1 //
   2 // Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // X86 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
  64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
  66 
  67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
  68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
  69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
  70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
  71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
  72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
  73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
  74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
  75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
  76 
  77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
  78 // allocator, and only shows up in the encodings.
  79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  81 // Ok so here's the trick FPR1 is really st(0) except in the midst
  82 // of emission of assembly for a machnode. During the emission the fpu stack
  83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
  84 // the stack will not have this element so FPR1 == st(0) from the
  85 // oopMap viewpoint. This same weirdness with numbering causes
  86 // instruction encoding to have to play games with the register
  87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
  88 // where it does flt->flt moves to see an example
  89 //
  90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
  91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
  92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
  93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
  94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
  95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
  96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
  97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
  98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
  99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
 100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
 101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
 102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
 103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
 104 
 105 // Specify priority of register selection within phases of register
 106 // allocation.  Highest priority is first.  A useful heuristic is to
 107 // give registers a low priority when they are required by machine
 108 // instructions, like EAX and EDX.  Registers which are used as
 109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
 110 // For the Intel integer registers, the equivalent Long pairs are
 111 // EDX:EAX, EBX:ECX, and EDI:EBP.
 112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
 113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
 114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
 115                     FPR6L, FPR6H, FPR7L, FPR7H );
 116 
 117 
 118 //----------Architecture Description Register Classes--------------------------
 119 // Several register classes are automatically defined based upon information in
 120 // this architecture description.
 121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 125 //
 126 // Class for all registers
 127 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
 128 // Class for general registers
 129 reg_class int_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
 130 // Class for general registers which may be used for implicit null checks on win95
 131 // Also safe for use by tailjump. We don't want to allocate in rbp,
 132 reg_class int_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
 133 // Class of "X" registers
 134 reg_class int_x_reg(EBX, ECX, EDX, EAX);
 135 // Class of registers that can appear in an address with no offset.
 136 // EBP and ESP require an extra instruction byte for zero offset.
 137 // Used in fast-unlock
 138 reg_class p_reg(EDX, EDI, ESI, EBX);
 139 // Class for general registers not including ECX
 140 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
 141 // Class for general registers not including EAX
 142 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
 143 // Class for general registers not including EAX or EBX.
 144 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
 145 // Class of EAX (for multiply and divide operations)
 146 reg_class eax_reg(EAX);
 147 // Class of EBX (for atomic add)
 148 reg_class ebx_reg(EBX);
 149 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
 150 reg_class ecx_reg(ECX);
 151 // Class of EDX (for multiply and divide operations)
 152 reg_class edx_reg(EDX);
 153 // Class of EDI (for synchronization)
 154 reg_class edi_reg(EDI);
 155 // Class of ESI (for synchronization)
 156 reg_class esi_reg(ESI);
 157 // Singleton class for interpreter's stack pointer
 158 reg_class ebp_reg(EBP);
 159 // Singleton class for stack pointer
 160 reg_class sp_reg(ESP);
 161 // Singleton class for instruction pointer
 162 // reg_class ip_reg(EIP);
 163 // Class of integer register pairs
 164 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
 165 // Class of integer register pairs that aligns with calling convention
 166 reg_class eadx_reg( EAX,EDX );
 167 reg_class ebcx_reg( ECX,EBX );
 168 // Not AX or DX, used in divides
 169 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
 170 
 171 // Floating point registers.  Notice FPR0 is not a choice.
 172 // FPR0 is not ever allocated; we use clever encodings to fake
 173 // a 2-address instructions out of Intels FP stack.
 174 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
 175 
 176 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
 177                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
 178                       FPR7L,FPR7H );
 179 
 180 reg_class fp_flt_reg0( FPR1L );
 181 reg_class fp_dbl_reg0( FPR1L,FPR1H );
 182 reg_class fp_dbl_reg1( FPR2L,FPR2H );
 183 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
 184                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
 185 
 186 %}
 187 
 188 
 189 //----------SOURCE BLOCK-------------------------------------------------------
 190 // This is a block of C++ code which provides values, functions, and
 191 // definitions necessary in the rest of the architecture description
 192 source_hpp %{
 193 // Must be visible to the DFA in dfa_x86_32.cpp
 194 extern bool is_operand_hi32_zero(Node* n);
 195 %}
 196 
 197 source %{
 198 #define   RELOC_IMM32    Assembler::imm_operand
 199 #define   RELOC_DISP32   Assembler::disp32_operand
 200 
 201 #define __ _masm.
 202 
 203 // How to find the high register of a Long pair, given the low register
 204 #define   HIGH_FROM_LOW(x) ((x)+2)
 205 
 206 // These masks are used to provide 128-bit aligned bitmasks to the XMM
 207 // instructions, to allow sign-masking or sign-bit flipping.  They allow
 208 // fast versions of NegF/NegD and AbsF/AbsD.
 209 
 210 // Note: 'double' and 'long long' have 32-bits alignment on x86.
 211 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
 212   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
 213   // of 128-bits operands for SSE instructions.
 214   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
 215   // Store the value to a 128-bits operand.
 216   operand[0] = lo;
 217   operand[1] = hi;
 218   return operand;
 219 }
 220 
 221 // Buffer for 128-bits masks used by SSE instructions.
 222 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
 223 
 224 // Static initialization during VM startup.
 225 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
 226 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
 227 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
 228 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
 229 
 230 // Offset hacking within calls.
 231 static int pre_call_resets_size() {
 232   int size = 0;
 233   Compile* C = Compile::current();
 234   if (C->in_24_bit_fp_mode()) {
 235     size += 6; // fldcw
 236   }
 237   if (C->max_vector_size() > 16) {
 238     size += 3; // vzeroupper
 239   }
 240   return size;
 241 }
 242 
 243 static int preserve_SP_size() {
 244   return 2;  // op, rm(reg/reg)
 245 }
 246 
 247 // !!!!! Special hack to get all type of calls to specify the byte offset
 248 //       from the start of the call to the point where the return address
 249 //       will point.
 250 int MachCallStaticJavaNode::ret_addr_offset() {
 251   int offset = 5 + pre_call_resets_size();  // 5 bytes from start of call to where return address points
 252   if (_method_handle_invoke)
 253     offset += preserve_SP_size();
 254   return offset;
 255 }
 256 
 257 int MachCallDynamicJavaNode::ret_addr_offset() {
 258   return 10 + pre_call_resets_size();  // 10 bytes from start of call to where return address points
 259 }
 260 
 261 static int sizeof_FFree_Float_Stack_All = -1;
 262 
 263 int MachCallRuntimeNode::ret_addr_offset() {
 264   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
 265   return sizeof_FFree_Float_Stack_All + 5 + pre_call_resets_size();
 266 }
 267 
 268 // Indicate if the safepoint node needs the polling page as an input.
 269 // Since x86 does have absolute addressing, it doesn't.
 270 bool SafePointNode::needs_polling_address_input() {
 271   return false;
 272 }
 273 
 274 //
 275 // Compute padding required for nodes which need alignment
 276 //
 277 
 278 // The address of the call instruction needs to be 4-byte aligned to
 279 // ensure that it does not span a cache line so that it can be patched.
 280 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
 281   current_offset += pre_call_resets_size();  // skip fldcw, if any
 282   current_offset += 1;      // skip call opcode byte
 283   return round_to(current_offset, alignment_required()) - current_offset;
 284 }
 285 
 286 // The address of the call instruction needs to be 4-byte aligned to
 287 // ensure that it does not span a cache line so that it can be patched.
 288 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
 289   current_offset += pre_call_resets_size();  // skip fldcw, if any
 290   current_offset += preserve_SP_size();   // skip mov rbp, rsp
 291   current_offset += 1;      // skip call opcode byte
 292   return round_to(current_offset, alignment_required()) - current_offset;
 293 }
 294 
 295 // The address of the call instruction needs to be 4-byte aligned to
 296 // ensure that it does not span a cache line so that it can be patched.
 297 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
 298   current_offset += pre_call_resets_size();  // skip fldcw, if any
 299   current_offset += 5;      // skip MOV instruction
 300   current_offset += 1;      // skip call opcode byte
 301   return round_to(current_offset, alignment_required()) - current_offset;
 302 }
 303 
 304 // EMIT_RM()
 305 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 306   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
 307   cbuf.insts()->emit_int8(c);
 308 }
 309 
 310 // EMIT_CC()
 311 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 312   unsigned char c = (unsigned char)( f1 | f2 );
 313   cbuf.insts()->emit_int8(c);
 314 }
 315 
 316 // EMIT_OPCODE()
 317 void emit_opcode(CodeBuffer &cbuf, int code) {
 318   cbuf.insts()->emit_int8((unsigned char) code);
 319 }
 320 
 321 // EMIT_OPCODE() w/ relocation information
 322 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
 323   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
 324   emit_opcode(cbuf, code);
 325 }
 326 
 327 // EMIT_D8()
 328 void emit_d8(CodeBuffer &cbuf, int d8) {
 329   cbuf.insts()->emit_int8((unsigned char) d8);
 330 }
 331 
 332 // EMIT_D16()
 333 void emit_d16(CodeBuffer &cbuf, int d16) {
 334   cbuf.insts()->emit_int16(d16);
 335 }
 336 
 337 // EMIT_D32()
 338 void emit_d32(CodeBuffer &cbuf, int d32) {
 339   cbuf.insts()->emit_int32(d32);
 340 }
 341 
 342 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 343 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
 344         int format) {
 345   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 346   cbuf.insts()->emit_int32(d32);
 347 }
 348 
 349 // emit 32 bit value and construct relocation entry from RelocationHolder
 350 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
 351         int format) {
 352 #ifdef ASSERT
 353   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
 354     assert(cast_to_oop(d32)->is_oop() && (ScavengeRootsInCode || !cast_to_oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
 355   }
 356 #endif
 357   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 358   cbuf.insts()->emit_int32(d32);
 359 }
 360 
 361 // Access stack slot for load or store
 362 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
 363   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
 364   if( -128 <= disp && disp <= 127 ) {
 365     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
 366     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 367     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
 368   } else {
 369     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
 370     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 371     emit_d32(cbuf, disp);     // Displacement  // R/M byte
 372   }
 373 }
 374 
 375    // rRegI ereg, memory mem) %{    // emit_reg_mem
 376 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
 377   // There is no index & no scale, use form without SIB byte
 378   if ((index == 0x4) &&
 379       (scale == 0) && (base != ESP_enc)) {
 380     // If no displacement, mode is 0x0; unless base is [EBP]
 381     if ( (displace == 0) && (base != EBP_enc) ) {
 382       emit_rm(cbuf, 0x0, reg_encoding, base);
 383     }
 384     else {                    // If 8-bit displacement, mode 0x1
 385       if ((displace >= -128) && (displace <= 127)
 386           && (disp_reloc == relocInfo::none) ) {
 387         emit_rm(cbuf, 0x1, reg_encoding, base);
 388         emit_d8(cbuf, displace);
 389       }
 390       else {                  // If 32-bit displacement
 391         if (base == -1) { // Special flag for absolute address
 392           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
 393           // (manual lies; no SIB needed here)
 394           if ( disp_reloc != relocInfo::none ) {
 395             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 396           } else {
 397             emit_d32      (cbuf, displace);
 398           }
 399         }
 400         else {                // Normal base + offset
 401           emit_rm(cbuf, 0x2, reg_encoding, base);
 402           if ( disp_reloc != relocInfo::none ) {
 403             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 404           } else {
 405             emit_d32      (cbuf, displace);
 406           }
 407         }
 408       }
 409     }
 410   }
 411   else {                      // Else, encode with the SIB byte
 412     // If no displacement, mode is 0x0; unless base is [EBP]
 413     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
 414       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
 415       emit_rm(cbuf, scale, index, base);
 416     }
 417     else {                    // If 8-bit displacement, mode 0x1
 418       if ((displace >= -128) && (displace <= 127)
 419           && (disp_reloc == relocInfo::none) ) {
 420         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
 421         emit_rm(cbuf, scale, index, base);
 422         emit_d8(cbuf, displace);
 423       }
 424       else {                  // If 32-bit displacement
 425         if (base == 0x04 ) {
 426           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 427           emit_rm(cbuf, scale, index, 0x04);
 428         } else {
 429           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 430           emit_rm(cbuf, scale, index, base);
 431         }
 432         if ( disp_reloc != relocInfo::none ) {
 433           emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 434         } else {
 435           emit_d32      (cbuf, displace);
 436         }
 437       }
 438     }
 439   }
 440 }
 441 
 442 
 443 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 444   if( dst_encoding == src_encoding ) {
 445     // reg-reg copy, use an empty encoding
 446   } else {
 447     emit_opcode( cbuf, 0x8B );
 448     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
 449   }
 450 }
 451 
 452 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 453   Label exit;
 454   __ jccb(Assembler::noParity, exit);
 455   __ pushf();
 456   //
 457   // comiss/ucomiss instructions set ZF,PF,CF flags and
 458   // zero OF,AF,SF for NaN values.
 459   // Fixup flags by zeroing ZF,PF so that compare of NaN
 460   // values returns 'less than' result (CF is set).
 461   // Leave the rest of flags unchanged.
 462   //
 463   //    7 6 5 4 3 2 1 0
 464   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 465   //    0 0 1 0 1 0 1 1   (0x2B)
 466   //
 467   __ andl(Address(rsp, 0), 0xffffff2b);
 468   __ popf();
 469   __ bind(exit);
 470 }
 471 
 472 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 473   Label done;
 474   __ movl(dst, -1);
 475   __ jcc(Assembler::parity, done);
 476   __ jcc(Assembler::below, done);
 477   __ setb(Assembler::notEqual, dst);
 478   __ movzbl(dst, dst);
 479   __ bind(done);
 480 }
 481 
 482 
 483 //=============================================================================
 484 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 485 
 486 int Compile::ConstantTable::calculate_table_base_offset() const {
 487   return 0;  // absolute addressing, no offset
 488 }
 489 
 490 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
 491 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
 492   ShouldNotReachHere();
 493 }
 494 
 495 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 496   // Empty encoding
 497 }
 498 
 499 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 500   return 0;
 501 }
 502 
 503 #ifndef PRODUCT
 504 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 505   st->print("# MachConstantBaseNode (empty encoding)");
 506 }
 507 #endif
 508 
 509 
 510 //=============================================================================
 511 #ifndef PRODUCT
 512 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 513   Compile* C = ra_->C;
 514 
 515   int framesize = C->frame_size_in_bytes();
 516   int bangsize = C->bang_size_in_bytes();
 517   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 518   // Remove wordSize for return addr which is already pushed.
 519   framesize -= wordSize;
 520 
 521   if (C->need_stack_bang(bangsize)) {
 522     framesize -= wordSize;
 523     st->print("# stack bang (%d bytes)", bangsize);
 524     st->print("\n\t");
 525     st->print("PUSH   EBP\t# Save EBP");
 526     if (framesize) {
 527       st->print("\n\t");
 528       st->print("SUB    ESP, #%d\t# Create frame",framesize);
 529     }
 530   } else {
 531     st->print("SUB    ESP, #%d\t# Create frame",framesize);
 532     st->print("\n\t");
 533     framesize -= wordSize;
 534     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
 535   }
 536 
 537   if (VerifyStackAtCalls) {
 538     st->print("\n\t");
 539     framesize -= wordSize;
 540     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
 541   }
 542 
 543   if( C->in_24_bit_fp_mode() ) {
 544     st->print("\n\t");
 545     st->print("FLDCW  \t# load 24 bit fpu control word");
 546   }
 547   if (UseSSE >= 2 && VerifyFPU) {
 548     st->print("\n\t");
 549     st->print("# verify FPU stack (must be clean on entry)");
 550   }
 551 
 552 #ifdef ASSERT
 553   if (VerifyStackAtCalls) {
 554     st->print("\n\t");
 555     st->print("# stack alignment check");
 556   }
 557 #endif
 558   st->cr();
 559 }
 560 #endif
 561 
 562 
 563 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 564   Compile* C = ra_->C;
 565   MacroAssembler _masm(&cbuf);
 566 
 567   int framesize = C->frame_size_in_bytes();
 568   int bangsize = C->bang_size_in_bytes();
 569 
 570   __ verified_entry(framesize, C->need_stack_bang(bangsize)?bangsize:0, C->in_24_bit_fp_mode());
 571 
 572   C->set_frame_complete(cbuf.insts_size());
 573 
 574   if (C->has_mach_constant_base_node()) {
 575     // NOTE: We set the table base offset here because users might be
 576     // emitted before MachConstantBaseNode.
 577     Compile::ConstantTable& constant_table = C->constant_table();
 578     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 579   }
 580 }
 581 
 582 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
 583   return MachNode::size(ra_); // too many variables; just compute it the hard way
 584 }
 585 
 586 int MachPrologNode::reloc() const {
 587   return 0; // a large enough number
 588 }
 589 
 590 //=============================================================================
 591 #ifndef PRODUCT
 592 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 593   Compile *C = ra_->C;
 594   int framesize = C->frame_size_in_bytes();
 595   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 596   // Remove two words for return addr and rbp,
 597   framesize -= 2*wordSize;
 598 
 599   if (C->max_vector_size() > 16) {
 600     st->print("VZEROUPPER");
 601     st->cr(); st->print("\t");
 602   }
 603   if (C->in_24_bit_fp_mode()) {
 604     st->print("FLDCW  standard control word");
 605     st->cr(); st->print("\t");
 606   }
 607   if (framesize) {
 608     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
 609     st->cr(); st->print("\t");
 610   }
 611   st->print_cr("POPL   EBP"); st->print("\t");
 612   if (do_polling() && C->is_method_compilation()) {
 613     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
 614     st->cr(); st->print("\t");
 615   }
 616 }
 617 #endif
 618 
 619 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 620   Compile *C = ra_->C;
 621 
 622   if (C->max_vector_size() > 16) {
 623     // Clear upper bits of YMM registers when current compiled code uses
 624     // wide vectors to avoid AVX <-> SSE transition penalty during call.
 625     MacroAssembler masm(&cbuf);
 626     masm.vzeroupper();
 627   }
 628   // If method set FPU control word, restore to standard control word
 629   if (C->in_24_bit_fp_mode()) {
 630     MacroAssembler masm(&cbuf);
 631     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 632   }
 633 
 634   int framesize = C->frame_size_in_bytes();
 635   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 636   // Remove two words for return addr and rbp,
 637   framesize -= 2*wordSize;
 638 
 639   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 640 
 641   if (framesize >= 128) {
 642     emit_opcode(cbuf, 0x81); // add  SP, #framesize
 643     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 644     emit_d32(cbuf, framesize);
 645   } else if (framesize) {
 646     emit_opcode(cbuf, 0x83); // add  SP, #framesize
 647     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 648     emit_d8(cbuf, framesize);
 649   }
 650 
 651   emit_opcode(cbuf, 0x58 | EBP_enc);
 652 
 653   if (do_polling() && C->is_method_compilation()) {
 654     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
 655     emit_opcode(cbuf,0x85);
 656     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
 657     emit_d32(cbuf, (intptr_t)os::get_polling_page());
 658   }
 659 }
 660 
 661 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 662   Compile *C = ra_->C;
 663   // If method set FPU control word, restore to standard control word
 664   int size = C->in_24_bit_fp_mode() ? 6 : 0;
 665   if (C->max_vector_size() > 16) size += 3; // vzeroupper
 666   if (do_polling() && C->is_method_compilation()) size += 6;
 667 
 668   int framesize = C->frame_size_in_bytes();
 669   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 670   // Remove two words for return addr and rbp,
 671   framesize -= 2*wordSize;
 672 
 673   size++; // popl rbp,
 674 
 675   if (framesize >= 128) {
 676     size += 6;
 677   } else {
 678     size += framesize ? 3 : 0;
 679   }
 680   return size;
 681 }
 682 
 683 int MachEpilogNode::reloc() const {
 684   return 0; // a large enough number
 685 }
 686 
 687 const Pipeline * MachEpilogNode::pipeline() const {
 688   return MachNode::pipeline_class();
 689 }
 690 
 691 int MachEpilogNode::safepoint_offset() const { return 0; }
 692 
 693 //=============================================================================
 694 
 695 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
 696 static enum RC rc_class( OptoReg::Name reg ) {
 697 
 698   if( !OptoReg::is_valid(reg)  ) return rc_bad;
 699   if (OptoReg::is_stack(reg)) return rc_stack;
 700 
 701   VMReg r = OptoReg::as_VMReg(reg);
 702   if (r->is_Register()) return rc_int;
 703   if (r->is_FloatRegister()) {
 704     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
 705     return rc_float;
 706   }
 707   assert(r->is_XMMRegister(), "must be");
 708   return rc_xmm;
 709 }
 710 
 711 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
 712                         int opcode, const char *op_str, int size, outputStream* st ) {
 713   if( cbuf ) {
 714     emit_opcode  (*cbuf, opcode );
 715     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
 716 #ifndef PRODUCT
 717   } else if( !do_size ) {
 718     if( size != 0 ) st->print("\n\t");
 719     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
 720       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
 721       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
 722     } else { // FLD, FST, PUSH, POP
 723       st->print("%s [ESP + #%d]",op_str,offset);
 724     }
 725 #endif
 726   }
 727   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 728   return size+3+offset_size;
 729 }
 730 
 731 // Helper for XMM registers.  Extra opcode bits, limited syntax.
 732 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
 733                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
 734   if (cbuf) {
 735     MacroAssembler _masm(cbuf);
 736     if (reg_lo+1 == reg_hi) { // double move?
 737       if (is_load) {
 738         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 739       } else {
 740         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 741       }
 742     } else {
 743       if (is_load) {
 744         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 745       } else {
 746         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 747       }
 748     }
 749 #ifndef PRODUCT
 750   } else if (!do_size) {
 751     if (size != 0) st->print("\n\t");
 752     if (reg_lo+1 == reg_hi) { // double move?
 753       if (is_load) st->print("%s %s,[ESP + #%d]",
 754                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
 755                               Matcher::regName[reg_lo], offset);
 756       else         st->print("MOVSD  [ESP + #%d],%s",
 757                               offset, Matcher::regName[reg_lo]);
 758     } else {
 759       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
 760                               Matcher::regName[reg_lo], offset);
 761       else         st->print("MOVSS  [ESP + #%d],%s",
 762                               offset, Matcher::regName[reg_lo]);
 763     }
 764 #endif
 765   }
 766   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 767   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
 768   return size+5+offset_size;
 769 }
 770 
 771 
 772 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 773                             int src_hi, int dst_hi, int size, outputStream* st ) {
 774   if (cbuf) {
 775     MacroAssembler _masm(cbuf);
 776     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 777       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 778                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 779     } else {
 780       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 781                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 782     }
 783 #ifndef PRODUCT
 784   } else if (!do_size) {
 785     if (size != 0) st->print("\n\t");
 786     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
 787       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 788         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 789       } else {
 790         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 791       }
 792     } else {
 793       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 794         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 795       } else {
 796         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 797       }
 798     }
 799 #endif
 800   }
 801   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
 802   // Only MOVAPS SSE prefix uses 1 byte.
