm.is_NotEmpty() ) {
2673         OptoReg::Name kill = rm.find_first_elem();
2674         rm.Remove(kill);
2675         anti_do_def( b, n, kill, is_def );
2676       }
2677     } else {
2678       // Get DEF'd registers the normal way
2679       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2680       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2681     }
2682 
2683     // Check each register used by this instruction for a following DEF/KILL
2684     // that must occur afterward and requires an anti-dependence edge.
2685     for( uint j=0; j<n->req(); j++ ) {
2686       Node *def = n->in(j);
2687       if( def ) {
2688         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2689         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2690         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2691       }
2692     }
2693     // Do not allow defs of new derived values to float above GC
2694     // points unless the base is definitely available at the GC point.
2695 
2696     Node *m = b->_nodes[i];
2697 
2698     // Add precedence edge from following safepoint to use of derived pointer
2699     if( last_safept_node != end_node &&
2700         m != last_safept_node) {
2701       for (uint k = 1; k < m->req(); k++) {
2702         const Type *t = m->in(k)->bottom_type();
2703         if( t->isa_oop_ptr() &&
2704             t->is_ptr()->offset() != 0 ) {
2705           last_safept_node->add_prec( m );
2706           break;
2707         }
2708       }
2709     }
2710 
2711     if( n->jvms() ) {           // Precedence edge from derived to safept
2712       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2713       if( b->_nodes[last_safept] != last_safept_node ) {
2714         last_safept = b->find_node(last_safept_node);
2715       }
2716       for( uint j=last_safept; j > i; j-- ) {
2717         Node *mach = b->_nodes[j];
2718         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2719           mach->add_prec( n );
2720       }
2721       last_safept = i;
2722       last_safept_node = m;
2723     }
2724   }
2725 
2726   if (fat_proj_seen) {
2727     // Garbage collect pinch nodes that were not consumed.
2728     // They are usually created by a fat kill MachProj for a call.
2729     garbage_collect_pinch_nodes();
2730   }
2731 }
2732 
2733 //------------------------------garbage_collect_pinch_nodes-------------------------------
2734 
2735 // Garbage collect pinch nodes for reuse by other blocks.
2736 //
2737 // The block scheduler's insertion of anti-dependence
2738 // edges creates many pinch nodes when the block contains
2739 // 2 or more Calls.  A pinch node is used to prevent a
2740 // combinatorial explosion of edges.  If a set of kills for a
2741 // register is anti-dependent on a set of uses (or defs), rather
2742 // than adding an edge in the graph between each pair of kill
2743 // and use (or def), a pinch is inserted between them:
2744 //
2745 //            use1   use2  use3
2746 //                \   |   /
2747 //                 \  |  /
2748 //                  pinch
2749 //                 /  |  \
2750 //                /   |   \
2751 //            kill1 kill2 kill3
2752 //
2753 // One pinch node is created per register killed when
2754 // the second call is encountered during a backwards pass
2755 // over the block.  Most of these pinch nodes are never
2756 // wired into the graph because the register is never
2757 // used or def'ed in the block.
2758 //
2759 void Scheduling::garbage_collect_pinch_nodes() {
2760 #ifndef PRODUCT
2761     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2762 #endif
2763     int trace_cnt = 0;
2764     for (uint k = 0; k < _reg_node.Size(); k++) {
2765       Node* pinch = _reg_node[k];
2766       if (pinch != NULL && pinch->Opcode() == Op_Node &&
2767           // no predecence input edges
2768           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2769         cleanup_pinch(pinch);
2770         _pinch_free_list.push(pinch);
2771         _reg_node.map(k, NULL);
2772 #ifndef PRODUCT
2773         if (_cfg->C->trace_opto_output()) {
2774           trace_cnt++;
2775           if (trace_cnt > 40) {
2776             tty->print("\n");
2777             trace_cnt = 0;
2778           }
2779           tty->print(" %d", pinch->_idx);
2780         }
2781 #endif
2782       }
2783     }
2784 #ifndef PRODUCT
2785     if (_cfg->C->trace_opto_output()) tty->print("\n");
2786 #endif
2787 }
2788 
2789 // Clean up a pinch node for reuse.
2790 void Scheduling::cleanup_pinch( Node *pinch ) {
2791   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2792 
2793   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2794     Node* use = pinch->last_out(i);
2795     uint uses_found = 0;
2796     for (uint j = use->req(); j < use->len(); j++) {
2797       if (use->in(j) == pinch) {
2798         use->rm_prec(j);
2799         uses_found++;
2800       }
2801     }
2802     assert(uses_found > 0, "must be a precedence edge");
2803     i -= uses_found;    // we deleted 1 or more copies of this edge
2804   }
2805   // May have a later_def entry
2806   pinch->set_req(0, NULL);
2807 }
2808 
2809 //------------------------------print_statistics-------------------------------
2810 #ifndef PRODUCT
2811 
2812 void Scheduling::dump_available() const {
2813   tty->print("#Availist  ");
2814   for (uint i = 0; i < _available.size(); i++)
2815     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2816   tty->cr();
2817 }
2818 
2819 // Print Scheduling Statistics
2820 void Scheduling::print_statistics() {
2821   // Print the size added by nops for bundling
2822   tty->print("Nops added %d bytes to total of %d bytes",
2823     _total_nop_size, _total_method_size);
2824   if (_total_method_size > 0)
2825     tty->print(", for %.2f%%",
2826       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2827   tty->print("\n");
2828 
2829   // Print the number of branch shadows filled
2830   if (Pipeline::_branch_has_delay_slot) {
2831     tty->print("Of %d branches, %d had unconditional delay slots filled",
2832       _total_branches, _total_unconditional_delays);
2833     if (_total_branches > 0)
2834       tty->print(", for %.2f%%",
2835         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2836     tty->print("\n");
2837   }
2838 
2839   uint total_instructions = 0, total_bundles = 0;
2840 
2841   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2842     uint bundle_count   = _total_instructions_per_bundle[i];
2843     total_instructions += bundle_count * i;
2844     total_bundles      += bundle_count;
2845   }
2846 
2847   if (total_bundles > 0)
2848     tty->print("Average ILP (excluding nops) is %.2f\n",
2849       ((double)total_instructions) / ((double)total_bundles));
2850 }
2851 #endif