 803   int sz = 4;
 804   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
 805       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
 806   return size + sz;
 807 }
 808 
 809 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 810                             int src_hi, int dst_hi, int size, outputStream* st ) {
 811   // 32-bit
 812   if (cbuf) {
 813     MacroAssembler _masm(cbuf);
 814     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 815              as_Register(Matcher::_regEncode[src_lo]));
 816 #ifndef PRODUCT
 817   } else if (!do_size) {
 818     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 819 #endif
 820   }
 821   return 4;
 822 }
 823 
 824 
 825 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 826                                  int src_hi, int dst_hi, int size, outputStream* st ) {
 827   // 32-bit
 828   if (cbuf) {
 829     MacroAssembler _masm(cbuf);
 830     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
 831              as_XMMRegister(Matcher::_regEncode[src_lo]));
 832 #ifndef PRODUCT
 833   } else if (!do_size) {
 834     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 835 #endif
 836   }
 837   return 4;
 838 }
 839 
 840 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
 841   if( cbuf ) {
 842     emit_opcode(*cbuf, 0x8B );
 843     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
 844 #ifndef PRODUCT
 845   } else if( !do_size ) {
 846     if( size != 0 ) st->print("\n\t");
 847     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
 848 #endif
 849   }
 850   return size+2;
 851 }
 852 
 853 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
 854                                  int offset, int size, outputStream* st ) {
 855   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
 856     if( cbuf ) {
 857       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
 858       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
 859 #ifndef PRODUCT
 860     } else if( !do_size ) {
 861       if( size != 0 ) st->print("\n\t");
 862       st->print("FLD    %s",Matcher::regName[src_lo]);
 863 #endif
 864     }
 865     size += 2;
 866   }
 867 
 868   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
 869   const char *op_str;
 870   int op;
 871   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
 872     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
 873     op = 0xDD;
 874   } else {                   // 32-bit store
 875     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
 876     op = 0xD9;
 877     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
 878   }
 879 
 880   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
 881 }
 882 
 883 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
 884 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 885                           int src_hi, int dst_hi, uint ireg, outputStream* st);
 886 
 887 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
 888                             int stack_offset, int reg, uint ireg, outputStream* st);
 889 
 890 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
 891                                      int dst_offset, uint ireg, outputStream* st) {
 892   int calc_size = 0;
 893   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 894   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 895   switch (ireg) {
 896   case Op_VecS:
 897     calc_size = 3+src_offset_size + 3+dst_offset_size;
 898     break;
 899   case Op_VecD:
 900     calc_size = 3+src_offset_size + 3+dst_offset_size;
 901     src_offset += 4;
 902     dst_offset += 4;
 903     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 904     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 905     calc_size += 3+src_offset_size + 3+dst_offset_size;
 906     break;
 907   case Op_VecX:
 908     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 909     break;
 910   case Op_VecY:
 911     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 912     break;
 913   default:
 914     ShouldNotReachHere();
 915   }
 916   if (cbuf) {
 917     MacroAssembler _masm(cbuf);
 918     int offset = __ offset();
 919     switch (ireg) {
 920     case Op_VecS:
 921       __ pushl(Address(rsp, src_offset));
 922       __ popl (Address(rsp, dst_offset));
 923       break;
 924     case Op_VecD:
 925       __ pushl(Address(rsp, src_offset));
 926       __ popl (Address(rsp, dst_offset));
 927       __ pushl(Address(rsp, src_offset+4));
 928       __ popl (Address(rsp, dst_offset+4));
 929       break;
 930     case Op_VecX:
 931       __ movdqu(Address(rsp, -16), xmm0);
 932       __ movdqu(xmm0, Address(rsp, src_offset));
 933       __ movdqu(Address(rsp, dst_offset), xmm0);
 934       __ movdqu(xmm0, Address(rsp, -16));
 935       break;
 936     case Op_VecY:
 937       __ vmovdqu(Address(rsp, -32), xmm0);
 938       __ vmovdqu(xmm0, Address(rsp, src_offset));
 939       __ vmovdqu(Address(rsp, dst_offset), xmm0);
 940       __ vmovdqu(xmm0, Address(rsp, -32));
 941       break;
 942     default:
 943       ShouldNotReachHere();
 944     }
 945     int size = __ offset() - offset;
 946     assert(size == calc_size, "incorrect size calculattion");
 947     return size;
 948 #ifndef PRODUCT
 949   } else if (!do_size) {
 950     switch (ireg) {
 951     case Op_VecS:
 952       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
 953                 "popl    [rsp + #%d]",
 954                 src_offset, dst_offset);
 955       break;
 956     case Op_VecD:
 957       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
 958                 "popq    [rsp + #%d]\n\t"
 959                 "pushl   [rsp + #%d]\n\t"
 960                 "popq    [rsp + #%d]",
 961                 src_offset, dst_offset, src_offset+4, dst_offset+4);
 962       break;
 963      case Op_VecX:
 964       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
 965                 "movdqu  xmm0, [rsp + #%d]\n\t"
 966                 "movdqu  [rsp + #%d], xmm0\n\t"
 967                 "movdqu  xmm0, [rsp - #16]",
 968                 src_offset, dst_offset);
 969       break;
 970     case Op_VecY:
 971       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
 972                 "vmovdqu xmm0, [rsp + #%d]\n\t"
 973                 "vmovdqu [rsp + #%d], xmm0\n\t"
 974                 "vmovdqu xmm0, [rsp - #32]",
 975                 src_offset, dst_offset);
 976       break;
 977     default:
 978       ShouldNotReachHere();
 979     }
 980 #endif
 981   }
 982   return calc_size;
 983 }
 984 
 985 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
 986   // Get registers to move
 987   OptoReg::Name src_second = ra_->get_reg_second(in(1));
 988   OptoReg::Name src_first = ra_->get_reg_first(in(1));
 989   OptoReg::Name dst_second = ra_->get_reg_second(this );
 990   OptoReg::Name dst_first = ra_->get_reg_first(this );
 991 
 992   enum RC src_second_rc = rc_class(src_second);
 993   enum RC src_first_rc = rc_class(src_first);
 994   enum RC dst_second_rc = rc_class(dst_second);
 995   enum RC dst_first_rc = rc_class(dst_first);
 996 
 997   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
 998 
 999   // Generate spill code!
1000   int size = 0;
1001 
1002   if( src_first == dst_first && src_second == dst_second )
1003     return size;            // Self copy, no move
1004 
1005   if (bottom_type()->isa_vect() != NULL) {
1006     uint ireg = ideal_reg();
1007     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
1008     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
1009     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
1010     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1011       // mem -> mem
1012       int src_offset = ra_->reg2offset(src_first);
1013       int dst_offset = ra_->reg2offset(dst_first);
1014       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
1015     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1016       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
1017     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1018       int stack_offset = ra_->reg2offset(dst_first);
1019       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
1020     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
1021       int stack_offset = ra_->reg2offset(src_first);
1022       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
1023     } else {
1024       ShouldNotReachHere();
1025     }
1026   }
1027 
1028   // --------------------------------------
1029   // Check for mem-mem move.  push/pop to move.
1030   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1031     if( src_second == dst_first ) { // overlapping stack copy ranges
1032       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
1033       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1034       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1035       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
1036     }
1037     // move low bits
1038     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
1039     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
1040     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
1041       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1042       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1043     }
1044     return size;
1045   }
1046 
1047   // --------------------------------------
1048   // Check for integer reg-reg copy
1049   if( src_first_rc == rc_int && dst_first_rc == rc_int )
1050     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
1051 
1052   // Check for integer store
1053   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
1054     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
1055 
1056   // Check for integer load
1057   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
1058     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
1059 
1060   // Check for integer reg-xmm reg copy
1061   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
1062     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1063             "no 64 bit integer-float reg moves" );
1064     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1065   }
1066   // --------------------------------------
1067   // Check for float reg-reg copy
1068   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1069     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1070             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
1071     if( cbuf ) {
1072 
1073       // Note the mucking with the register encode to compensate for the 0/1
1074       // indexing issue mentioned in a comment in the reg_def sections
1075       // for FPR registers many lines above here.
1076 
1077       if( src_first != FPR1L_num ) {
1078         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
1079         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
1080         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1081         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1082      } else {
1083         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
1084         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
1085      }
1086 #ifndef PRODUCT
1087     } else if( !do_size ) {
1088       if( size != 0 ) st->print("\n\t");
1089       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
1090       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
1091 #endif
1092     }
1093     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
1094   }
1095 
1096   // Check for float store
1097   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1098     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
1099   }
1100 
1101   // Check for float load
1102   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1103     int offset = ra_->reg2offset(src_first);
1104     const char *op_str;
1105     int op;
1106     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
1107       op_str = "FLD_D";
1108       op = 0xDD;
1109     } else {                   // 32-bit load
1110       op_str = "FLD_S";
1111       op = 0xD9;
1112       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
1113     }
1114     if( cbuf ) {
1115       emit_opcode  (*cbuf, op );
1116       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
1117       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1118       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1119 #ifndef PRODUCT
1120     } else if( !do_size ) {
1121       if( size != 0 ) st->print("\n\t");
1122       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1123 #endif
1124     }
1125     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1126     return size + 3+offset_size+2;
1127   }
1128 
1129   // Check for xmm reg-reg copy
1130   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1131     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1132             (src_first+1 == src_second && dst_first+1 == dst_second),
1133             "no non-adjacent float-moves" );
1134     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1135   }
1136 
1137   // Check for xmm reg-integer reg copy
1138   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
1139     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1140             "no 64 bit float-integer reg moves" );
1141     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1142   }
1143 
1144   // Check for xmm store
1145   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1146     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1147   }
1148 
1149   // Check for float xmm load
1150   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1151     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1152   }
1153 
1154   // Copy from float reg to xmm reg
1155   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1156     // copy to the top of stack from floating point reg
1157     // and use LEA to preserve flags
1158     if( cbuf ) {
1159       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1160       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1161       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1162       emit_d8(*cbuf,0xF8);
1163 #ifndef PRODUCT
1164     } else if( !do_size ) {
1165       if( size != 0 ) st->print("\n\t");
1166       st->print("LEA    ESP,[ESP-8]");
1167 #endif
1168     }
1169     size += 4;
1170 
1171     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1172 
1173     // Copy from the temp memory to the xmm reg.
1174     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1175 
1176     if( cbuf ) {
1177       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1178       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1179       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1180       emit_d8(*cbuf,0x08);
1181 #ifndef PRODUCT
1182     } else if( !do_size ) {
1183       if( size != 0 ) st->print("\n\t");
1184       st->print("LEA    ESP,[ESP+8]");
1185 #endif
1186     }
1187     size += 4;
1188     return size;
1189   }
1190 
1191   assert( size > 0, "missed a case" );
1192 
1193   // --------------------------------------------------------------------
1194   // Check for second bits still needing moving.
1195   if( src_second == dst_second )
1196     return size;               // Self copy; no move
1197   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1198 
1199   // Check for second word int-int move
1200   if( src_second_rc == rc_int && dst_second_rc == rc_int )
1201     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1202 
1203   // Check for second word integer store
1204   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1205     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1206 
1207   // Check for second word integer load
1208   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1209     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1210 
1211 
1212   Unimplemented();
1213   return 0; // Mute compiler
1214 }
1215 
1216 #ifndef PRODUCT
1217 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1218   implementation( NULL, ra_, false, st );
1219 }
1220 #endif
1221 
1222 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1223   implementation( &cbuf, ra_, false, NULL );
1224 }
1225 
1226 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1227   return implementation( NULL, ra_, true, NULL );
1228 }
1229 
1230 
1231 //=============================================================================
1232 #ifndef PRODUCT
1233 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1234   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1235   int reg = ra_->get_reg_first(this);
1236   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1237 }
1238 #endif
1239 
1240 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1241   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1242   int reg = ra_->get_encode(this);
1243   if( offset >= 128 ) {
1244     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1245     emit_rm(cbuf, 0x2, reg, 0x04);
1246     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1247     emit_d32(cbuf, offset);
1248   }
1249   else {
1250     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1251     emit_rm(cbuf, 0x1, reg, 0x04);
1252     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1253     emit_d8(cbuf, offset);
1254   }
1255 }
1256 
1257 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1258   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1259   if( offset >= 128 ) {
1260     return 7;
1261   }
1262   else {
1263     return 4;
1264   }
1265 }
1266 
1267 //=============================================================================
1268 #ifndef PRODUCT
1269 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1270   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1271   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1272   st->print_cr("\tNOP");
1273   st->print_cr("\tNOP");
1274   if( !OptoBreakpoint )
1275     st->print_cr("\tNOP");
1276 }
1277 #endif
1278 
1279 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1280   MacroAssembler masm(&cbuf);
1281 #ifdef ASSERT
1282   uint insts_size = cbuf.insts_size();
1283 #endif
1284   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1285   masm.jump_cc(Assembler::notEqual,
1286                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1287   /* WARNING these NOPs are critical so that verified entry point is properly
1288      aligned for patching by NativeJump::patch_verified_entry() */
1289   int nops_cnt = 2;
1290   if( !OptoBreakpoint ) // Leave space for int3
1291      nops_cnt += 1;
1292   masm.nop(nops_cnt);
1293 
1294   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
1295 }
1296 
1297 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1298   return OptoBreakpoint ? 11 : 12;
1299 }
1300 
1301 
1302 //=============================================================================
1303 
1304 int Matcher::regnum_to_fpu_offset(int regnum) {
1305   return regnum - 32; // The FP registers are in the second chunk
1306 }
1307 
1308 // This is UltraSparc specific, true just means we have fast l2f conversion
1309 const bool Matcher::convL2FSupported(void) {
1310   return true;
1311 }
1312 
1313 // Is this branch offset short enough that a short branch can be used?
1314 //
1315 // NOTE: If the platform does not provide any short branch variants, then
1316 //       this method should return false for offset 0.
1317 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1318   // The passed offset is relative to address of the branch.
1319   // On 86 a branch displacement is calculated relative to address
1320   // of a next instruction.
1321   offset -= br_size;
1322 
1323   // the short version of jmpConUCF2 contains multiple branches,
1324   // making the reach slightly less
1325   if (rule == jmpConUCF2_rule)
1326     return (-126 <= offset && offset <= 125);
1327   return (-128 <= offset && offset <= 127);
1328 }
1329 
1330 const bool Matcher::isSimpleConstant64(jlong value) {
1331   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1332   return false;
1333 }
1334 
1335 // The ecx parameter to rep stos for the ClearArray node is in dwords.
1336 const bool Matcher::init_array_count_is_in_bytes = false;
1337 
1338 // Threshold size for cleararray.
1339 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1340 
1341 // Needs 2 CMOV's for longs.
1342 const int Matcher::long_cmove_cost() { return 1; }
1343 
1344 // No CMOVF/CMOVD with SSE/SSE2
1345 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
1346 
1347 // Does the CPU require late expand (see block.cpp for description of late expand)?
1348 const bool Matcher::require_postalloc_expand = false;
1349 
1350 // Should the Matcher clone shifts on addressing modes, expecting them to
1351 // be subsumed into complex addressing expressions or compute them into
1352 // registers?  True for Intel but false for most RISCs
1353 const bool Matcher::clone_shift_expressions = true;
1354 
1355 // Do we need to mask the count passed to shift instructions or does
1356 // the cpu only look at the lower 5/6 bits anyway?
1357 const bool Matcher::need_masked_shift_count = false;
1358 
1359 bool Matcher::narrow_oop_use_complex_address() {
1360   ShouldNotCallThis();
1361   return true;
1362 }
1363 
1364 bool Matcher::narrow_klass_use_complex_address() {
1365   ShouldNotCallThis();
1366   return true;
1367 }
1368 
1369 
1370 // Is it better to copy float constants, or load them directly from memory?
1371 // Intel can load a float constant from a direct address, requiring no
1372 // extra registers.  Most RISCs will have to materialize an address into a
1373 // register first, so they would do better to copy the constant from stack.
1374 const bool Matcher::rematerialize_float_constants = true;
1375 
1376 // If CPU can load and store mis-aligned doubles directly then no fixup is
1377 // needed.  Else we split the double into 2 integer pieces and move it
1378 // piece-by-piece.  Only happens when passing doubles into C code as the
1379 // Java calling convention forces doubles to be aligned.
1380 const bool Matcher::misaligned_doubles_ok = true;
1381 
1382 
1383 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1384   // Get the memory operand from the node
1385   uint numopnds = node->num_opnds();        // Virtual call for number of operands
1386   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1387   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1388   uint opcnt     = 1;                 // First operand
1389   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1390   while( idx >= skipped+num_edges ) {
1391     skipped += num_edges;
1392     opcnt++;                          // Bump operand count
1393     assert( opcnt < numopnds, "Accessing non-existent operand" );
1394     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1395   }
1396 
1397   MachOper *memory = node->_opnds[opcnt];
1398   MachOper *new_memory = NULL;
1399   switch (memory->opcode()) {
1400   case DIRECT:
1401   case INDOFFSET32X:
1402     // No transformation necessary.
1403     return;
1404   case INDIRECT:
1405     new_memory = new indirect_win95_safeOper( );
1406     break;
1407   case INDOFFSET8:
1408     new_memory = new indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1409     break;
1410   case INDOFFSET32:
1411     new_memory = new indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1412     break;
1413   case INDINDEXOFFSET:
1414     new_memory = new indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1415     break;
1416   case INDINDEXSCALE:
1417     new_memory = new indIndexScale_win95_safeOper(memory->scale());
1418     break;
1419   case INDINDEXSCALEOFFSET:
1420     new_memory = new indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1421     break;
1422   case LOAD_LONG_INDIRECT:
1423   case LOAD_LONG_INDOFFSET32:
1424     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1425     return;
1426   default:
1427     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1428     return;
1429   }
1430   node->_opnds[opcnt] = new_memory;
1431 }
1432 
1433 // Advertise here if the CPU requires explicit rounding operations
1434 // to implement the UseStrictFP mode.
1435 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1436 
1437 // Are floats conerted to double when stored to stack during deoptimization?
1438 // On x32 it is stored with convertion only when FPU is used for floats.
1439 bool Matcher::float_in_double() { return (UseSSE == 0); }
1440 
1441 // Do ints take an entire long register or just half?
1442 const bool Matcher::int_in_long = false;
1443 
1444 // Return whether or not this register is ever used as an argument.  This
1445 // function is used on startup to build the trampoline stubs in generateOptoStub.
1446 // Registers not mentioned will be killed by the VM call in the trampoline, and
1447 // arguments in those registers not be available to the callee.
1448 bool Matcher::can_be_java_arg( int reg ) {
1449   if(  reg == ECX_num   || reg == EDX_num   ) return true;
1450   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
1451   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1452   return false;
1453 }
1454 
1455 bool Matcher::is_spillable_arg( int reg ) {
1456   return can_be_java_arg(reg);
1457 }
1458 
1459 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1460   // Use hardware integer DIV instruction when
1461   // it is faster than a code which use multiply.
1462   // Only when constant divisor fits into 32 bit
1463   // (min_jint is excluded to get only correct
1464   // positive 32 bit values from negative).
1465   return VM_Version::has_fast_idiv() &&
1466          (divisor == (int)divisor && divisor != min_jint);
1467 }
1468 
1469 // Register for DIVI projection of divmodI
1470 RegMask Matcher::divI_proj_mask() {
1471   return EAX_REG_mask();
1472 }
1473 
1474 // Register for MODI projection of divmodI
1475 RegMask Matcher::modI_proj_mask() {
1476   return EDX_REG_mask();
1477 }
1478 
1479 // Register for DIVL projection of divmodL
1480 RegMask Matcher::divL_proj_mask() {
1481   ShouldNotReachHere();
1482   return RegMask();
1483 }
1484 
1485 // Register for MODL projection of divmodL
1486 RegMask Matcher::modL_proj_mask() {
1487   ShouldNotReachHere();
1488   return RegMask();
1489 }
1490 
1491 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1492   return EBP_REG_mask();
1493 }
1494 
1495 // Returns true if the high 32 bits of the value is known to be zero.
1496 bool is_operand_hi32_zero(Node* n) {
1497   int opc = n->Opcode();
1498   if (opc == Op_AndL) {
1499     Node* o2 = n->in(2);
1500     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1501       return true;
1502     }
1503   }
1504   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1505     return true;
1506   }
1507   return false;
1508 }
1509 
1510 %}
1511 
1512 //----------ENCODING BLOCK-----------------------------------------------------
1513 // This block specifies the encoding classes used by the compiler to output
1514 // byte streams.  Encoding classes generate functions which are called by
1515 // Machine Instruction Nodes in order to generate the bit encoding of the
1516 // instruction.  Operands specify their base encoding interface with the
1517 // interface keyword.  There are currently supported four interfaces,
1518 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1519 // operand to generate a function which returns its register number when
1520 // queried.   CONST_INTER causes an operand to generate a function which
1521 // returns the value of the constant when queried.  MEMORY_INTER causes an
1522 // operand to generate four functions which return the Base Register, the
1523 // Index Register, the Scale Value, and the Offset Value of the operand when
1524 // queried.  COND_INTER causes an operand to generate six functions which
1525 // return the encoding code (ie - encoding bits for the instruction)
1526 // associated with each basic boolean condition for a conditional instruction.
1527 // Instructions specify two basic values for encoding.  They use the
1528 // ins_encode keyword to specify their encoding class (which must be one of
1529 // the class names specified in the encoding block), and they use the
1530 // opcode keyword to specify, in order, their primary, secondary, and
1531 // tertiary opcode.  Only the opcode sections which a particular instruction
1532 // needs for encoding need to be specified.
1533 encode %{
1534   // Build emit functions for each basic byte or larger field in the intel
1535   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1536   // code in the enc_class source block.  Emit functions will live in the
1537   // main source block for now.  In future, we can generalize this by
1538   // adding a syntax that specifies the sizes of fields in an order,
1539   // so that the adlc can build the emit functions automagically
1540 
1541   // Emit primary opcode
1542   enc_class OpcP %{
1543     emit_opcode(cbuf, $primary);
1544   %}
1545 
1546   // Emit secondary opcode
1547   enc_class OpcS %{
1548     emit_opcode(cbuf, $secondary);
1549   %}
1550 
1551   // Emit opcode directly
1552   enc_class Opcode(immI d8) %{
1553     emit_opcode(cbuf, $d8$$constant);
1554   %}
1555 
1556   enc_class SizePrefix %{
1557     emit_opcode(cbuf,0x66);
1558   %}
1559 
1560   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1561     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1562   %}
1563 
1564   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
1565     emit_opcode(cbuf,$opcode$$constant);
1566     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1567   %}
1568 
1569   enc_class mov_r32_imm0( rRegI dst ) %{
1570     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1571     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1572   %}
1573 
1574   enc_class cdq_enc %{
1575     // Full implementation of Java idiv and irem; checks for
1576     // special case as described in JVM spec., p.243 & p.271.
1577     //
1578     //         normal case                           special case
1579     //
1580     // input : rax,: dividend                         min_int
1581     //         reg: divisor                          -1
1582     //
1583     // output: rax,: quotient  (= rax, idiv reg)       min_int
1584     //         rdx: remainder (= rax, irem reg)       0
1585     //
1586     //  Code sequnce:
1587     //
1588     //  81 F8 00 00 00 80    cmp         rax,80000000h
1589     //  0F 85 0B 00 00 00    jne         normal_case
1590     //  33 D2                xor         rdx,edx
1591     //  83 F9 FF             cmp         rcx,0FFh
1592     //  0F 84 03 00 00 00    je          done
1593     //                  normal_case:
1594     //  99                   cdq
1595     //  F7 F9                idiv        rax,ecx
1596     //                  done:
1597     //
1598     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1599     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1600     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1601     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1602     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1603     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1604     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1605     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1606     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1607     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1608     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1609     // normal_case:
1610     emit_opcode(cbuf,0x99);                                         // cdq
1611     // idiv (note: must be emitted by the user of this rule)
1612     // normal:
1613   %}
1614 
1615   // Dense encoding for older common ops
1616   enc_class Opc_plus(immI opcode, rRegI reg) %{
1617     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1618   %}
1619 
1620 
1621   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1622   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1623     // Check for 8-bit immediate, and set sign extend bit in opcode
1624     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1625       emit_opcode(cbuf, $primary | 0x02);
1626     }
1627     else {                          // If 32-bit immediate
1628       emit_opcode(cbuf, $primary);
1629     }
1630   %}
1631 
1632   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
1633     // Emit primary opcode and set sign-extend bit
1634     // Check for 8-bit immediate, and set sign extend bit in opcode
1635     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1636       emit_opcode(cbuf, $primary | 0x02);    }
1637     else {                          // If 32-bit immediate
1638       emit_opcode(cbuf, $primary);
1639     }
1640     // Emit r/m byte with secondary opcode, after primary opcode.
1641     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1642   %}
1643 
1644   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1645     // Check for 8-bit immediate, and set sign extend bit in opcode
1646     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1647       $$$emit8$imm$$constant;
1648     }
1649     else {                          // If 32-bit immediate
1650       // Output immediate
1651       $$$emit32$imm$$constant;
1652     }
1653   %}
1654 
1655   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1656     // Emit primary opcode and set sign-extend bit
1657     // Check for 8-bit immediate, and set sign extend bit in opcode
1658     int con = (int)$imm$$constant; // Throw away top bits
1659     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1660     // Emit r/m byte with secondary opcode, after primary opcode.
1661     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1662     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1663     else                               emit_d32(cbuf,con);
1664   %}
1665 
1666   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1667     // Emit primary opcode and set sign-extend bit
1668     // Check for 8-bit immediate, and set sign extend bit in opcode
1669     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1670     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1671     // Emit r/m byte with tertiary opcode, after primary opcode.
1672     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1673     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1674     else                               emit_d32(cbuf,con);
1675   %}
1676 
1677   enc_class OpcSReg (rRegI dst) %{    // BSWAP
1678     emit_cc(cbuf, $secondary, $dst$$reg );
1679   %}
1680 
1681   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1682     int destlo = $dst$$reg;
1683     int desthi = HIGH_FROM_LOW(destlo);
1684     // bswap lo
1685     emit_opcode(cbuf, 0x0F);
1686     emit_cc(cbuf, 0xC8, destlo);
1687     // bswap hi
1688     emit_opcode(cbuf, 0x0F);
1689     emit_cc(cbuf, 0xC8, desthi);
1690     // xchg lo and hi
1691     emit_opcode(cbuf, 0x87);
1692     emit_rm(cbuf, 0x3, destlo, desthi);
1693   %}
1694 
1695   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1696     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1697   %}
1698 
1699   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1700     $$$emit8$primary;
1701     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1702   %}
1703 
1704   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
1705     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1706     emit_d8(cbuf, op >> 8 );
1707     emit_d8(cbuf, op & 255);
1708   %}
1709 
1710   // emulate a CMOV with a conditional branch around a MOV
1711   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1712     // Invert sense of branch from sense of CMOV
1713     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1714     emit_d8( cbuf, $brOffs$$constant );
1715   %}
1716 
1717   enc_class enc_PartialSubtypeCheck( ) %{
1718     Register Redi = as_Register(EDI_enc); // result register
1719     Register Reax = as_Register(EAX_enc); // super class
1720     Register Recx = as_Register(ECX_enc); // killed
1721     Register Resi = as_Register(ESI_enc); // sub class
1722     Label miss;
1723 
1724     MacroAssembler _masm(&cbuf);
1725     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1726                                      NULL, &miss,
1727                                      /*set_cond_codes:*/ true);
1728     if ($primary) {
1729       __ xorptr(Redi, Redi);
1730     }
1731     __ bind(miss);
1732   %}
1733 
1734   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1735     MacroAssembler masm(&cbuf);
1736     int start = masm.offset();
1737     if (UseSSE >= 2) {
1738       if (VerifyFPU) {
1739         masm.verify_FPU(0, "must be empty in SSE2+ mode");
1740       }
1741     } else {
1742       // External c_calling_convention expects the FPU stack to be 'clean'.
1743       // Compiled code leaves it dirty.  Do cleanup now.
1744       masm.empty_FPU_stack();
1745     }
1746     if (sizeof_FFree_Float_Stack_All == -1) {
1747       sizeof_FFree_Float_Stack_All = masm.offset() - start;
1748     } else {
1749       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1750     }
1751   %}
1752 
1753   enc_class Verify_FPU_For_Leaf %{
1754     if( VerifyFPU ) {
1755       MacroAssembler masm(&cbuf);
1756       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1757     }
1758   %}
1759 
1760   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1761     // This is the instruction starting address for relocation info.
1762     cbuf.set_insts_mark();
1763     $$$emit8$primary;
1764     // CALL directly to the runtime
1765     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1766                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1767 
1768     if (UseSSE >= 2) {
1769       MacroAssembler _masm(&cbuf);
1770       BasicType rt = tf()->return_type();
1771 
1772       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1773         // A C runtime call where the return value is unused.  In SSE2+
1774         // mode the result needs to be removed from the FPU stack.  It's
1775         // likely that this function call could be removed by the
1776         // optimizer if the C function is a pure function.
1777         __ ffree(0);
1778       } else if (rt == T_FLOAT) {
1779         __ lea(rsp, Address(rsp, -4));
1780         __ fstp_s(Address(rsp, 0));
1781         __ movflt(xmm0, Address(rsp, 0));
1782         __ lea(rsp, Address(rsp,  4));
1783       } else if (rt == T_DOUBLE) {
1784         __ lea(rsp, Address(rsp, -8));
1785         __ fstp_d(Address(rsp, 0));
1786         __ movdbl(xmm0, Address(rsp, 0));
1787         __ lea(rsp, Address(rsp,  8));
1788       }
1789     }
1790   %}
1791 
1792 
1793   enc_class pre_call_resets %{
1794     // If method sets FPU control word restore it here
1795     debug_only(int off0 = cbuf.insts_size());
1796     if (ra_->C->in_24_bit_fp_mode()) {
1797       MacroAssembler _masm(&cbuf);
1798       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1799     }
1800     if (ra_->C->max_vector_size() > 16) {
1801       // Clear upper bits of YMM registers when current compiled code uses
1802       // wide vectors to avoid AVX <-> SSE transition penalty during call.
1803       MacroAssembler _masm(&cbuf);
1804       __ vzeroupper();
1805     }
1806     debug_only(int off1 = cbuf.insts_size());
1807     assert(off1 - off0 == pre_call_resets_size(), "correct size prediction");
1808   %}
1809 
1810   enc_class post_call_FPU %{
1811     // If method sets FPU control word do it here also
1812     if (Compile::current()->in_24_bit_fp_mode()) {
1813       MacroAssembler masm(&cbuf);
1814       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1815     }
1816   %}
1817 
1818   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1819     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1820     // who we intended to call.
1821     cbuf.set_insts_mark();
1822     $$$emit8$primary;
1823     if (!_method) {
1824       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1825                      runtime_call_Relocation::spec(), RELOC_IMM32 );
1826     } else if (_optimized_virtual) {
1827       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1828                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1829     } else {
1830       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1831                      static_call_Relocation::spec(), RELOC_IMM32 );
1832     }
1833     if (_method) {  // Emit stub for static call.
1834       CompiledStaticCall::emit_to_interp_stub(cbuf);
1835     }
1836   %}
1837 
1838   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1839     MacroAssembler _masm(&cbuf);
1840     __ ic_call((address)$meth$$method);
1841   %}
1842 
1843   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1844     int disp = in_bytes(Method::from_compiled_offset());
1845     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1846 
1847     // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
1848     cbuf.set_insts_mark();
1849     $$$emit8$primary;
1850     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1851     emit_d8(cbuf, disp);             // Displacement
1852 
1853   %}
1854 
1855 //   Following encoding is no longer used, but may be restored if calling
1856 //   convention changes significantly.
1857 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1858 //
1859 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1860 //     // int ic_reg     = Matcher::inline_cache_reg();
1861 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
1862 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1863 //     // int imo_encode = Matcher::_regEncode[imo_reg];
1864 //
1865 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1866 //     // // so we load it immediately before the call
1867 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1868 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1869 //
1870 //     // xor rbp,ebp
1871 //     emit_opcode(cbuf, 0x33);
1872 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1873 //
1874 //     // CALL to interpreter.
1875 //     cbuf.set_insts_mark();
1876 //     $$$emit8$primary;
1877 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
1878 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1879 //   %}
1880 
1881   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1882     $$$emit8$primary;
1883     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1884     $$$emit8$shift$$constant;
1885   %}
1886 
1887   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
1888     // Load immediate does not have a zero or sign extended version
1889     // for 8-bit immediates
1890     emit_opcode(cbuf, 0xB8 + $dst$$reg);
1891     $$$emit32$src$$constant;
1892   %}
1893 
1894   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
1895     // Load immediate does not have a zero or sign extended version
1896     // for 8-bit immediates
1897     emit_opcode(cbuf, $primary + $dst$$reg);
1898     $$$emit32$src$$constant;
1899   %}
1900 
1901   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1902     // Load immediate does not have a zero or sign extended version
1903     // for 8-bit immediates
1904     int dst_enc = $dst$$reg;
1905     int src_con = $src$$constant & 0x0FFFFFFFFL;
1906     if (src_con == 0) {
1907       // xor dst, dst
1908       emit_opcode(cbuf, 0x33);
1909       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1910     } else {
1911       emit_opcode(cbuf, $primary + dst_enc);
1912       emit_d32(cbuf, src_con);
1913     }
1914   %}
1915 
1916   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1917     // Load immediate does not have a zero or sign extended version
1918     // for 8-bit immediates
1919     int dst_enc = $dst$$reg + 2;
1920     int src_con = ((julong)($src$$constant)) >> 32;
1921     if (src_con == 0) {
1922       // xor dst, dst
1923       emit_opcode(cbuf, 0x33);
1924       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1925     } else {
1926       emit_opcode(cbuf, $primary + dst_enc);
1927       emit_d32(cbuf, src_con);
1928     }
1929   %}
1930 
1931 
1932   // Encode a reg-reg copy.  If it is useless, then empty encoding.
1933   enc_class enc_Copy( rRegI dst, rRegI src ) %{
1934     encode_Copy( cbuf, $dst$$reg, $src$$reg );
1935   %}
1936 
1937   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
1938     encode_Copy( cbuf, $dst$$reg, $src$$reg );
1939   %}
1940 
1941   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1942     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1943   %}
1944 
1945   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
1946     $$$emit8$primary;
1947     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1948   %}
1949 
1950   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
1951     $$$emit8$secondary;
1952     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
1953   %}
1954 
1955   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
1956     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1957   %}
1958 
1959   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
1960     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
1961   %}
1962 
1963   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
1964     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
1965   %}
1966 
1967   enc_class Con32 (immI src) %{    // Con32(storeImmI)
1968     // Output immediate
1969     $$$emit32$src$$constant;
1970   %}
1971 
1972   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
1973     // Output Float immediate bits
1974     jfloat jf = $src$$constant;
1975     int    jf_as_bits = jint_cast( jf );
1976     emit_d32(cbuf, jf_as_bits);
1977   %}
1978 
1979   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
1980     // Output Float immediate bits
1981     jfloat jf = $src$$constant;
1982     int    jf_as_bits = jint_cast( jf );
1983     emit_d32(cbuf, jf_as_bits);
1984   %}
1985 
1986   enc_class Con16 (immI src) %{    // Con16(storeImmI)
1987     // Output immediate
1988     $$$emit16$src$$constant;
1989   %}
1990 
1991   enc_class Con_d32(immI src) %{
1992     emit_d32(cbuf,$src$$constant);
1993   %}
1994 
1995   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
1996     // Output immediate memory reference
1997     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
1998     emit_d32(cbuf, 0x00);
1999   %}
2000 
2001   enc_class lock_prefix( ) %{
2002     if( os::is_MP() )
2003       emit_opcode(cbuf,0xF0);         // [Lock]
2004   %}
2005 
2006   // Cmp-xchg long value.
2007   // Note: we need to swap rbx, and rcx before and after the
2008   //       cmpxchg8 instruction because the instruction uses
2009   //       rcx as the high order word of the new value to store but
2010   //       our register encoding uses rbx,.
2011   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2012 
2013     // XCHG  rbx,ecx
2014     emit_opcode(cbuf,0x87);
2015     emit_opcode(cbuf,0xD9);
2016     // [Lock]
2017     if( os::is_MP() )
2018       emit_opcode(cbuf,0xF0);
2019     // CMPXCHG8 [Eptr]
2020     emit_opcode(cbuf,0x0F);
2021     emit_opcode(cbuf,0xC7);
2022     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2023     // XCHG  rbx,ecx
2024     emit_opcode(cbuf,0x87);
2025     emit_opcode(cbuf,0xD9);
2026   %}
2027 
2028   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2029     // [Lock]
2030     if( os::is_MP() )
2031       emit_opcode(cbuf,0xF0);
2032 
2033     // CMPXCHG [Eptr]
2034     emit_opcode(cbuf,0x0F);
2035     emit_opcode(cbuf,0xB1);
2036     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2037   %}
2038 
2039   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2040     int res_encoding = $res$$reg;
2041 
2042     // MOV  res,0
2043     emit_opcode( cbuf, 0xB8 + res_encoding);
2044     emit_d32( cbuf, 0 );
2045     // JNE,s  fail
2046     emit_opcode(cbuf,0x75);
2047     emit_d8(cbuf, 5 );
2048     // MOV  res,1
2049     emit_opcode( cbuf, 0xB8 + res_encoding);
2050     emit_d32( cbuf, 1 );
2051     // fail:
2052   %}
2053 
2054   enc_class set_instruction_start( ) %{
2055     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
2056   %}
2057 
2058   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
2059     int reg_encoding = $ereg$$reg;
2060     int base  = $mem$$base;
2061     int index = $mem$$index;
2062     int scale = $mem$$scale;
2063     int displace = $mem$$disp;
2064     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2065     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2066   %}
2067 
2068   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2069     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2070     int base  = $mem$$base;
2071     int index = $mem$$index;
2072     int scale = $mem$$scale;
2073     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2074     assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
2075     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
2076   %}
2077 
2078   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2079     int r1, r2;
2080     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2081     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2082     emit_opcode(cbuf,0x0F);
2083     emit_opcode(cbuf,$tertiary);
2084     emit_rm(cbuf, 0x3, r1, r2);
2085     emit_d8(cbuf,$cnt$$constant);
2086     emit_d8(cbuf,$primary);
2087     emit_rm(cbuf, 0x3, $secondary, r1);
2088     emit_d8(cbuf,$cnt$$constant);
2089   %}
2090 
2091   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2092     emit_opcode( cbuf, 0x8B ); // Move
2093     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2094     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2095       emit_d8(cbuf,$primary);
2096       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2097       emit_d8(cbuf,$cnt$$constant-32);
2098     }
2099     emit_d8(cbuf,$primary);
2100     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2101     emit_d8(cbuf,31);
2102   %}
2103 
2104   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2105     int r1, r2;
2106     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2107     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2108 
2109     emit_opcode( cbuf, 0x8B ); // Move r1,r2
2110     emit_rm(cbuf, 0x3, r1, r2);
2111     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2112       emit_opcode(cbuf,$primary);
2113       emit_rm(cbuf, 0x3, $secondary, r1);
2114       emit_d8(cbuf,$cnt$$constant-32);
2115     }
2116     emit_opcode(cbuf,0x33);  // XOR r2,r2
2117     emit_rm(cbuf, 0x3, r2, r2);
2118   %}
2119 
2120   // Clone of RegMem but accepts an extra parameter to access each
2121   // half of a double in memory; it never needs relocation info.
2122   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
2123     emit_opcode(cbuf,$opcode$$constant);
2124     int reg_encoding = $rm_reg$$reg;
2125     int base     = $mem$$base;
2126     int index    = $mem$$index;
2127     int scale    = $mem$$scale;
2128     int displace = $mem$$disp + $disp_for_half$$constant;
2129     relocInfo::relocType disp_reloc = relocInfo::none;
2130     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2131   %}
2132 
2133   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2134   //
2135   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2136   // and it never needs relocation information.
2137   // Frequently used to move data between FPU's Stack Top and memory.
2138   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2139     int rm_byte_opcode = $rm_opcode$$constant;
2140     int base     = $mem$$base;
2141     int index    = $mem$$index;
2142     int scale    = $mem$$scale;
2143     int displace = $mem$$disp;
2144     assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
2145     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
2146   %}
2147 
2148   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2149     int rm_byte_opcode = $rm_opcode$$constant;
2150     int base     = $mem$$base;
2151     int index    = $mem$$index;
2152     int scale    = $mem$$scale;
2153     int displace = $mem$$disp;
2154     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2155     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
2156   %}
2157 
2158   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
2159     int reg_encoding = $dst$$reg;
2160     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2161     int index        = 0x04;            // 0x04 indicates no index
2162     int scale        = 0x00;            // 0x00 indicates no scale
2163     int displace     = $src1$$constant; // 0x00 indicates no displacement
2164     relocInfo::relocType disp_reloc = relocInfo::none;
2165     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2166   %}
2167 
2168   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
2169     // Compare dst,src
2170     emit_opcode(cbuf,0x3B);
2171     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2172     // jmp dst < src around move
2173     emit_opcode(cbuf,0x7C);
2174     emit_d8(cbuf,2);
2175     // move dst,src
2176     emit_opcode(cbuf,0x8B);
2177     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2178   %}
2179 
2180   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
2181     // Compare dst,src
2182     emit_opcode(cbuf,0x3B);
2183     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2184     // jmp dst > src around move
2185     emit_opcode(cbuf,0x7F);
2186     emit_d8(cbuf,2);
2187     // move dst,src
2188     emit_opcode(cbuf,0x8B);
2189     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2190   %}
2191 
2192   enc_class enc_FPR_store(memory mem, regDPR src) %{
2193     // If src is FPR1, we can just FST to store it.
2194     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2195     int reg_encoding = 0x2; // Just store
2196     int base  = $mem$$base;
2197     int index = $mem$$index;
2198     int scale = $mem$$scale;
2199     int displace = $mem$$disp;
2200     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2201     if( $src$$reg != FPR1L_enc ) {
2202       reg_encoding = 0x3;  // Store & pop
2203       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2204       emit_d8( cbuf, 0xC0-1+$src$$reg );
2205     }
2206     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2207     emit_opcode(cbuf,$primary);
2208     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2209   %}
2210 
2211   enc_class neg_reg(rRegI dst) %{
2212     // NEG $dst
2213     emit_opcode(cbuf,0xF7);
2214     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2215   %}
2216 
2217   enc_class setLT_reg(eCXRegI dst) %{
2218     // SETLT $dst
2219     emit_opcode(cbuf,0x0F);
2220     emit_opcode(cbuf,0x9C);
2221     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2222   %}
2223 
2224   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2225     int tmpReg = $tmp$$reg;
2226 
2227     // SUB $p,$q
2228     emit_opcode(cbuf,0x2B);
2229     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2230     // SBB $tmp,$tmp
2231     emit_opcode(cbuf,0x1B);
2232     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2233     // AND $tmp,$y
2234     emit_opcode(cbuf,0x23);
2235     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2236     // ADD $p,$tmp
2237     emit_opcode(cbuf,0x03);
2238     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2239   %}
2240 
2241   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2242     // TEST shift,32
2243     emit_opcode(cbuf,0xF7);
2244     emit_rm(cbuf, 0x3, 0, ECX_enc);
2245     emit_d32(cbuf,0x20);
2246     // JEQ,s small
2247     emit_opcode(cbuf, 0x74);
2248     emit_d8(cbuf, 0x04);
2249     // MOV    $dst.hi,$dst.lo
2250     emit_opcode( cbuf, 0x8B );
2251     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2252     // CLR    $dst.lo
2253     emit_opcode(cbuf, 0x33);
2254     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2255 // small:
2256     // SHLD   $dst.hi,$dst.lo,$shift
2257     emit_opcode(cbuf,0x0F);
2258     emit_opcode(cbuf,0xA5);
2259     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2260     // SHL    $dst.lo,$shift"
2261     emit_opcode(cbuf,0xD3);
2262     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2263   %}
2264 
2265   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2266     // TEST shift,32
2267     emit_opcode(cbuf,0xF7);
2268     emit_rm(cbuf, 0x3, 0, ECX_enc);
2269     emit_d32(cbuf,0x20);
2270     // JEQ,s small
2271     emit_opcode(cbuf, 0x74);
2272     emit_d8(cbuf, 0x04);
2273     // MOV    $dst.lo,$dst.hi
2274     emit_opcode( cbuf, 0x8B );
2275     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2276     // CLR    $dst.hi
2277     emit_opcode(cbuf, 0x33);
2278     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2279 // small:
2280     // SHRD   $dst.lo,$dst.hi,$shift
2281     emit_opcode(cbuf,0x0F);
2282     emit_opcode(cbuf,0xAD);
2283     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2284     // SHR    $dst.hi,$shift"
2285     emit_opcode(cbuf,0xD3);
2286     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2287   %}
2288 
2289   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2290     // TEST shift,32
2291     emit_opcode(cbuf,0xF7);
2292     emit_rm(cbuf, 0x3, 0, ECX_enc);
2293     emit_d32(cbuf,0x20);
2294     // JEQ,s small
2295     emit_opcode(cbuf, 0x74);
2296     emit_d8(cbuf, 0x05);
2297     // MOV    $dst.lo,$dst.hi
2298     emit_opcode( cbuf, 0x8B );
2299     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2300     // SAR    $dst.hi,31
2301     emit_opcode(cbuf, 0xC1);
2302     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2303     emit_d8(cbuf, 0x1F );
2304 // small:
2305     // SHRD   $dst.lo,$dst.hi,$shift
2306     emit_opcode(cbuf,0x0F);
2307     emit_opcode(cbuf,0xAD);
2308     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2309     // SAR    $dst.hi,$shift"
2310     emit_opcode(cbuf,0xD3);
2311     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2312   %}
2313 
2314 
2315   // ----------------- Encodings for floating point unit -----------------
2316   // May leave result in FPU-TOS or FPU reg depending on opcodes
2317   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
2318     $$$emit8$primary;
2319     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2320   %}
2321 
2322   // Pop argument in FPR0 with FSTP ST(0)
2323   enc_class PopFPU() %{
2324     emit_opcode( cbuf, 0xDD );
2325     emit_d8( cbuf, 0xD8 );
2326   %}
2327 
2328   // !!!!! equivalent to Pop_Reg_F
2329   enc_class Pop_Reg_DPR( regDPR dst ) %{
2330     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2331     emit_d8( cbuf, 0xD8+$dst$$reg );
2332   %}
2333 
2334   enc_class Push_Reg_DPR( regDPR dst ) %{
2335     emit_opcode( cbuf, 0xD9 );
2336     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2337   %}
2338 
2339   enc_class strictfp_bias1( regDPR dst ) %{
2340     emit_opcode( cbuf, 0xDB );           // FLD m80real
2341     emit_opcode( cbuf, 0x2D );
2342     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2343     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2344     emit_opcode( cbuf, 0xC8+$dst$$reg );
2345   %}
2346 
2347   enc_class strictfp_bias2( regDPR dst ) %{
2348     emit_opcode( cbuf, 0xDB );           // FLD m80real
2349     emit_opcode( cbuf, 0x2D );
2350     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2351     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2352     emit_opcode( cbuf, 0xC8+$dst$$reg );
2353   %}
2354 
2355   // Special case for moving an integer register to a stack slot.
2356   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2357     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2358   %}
2359 
2360   // Special case for moving a register to a stack slot.
2361   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2362     // Opcode already emitted
2363     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2364     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2365     emit_d32(cbuf, $dst$$disp);   // Displacement
2366   %}
2367 
2368   // Push the integer in stackSlot 'src' onto FP-stack
2369   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2370     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2371   %}
2372 
2373   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2374   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2375     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2376   %}
2377 
2378   // Same as Pop_Mem_F except for opcode
2379   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2380   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2381     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2382   %}
2383 
2384   enc_class Pop_Reg_FPR( regFPR dst ) %{
2385     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2386     emit_d8( cbuf, 0xD8+$dst$$reg );
2387   %}
2388 
2389   enc_class Push_Reg_FPR( regFPR dst ) %{
2390     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2391     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2392   %}
2393 
2394   // Push FPU's float to a stack-slot, and pop FPU-stack
2395   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
2396     int pop = 0x02;
2397     if ($src$$reg != FPR1L_enc) {
2398       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2399       emit_d8( cbuf, 0xC0-1+$src$$reg );
2400       pop = 0x03;
2401     }
2402     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2403   %}
2404 
2405   // Push FPU's double to a stack-slot, and pop FPU-stack
2406   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
2407     int pop = 0x02;
2408     if ($src$$reg != FPR1L_enc) {
2409       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2410       emit_d8( cbuf, 0xC0-1+$src$$reg );
2411       pop = 0x03;
2412     }
2413     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2414   %}
2415 
2416   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2417   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
2418     int pop = 0xD0 - 1; // -1 since we skip FLD
2419     if ($src$$reg != FPR1L_enc) {
2420       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2421       emit_d8( cbuf, 0xC0-1+$src$$reg );
2422       pop = 0xD8;
2423     }
2424     emit_opcode( cbuf, 0xDD );
2425     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2426   %}
2427 
2428 
2429   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
2430     // load dst in FPR0
2431     emit_opcode( cbuf, 0xD9 );
2432     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2433     if ($src$$reg != FPR1L_enc) {
2434       // fincstp
2435       emit_opcode (cbuf, 0xD9);
2436       emit_opcode (cbuf, 0xF7);
2437       // swap src with FPR1:
2438       // FXCH FPR1 with src
2439       emit_opcode(cbuf, 0xD9);
2440       emit_d8(cbuf, 0xC8-1+$src$$reg );
2441       // fdecstp
2442       emit_opcode (cbuf, 0xD9);
2443       emit_opcode (cbuf, 0xF6);
2444     }
2445   %}
2446 
2447   enc_class Push_ModD_encoding(regD src0, regD src1) %{
2448     MacroAssembler _masm(&cbuf);
2449     __ subptr(rsp, 8);
2450     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
2451     __ fld_d(Address(rsp, 0));
2452     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
2453     __ fld_d(Address(rsp, 0));
2454   %}
2455 
2456   enc_class Push_ModF_encoding(regF src0, regF src1) %{
2457     MacroAssembler _masm(&cbuf);
2458     __ subptr(rsp, 4);
2459     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
2460     __ fld_s(Address(rsp, 0));
2461     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
2462     __ fld_s(Address(rsp, 0));
2463   %}
2464 
2465   enc_class Push_ResultD(regD dst) %{
2466     MacroAssembler _masm(&cbuf);
2467     __ fstp_d(Address(rsp, 0));
2468     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2469     __ addptr(rsp, 8);
2470   %}
2471 
2472   enc_class Push_ResultF(regF dst, immI d8) %{
2473     MacroAssembler _masm(&cbuf);
2474     __ fstp_s(Address(rsp, 0));
2475     __ movflt($dst$$XMMRegister, Address(rsp, 0));
2476     __ addptr(rsp, $d8$$constant);
2477   %}
2478 
2479   enc_class Push_SrcD(regD src) %{
2480     MacroAssembler _masm(&cbuf);
2481     __ subptr(rsp, 8);
2482     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2483     __ fld_d(Address(rsp, 0));
2484   %}
2485 
2486   enc_class push_stack_temp_qword() %{
2487     MacroAssembler _masm(&cbuf);
2488     __ subptr(rsp, 8);
2489   %}
2490 
2491   enc_class pop_stack_temp_qword() %{
2492     MacroAssembler _masm(&cbuf);
2493     __ addptr(rsp, 8);
2494   %}
2495 
2496   enc_class push_xmm_to_fpr1(regD src) %{
2497     MacroAssembler _masm(&cbuf);
2498     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2499     __ fld_d(Address(rsp, 0));
2500   %}
2501 
2502   enc_class Push_Result_Mod_DPR( regDPR src) %{
2503     if ($src$$reg != FPR1L_enc) {
2504       // fincstp
2505       emit_opcode (cbuf, 0xD9);
2506       emit_opcode (cbuf, 0xF7);
2507       // FXCH FPR1 with src
2508       emit_opcode(cbuf, 0xD9);
2509       emit_d8(cbuf, 0xC8-1+$src$$reg );
2510       // fdecstp
2511       emit_opcode (cbuf, 0xD9);
2512       emit_opcode (cbuf, 0xF6);
2513     }
2514     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2515     // // FSTP   FPR$dst$$reg
2516     // emit_opcode( cbuf, 0xDD );
2517     // emit_d8( cbuf, 0xD8+$dst$$reg );
2518   %}
2519 
2520   enc_class fnstsw_sahf_skip_parity() %{
2521     // fnstsw ax
2522     emit_opcode( cbuf, 0xDF );
2523     emit_opcode( cbuf, 0xE0 );
2524     // sahf
2525     emit_opcode( cbuf, 0x9E );
2526     // jnp  ::skip
2527     emit_opcode( cbuf, 0x7B );
2528     emit_opcode( cbuf, 0x05 );
2529   %}
2530 
2531   enc_class emitModDPR() %{
2532     // fprem must be iterative
2533     // :: loop
2534     // fprem
2535     emit_opcode( cbuf, 0xD9 );
2536     emit_opcode( cbuf, 0xF8 );
2537     // wait
2538     emit_opcode( cbuf, 0x9b );
2539     // fnstsw ax
2540     emit_opcode( cbuf, 0xDF );
2541     emit_opcode( cbuf, 0xE0 );
2542     // sahf
2543     emit_opcode( cbuf, 0x9E );
2544     // jp  ::loop
2545     emit_opcode( cbuf, 0x0F );
2546     emit_opcode( cbuf, 0x8A );
2547     emit_opcode( cbuf, 0xF4 );
2548     emit_opcode( cbuf, 0xFF );
2549     emit_opcode( cbuf, 0xFF );
2550     emit_opcode( cbuf, 0xFF );
2551   %}
2552 
2553   enc_class fpu_flags() %{
2554     // fnstsw_ax
2555     emit_opcode( cbuf, 0xDF);
2556     emit_opcode( cbuf, 0xE0);
2557     // test ax,0x0400
2558     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2559     emit_opcode( cbuf, 0xA9 );
2560     emit_d16   ( cbuf, 0x0400 );
2561     // // // This sequence works, but stalls for 12-16 cycles on PPro
2562     // // test rax,0x0400
2563     // emit_opcode( cbuf, 0xA9 );
2564     // emit_d32   ( cbuf, 0x00000400 );
2565     //
2566     // jz exit (no unordered comparison)
2567     emit_opcode( cbuf, 0x74 );
2568     emit_d8    ( cbuf, 0x02 );
2569     // mov ah,1 - treat as LT case (set carry flag)
2570     emit_opcode( cbuf, 0xB4 );
2571     emit_d8    ( cbuf, 0x01 );
2572     // sahf
2573     emit_opcode( cbuf, 0x9E);
2574   %}
2575 
2576   enc_class cmpF_P6_fixup() %{
2577     // Fixup the integer flags in case comparison involved a NaN
2578     //
2579     // JNP exit (no unordered comparison, P-flag is set by NaN)
2580     emit_opcode( cbuf, 0x7B );
2581     emit_d8    ( cbuf, 0x03 );
2582     // MOV AH,1 - treat as LT case (set carry flag)
2583     emit_opcode( cbuf, 0xB4 );
2584     emit_d8    ( cbuf, 0x01 );
2585     // SAHF
2586     emit_opcode( cbuf, 0x9E);
2587     // NOP     // target for branch to avoid branch to branch
2588     emit_opcode( cbuf, 0x90);
2589   %}
2590 
2591 //     fnstsw_ax();
2592 //     sahf();
2593 //     movl(dst, nan_result);
2594 //     jcc(Assembler::parity, exit);
2595 //     movl(dst, less_result);
2596 //     jcc(Assembler::below, exit);
2597 //     movl(dst, equal_result);
2598 //     jcc(Assembler::equal, exit);
2599 //     movl(dst, greater_result);
2600 
2601 // less_result     =  1;
2602 // greater_result  = -1;
2603 // equal_result    = 0;
2604 // nan_result      = -1;
2605 
2606   enc_class CmpF_Result(rRegI dst) %{
2607     // fnstsw_ax();
2608     emit_opcode( cbuf, 0xDF);
2609     emit_opcode( cbuf, 0xE0);
2610     // sahf
2611     emit_opcode( cbuf, 0x9E);
2612     // movl(dst, nan_result);
2613     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2614     emit_d32( cbuf, -1 );
2615     // jcc(Assembler::parity, exit);
2616     emit_opcode( cbuf, 0x7A );
2617     emit_d8    ( cbuf, 0x13 );
2618     // movl(dst, less_result);
2619     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2620     emit_d32( cbuf, -1 );
2621     // jcc(Assembler::below, exit);
2622     emit_opcode( cbuf, 0x72 );
2623     emit_d8    ( cbuf, 0x0C );
2624     // movl(dst, equal_result);
2625     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2626     emit_d32( cbuf, 0 );
2627     // jcc(Assembler::equal, exit);
2628     emit_opcode( cbuf, 0x74 );
2629     emit_d8    ( cbuf, 0x05 );
2630     // movl(dst, greater_result);
2631     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2632     emit_d32( cbuf, 1 );
2633   %}
2634 
2635 
2636   // Compare the longs and set flags
2637   // BROKEN!  Do Not use as-is
2638   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2639     // CMP    $src1.hi,$src2.hi
2640     emit_opcode( cbuf, 0x3B );
2641     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2642     // JNE,s  done
2643     emit_opcode(cbuf,0x75);
2644     emit_d8(cbuf, 2 );
2645     // CMP    $src1.lo,$src2.lo
2646     emit_opcode( cbuf, 0x3B );
2647     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2648 // done:
2649   %}
2650 
2651   enc_class convert_int_long( regL dst, rRegI src ) %{
2652     // mov $dst.lo,$src
2653     int dst_encoding = $dst$$reg;
2654     int src_encoding = $src$$reg;
2655     encode_Copy( cbuf, dst_encoding  , src_encoding );
2656     // mov $dst.hi,$src
2657     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2658     // sar $dst.hi,31
2659     emit_opcode( cbuf, 0xC1 );
2660     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2661     emit_d8(cbuf, 0x1F );
2662   %}
2663 
2664   enc_class convert_long_double( eRegL src ) %{
2665     // push $src.hi
2666     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2667     // push $src.lo
2668     emit_opcode(cbuf, 0x50+$src$$reg  );
2669     // fild 64-bits at [SP]
2670     emit_opcode(cbuf,0xdf);
2671     emit_d8(cbuf, 0x6C);
2672     emit_d8(cbuf, 0x24);
2673     emit_d8(cbuf, 0x00);
2674     // pop stack
2675     emit_opcode(cbuf, 0x83); // add  SP, #8
2676     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2677     emit_d8(cbuf, 0x8);
2678   %}
2679 
2680   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2681     // IMUL   EDX:EAX,$src1
2682     emit_opcode( cbuf, 0xF7 );
2683     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2684     // SAR    EDX,$cnt-32
2685     int shift_count = ((int)$cnt$$constant) - 32;
2686     if (shift_count > 0) {
2687       emit_opcode(cbuf, 0xC1);
2688       emit_rm(cbuf, 0x3, 7, $dst$$reg );
2689       emit_d8(cbuf, shift_count);
2690     }
2691   %}
2692 
2693   // this version doesn't have add sp, 8
2694   enc_class convert_long_double2( eRegL src ) %{
2695     // push $src.hi
2696     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2697     // push $src.lo
2698     emit_opcode(cbuf, 0x50+$src$$reg  );
2699     // fild 64-bits at [SP]
2700     emit_opcode(cbuf,0xdf);
2701     emit_d8(cbuf, 0x6C);
2702     emit_d8(cbuf, 0x24);
2703     emit_d8(cbuf, 0x00);
2704   %}
2705 
2706   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2707     // Basic idea: long = (long)int * (long)int
2708     // IMUL EDX:EAX, src
2709     emit_opcode( cbuf, 0xF7 );
2710     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
2711   %}
2712 
2713   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
2714     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
2715     // MUL EDX:EAX, src
2716     emit_opcode( cbuf, 0xF7 );
2717     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
2718   %}
2719 
2720   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
2721     // Basic idea: lo(result) = lo(x_lo * y_lo)
2722     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
2723     // MOV    $tmp,$src.lo
2724     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
2725     // IMUL   $tmp,EDX
2726     emit_opcode( cbuf, 0x0F );
2727     emit_opcode( cbuf, 0xAF );
2728     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2729     // MOV    EDX,$src.hi
2730     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
2731     // IMUL   EDX,EAX
2732     emit_opcode( cbuf, 0x0F );
2733     emit_opcode( cbuf, 0xAF );
2734     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2735     // ADD    $tmp,EDX
2736     emit_opcode( cbuf, 0x03 );
2737     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2738     // MUL   EDX:EAX,$src.lo
2739     emit_opcode( cbuf, 0xF7 );
2740     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
2741     // ADD    EDX,ESI
2742     emit_opcode( cbuf, 0x03 );
2743     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
2744   %}
2745 
2746   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
2747     // Basic idea: lo(result) = lo(src * y_lo)
2748     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
2749     // IMUL   $tmp,EDX,$src
2750     emit_opcode( cbuf, 0x6B );
2751     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2752     emit_d8( cbuf, (int)$src$$constant );
2753     // MOV    EDX,$src
2754     emit_opcode(cbuf, 0xB8 + EDX_enc);
2755     emit_d32( cbuf, (int)$src$$constant );
2756     // MUL   EDX:EAX,EDX
2757     emit_opcode( cbuf, 0xF7 );
2758     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
2759     // ADD    EDX,ESI
2760     emit_opcode( cbuf, 0x03 );
2761     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
2762   %}
2763 
2764   enc_class long_div( eRegL src1, eRegL src2 ) %{
2765     // PUSH src1.hi
2766     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2767     // PUSH src1.lo
2768     emit_opcode(cbuf,               0x50+$src1$$reg  );
2769     // PUSH src2.hi
2770     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2771     // PUSH src2.lo
2772     emit_opcode(cbuf,               0x50+$src2$$reg  );
2773     // CALL directly to the runtime
2774     cbuf.set_insts_mark();
2775     emit_opcode(cbuf,0xE8);       // Call into runtime
2776     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2777     // Restore stack
2778     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2779     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2780     emit_d8(cbuf, 4*4);
2781   %}
2782 
2783   enc_class long_mod( eRegL src1, eRegL src2 ) %{
2784     // PUSH src1.hi
2785     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2786     // PUSH src1.lo
2787     emit_opcode(cbuf,               0x50+$src1$$reg  );
2788     // PUSH src2.hi
2789     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2790     // PUSH src2.lo
2791     emit_opcode(cbuf,               0x50+$src2$$reg  );
2792     // CALL directly to the runtime
2793     cbuf.set_insts_mark();
2794     emit_opcode(cbuf,0xE8);       // Call into runtime
2795     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2796     // Restore stack
2797     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2798     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2799     emit_d8(cbuf, 4*4);
2800   %}
2801 
2802   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
2803     // MOV   $tmp,$src.lo
2804     emit_opcode(cbuf, 0x8B);
2805     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2806     // OR    $tmp,$src.hi
2807     emit_opcode(cbuf, 0x0B);
2808     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2809   %}
2810 
2811   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
2812     // CMP    $src1.lo,$src2.lo
2813     emit_opcode( cbuf, 0x3B );
2814     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2815     // JNE,s  skip
2816     emit_cc(cbuf, 0x70, 0x5);
2817     emit_d8(cbuf,2);
2818     // CMP    $src1.hi,$src2.hi
2819     emit_opcode( cbuf, 0x3B );
2820     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2821   %}
2822 
2823   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
2824     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
2825     emit_opcode( cbuf, 0x3B );
2826     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2827     // MOV    $tmp,$src1.hi
2828     emit_opcode( cbuf, 0x8B );
2829     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
2830     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
2831     emit_opcode( cbuf, 0x1B );
2832     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
2833   %}
2834 
2835   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
2836     // XOR    $tmp,$tmp
2837     emit_opcode(cbuf,0x33);  // XOR
2838     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
2839     // CMP    $tmp,$src.lo
2840     emit_opcode( cbuf, 0x3B );
2841     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
2842     // SBB    $tmp,$src.hi
2843     emit_opcode( cbuf, 0x1B );
2844     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
2845   %}
2846 
2847  // Sniff, sniff... smells like Gnu Superoptimizer
2848   enc_class neg_long( eRegL dst ) %{
2849     emit_opcode(cbuf,0xF7);    // NEG hi
2850     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2851     emit_opcode(cbuf,0xF7);    // NEG lo
2852     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
2853     emit_opcode(cbuf,0x83);    // SBB hi,0
2854     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2855     emit_d8    (cbuf,0 );
2856   %}
2857 
2858   enc_class enc_pop_rdx() %{
2859     emit_opcode(cbuf,0x5A);
2860   %}
2861 
2862   enc_class enc_rethrow() %{
2863     cbuf.set_insts_mark();
2864     emit_opcode(cbuf, 0xE9);        // jmp    entry
2865     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
2866                    runtime_call_Relocation::spec(), RELOC_IMM32 );
2867   %}
2868 
2869 
2870   // Convert a double to an int.  Java semantics require we do complex
2871   // manglelations in the corner cases.  So we set the rounding mode to
2872   // 'zero', store the darned double down as an int, and reset the
2873   // rounding mode to 'nearest'.  The hardware throws an exception which
2874   // patches up the correct value directly to the stack.
2875   enc_class DPR2I_encoding( regDPR src ) %{
2876     // Flip to round-to-zero mode.  We attempted to allow invalid-op
2877     // exceptions here, so that a NAN or other corner-case value will
2878     // thrown an exception (but normal values get converted at full speed).
2879     // However, I2C adapters and other float-stack manglers leave pending
2880     // invalid-op exceptions hanging.  We would have to clear them before
2881     // enabling them and that is more expensive than just testing for the
2882     // invalid value Intel stores down in the corner cases.
2883     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
2884     emit_opcode(cbuf,0x2D);
2885     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
2886     // Allocate a word
2887     emit_opcode(cbuf,0x83);            // SUB ESP,4
2888     emit_opcode(cbuf,0xEC);
2889     emit_d8(cbuf,0x04);
2890     // Encoding assumes a double has been pushed into FPR0.
2891     // Store down the double as an int, popping the FPU stack
2892     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
2893     emit_opcode(cbuf,0x1C);
2894     emit_d8(cbuf,0x24);
2895     // Restore the rounding mode; mask the exception
2896     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
2897     emit_opcode(cbuf,0x2D);
2898     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
2899         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
2900         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
2901 
2902     // Load the converted int; adjust CPU stack
2903     emit_opcode(cbuf,0x58);       // POP EAX
2904     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
2905     emit_d32   (cbuf,0x80000000); //         0x80000000
2906     emit_opcode(cbuf,0x75);       // JNE around_slow_call
2907     emit_d8    (cbuf,0x07);       // Size of slow_call
2908     // Push src onto stack slow-path
2909     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
2910     emit_d8    (cbuf,0xC0-1+$src$$reg );
2911     // CALL directly to the runtime
2912     cbuf.set_insts_mark();
2913     emit_opcode(cbuf,0xE8);       // Call into runtime
2914     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2915     // Carry on here...
2916   %}
2917 
2918   enc_class DPR2L_encoding( regDPR src ) %{
2919     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
2920     emit_opcode(cbuf,0x2D);
2921     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
2922     // Allocate a word
2923     emit_opcode(cbuf,0x83);            // SUB ESP,8
2924     emit_opcode(cbuf,0xEC);
2925     emit_d8(cbuf,0x08);
2926     // Encoding assumes a double has been pushed into FPR0.
2927     // Store down the double as a long, popping the FPU stack
2928     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
2929     emit_opcode(cbuf,0x3C);
2930     emit_d8(cbuf,0x24);
2931     // Restore the rounding mode; mask the exception
2932     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
2933     emit_opcode(cbuf,0x2D);
2934     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
2935         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
2936         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
2937 
2938     // Load the converted int; adjust CPU stack
2939     emit_opcode(cbuf,0x58);       // POP EAX
2940     emit_opcode(cbuf,0x5A);       // POP EDX
2941     emit_opcode(cbuf,0x81);       // CMP EDX,imm
2942     emit_d8    (cbuf,0xFA);       // rdx
2943     emit_d32   (cbuf,0x80000000); //         0x80000000
2944     emit_opcode(cbuf,0x75);       // JNE around_slow_call
2945     emit_d8    (cbuf,0x07+4);     // Size of slow_call
2946     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
2947     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
2948     emit_opcode(cbuf,0x75);       // JNE around_slow_call
2949     emit_d8    (cbuf,0x07);       // Size of slow_call
2950     // Push src onto stack slow-path
2951     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
2952     emit_d8    (cbuf,0xC0-1+$src$$reg );
2953     // CALL directly to the runtime
2954     cbuf.set_insts_mark();
2955     emit_opcode(cbuf,0xE8);       // Call into runtime
2956     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2957     // Carry on here...
2958   %}
2959 
2960   enc_class FMul_ST_reg( eRegFPR src1 ) %{
2961     // Operand was loaded from memory into fp ST (stack top)
2962     // FMUL   ST,$src  /* D8 C8+i */
2963     emit_opcode(cbuf, 0xD8);
2964     emit_opcode(cbuf, 0xC8 + $src1$$reg);
2965   %}
2966 
2967   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
2968     // FADDP  ST,src2  /* D8 C0+i */
2969     emit_opcode(cbuf, 0xD8);
2970     emit_opcode(cbuf, 0xC0 + $src2$$reg);
2971     //could use FADDP  src2,fpST  /* DE C0+i */
2972   %}
2973 
2974   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
2975     // FADDP  src2,ST  /* DE C0+i */
2976     emit_opcode(cbuf, 0xDE);
2977     emit_opcode(cbuf, 0xC0 + $src2$$reg);
2978   %}
2979 
2980   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
2981     // Operand has been loaded into fp ST (stack top)
2982       // FSUB   ST,$src1
2983       emit_opcode(cbuf, 0xD8);
2984       emit_opcode(cbuf, 0xE0 + $src1$$reg);
2985 
2986       // FDIV
2987       emit_opcode(cbuf, 0xD8);
2988       emit_opcode(cbuf, 0xF0 + $src2$$reg);
2989   %}
2990 
2991   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
2992     // Operand was loaded from memory into fp ST (stack top)
2993     // FADD   ST,$src  /* D8 C0+i */
2994     emit_opcode(cbuf, 0xD8);
2995     emit_opcode(cbuf, 0xC0 + $src1$$reg);
2996 
2997     // FMUL  ST,src2  /* D8 C*+i */
2998     emit_opcode(cbuf, 0xD8);
2999     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3000   %}
3001 
3002 
3003   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
3004     // Operand was loaded from memory into fp ST (stack top)
3005     // FADD   ST,$src  /* D8 C0+i */
3006     emit_opcode(cbuf, 0xD8);
3007     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3008 
3009     // FMULP  src2,ST  /* DE C8+i */
3010     emit_opcode(cbuf, 0xDE);
3011     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3012   %}
3013 
3014   // Atomically load the volatile long
3015   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
3016     emit_opcode(cbuf,0xDF);
3017     int rm_byte_opcode = 0x05;
3018     int base     = $mem$$base;
3019     int index    = $mem$$index;
3020     int scale    = $mem$$scale;
3021     int displace = $mem$$disp;
3022     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3023     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3024     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
3025   %}
3026 
3027   // Volatile Store Long.  Must be atomic, so move it into
3028   // the FP TOS and then do a 64-bit FIST.  Has to probe the
3029   // target address before the store (for null-ptr checks)
3030   // so the memory operand is used twice in the encoding.
3031   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
3032     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
3033     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
3034     emit_opcode(cbuf,0xDF);
3035     int rm_byte_opcode = 0x07;
3036     int base     = $mem$$base;
3037     int index    = $mem$$index;
3038     int scale    = $mem$$scale;
3039     int displace = $mem$$disp;
3040     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3041     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3042   %}
3043 
3044   // Safepoint Poll.  This polls the safepoint page, and causes an
3045   // exception if it is not readable. Unfortunately, it kills the condition code
3046   // in the process
3047   // We current use TESTL [spp],EDI
3048   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
3049 
3050   enc_class Safepoint_Poll() %{
3051     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
3052     emit_opcode(cbuf,0x85);
3053     emit_rm (cbuf, 0x0, 0x7, 0x5);
3054     emit_d32(cbuf, (intptr_t)os::get_polling_page());
3055   %}
3056 %}
3057 
3058 
3059 //----------FRAME--------------------------------------------------------------
3060 // Definition of frame structure and management information.
3061 //
3062 //  S T A C K   L A Y O U T    Allocators stack-slot number
3063 //                             |   (to get allocators register number
3064 //  G  Owned by    |        |  v    add OptoReg::stack0())
3065 //  r   CALLER     |        |
3066 //  o     |        +--------+      pad to even-align allocators stack-slot
3067 //  w     V        |  pad0  |        numbers; owned by CALLER
3068 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3069 //  h     ^        |   in   |  5
3070 //        |        |  args  |  4   Holes in incoming args owned by SELF
3071 //  |     |        |        |  3
3072 //  |     |        +--------+
3073 //  V     |        | old out|      Empty on Intel, window on Sparc
3074 //        |    old |preserve|      Must be even aligned.
3075 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
3076 //        |        |   in   |  3   area for Intel ret address
3077 //     Owned by    |preserve|      Empty on Sparc.
3078 //       SELF      +--------+
3079 //        |        |  pad2  |  2   pad to align old SP
3080 //        |        +--------+  1
3081 //        |        | locks  |  0
3082 //        |        +--------+----> OptoReg::stack0(), even aligned
3083 //        |        |  pad1  | 11   pad to align new SP
3084 //        |        +--------+
3085 //        |        |        | 10
3086 //        |        | spills |  9   spills
3087 //        V        |        |  8   (pad0 slot for callee)
3088 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3089 //        ^        |  out   |  7
3090 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3091 //     Owned by    +--------+
3092 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3093 //        |    new |preserve|      Must be even-aligned.
3094 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3095 //        |        |        |
3096 //
3097 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3098 //         known from SELF's arguments and the Java calling convention.
3099 //         Region 6-7 is determined per call site.
3100 // Note 2: If the calling convention leaves holes in the incoming argument
3101 //         area, those holes are owned by SELF.  Holes in the outgoing area
3102 //         are owned by the CALLEE.  Holes should not be nessecary in the
3103 //         incoming area, as the Java calling convention is completely under
3104 //         the control of the AD file.  Doubles can be sorted and packed to
3105 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3106 //         varargs C calling conventions.
3107 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3108 //         even aligned with pad0 as needed.
3109 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3110 //         region 6-11 is even aligned; it may be padded out more so that
3111 //         the region from SP to FP meets the minimum stack alignment.
3112 
3113 frame %{
3114   // What direction does stack grow in (assumed to be same for C & Java)
3115   stack_direction(TOWARDS_LOW);
3116 
3117   // These three registers define part of the calling convention
3118   // between compiled code and the interpreter.
3119   inline_cache_reg(EAX);                // Inline Cache Register
3120   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
3121 
3122   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3123   cisc_spilling_operand_name(indOffset32);
3124 
3125   // Number of stack slots consumed by locking an object
3126   sync_stack_slots(1);
3127 
3128   // Compiled code's Frame Pointer
3129   frame_pointer(ESP);
3130   // Interpreter stores its frame pointer in a register which is
3131   // stored to the stack by I2CAdaptors.
3132   // I2CAdaptors convert from interpreted java to compiled java.
3133   interpreter_frame_pointer(EBP);
3134 
3135   // Stack alignment requirement
3136   // Alignment size in bytes (128-bit -> 16 bytes)
3137   stack_alignment(StackAlignmentInBytes);
3138 
3139   // Number of stack slots between incoming argument block and the start of
3140   // a new frame.  The PROLOG must add this many slots to the stack.  The
3141   // EPILOG must remove this many slots.  Intel needs one slot for
3142   // return address and one for rbp, (must save rbp)
3143   in_preserve_stack_slots(2+VerifyStackAtCalls);
3144 
3145   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3146   // for calls to C.  Supports the var-args backing area for register parms.
3147   varargs_C_out_slots_killed(0);
3148 
3149   // The after-PROLOG location of the return address.  Location of
3150   // return address specifies a type (REG or STACK) and a number
3151   // representing the register number (i.e. - use a register name) or
3152   // stack slot.
3153   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
3154   // Otherwise, it is above the locks and verification slot and alignment word
3155   return_addr(STACK - 1 +
3156               round_to((Compile::current()->in_preserve_stack_slots() +
3157                         Compile::current()->fixed_slots()),
3158                        stack_alignment_in_slots()));
3159 
3160   // Body of function which returns an integer array locating
3161   // arguments either in registers or in stack slots.  Passed an array
3162   // of ideal registers called "sig" and a "length" count.  Stack-slot
3163   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3164   // arguments for a CALLEE.  Incoming stack arguments are
3165   // automatically biased by the preserve_stack_slots field above.
3166   calling_convention %{
3167     // No difference between ingoing/outgoing just pass false
3168     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3169   %}
3170 
3171 
3172   // Body of function which returns an integer array locating
3173   // arguments either in registers or in stack slots.  Passed an array
3174   // of ideal registers called "sig" and a "length" count.  Stack-slot
3175   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3176   // arguments for a CALLEE.  Incoming stack arguments are
3177   // automatically biased by the preserve_stack_slots field above.
3178   c_calling_convention %{
3179     // This is obviously always outgoing
3180     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3181   %}
3182 
3183   // Location of C & interpreter return values
3184   c_return_value %{
3185     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3186     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3187     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3188 
3189     // in SSE2+ mode we want to keep the FPU stack clean so pretend
3190     // that C functions return float and double results in XMM0.
3191     if( ideal_reg == Op_RegD && UseSSE>=2 )
3192       return OptoRegPair(XMM0b_num,XMM0_num);
3193     if( ideal_reg == Op_RegF && UseSSE>=2 )
3194       return OptoRegPair(OptoReg::Bad,XMM0_num);
3195 
3196     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3197   %}
3198 
3199   // Location of return values
3200   return_value %{
3201     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3202     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3203     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3204     if( ideal_reg == Op_RegD && UseSSE>=2 )
3205       return OptoRegPair(XMM0b_num,XMM0_num);
3206     if( ideal_reg == Op_RegF && UseSSE>=1 )
3207       return OptoRegPair(OptoReg::Bad,XMM0_num);
3208     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3209   %}
3210 
3211 %}
3212 
3213 //----------ATTRIBUTES---------------------------------------------------------
3214 //----------Operand Attributes-------------------------------------------------
3215 op_attrib op_cost(0);        // Required cost attribute
3216 
3217 //----------Instruction Attributes---------------------------------------------
3218 ins_attrib ins_cost(100);       // Required cost attribute
3219 ins_attrib ins_size(8);         // Required size attribute (in bits)
3220 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3221                                 // non-matching short branch variant of some
3222                                                             // long branch?
3223 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
3224                                 // specifies the alignment that some part of the instruction (not
3225                                 // necessarily the start) requires.  If > 1, a compute_padding()
3226                                 // function must be provided for the instruction
3227 
3228 //----------OPERANDS-----------------------------------------------------------
3229 // Operand definitions must precede instruction definitions for correct parsing
3230 // in the ADLC because operands constitute user defined types which are used in
3231 // instruction definitions.
3232 
3233 //----------Simple Operands----------------------------------------------------
3234 // Immediate Operands
3235 // Integer Immediate
3236 operand immI() %{
3237   match(ConI);
3238 
3239   op_cost(10);
3240   format %{ %}
3241   interface(CONST_INTER);
3242 %}
3243 
3244 // Constant for test vs zero
3245 operand immI0() %{
3246   predicate(n->get_int() == 0);
3247   match(ConI);
3248 
3249   op_cost(0);
3250   format %{ %}
3251   interface(CONST_INTER);
3252 %}
3253 
3254 // Constant for increment
3255 operand immI1() %{
3256   predicate(n->get_int() == 1);
3257   match(ConI);
3258 
3259   op_cost(0);
3260   format %{ %}
3261   interface(CONST_INTER);
3262 %}
3263 
3264 // Constant for decrement
3265 operand immI_M1() %{
3266   predicate(n->get_int() == -1);
3267   match(ConI);
3268 
3269   op_cost(0);
3270   format %{ %}
3271   interface(CONST_INTER);
3272 %}
3273 
3274 // Valid scale values for addressing modes
3275 operand immI2() %{
3276   predicate(0 <= n->get_int() && (n->get_int() <= 3));
3277   match(ConI);
3278 
3279   format %{ %}
3280   interface(CONST_INTER);
3281 %}
3282 
3283 operand immI8() %{
3284   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
3285   match(ConI);
3286 
3287   op_cost(5);
3288   format %{ %}
3289   interface(CONST_INTER);
3290 %}
3291 
3292 operand immI16() %{
3293   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
3294   match(ConI);
3295 
3296   op_cost(10);
3297   format %{ %}
3298   interface(CONST_INTER);
3299 %}
3300 
3301 // Int Immediate non-negative
3302 operand immU31()
3303 %{
3304   predicate(n->get_int() >= 0);
3305   match(ConI);
3306 
3307   op_cost(0);
3308   format %{ %}
3309   interface(CONST_INTER);
3310 %}
3311 
3312 // Constant for long shifts
3313 operand immI_32() %{
3314   predicate( n->get_int() == 32 );
3315   match(ConI);
3316 
3317   op_cost(0);
3318   format %{ %}
3319   interface(CONST_INTER);
3320 %}
3321 
3322 operand immI_1_31() %{
3323   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
3324   match(ConI);
3325 
3326   op_cost(0);
3327   format %{ %}
3328   interface(CONST_INTER);
3329 %}
3330 
3331 operand immI_32_63() %{
3332   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
3333   match(ConI);
3334   op_cost(0);
3335 
3336   format %{ %}
3337   interface(CONST_INTER);
3338 %}
3339 
3340 operand immI_1() %{
3341   predicate( n->get_int() == 1 );
3342   match(ConI);
3343 
3344   op_cost(0);
3345   format %{ %}
3346   interface(CONST_INTER);
3347 %}
3348 
3349 operand immI_2() %{
3350   predicate( n->get_int() == 2 );
3351   match(ConI);
3352 
3353   op_cost(0);
3354   format %{ %}
3355   interface(CONST_INTER);
3356 %}
3357 
3358 operand immI_3() %{
3359   predicate( n->get_int() == 3 );
3360   match(ConI);
3361 
3362   op_cost(0);
3363   format %{ %}
3364   interface(CONST_INTER);
3365 %}
3366 
3367 // Pointer Immediate
3368 operand immP() %{
3369   match(ConP);
3370 
3371   op_cost(10);
3372   format %{ %}
3373   interface(CONST_INTER);
3374 %}
3375 
3376 // NULL Pointer Immediate
3377 operand immP0() %{
3378   predicate( n->get_ptr() == 0 );
3379   match(ConP);
3380   op_cost(0);
3381 
3382   format %{ %}
3383   interface(CONST_INTER);
3384 %}
3385 
3386 // Long Immediate
3387 operand immL() %{
3388   match(ConL);
3389 
3390   op_cost(20);
3391   format %{ %}
3392   interface(CONST_INTER);
3393 %}
3394 
3395 // Long Immediate zero
3396 operand immL0() %{
3397   predicate( n->get_long() == 0L );
3398   match(ConL);
3399   op_cost(0);
3400 
3401   format %{ %}
3402   interface(CONST_INTER);
3403 %}
3404 
3405 // Long Immediate zero
3406 operand immL_M1() %{
3407   predicate( n->get_long() == -1L );
3408   match(ConL);
3409   op_cost(0);
3410 
3411   format %{ %}
3412   interface(CONST_INTER);
3413 %}
3414 
3415 // Long immediate from 0 to 127.
3416 // Used for a shorter form of long mul by 10.
3417 operand immL_127() %{
3418   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
3419   match(ConL);
3420   op_cost(0);
3421 
3422   format %{ %}
3423   interface(CONST_INTER);
3424 %}
3425 
3426 // Long Immediate: low 32-bit mask
3427 operand immL_32bits() %{
3428   predicate(n->get_long() == 0xFFFFFFFFL);
3429   match(ConL);
3430   op_cost(0);
3431 
3432   format %{ %}
3433   interface(CONST_INTER);
3434 %}
3435 
3436 // Long Immediate: low 32-bit mask
3437 operand immL32() %{
3438   predicate(n->get_long() == (int)(n->get_long()));
3439   match(ConL);
3440   op_cost(20);
3441 
3442   format %{ %}
3443   interface(CONST_INTER);
3444 %}
3445 
3446 //Double Immediate zero
3447 operand immDPR0() %{
3448   // Do additional (and counter-intuitive) test against NaN to work around VC++
3449   // bug that generates code such that NaNs compare equal to 0.0
3450   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
3451   match(ConD);
3452 
3453   op_cost(5);
3454   format %{ %}
3455   interface(CONST_INTER);
3456 %}
3457 
3458 // Double Immediate one
3459 operand immDPR1() %{
3460   predicate( UseSSE<=1 && n->getd() == 1.0 );
3461   match(ConD);
3462 
3463   op_cost(5);
3464   format %{ %}
3465   interface(CONST_INTER);
3466 %}
3467 
3468 // Double Immediate
3469 operand immDPR() %{
3470   predicate(UseSSE<=1);
3471   match(ConD);
3472 
3473   op_cost(5);
3474   format %{ %}
3475   interface(CONST_INTER);
3476 %}
3477 
3478 operand immD() %{
3479   predicate(UseSSE>=2);
3480   match(ConD);
3481 
3482   op_cost(5);
3483   format %{ %}
3484   interface(CONST_INTER);
3485 %}
3486 
3487 // Double Immediate zero
3488 operand immD0() %{
3489   // Do additional (and counter-intuitive) test against NaN to work around VC++
3490   // bug that generates code such that NaNs compare equal to 0.0 AND do not
3491   // compare equal to -0.0.
3492   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
3493   match(ConD);
3494 
3495   format %{ %}
3496   interface(CONST_INTER);
3497 %}
3498 
3499 // Float Immediate zero
3500 operand immFPR0() %{
3501   predicate(UseSSE == 0 && n->getf() == 0.0F);
3502   match(ConF);
3503 
3504   op_cost(5);
3505   format %{ %}
3506   interface(CONST_INTER);
3507 %}
3508 
3509 // Float Immediate one
3510 operand immFPR1() %{
3511   predicate(UseSSE == 0 && n->getf() == 1.0F);
3512   match(ConF);
3513 
3514   op_cost(5);
3515   format %{ %}
3516   interface(CONST_INTER);
3517 %}
3518 
3519 // Float Immediate
3520 operand immFPR() %{
3521   predicate( UseSSE == 0 );
3522   match(ConF);
3523 
3524   op_cost(5);
3525   format %{ %}
3526   interface(CONST_INTER);
3527 %}
3528 
3529 // Float Immediate
3530 operand immF() %{
3531   predicate(UseSSE >= 1);
3532   match(ConF);
3533 
3534   op_cost(5);
3535   format %{ %}
3536   interface(CONST_INTER);
3537 %}
3538 
3539 // Float Immediate zero.  Zero and not -0.0
3540 operand immF0() %{
3541   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
3542   match(ConF);
3543 
3544   op_cost(5);
3545   format %{ %}
3546   interface(CONST_INTER);
3547 %}
3548 
3549 // Immediates for special shifts (sign extend)
3550 
3551 // Constants for increment
3552 operand immI_16() %{
3553   predicate( n->get_int() == 16 );
3554   match(ConI);
3555 
3556   format %{ %}
3557   interface(CONST_INTER);
3558 %}
3559 
3560 operand immI_24() %{
3561   predicate( n->get_int() == 24 );
3562   match(ConI);
3563 
3564   format %{ %}
3565   interface(CONST_INTER);
3566 %}
3567 
3568 // Constant for byte-wide masking
3569 operand immI_255() %{
3570   predicate( n->get_int() == 255 );
3571   match(ConI);
3572 
3573   format %{ %}
3574   interface(CONST_INTER);
3575 %}
3576 
3577 // Constant for short-wide masking
3578 operand immI_65535() %{
3579   predicate(n->get_int() == 65535);
3580   match(ConI);
3581 
3582   format %{ %}
3583   interface(CONST_INTER);
3584 %}
3585 
3586 // Register Operands
3587 // Integer Register
3588 operand rRegI() %{
3589   constraint(ALLOC_IN_RC(int_reg));
3590   match(RegI);
3591   match(xRegI);
3592   match(eAXRegI);
3593   match(eBXRegI);
3594   match(eCXRegI);
3595   match(eDXRegI);
3596   match(eDIRegI);
3597   match(eSIRegI);
3598 
3599   format %{ %}
3600   interface(REG_INTER);
3601 %}
3602 
3603 // Subset of Integer Register
3604 operand xRegI(rRegI reg) %{
3605   constraint(ALLOC_IN_RC(int_x_reg));
3606   match(reg);
3607   match(eAXRegI);
3608   match(eBXRegI);
3609   match(eCXRegI);
3610   match(eDXRegI);
3611 
3612   format %{ %}
3613   interface(REG_INTER);
3614 %}
3615 
3616 // Special Registers
3617 operand eAXRegI(xRegI reg) %{
3618   constraint(ALLOC_IN_RC(eax_reg));
3619   match(reg);
3620   match(rRegI);
3621 
3622   format %{ "EAX" %}
3623   interface(REG_INTER);
3624 %}
3625 
3626 // Special Registers
3627 operand eBXRegI(xRegI reg) %{
3628   constraint(ALLOC_IN_RC(ebx_reg));
3629   match(reg);
3630   match(rRegI);
3631 
3632   format %{ "EBX" %}
3633   interface(REG_INTER);
3634 %}
3635 
3636 operand eCXRegI(xRegI reg) %{
3637   constraint(ALLOC_IN_RC(ecx_reg));
3638   match(reg);
3639   match(rRegI);
3640 
3641   format %{ "ECX" %}
3642   interface(REG_INTER);
3643 %}
3644 
3645 operand eDXRegI(xRegI reg) %{
3646   constraint(ALLOC_IN_RC(edx_reg));
3647   match(reg);
3648   match(rRegI);
3649 
3650   format %{ "EDX" %}
3651   interface(REG_INTER);
3652 %}
3653 
3654 operand eDIRegI(xRegI reg) %{
3655   constraint(ALLOC_IN_RC(edi_reg));
3656   match(reg);
3657   match(rRegI);
3658 
3659   format %{ "EDI" %}
3660   interface(REG_INTER);
3661 %}
3662 
3663 operand naxRegI() %{
3664   constraint(ALLOC_IN_RC(nax_reg));
3665   match(RegI);
3666   match(eCXRegI);
3667   match(eDXRegI);
3668   match(eSIRegI);
3669   match(eDIRegI);
3670 
3671   format %{ %}
3672   interface(REG_INTER);
3673 %}
3674 
3675 operand nadxRegI() %{
3676   constraint(ALLOC_IN_RC(nadx_reg));
3677   match(RegI);
3678   match(eBXRegI);
3679   match(eCXRegI);
3680   match(eSIRegI);
3681   match(eDIRegI);
3682 
3683   format %{ %}
3684   interface(REG_INTER);
3685 %}
3686 
3687 operand ncxRegI() %{
3688   constraint(ALLOC_IN_RC(ncx_reg));
3689   match(RegI);
3690   match(eAXRegI);
3691   match(eDXRegI);
3692   match(eSIRegI);
3693   match(eDIRegI);
3694 
3695   format %{ %}
3696   interface(REG_INTER);
3697 %}
3698 
3699 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
3700 // //
3701 operand eSIRegI(xRegI reg) %{
3702    constraint(ALLOC_IN_RC(esi_reg));
3703    match(reg);
3704    match(rRegI);
3705 
3706    format %{ "ESI" %}
3707    interface(REG_INTER);
3708 %}
3709 
3710 // Pointer Register
3711 operand anyRegP() %{
3712   constraint(ALLOC_IN_RC(any_reg));
3713   match(RegP);
3714   match(eAXRegP);
3715   match(eBXRegP);
3716   match(eCXRegP);
3717   match(eDIRegP);
3718   match(eRegP);
3719 
3720   format %{ %}
3721   interface(REG_INTER);
3722 %}
3723 
3724 operand eRegP() %{
3725   constraint(ALLOC_IN_RC(int_reg));
3726   match(RegP);
3727   match(eAXRegP);
3728   match(eBXRegP);
3729   match(eCXRegP);
3730   match(eDIRegP);
3731 
3732   format %{ %}
3733   interface(REG_INTER);
3734 %}
3735 
3736 // On windows95, EBP is not safe to use for implicit null tests.
3737 operand eRegP_no_EBP() %{
3738   constraint(ALLOC_IN_RC(int_reg_no_rbp));
3739   match(RegP);
3740   match(eAXRegP);
3741   match(eBXRegP);
3742   match(eCXRegP);
3743   match(eDIRegP);
3744 
3745   op_cost(100);
3746   format %{ %}
3747   interface(REG_INTER);
3748 %}
3749 
3750 operand naxRegP() %{
3751   constraint(ALLOC_IN_RC(nax_reg));
3752   match(RegP);
3753   match(eBXRegP);
3754   match(eDXRegP);
3755   match(eCXRegP);
3756   match(eSIRegP);
3757   match(eDIRegP);
3758 
3759   format %{ %}
3760   interface(REG_INTER);
3761 %}
3762 
3763 operand nabxRegP() %{
3764   constraint(ALLOC_IN_RC(nabx_reg));
3765   match(RegP);
3766   match(eCXRegP);
3767   match(eDXRegP);
3768   match(eSIRegP);
3769   match(eDIRegP);
3770 
3771   format %{ %}
3772   interface(REG_INTER);
3773 %}
3774 
3775 operand pRegP() %{
3776   constraint(ALLOC_IN_RC(p_reg));
3777   match(RegP);
3778   match(eBXRegP);
3779   match(eDXRegP);
3780   match(eSIRegP);
3781   match(eDIRegP);
3782 
3783   format %{ %}
3784   interface(REG_INTER);
3785 %}
3786 
3787 // Special Registers
3788 // Return a pointer value
3789 operand eAXRegP(eRegP reg) %{
3790   constraint(ALLOC_IN_RC(eax_reg));
3791   match(reg);
3792   format %{ "EAX" %}
3793   interface(REG_INTER);
3794 %}
3795 
3796 // Used in AtomicAdd
3797 operand eBXRegP(eRegP reg) %{
3798   constraint(ALLOC_IN_RC(ebx_reg));
3799   match(reg);
3800   format %{ "EBX" %}
3801   interface(REG_INTER);
3802 %}
3803 
3804 // Tail-call (interprocedural jump) to interpreter
3805 operand eCXRegP(eRegP reg) %{
3806   constraint(ALLOC_IN_RC(ecx_reg));
3807   match(reg);
3808   format %{ "ECX" %}
3809   interface(REG_INTER);
3810 %}
3811 
3812 operand eSIRegP(eRegP reg) %{
3813   constraint(ALLOC_IN_RC(esi_reg));
3814   match(reg);
3815   format %{ "ESI" %}
3816   interface(REG_INTER);
3817 %}
3818 
3819 // Used in rep stosw
3820 operand eDIRegP(eRegP reg) %{
3821   constraint(ALLOC_IN_RC(edi_reg));
3822   match(reg);
3823   format %{ "EDI" %}
3824   interface(REG_INTER);
3825 %}
3826 
3827 operand eBPRegP() %{
3828   constraint(ALLOC_IN_RC(ebp_reg));
3829   match(RegP);
3830   format %{ "EBP" %}
3831   interface(REG_INTER);
3832 %}
3833 
3834 operand eRegL() %{
3835   constraint(ALLOC_IN_RC(long_reg));
3836   match(RegL);
3837   match(eADXRegL);
3838 
3839   format %{ %}
3840   interface(REG_INTER);
3841 %}
3842 
3843 operand eADXRegL( eRegL reg ) %{
3844   constraint(ALLOC_IN_RC(eadx_reg));
3845   match(reg);
3846 
3847   format %{ "EDX:EAX" %}
3848   interface(REG_INTER);
3849 %}
3850 
3851 operand eBCXRegL( eRegL reg ) %{
3852   constraint(ALLOC_IN_RC(ebcx_reg));
3853   match(reg);
3854 
3855   format %{ "EBX:ECX" %}
3856   interface(REG_INTER);
3857 %}
3858 
3859 // Special case for integer high multiply
3860 operand eADXRegL_low_only() %{
3861   constraint(ALLOC_IN_RC(eadx_reg));
3862   match(RegL);
3863 
3864   format %{ "EAX" %}
3865   interface(REG_INTER);
3866 %}
3867 
3868 // Flags register, used as output of compare instructions
3869 operand eFlagsReg() %{
3870   constraint(ALLOC_IN_RC(int_flags));
3871   match(RegFlags);
3872 
3873   format %{ "EFLAGS" %}
3874   interface(REG_INTER);
3875 %}
3876 
3877 // Flags register, used as output of FLOATING POINT compare instructions
3878 operand eFlagsRegU() %{
3879   constraint(ALLOC_IN_RC(int_flags));
3880   match(RegFlags);
3881 
3882   format %{ "EFLAGS_U" %}
3883   interface(REG_INTER);
3884 %}
3885 
3886 operand eFlagsRegUCF() %{
3887   constraint(ALLOC_IN_RC(int_flags));
3888   match(RegFlags);
3889   predicate(false);
3890 
3891   format %{ "EFLAGS_U_CF" %}
3892   interface(REG_INTER);
3893 %}
3894 
3895 // Condition Code Register used by long compare
3896 operand flagsReg_long_LTGE() %{
3897   constraint(ALLOC_IN_RC(int_flags));
3898   match(RegFlags);
3899   format %{ "FLAGS_LTGE" %}
3900   interface(REG_INTER);
3901 %}
3902 operand flagsReg_long_EQNE() %{
3903   constraint(ALLOC_IN_RC(int_flags));
3904   match(RegFlags);
3905   format %{ "FLAGS_EQNE" %}
3906   interface(REG_INTER);
3907 %}
3908 operand flagsReg_long_LEGT() %{
3909   constraint(ALLOC_IN_RC(int_flags));
3910   match(RegFlags);
3911   format %{ "FLAGS_LEGT" %}
3912   interface(REG_INTER);
3913 %}
3914 
3915 // Float register operands
3916 operand regDPR() %{
3917   predicate( UseSSE < 2 );
3918   constraint(ALLOC_IN_RC(fp_dbl_reg));
3919   match(RegD);
3920   match(regDPR1);
3921   match(regDPR2);
3922   format %{ %}
3923   interface(REG_INTER);
3924 %}
3925 
3926 operand regDPR1(regDPR reg) %{
3927   predicate( UseSSE < 2 );
3928   constraint(ALLOC_IN_RC(fp_dbl_reg0));
3929   match(reg);
3930   format %{ "FPR1" %}
3931   interface(REG_INTER);
3932 %}
3933 
3934 operand regDPR2(regDPR reg) %{
3935   predicate( UseSSE < 2 );
3936   constraint(ALLOC_IN_RC(fp_dbl_reg1));
3937   match(reg);
3938   format %{ "FPR2" %}
3939   interface(REG_INTER);
3940 %}
3941 
3942 operand regnotDPR1(regDPR reg) %{
3943   predicate( UseSSE < 2 );
3944   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
3945   match(reg);
3946   format %{ %}
3947   interface(REG_INTER);
3948 %}
3949 
3950 // Float register operands
3951 operand regFPR() %{
3952   predicate( UseSSE < 2 );
3953   constraint(ALLOC_IN_RC(fp_flt_reg));
3954   match(RegF);
3955   match(regFPR1);
3956   format %{ %}
3957   interface(REG_INTER);
3958 %}
3959 
3960 // Float register operands
3961 operand regFPR1(regFPR reg) %{
3962   predicate( UseSSE < 2 );
3963   constraint(ALLOC_IN_RC(fp_flt_reg0));
3964   match(reg);
3965   format %{ "FPR1" %}
3966   interface(REG_INTER);
3967 %}
3968 
3969 // XMM Float register operands
3970 operand regF() %{
3971   predicate( UseSSE>=1 );
3972   constraint(ALLOC_IN_RC(float_reg));
3973   match(RegF);
3974   format %{ %}
3975   interface(REG_INTER);
3976 %}
3977 
3978 // XMM Double register operands
3979 operand regD() %{
3980   predicate( UseSSE>=2 );
3981   constraint(ALLOC_IN_RC(double_reg));
3982   match(RegD);
3983   format %{ %}
3984   interface(REG_INTER);
3985 %}
3986 
3987 
3988 //----------Memory Operands----------------------------------------------------
3989 // Direct Memory Operand
3990 operand direct(immP addr) %{
3991   match(addr);
3992 
3993   format %{ "[$addr]" %}
3994   interface(MEMORY_INTER) %{
3995     base(0xFFFFFFFF);
3996     index(0x4);
3997     scale(0x0);
3998     disp($addr);
3999   %}
4000 %}
4001 
4002 // Indirect Memory Operand
4003 operand indirect(eRegP reg) %{
4004   constraint(ALLOC_IN_RC(int_reg));
4005   match(reg);
4006 
4007   format %{ "[$reg]" %}
4008   interface(MEMORY_INTER) %{
4009     base($reg);
4010     index(0x4);
4011     scale(0x0);
4012     disp(0x0);
4013   %}
4014 %}
4015 
4016 // Indirect Memory Plus Short Offset Operand
4017 operand indOffset8(eRegP reg, immI8 off) %{
4018   match(AddP reg off);
4019 
4020   format %{ "[$reg + $off]" %}
4021   interface(MEMORY_INTER) %{
4022     base($reg);
4023     index(0x4);
4024     scale(0x0);
4025     disp($off);
4026   %}
4027 %}
4028 
4029 // Indirect Memory Plus Long Offset Operand
4030 operand indOffset32(eRegP reg, immI off) %{
4031   match(AddP reg off);
4032 
4033   format %{ "[$reg + $off]" %}
4034   interface(MEMORY_INTER) %{
4035     base($reg);
4036     index(0x4);
4037     scale(0x0);
4038     disp($off);
4039   %}
4040 %}
4041 
4042 // Indirect Memory Plus Long Offset Operand
4043 operand indOffset32X(rRegI reg, immP off) %{
4044   match(AddP off reg);
4045 
4046   format %{ "[$reg + $off]" %}
4047   interface(MEMORY_INTER) %{
4048     base($reg);
4049     index(0x4);
4050     scale(0x0);
4051     disp($off);
4052   %}
4053 %}
4054 
4055 // Indirect Memory Plus Index Register Plus Offset Operand
4056 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
4057   match(AddP (AddP reg ireg) off);
4058 
4059   op_cost(10);
4060   format %{"[$reg + $off + $ireg]" %}
4061   interface(MEMORY_INTER) %{
4062     base($reg);
4063     index($ireg);
4064     scale(0x0);
4065     disp($off);
4066   %}
4067 %}
4068 
4069 // Indirect Memory Plus Index Register Plus Offset Operand
4070 operand indIndex(eRegP reg, rRegI ireg) %{
4071   match(AddP reg ireg);
4072 
4073   op_cost(10);
4074   format %{"[$reg + $ireg]" %}
4075   interface(MEMORY_INTER) %{
4076     base($reg);
4077     index($ireg);
4078     scale(0x0);
4079     disp(0x0);
4080   %}
4081 %}
4082 
4083 // // -------------------------------------------------------------------------
4084 // // 486 architecture doesn't support "scale * index + offset" with out a base
4085 // // -------------------------------------------------------------------------
4086 // // Scaled Memory Operands
4087 // // Indirect Memory Times Scale Plus Offset Operand
4088 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
4089 //   match(AddP off (LShiftI ireg scale));
4090 //
4091 //   op_cost(10);
4092 //   format %{"[$off + $ireg << $scale]" %}
4093 //   interface(MEMORY_INTER) %{
4094 //     base(0x4);
4095 //     index($ireg);
4096 //     scale($scale);
4097 //     disp($off);
4098 //   %}
4099 // %}
4100 
4101 // Indirect Memory Times Scale Plus Index Register
4102 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
4103   match(AddP reg (LShiftI ireg scale));
4104 
4105   op_cost(10);
4106   format %{"[$reg + $ireg << $scale]" %}
4107   interface(MEMORY_INTER) %{
4108     base($reg);
4109     index($ireg);
4110     scale($scale);
4111     disp(0x0);
4112   %}
4113 %}
4114 
4115 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4116 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
4117   match(AddP (AddP reg (LShiftI ireg scale)) off);
4118 
4119   op_cost(10);
4120   format %{"[$reg + $off + $ireg << $scale]" %}
4121   interface(MEMORY_INTER) %{
4122     base($reg);
4123     index($ireg);
4124     scale($scale);
4125     disp($off);
4126   %}
4127 %}
4128 
4129 //----------Load Long Memory Operands------------------------------------------
4130 // The load-long idiom will use it's address expression again after loading
4131 // the first word of the long.  If the load-long destination overlaps with
4132 // registers used in the addressing expression, the 2nd half will be loaded
4133 // from a clobbered address.  Fix this by requiring that load-long use
4134 // address registers that do not overlap with the load-long target.
4135 
4136 // load-long support
4137 operand load_long_RegP() %{
4138   constraint(ALLOC_IN_RC(esi_reg));
4139   match(RegP);
4140   match(eSIRegP);
4141   op_cost(100);
4142   format %{  %}
4143   interface(REG_INTER);
4144 %}
4145 
4146 // Indirect Memory Operand Long
4147 operand load_long_indirect(load_long_RegP reg) %{
4148   constraint(ALLOC_IN_RC(esi_reg));
4149   match(reg);
4150 
4151   format %{ "[$reg]" %}
4152   interface(MEMORY_INTER) %{
4153     base($reg);
4154     index(0x4);
4155     scale(0x0);
4156     disp(0x0);
4157   %}
4158 %}
4159 
4160 // Indirect Memory Plus Long Offset Operand
4161 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
4162   match(AddP reg off);
4163 
4164   format %{ "[$reg + $off]" %}
4165   interface(MEMORY_INTER) %{
4166     base($reg);
4167     index(0x4);
4168     scale(0x0);
4169     disp($off);
4170   %}
4171 %}
4172 
4173 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
4174 
4175 
4176 //----------Special Memory Operands--------------------------------------------
4177 // Stack Slot Operand - This operand is used for loading and storing temporary
4178 //                      values on the stack where a match requires a value to
4179 //                      flow through memory.
4180 operand stackSlotP(sRegP reg) %{
4181   constraint(ALLOC_IN_RC(stack_slots));
4182   // No match rule because this operand is only generated in matching
4183   format %{ "[$reg]" %}
4184   interface(MEMORY_INTER) %{
4185     base(0x4);   // ESP
4186     index(0x4);  // No Index
4187     scale(0x0);  // No Scale
4188     disp($reg);  // Stack Offset
4189   %}
4190 %}
4191 
4192 operand stackSlotI(sRegI reg) %{
4193   constraint(ALLOC_IN_RC(stack_slots));
4194   // No match rule because this operand is only generated in matching
4195   format %{ "[$reg]" %}
4196   interface(MEMORY_INTER) %{
4197     base(0x4);   // ESP
4198     index(0x4);  // No Index
4199     scale(0x0);  // No Scale
4200     disp($reg);  // Stack Offset
4201   %}
4202 %}
4203 
4204 operand stackSlotF(sRegF reg) %{
4205   constraint(ALLOC_IN_RC(stack_slots));
4206   // No match rule because this operand is only generated in matching
4207   format %{ "[$reg]" %}
4208   interface(MEMORY_INTER) %{
4209     base(0x4);   // ESP
4210     index(0x4);  // No Index
4211     scale(0x0);  // No Scale
4212     disp($reg);  // Stack Offset
4213   %}
4214 %}
4215 
4216 operand stackSlotD(sRegD reg) %{
4217   constraint(ALLOC_IN_RC(stack_slots));
4218   // No match rule because this operand is only generated in matching
4219   format %{ "[$reg]" %}
4220   interface(MEMORY_INTER) %{
4221     base(0x4);   // ESP
4222     index(0x4);  // No Index
4223     scale(0x0);  // No Scale
4224     disp($reg);  // Stack Offset
4225   %}
4226 %}
4227 
4228 operand stackSlotL(sRegL reg) %{
4229   constraint(ALLOC_IN_RC(stack_slots));
4230   // No match rule because this operand is only generated in matching
4231   format %{ "[$reg]" %}
4232   interface(MEMORY_INTER) %{
4233     base(0x4);   // ESP
4234     index(0x4);  // No Index
4235     scale(0x0);  // No Scale
4236     disp($reg);  // Stack Offset
4237   %}
4238 %}
4239 
4240 //----------Memory Operands - Win95 Implicit Null Variants----------------
4241 // Indirect Memory Operand
4242 operand indirect_win95_safe(eRegP_no_EBP reg)
4243 %{
4244   constraint(ALLOC_IN_RC(int_reg));
4245   match(reg);
4246 
4247   op_cost(100);
4248   format %{ "[$reg]" %}
4249   interface(MEMORY_INTER) %{
4250     base($reg);
4251     index(0x4);
4252     scale(0x0);
4253     disp(0x0);
4254   %}
4255 %}
4256 
4257 // Indirect Memory Plus Short Offset Operand
4258 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
4259 %{
4260   match(AddP reg off);
4261 
4262   op_cost(100);
4263   format %{ "[$reg + $off]" %}
4264   interface(MEMORY_INTER) %{
4265     base($reg);
4266     index(0x4);
4267     scale(0x0);
4268     disp($off);
4269   %}
4270 %}
4271 
4272 // Indirect Memory Plus Long Offset Operand
4273 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
4274 %{
4275   match(AddP reg off);
4276 
4277   op_cost(100);
4278   format %{ "[$reg + $off]" %}
4279   interface(MEMORY_INTER) %{
4280     base($reg);
4281     index(0x4);
4282     scale(0x0);
4283     disp($off);
4284   %}
4285 %}
4286 
4287 // Indirect Memory Plus Index Register Plus Offset Operand
4288 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
4289 %{
4290   match(AddP (AddP reg ireg) off);
4291 
4292   op_cost(100);
4293   format %{"[$reg + $off + $ireg]" %}
4294   interface(MEMORY_INTER) %{
4295     base($reg);
4296     index($ireg);
4297     scale(0x0);
4298     disp($off);
4299   %}
4300 %}
4301 
4302 // Indirect Memory Times Scale Plus Index Register
4303 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
4304 %{
4305   match(AddP reg (LShiftI ireg scale));
4306 
4307   op_cost(100);
4308   format %{"[$reg + $ireg << $scale]" %}
4309   interface(MEMORY_INTER) %{
4310     base($reg);
4311     index($ireg);
4312     scale($scale);
4313     disp(0x0);
4314   %}
4315 %}
4316 
4317 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4318 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
4319 %{
4320   match(AddP (AddP reg (LShiftI ireg scale)) off);
4321 
4322   op_cost(100);
4323   format %{"[$reg + $off + $ireg << $scale]" %}
4324   interface(MEMORY_INTER) %{
4325     base($reg);
4326     index($ireg);
4327     scale($scale);
4328     disp($off);
4329   %}
4330 %}
4331 
4332 //----------Conditional Branch Operands----------------------------------------
4333 // Comparison Op  - This is the operation of the comparison, and is limited to
4334 //                  the following set of codes:
4335 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4336 //
4337 // Other attributes of the comparison, such as unsignedness, are specified
4338 // by the comparison instruction that sets a condition code flags register.
4339 // That result is represented by a flags operand whose subtype is appropriate
4340 // to the unsignedness (etc.) of the comparison.
4341 //
4342 // Later, the instruction which matches both the Comparison Op (a Bool) and
4343 // the flags (produced by the Cmp) specifies the coding of the comparison op
4344 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4345 
4346 // Comparision Code
4347 operand cmpOp() %{
4348   match(Bool);
4349 
4350   format %{ "" %}
4351   interface(COND_INTER) %{
4352     equal(0x4, "e");
4353     not_equal(0x5, "ne");
4354     less(0xC, "l");
4355     greater_equal(0xD, "ge");
4356     less_equal(0xE, "le");
4357     greater(0xF, "g");
4358     overflow(0x0, "o");
4359     no_overflow(0x1, "no");
4360   %}
4361 %}
4362 
4363 // Comparison Code, unsigned compare.  Used by FP also, with
4364 // C2 (unordered) turned into GT or LT already.  The other bits
4365 // C0 and C3 are turned into Carry & Zero flags.
4366 operand cmpOpU() %{
4367   match(Bool);
4368 
4369   format %{ "" %}
4370   interface(COND_INTER) %{
4371     equal(0x4, "e");
4372     not_equal(0x5, "ne");
4373     less(0x2, "b");
4374     greater_equal(0x3, "nb");
4375     less_equal(0x6, "be");
4376     greater(0x7, "nbe");
4377     overflow(0x0, "o");
4378     no_overflow(0x1, "no");
4379   %}
4380 %}
4381 
4382 // Floating comparisons that don't require any fixup for the unordered case
4383 operand cmpOpUCF() %{
4384   match(Bool);
4385   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4386             n->as_Bool()->_test._test == BoolTest::ge ||
4387             n->as_Bool()->_test._test == BoolTest::le ||
4388             n->as_Bool()->_test._test == BoolTest::gt);
4389   format %{ "" %}
4390   interface(COND_INTER) %{
4391     equal(0x4, "e");
4392     not_equal(0x5, "ne");
4393     less(0x2, "b");
4394     greater_equal(0x3, "nb");
4395     less_equal(0x6, "be");
4396     greater(0x7, "nbe");
4397     overflow(0x0, "o");
4398     no_overflow(0x1, "no");
4399   %}
4400 %}
4401 
4402 
4403 // Floating comparisons that can be fixed up with extra conditional jumps
4404 operand cmpOpUCF2() %{
4405   match(Bool);
4406   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
4407             n->as_Bool()->_test._test == BoolTest::eq);
4408   format %{ "" %}
4409   interface(COND_INTER) %{
4410     equal(0x4, "e");
4411     not_equal(0x5, "ne");
4412     less(0x2, "b");
4413     greater_equal(0x3, "nb");
4414     less_equal(0x6, "be");
4415     greater(0x7, "nbe");
4416     overflow(0x0, "o");
4417     no_overflow(0x1, "no");
4418   %}
4419 %}
4420 
4421 // Comparison Code for FP conditional move
4422 operand cmpOp_fcmov() %{
4423   match(Bool);
4424 
4425   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4426             n->as_Bool()->_test._test != BoolTest::no_overflow);
4427   format %{ "" %}
4428   interface(COND_INTER) %{
4429     equal        (0x0C8);
4430     not_equal    (0x1C8);
4431     less         (0x0C0);
4432     greater_equal(0x1C0);
4433     less_equal   (0x0D0);
4434     greater      (0x1D0);
4435     overflow(0x0, "o"); // not really supported by the instruction
4436     no_overflow(0x1, "no"); // not really supported by the instruction
4437   %}
4438 %}
4439 
4440 // Comparision Code used in long compares
4441 operand cmpOp_commute() %{
4442   match(Bool);
4443 
4444   format %{ "" %}
4445   interface(COND_INTER) %{
4446     equal(0x4, "e");
4447     not_equal(0x5, "ne");
4448     less(0xF, "g");
4449     greater_equal(0xE, "le");
4450     less_equal(0xD, "ge");
4451     greater(0xC, "l");
4452     overflow(0x0, "o");
4453     no_overflow(0x1, "no");
4454   %}
4455 %}
4456 
4457 //----------OPERAND CLASSES----------------------------------------------------
4458 // Operand Classes are groups of operands that are used as to simplify
4459 // instruction definitions by not requiring the AD writer to specify separate
4460 // instructions for every form of operand when the instruction accepts
4461 // multiple operand types with the same basic encoding and format.  The classic
4462 // case of this is memory operands.
4463 
4464 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
4465                indIndex, indIndexScale, indIndexScaleOffset);
4466 
4467 // Long memory operations are encoded in 2 instructions and a +4 offset.
4468 // This means some kind of offset is always required and you cannot use
4469 // an oop as the offset (done when working on static globals).
4470 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
4471                     indIndex, indIndexScale, indIndexScaleOffset);
4472 
4473 
4474 //----------PIPELINE-----------------------------------------------------------
4475 // Rules which define the behavior of the target architectures pipeline.
4476 pipeline %{
4477 
4478 //----------ATTRIBUTES---------------------------------------------------------
4479 attributes %{
4480   variable_size_instructions;        // Fixed size instructions
4481   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
4482   instruction_unit_size = 1;         // An instruction is 1 bytes long
4483   instruction_fetch_unit_size = 16;  // The processor fetches one line
4484   instruction_fetch_units = 1;       // of 16 bytes
4485 
4486   // List of nop instructions
4487   nops( MachNop );
4488 %}
4489 
4490 //----------RESOURCES----------------------------------------------------------
4491 // Resources are the functional units available to the machine
4492 
4493 // Generic P2/P3 pipeline
4494 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
4495 // 3 instructions decoded per cycle.
4496 // 2 load/store ops per cycle, 1 branch, 1 FPU,
4497 // 2 ALU op, only ALU0 handles mul/div instructions.
4498 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
4499            MS0, MS1, MEM = MS0 | MS1,
4500            BR, FPU,
4501            ALU0, ALU1, ALU = ALU0 | ALU1 );
4502 
4503 //----------PIPELINE DESCRIPTION-----------------------------------------------
4504 // Pipeline Description specifies the stages in the machine's pipeline
4505 
4506 // Generic P2/P3 pipeline
4507 pipe_desc(S0, S1, S2, S3, S4, S5);
4508 
4509 //----------PIPELINE CLASSES---------------------------------------------------
4510 // Pipeline Classes describe the stages in which input and output are
4511 // referenced by the hardware pipeline.
4512 
4513 // Naming convention: ialu or fpu
4514 // Then: _reg
4515 // Then: _reg if there is a 2nd register
4516 // Then: _long if it's a pair of instructions implementing a long
4517 // Then: _fat if it requires the big decoder
4518 //   Or: _mem if it requires the big decoder and a memory unit.
4519 
4520 // Integer ALU reg operation
4521 pipe_class ialu_reg(rRegI dst) %{
4522     single_instruction;
4523     dst    : S4(write);
4524     dst    : S3(read);
4525     DECODE : S0;        // any decoder
4526     ALU    : S3;        // any alu
4527 %}
4528 
4529 // Long ALU reg operation
4530 pipe_class ialu_reg_long(eRegL dst) %{
4531     instruction_count(2);
4532     dst    : S4(write);
4533     dst    : S3(read);
4534     DECODE : S0(2);     // any 2 decoders
4535     ALU    : S3(2);     // both alus
4536 %}
4537 
4538 // Integer ALU reg operation using big decoder
4539 pipe_class ialu_reg_fat(rRegI dst) %{
4540     single_instruction;
4541     dst    : S4(write);
4542     dst    : S3(read);
4543     D0     : S0;        // big decoder only
4544     ALU    : S3;        // any alu
4545 %}
4546 
4547 // Long ALU reg operation using big decoder
4548 pipe_class ialu_reg_long_fat(eRegL dst) %{
4549     instruction_count(2);
4550     dst    : S4(write);
4551     dst    : S3(read);
4552     D0     : S0(2);     // big decoder only; twice
4553     ALU    : S3(2);     // any 2 alus
4554 %}
4555 
4556 // Integer ALU reg-reg operation
4557 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
4558     single_instruction;
4559     dst    : S4(write);
4560     src    : S3(read);
4561     DECODE : S0;        // any decoder
4562     ALU    : S3;        // any alu
4563 %}
4564 
4565 // Long ALU reg-reg operation
4566 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
4567     instruction_count(2);
4568     dst    : S4(write);
4569     src    : S3(read);
4570     DECODE : S0(2);     // any 2 decoders
4571     ALU    : S3(2);     // both alus
4572 %}
4573 
4574 // Integer ALU reg-reg operation
4575 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
4576     single_instruction;
4577     dst    : S4(write);
4578     src    : S3(read);
4579     D0     : S0;        // big decoder only
4580     ALU    : S3;        // any alu
4581 %}
4582 
4583 // Long ALU reg-reg operation
4584 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
4585     instruction_count(2);
4586     dst    : S4(write);
4587     src    : S3(read);
4588     D0     : S0(2);     // big decoder only; twice
4589     ALU    : S3(2);     // both alus
4590 %}
4591 
4592 // Integer ALU reg-mem operation
4593 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
4594     single_instruction;
4595     dst    : S5(write);
4596     mem    : S3(read);
4597     D0     : S0;        // big decoder only
4598     ALU    : S4;        // any alu
4599     MEM    : S3;        // any mem
4600 %}
4601 
4602 // Long ALU reg-mem operation
4603 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
4604     instruction_count(2);
4605     dst    : S5(write);
4606     mem    : S3(read);
4607     D0     : S0(2);     // big decoder only; twice
4608     ALU    : S4(2);     // any 2 alus
4609     MEM    : S3(2);     // both mems
4610 %}
4611 
4612 // Integer mem operation (prefetch)
4613 pipe_class ialu_mem(memory mem)
4614 %{
4615     single_instruction;
4616     mem    : S3(read);
4617     D0     : S0;        // big decoder only
4618     MEM    : S3;        // any mem
4619 %}
4620 
4621 // Integer Store to Memory
4622 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
4623     single_instruction;
4624     mem    : S3(read);
4625     src    : S5(read);
4626     D0     : S0;        // big decoder only
4627     ALU    : S4;        // any alu
4628     MEM    : S3;
4629 %}
4630 
4631 // Long Store to Memory
4632 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
4633     instruction_count(2);
4634     mem    : S3(read);
4635     src    : S5(read);
4636     D0     : S0(2);     // big decoder only; twice
4637     ALU    : S4(2);     // any 2 alus
4638     MEM    : S3(2);     // Both mems
4639 %}
4640 
4641 // Integer Store to Memory
4642 pipe_class ialu_mem_imm(memory mem) %{
4643     single_instruction;
4644     mem    : S3(read);
4645     D0     : S0;        // big decoder only
4646     ALU    : S4;        // any alu
4647     MEM    : S3;
4648 %}
4649 
4650 // Integer ALU0 reg-reg operation
4651 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
4652     single_instruction;
4653     dst    : S4(write);
4654     src    : S3(read);
4655     D0     : S0;        // Big decoder only
4656     ALU0   : S3;        // only alu0
4657 %}
4658 
4659 // Integer ALU0 reg-mem operation
4660 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
4661     single_instruction;
4662     dst    : S5(write);
4663     mem    : S3(read);
4664     D0     : S0;        // big decoder only
4665     ALU0   : S4;        // ALU0 only
4666     MEM    : S3;        // any mem
4667 %}
4668 
4669 // Integer ALU reg-reg operation
4670 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
4671     single_instruction;
4672     cr     : S4(write);
4673     src1   : S3(read);
4674     src2   : S3(read);
4675     DECODE : S0;        // any decoder
4676     ALU    : S3;        // any alu
4677 %}
4678 
4679 // Integer ALU reg-imm operation
4680 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
4681     single_instruction;
4682     cr     : S4(write);
4683     src1   : S3(read);
4684     DECODE : S0;        // any decoder
4685     ALU    : S3;        // any alu
4686 %}
4687 
4688 // Integer ALU reg-mem operation
4689 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
4690     single_instruction;
4691     cr     : S4(write);
4692     src1   : S3(read);
4693     src2   : S3(read);
4694     D0     : S0;        // big decoder only
4695     ALU    : S4;        // any alu
4696     MEM    : S3;
4697 %}
4698 
4699 // Conditional move reg-reg
4700 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
4701     instruction_count(4);
4702     y      : S4(read);
4703     q      : S3(read);
4704     p      : S3(read);
4705     DECODE : S0(4);     // any decoder
4706 %}
4707 
4708 // Conditional move reg-reg
4709 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
4710     single_instruction;
4711     dst    : S4(write);
4712     src    : S3(read);
4713     cr     : S3(read);
4714     DECODE : S0;        // any decoder
4715 %}
4716 
4717 // Conditional move reg-mem
4718 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
4719     single_instruction;
4720     dst    : S4(write);
4721     src    : S3(read);
4722     cr     : S3(read);
4723     DECODE : S0;        // any decoder
4724     MEM    : S3;
4725 %}
4726 
4727 // Conditional move reg-reg long
4728 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
4729     single_instruction;
4730     dst    : S4(write);
4731     src    : S3(read);
4732     cr     : S3(read);
4733     DECODE : S0(2);     // any 2 decoders
4734 %}
4735 
4736 // Conditional move double reg-reg
4737 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
4738     single_instruction;
4739     dst    : S4(write);
4740     src    : S3(read);
4741     cr     : S3(read);
4742     DECODE : S0;        // any decoder
4743 %}
4744 
4745 // Float reg-reg operation
4746 pipe_class fpu_reg(regDPR dst) %{
4747     instruction_count(2);
4748     dst    : S3(read);
4749     DECODE : S0(2);     // any 2 decoders
4750     FPU    : S3;
4751 %}
4752 
4753 // Float reg-reg operation
4754 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
4755     instruction_count(2);
4756     dst    : S4(write);
4757     src    : S3(read);
4758     DECODE : S0(2);     // any 2 decoders
4759     FPU    : S3;
4760 %}
4761 
4762 // Float reg-reg operation
4763 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
4764     instruction_count(3);
4765     dst    : S4(write);
4766     src1   : S3(read);
4767     src2   : S3(read);
4768     DECODE : S0(3);     // any 3 decoders
4769     FPU    : S3(2);
4770 %}
4771 
4772 // Float reg-reg operation
4773 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
4774     instruction_count(4);
4775     dst    : S4(write);
4776     src1   : S3(read);
4777     src2   : S3(read);
4778     src3   : S3(read);
4779     DECODE : S0(4);     // any 3 decoders
4780     FPU    : S3(2);
4781 %}
4782 
4783 // Float reg-reg operation
4784 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
4785     instruction_count(4);
4786     dst    : S4(write);
4787     src1   : S3(read);
4788     src2   : S3(read);
4789     src3   : S3(read);
4790     DECODE : S1(3);     // any 3 decoders
4791     D0     : S0;        // Big decoder only
4792     FPU    : S3(2);
4793     MEM    : S3;
4794 %}
4795 
4796 // Float reg-mem operation
4797 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
4798     instruction_count(2);
4799     dst    : S5(write);
4800     mem    : S3(read);
4801     D0     : S0;        // big decoder only
4802     DECODE : S1;        // any decoder for FPU POP
4803     FPU    : S4;
4804     MEM    : S3;        // any mem
4805 %}
4806 
4807 // Float reg-mem operation
4808 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
4809     instruction_count(3);
4810     dst    : S5(write);
4811     src1   : S3(read);
4812     mem    : S3(read);
4813     D0     : S0;        // big decoder only
4814     DECODE : S1(2);     // any decoder for FPU POP
4815     FPU    : S4;
4816     MEM    : S3;        // any mem
4817 %}
4818 
4819 // Float mem-reg operation
4820 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
4821     instruction_count(2);
4822     src    : S5(read);
4823     mem    : S3(read);
4824     DECODE : S0;        // any decoder for FPU PUSH
4825     D0     : S1;        // big decoder only
4826     FPU    : S4;
4827     MEM    : S3;        // any mem
4828 %}
4829 
4830 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
4831     instruction_count(3);
4832     src1   : S3(read);
4833     src2   : S3(read);
4834     mem    : S3(read);
4835     DECODE : S0(2);     // any decoder for FPU PUSH
4836     D0     : S1;        // big decoder only
4837     FPU    : S4;
4838     MEM    : S3;        // any mem
4839 %}
4840 
4841 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
4842     instruction_count(3);
4843     src1   : S3(read);
4844     src2   : S3(read);
4845     mem    : S4(read);
4846     DECODE : S0;        // any decoder for FPU PUSH
4847     D0     : S0(2);     // big decoder only
4848     FPU    : S4;
4849     MEM    : S3(2);     // any mem
4850 %}
4851 
4852 pipe_class fpu_mem_mem(memory dst, memory src1) %{
4853     instruction_count(2);
4854     src1   : S3(read);
4855     dst    : S4(read);
4856     D0     : S0(2);     // big decoder only
4857     MEM    : S3(2);     // any mem
4858 %}
4859 
4860 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
4861     instruction_count(3);
4862     src1   : S3(read);
4863     src2   : S3(read);
4864     dst    : S4(read);
4865     D0     : S0(3);     // big decoder only
4866     FPU    : S4;
4867     MEM    : S3(3);     // any mem
4868 %}
4869 
4870 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
4871     instruction_count(3);
4872     src1   : S4(read);
4873     mem    : S4(read);
4874     DECODE : S0;        // any decoder for FPU PUSH
4875     D0     : S0(2);     // big decoder only
4876     FPU    : S4;
4877     MEM    : S3(2);     // any mem
4878 %}
4879 
4880 // Float load constant
4881 pipe_class fpu_reg_con(regDPR dst) %{
4882     instruction_count(2);
4883     dst    : S5(write);
4884     D0     : S0;        // big decoder only for the load
4885     DECODE : S1;        // any decoder for FPU POP
4886     FPU    : S4;
4887     MEM    : S3;        // any mem
4888 %}
4889 
4890 // Float load constant
4891 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
4892     instruction_count(3);
4893     dst    : S5(write);
4894     src    : S3(read);
4895     D0     : S0;        // big decoder only for the load
4896     DECODE : S1(2);     // any decoder for FPU POP
4897     FPU    : S4;
4898     MEM    : S3;        // any mem
4899 %}
4900 
4901 // UnConditional branch
4902 pipe_class pipe_jmp( label labl ) %{
4903     single_instruction;
4904     BR   : S3;
4905 %}
4906 
4907 // Conditional branch
4908 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
4909     single_instruction;
4910     cr    : S1(read);
4911     BR    : S3;
4912 %}
4913 
4914 // Allocation idiom
4915 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
4916     instruction_count(1); force_serialization;
4917     fixed_latency(6);
4918     heap_ptr : S3(read);
4919     DECODE   : S0(3);
4920     D0       : S2;
4921     MEM      : S3;
4922     ALU      : S3(2);
4923     dst      : S5(write);
4924     BR       : S5;
4925 %}
4926 
4927 // Generic big/slow expanded idiom
4928 pipe_class pipe_slow(  ) %{
4929     instruction_count(10); multiple_bundles; force_serialization;
4930     fixed_latency(100);
4931     D0  : S0(2);
4932     MEM : S3(2);
4933 %}
4934 
4935 // The real do-nothing guy
4936 pipe_class empty( ) %{
4937     instruction_count(0);
4938 %}
4939 
4940 // Define the class for the Nop node
4941 define %{
4942    MachNop = empty;
4943 %}
4944 
4945 %}
4946 
4947 //----------INSTRUCTIONS-------------------------------------------------------
4948 //
4949 // match      -- States which machine-independent subtree may be replaced
4950 //               by this instruction.
4951 // ins_cost   -- The estimated cost of this instruction is used by instruction
4952 //               selection to identify a minimum cost tree of machine
4953 //               instructions that matches a tree of machine-independent
4954 //               instructions.
4955 // format     -- A string providing the disassembly for this instruction.
4956 //               The value of an instruction's operand may be inserted
4957 //               by referring to it with a '$' prefix.
4958 // opcode     -- Three instruction opcodes may be provided.  These are referred
4959 //               to within an encode class as $primary, $secondary, and $tertiary
4960 //               respectively.  The primary opcode is commonly used to
4961 //               indicate the type of machine instruction, while secondary
4962 //               and tertiary are often used for prefix options or addressing
4963 //               modes.
4964 // ins_encode -- A list of encode classes with parameters. The encode class
4965 //               name must have been defined in an 'enc_class' specification
4966 //               in the encode section of the architecture description.
4967 
4968 //----------BSWAP-Instruction--------------------------------------------------
4969 instruct bytes_reverse_int(rRegI dst) %{
4970   match(Set dst (ReverseBytesI dst));
4971 
4972   format %{ "BSWAP  $dst" %}
4973   opcode(0x0F, 0xC8);
4974   ins_encode( OpcP, OpcSReg(dst) );
4975   ins_pipe( ialu_reg );
4976 %}
4977 
4978 instruct bytes_reverse_long(eRegL dst) %{
4979   match(Set dst (ReverseBytesL dst));
4980 
4981   format %{ "BSWAP  $dst.lo\n\t"
4982             "BSWAP  $dst.hi\n\t"
4983             "XCHG   $dst.lo $dst.hi" %}
4984 
4985   ins_cost(125);
4986   ins_encode( bswap_long_bytes(dst) );
4987   ins_pipe( ialu_reg_reg);
4988 %}
4989 
4990 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
4991   match(Set dst (ReverseBytesUS dst));
4992   effect(KILL cr);
4993 
4994   format %{ "BSWAP  $dst\n\t" 
4995             "SHR    $dst,16\n\t" %}
4996   ins_encode %{
4997     __ bswapl($dst$$Register);
4998     __ shrl($dst$$Register, 16); 
4999   %}
5000   ins_pipe( ialu_reg );
5001 %}
5002 
5003 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
5004   match(Set dst (ReverseBytesS dst));
5005   effect(KILL cr);
5006 
5007   format %{ "BSWAP  $dst\n\t" 
5008             "SAR    $dst,16\n\t" %}
5009   ins_encode %{
5010     __ bswapl($dst$$Register);
5011     __ sarl($dst$$Register, 16); 
5012   %}
5013   ins_pipe( ialu_reg );
5014 %}
5015 
5016 
5017 //---------- Zeros Count Instructions ------------------------------------------
5018 
5019 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5020   predicate(UseCountLeadingZerosInstruction);
5021   match(Set dst (CountLeadingZerosI src));
5022   effect(KILL cr);
5023 
5024   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
5025   ins_encode %{
5026     __ lzcntl($dst$$Register, $src$$Register);
5027   %}
5028   ins_pipe(ialu_reg);
5029 %}
5030 
5031 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
5032   predicate(!UseCountLeadingZerosInstruction);
5033   match(Set dst (CountLeadingZerosI src));
5034   effect(KILL cr);
5035 
5036   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
5037             "JNZ    skip\n\t"
5038             "MOV    $dst, -1\n"
5039       "skip:\n\t"
5040             "NEG    $dst\n\t"
5041             "ADD    $dst, 31" %}
5042   ins_encode %{
5043     Register Rdst = $dst$$Register;
5044     Register Rsrc = $src$$Register;
5045     Label skip;
5046     __ bsrl(Rdst, Rsrc);
5047     __ jccb(Assembler::notZero, skip);
5048     __ movl(Rdst, -1);
5049     __ bind(skip);
5050     __ negl(Rdst);
5051     __ addl(Rdst, BitsPerInt - 1);
5052   %}
5053   ins_pipe(ialu_reg);
5054 %}
5055 
5056 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5057   predicate(UseCountLeadingZerosInstruction);
5058   match(Set dst (CountLeadingZerosL src));
5059   effect(TEMP dst, KILL cr);
5060 
5061   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
5062             "JNC    done\n\t"
5063             "LZCNT  $dst, $src.lo\n\t"
5064             "ADD    $dst, 32\n"
5065       "done:" %}
5066   ins_encode %{
5067     Register Rdst = $dst$$Register;
5068     Register Rsrc = $src$$Register;
5069     Label done;
5070     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
5071     __ jccb(Assembler::carryClear, done);
5072     __ lzcntl(Rdst, Rsrc);
5073     __ addl(Rdst, BitsPerInt);
5074     __ bind(done);
5075   %}
5076   ins_pipe(ialu_reg);
5077 %}
5078 
5079 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
5080   predicate(!UseCountLeadingZerosInstruction);
5081   match(Set dst (CountLeadingZerosL src));
5082   effect(TEMP dst, KILL cr);
5083 
5084   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
5085             "JZ     msw_is_zero\n\t"
5086             "ADD    $dst, 32\n\t"
5087             "JMP    not_zero\n"
5088       "msw_is_zero:\n\t"
5089             "BSR    $dst, $src.lo\n\t"
5090             "JNZ    not_zero\n\t"
5091             "MOV    $dst, -1\n"
5092       "not_zero:\n\t"
5093             "NEG    $dst\n\t"
5094             "ADD    $dst, 63\n" %}
5095  ins_encode %{
5096     Register Rdst = $dst$$Register;
5097     Register Rsrc = $src$$Register;
5098     Label msw_is_zero;
5099     Label not_zero;
5100     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
5101     __ jccb(Assembler::zero, msw_is_zero);
5102     __ addl(Rdst, BitsPerInt);
5103     __ jmpb(not_zero);
5104     __ bind(msw_is_zero);
5105     __ bsrl(Rdst, Rsrc);
5106     __ jccb(Assembler::notZero, not_zero);
5107     __ movl(Rdst, -1);
5108     __ bind(not_zero);
5109     __ negl(Rdst);
5110     __ addl(Rdst, BitsPerLong - 1);
5111   %}
5112   ins_pipe(ialu_reg);
5113 %}
5114 
5115 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5116   predicate(UseCountTrailingZerosInstruction);
5117   match(Set dst (CountTrailingZerosI src));
5118   effect(KILL cr);
5119 
5120   format %{ "TZCNT    $dst, $src\t# count trailing zeros (int)" %}
5121   ins_encode %{
5122     __ tzcntl($dst$$Register, $src$$Register);
5123   %}
5124   ins_pipe(ialu_reg);
5125 %}
5126 
5127 instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, eFlagsReg cr) %{
5128   predicate(!UseCountTrailingZerosInstruction);
5129   match(Set dst (CountTrailingZerosI src));
5130   effect(KILL cr);
5131 
5132   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
5133             "JNZ    done\n\t"
5134             "MOV    $dst, 32\n"
5135       "done:" %}
5136   ins_encode %{
5137     Register Rdst = $dst$$Register;
5138     Label done;
5139     __ bsfl(Rdst, $src$$Register);
5140     __ jccb(Assembler::notZero, done);
5141     __ movl(Rdst, BitsPerInt);
5142     __ bind(done);
5143   %}
5144   ins_pipe(ialu_reg);
5145 %}
5146 
5147 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5148   predicate(UseCountTrailingZerosInstruction);
5149   match(Set dst (CountTrailingZerosL src));
5150   effect(TEMP dst, KILL cr);
5151 
5152   format %{ "TZCNT  $dst, $src.lo\t# count trailing zeros (long) \n\t"
5153             "JNC    done\n\t"
5154             "TZCNT  $dst, $src.hi\n\t"
5155             "ADD    $dst, 32\n"
5156             "done:" %}
5157   ins_encode %{
5158     Register Rdst = $dst$$Register;
5159     Register Rsrc = $src$$Register;
5160     Label done;
5161     __ tzcntl(Rdst, Rsrc);
5162     __ jccb(Assembler::carryClear, done);
5163     __ tzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
5164     __ addl(Rdst, BitsPerInt);
5165     __ bind(done);
5166   %}
5167   ins_pipe(ialu_reg);
5168 %}
5169 
5170 instruct countTrailingZerosL_bsf(rRegI dst, eRegL src, eFlagsReg cr) %{
5171   predicate(!UseCountTrailingZerosInstruction);
5172   match(Set dst (CountTrailingZerosL src));
5173   effect(TEMP dst, KILL cr);
5174 
5175   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
5176             "JNZ    done\n\t"
5177             "BSF    $dst, $src.hi\n\t"
5178             "JNZ    msw_not_zero\n\t"
5179             "MOV    $dst, 32\n"
5180       "msw_not_zero:\n\t"
5181             "ADD    $dst, 32\n"
5182       "done:" %}
5183   ins_encode %{
5184     Register Rdst = $dst$$Register;
5185     Register Rsrc = $src$$Register;
5186     Label msw_not_zero;
5187     Label done;
5188     __ bsfl(Rdst, Rsrc);
5189     __ jccb(Assembler::notZero, done);
5190     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
5191     __ jccb(Assembler::notZero, msw_not_zero);
5192     __ movl(Rdst, BitsPerInt);
5193     __ bind(msw_not_zero);
5194     __ addl(Rdst, BitsPerInt);
5195     __ bind(done);
5196   %}
5197   ins_pipe(ialu_reg);
5198 %}
5199 
5200 
5201 //---------- Population Count Instructions -------------------------------------
5202 
5203 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
5204   predicate(UsePopCountInstruction);
5205   match(Set dst (PopCountI src));
5206   effect(KILL cr);
5207 
5208   format %{ "POPCNT $dst, $src" %}
5209   ins_encode %{
5210     __ popcntl($dst$$Register, $src$$Register);
5211   %}
5212   ins_pipe(ialu_reg);
5213 %}
5214 
5215 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
5216   predicate(UsePopCountInstruction);
5217   match(Set dst (PopCountI (LoadI mem)));
5218   effect(KILL cr);
5219 
5220   format %{ "POPCNT $dst, $mem" %}
5221   ins_encode %{
5222     __ popcntl($dst$$Register, $mem$$Address);
5223   %}
5224   ins_pipe(ialu_reg);
5225 %}
5226 
5227 // Note: Long.bitCount(long) returns an int.
5228 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
5229   predicate(UsePopCountInstruction);
5230   match(Set dst (PopCountL src));
5231   effect(KILL cr, TEMP tmp, TEMP dst);
5232 
5233   format %{ "POPCNT $dst, $src.lo\n\t"
5234             "POPCNT $tmp, $src.hi\n\t"
5235             "ADD    $dst, $tmp" %}
5236   ins_encode %{
5237     __ popcntl($dst$$Register, $src$$Register);
5238     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
5239     __ addl($dst$$Register, $tmp$$Register);
5240   %}
5241   ins_pipe(ialu_reg);
5242 %}
5243 
5244 // Note: Long.bitCount(long) returns an int.
5245 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
5246   predicate(UsePopCountInstruction);
5247   match(Set dst (PopCountL (LoadL mem)));
5248   effect(KILL cr, TEMP tmp, TEMP dst);
5249 
5250   format %{ "POPCNT $dst, $mem\n\t"
5251             "POPCNT $tmp, $mem+4\n\t"
5252             "ADD    $dst, $tmp" %}
5253   ins_encode %{
5254     //__ popcntl($dst$$Register, $mem$$Address$$first);
5255     //__ popcntl($tmp$$Register, $mem$$Address$$second);
5256     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
5257     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
5258     __ addl($dst$$Register, $tmp$$Register);
5259   %}
5260   ins_pipe(ialu_reg);
5261 %}
5262 
5263 
5264 //----------Load/Store/Move Instructions---------------------------------------
5265 //----------Load Instructions--------------------------------------------------
5266 // Load Byte (8bit signed)
5267 instruct loadB(xRegI dst, memory mem) %{
5268   match(Set dst (LoadB mem));
5269 
5270   ins_cost(125);
5271   format %{ "MOVSX8 $dst,$mem\t# byte" %}
5272 
5273   ins_encode %{
5274     __ movsbl($dst$$Register, $mem$$Address);
5275   %}
5276 
5277   ins_pipe(ialu_reg_mem);
5278 %}
5279 
5280 // Load Byte (8bit signed) into Long Register
5281 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5282   match(Set dst (ConvI2L (LoadB mem)));
5283   effect(KILL cr);
5284 
5285   ins_cost(375);
5286   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
5287             "MOV    $dst.hi,$dst.lo\n\t"
5288             "SAR    $dst.hi,7" %}
5289 
5290   ins_encode %{
5291     __ movsbl($dst$$Register, $mem$$Address);
5292     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5293     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
5294   %}
5295 
5296   ins_pipe(ialu_reg_mem);
5297 %}
5298 
5299 // Load Unsigned Byte (8bit UNsigned)
5300 instruct loadUB(xRegI dst, memory mem) %{
5301   match(Set dst (LoadUB mem));
5302 
5303   ins_cost(125);
5304   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
5305 
5306   ins_encode %{
5307     __ movzbl($dst$$Register, $mem$$Address);
5308   %}
5309 
5310   ins_pipe(ialu_reg_mem);
5311 %}
5312 
5313 // Load Unsigned Byte (8 bit UNsigned) into Long Register
5314 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5315   match(Set dst (ConvI2L (LoadUB mem)));
5316   effect(KILL cr);
5317 
5318   ins_cost(250);
5319   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
5320             "XOR    $dst.hi,$dst.hi" %}
5321 
5322   ins_encode %{
5323     Register Rdst = $dst$$Register;
5324     __ movzbl(Rdst, $mem$$Address);
5325     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5326   %}
5327 
5328   ins_pipe(ialu_reg_mem);
5329 %}
5330 
5331 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
5332 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
5333   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5334   effect(KILL cr);
5335 
5336   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
5337             "XOR    $dst.hi,$dst.hi\n\t"
5338             "AND    $dst.lo,$mask" %}
5339   ins_encode %{
5340     Register Rdst = $dst$$Register;
5341     __ movzbl(Rdst, $mem$$Address);
5342     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5343     __ andl(Rdst, $mask$$constant);
5344   %}
5345   ins_pipe(ialu_reg_mem);
5346 %}
5347 
5348 // Load Short (16bit signed)
5349 instruct loadS(rRegI dst, memory mem) %{
5350   match(Set dst (LoadS mem));
5351 
5352   ins_cost(125);
5353   format %{ "MOVSX  $dst,$mem\t# short" %}
5354 
5355   ins_encode %{
5356     __ movswl($dst$$Register, $mem$$Address);
5357   %}
5358 
5359   ins_pipe(ialu_reg_mem);
5360 %}
5361 
5362 // Load Short (16 bit signed) to Byte (8 bit signed)
5363 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5364   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5365 
5366   ins_cost(125);
5367   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
5368   ins_encode %{
5369     __ movsbl($dst$$Register, $mem$$Address);
5370   %}
5371   ins_pipe(ialu_reg_mem);
5372 %}
5373 
5374 // Load Short (16bit signed) into Long Register
5375 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5376   match(Set dst (ConvI2L (LoadS mem)));
5377   effect(KILL cr);
5378 
5379   ins_cost(375);
5380   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
5381             "MOV    $dst.hi,$dst.lo\n\t"
5382             "SAR    $dst.hi,15" %}
5383 
5384   ins_encode %{
5385     __ movswl($dst$$Register, $mem$$Address);
5386     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5387     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
5388   %}
5389 
5390   ins_pipe(ialu_reg_mem);
5391 %}
5392 
5393 // Load Unsigned Short/Char (16bit unsigned)
5394 instruct loadUS(rRegI dst, memory mem) %{
5395   match(Set dst (LoadUS mem));
5396 
5397   ins_cost(125);
5398   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
5399 
5400   ins_encode %{
5401     __ movzwl($dst$$Register, $mem$$Address);
5402   %}
5403 
5404   ins_pipe(ialu_reg_mem);
5405 %}
5406 
5407 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5408 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5409   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5410 
5411   ins_cost(125);
5412   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
5413   ins_encode %{
5414     __ movsbl($dst$$Register, $mem$$Address);
5415   %}
5416   ins_pipe(ialu_reg_mem);
5417 %}
5418 
5419 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
5420 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5421   match(Set dst (ConvI2L (LoadUS mem)));
5422   effect(KILL cr);
5423 
5424   ins_cost(250);
5425   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
5426             "XOR    $dst.hi,$dst.hi" %}
5427 
5428   ins_encode %{
5429     __ movzwl($dst$$Register, $mem$$Address);
5430     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
5431   %}
5432 
5433   ins_pipe(ialu_reg_mem);
5434 %}
5435 
5436 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
5437 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
5438   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5439   effect(KILL cr);
5440 
5441   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
5442             "XOR    $dst.hi,$dst.hi" %}
5443   ins_encode %{
5444     Register Rdst = $dst$$Register;
5445     __ movzbl(Rdst, $mem$$Address);
5446     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5447   %}
5448   ins_pipe(ialu_reg_mem);
5449 %}
5450 
5451 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
5452 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
5453   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5454   effect(KILL cr);
5455 
5456   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
5457             "XOR    $dst.hi,$dst.hi\n\t"
5458             "AND    $dst.lo,$mask" %}
5459   ins_encode %{
5460     Register Rdst = $dst$$Register;
5461     __ movzwl(Rdst, $mem$$Address);
5462     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5463     __ andl(Rdst, $mask$$constant);
5464   %}
5465   ins_pipe(ialu_reg_mem);
5466 %}
5467 
5468 // Load Integer
5469 instruct loadI(rRegI dst, memory mem) %{
5470   match(Set dst (LoadI mem));
5471 
5472   ins_cost(125);
5473   format %{ "MOV    $dst,$mem\t# int" %}
5474 
5475   ins_encode %{
5476     __ movl($dst$$Register, $mem$$Address);
5477   %}
5478 
5479   ins_pipe(ialu_reg_mem);
5480 %}
5481 
5482 // Load Integer (32 bit signed) to Byte (8 bit signed)
5483 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5484   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5485 
5486   ins_cost(125);
5487   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
5488   ins_encode %{
5489     __ movsbl($dst$$Register, $mem$$Address);
5490   %}
5491   ins_pipe(ialu_reg_mem);
5492 %}
5493 
5494 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
5495 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
5496   match(Set dst (AndI (LoadI mem) mask));
5497 
5498   ins_cost(125);
5499   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
5500   ins_encode %{
5501     __ movzbl($dst$$Register, $mem$$Address);
5502   %}
5503   ins_pipe(ialu_reg_mem);
5504 %}
5505 
5506 // Load Integer (32 bit signed) to Short (16 bit signed)
5507 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
5508   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5509 
5510   ins_cost(125);
5511   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
5512   ins_encode %{
5513     __ movswl($dst$$Register, $mem$$Address);
5514   %}
5515   ins_pipe(ialu_reg_mem);
5516 %}
5517 
5518 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
5519 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
5520   match(Set dst (AndI (LoadI mem) mask));
5521 
5522   ins_cost(125);
5523   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
5524   ins_encode %{
5525     __ movzwl($dst$$Register, $mem$$Address);
5526   %}
5527   ins_pipe(ialu_reg_mem);
5528 %}
5529 
5530 // Load Integer into Long Register
5531 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
5532   match(Set dst (ConvI2L (LoadI mem)));
5533   effect(KILL cr);
5534 
5535   ins_cost(375);
5536   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
5537             "MOV    $dst.hi,$dst.lo\n\t"
5538             "SAR    $dst.hi,31" %}
5539 
5540   ins_encode %{
5541     __ movl($dst$$Register, $mem$$Address);
5542     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5543     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
5544   %}
5545 
5546   ins_pipe(ialu_reg_mem);
5547 %}
5548 
5549 // Load Integer with mask 0xFF into Long Register
5550 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
5551   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5552   effect(KILL cr);
5553 
5554   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
5555             "XOR    $dst.hi,$dst.hi" %}
5556   ins_encode %{
5557     Register Rdst = $dst$$Register;
5558     __ movzbl(Rdst, $mem$$Address);
5559     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5560   %}
5561   ins_pipe(ialu_reg_mem);
5562 %}
5563 
5564 // Load Integer with mask 0xFFFF into Long Register
5565 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
5566   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5567   effect(KILL cr);
5568 
5569   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
5570             "XOR    $dst.hi,$dst.hi" %}
5571   ins_encode %{
5572     Register Rdst = $dst$$Register;
5573     __ movzwl(Rdst, $mem$$Address);
5574     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5575   %}
5576   ins_pipe(ialu_reg_mem);
5577 %}
5578 
5579 // Load Integer with 31-bit mask into Long Register
5580 instruct loadI2L_immU31(eRegL dst, memory mem, immU31 mask, eFlagsReg cr) %{
5581   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5582   effect(KILL cr);
5583 
5584   format %{ "MOV    $dst.lo,$mem\t# int & 31-bit mask -> long\n\t"
5585             "XOR    $dst.hi,$dst.hi\n\t"
5586             "AND    $dst.lo,$mask" %}
5587   ins_encode %{
5588     Register Rdst = $dst$$Register;
5589     __ movl(Rdst, $mem$$Address);
5590     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5591     __ andl(Rdst, $mask$$constant);
5592   %}
5593   ins_pipe(ialu_reg_mem);
5594 %}
5595 
5596 // Load Unsigned Integer into Long Register
5597 instruct loadUI2L(eRegL dst, memory mem, immL_32bits mask, eFlagsReg cr) %{
5598   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5599   effect(KILL cr);
5600 
5601   ins_cost(250);
5602   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
5603             "XOR    $dst.hi,$dst.hi" %}
5604 
5605   ins_encode %{
5606     __ movl($dst$$Register, $mem$$Address);
5607     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
5608   %}
5609 
5610   ins_pipe(ialu_reg_mem);
5611 %}
5612 
5613 // Load Long.  Cannot clobber address while loading, so restrict address
5614 // register to ESI
5615 instruct loadL(eRegL dst, load_long_memory mem) %{
5616   predicate(!((LoadLNode*)n)->require_atomic_access());
5617   match(Set dst (LoadL mem));
5618 
5619   ins_cost(250);
5620   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
5621             "MOV    $dst.hi,$mem+4" %}
5622 
5623   ins_encode %{
5624     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
5625     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
5626     __ movl($dst$$Register, Amemlo);
5627     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
5628   %}
5629 
5630   ins_pipe(ialu_reg_long_mem);
5631 %}
5632 
5633 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
5634 // then store it down to the stack and reload on the int
5635 // side.
5636 instruct loadL_volatile(stackSlotL dst, memory mem) %{
5637   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
5638   match(Set dst (LoadL mem));
5639 
5640   ins_cost(200);
5641   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
5642             "FISTp  $dst" %}
5643   ins_encode(enc_loadL_volatile(mem,dst));
5644   ins_pipe( fpu_reg_mem );
5645 %}
5646 
5647 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
5648   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
5649   match(Set dst (LoadL mem));
5650   effect(TEMP tmp);
5651   ins_cost(180);
5652   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
5653             "MOVSD  $dst,$tmp" %}
5654   ins_encode %{
5655     __ movdbl($tmp$$XMMRegister, $mem$$Address);
5656     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
5657   %}
5658   ins_pipe( pipe_slow );
5659 %}
5660 
5661 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
5662   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
5663   match(Set dst (LoadL mem));
5664   effect(TEMP tmp);
5665   ins_cost(160);
5666   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
5667             "MOVD   $dst.lo,$tmp\n\t"
5668             "PSRLQ  $tmp,32\n\t"
5669             "MOVD   $dst.hi,$tmp" %}
5670   ins_encode %{
5671     __ movdbl($tmp$$XMMRegister, $mem$$Address);
5672     __ movdl($dst$$Register, $tmp$$XMMRegister);
5673     __ psrlq($tmp$$XMMRegister, 32);
5674     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
5675   %}
5676   ins_pipe( pipe_slow );
5677 %}
5678 
5679 // Load Range
5680 instruct loadRange(rRegI dst, memory mem) %{
5681   match(Set dst (LoadRange mem));
5682 
5683   ins_cost(125);
5684   format %{ "MOV    $dst,$mem" %}
5685   opcode(0x8B);
5686   ins_encode( OpcP, RegMem(dst,mem));
5687   ins_pipe( ialu_reg_mem );
5688 %}
5689 
5690 
5691 // Load Pointer
5692 instruct loadP(eRegP dst, memory mem) %{
5693   match(Set dst (LoadP mem));
5694 
5695   ins_cost(125);
5696   format %{ "MOV    $dst,$mem" %}
5697   opcode(0x8B);
5698   ins_encode( OpcP, RegMem(dst,mem));
5699   ins_pipe( ialu_reg_mem );
5700 %}
5701 
5702 // Load Klass Pointer
5703 instruct loadKlass(eRegP dst, memory mem) %{
5704   match(Set dst (LoadKlass mem));
5705 
5706   ins_cost(125);
5707   format %{ "MOV    $dst,$mem" %}
5708   opcode(0x8B);
5709   ins_encode( OpcP, RegMem(dst,mem));
5710   ins_pipe( ialu_reg_mem );
5711 %}
5712 
5713 // Load Double
5714 instruct loadDPR(regDPR dst, memory mem) %{
5715   predicate(UseSSE<=1);
5716   match(Set dst (LoadD mem));
5717 
5718   ins_cost(150);
5719   format %{ "FLD_D  ST,$mem\n\t"
5720             "FSTP   $dst" %}
5721   opcode(0xDD);               /* DD /0 */
5722   ins_encode( OpcP, RMopc_Mem(0x00,mem),
5723               Pop_Reg_DPR(dst) );
5724   ins_pipe( fpu_reg_mem );
5725 %}
5726 
5727 // Load Double to XMM
5728 instruct loadD(regD dst, memory mem) %{
5729   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
5730   match(Set dst (LoadD mem));
5731   ins_cost(145);
5732   format %{ "MOVSD  $dst,$mem" %}
5733   ins_encode %{
5734     __ movdbl ($dst$$XMMRegister, $mem$$Address);
5735   %}
5736   ins_pipe( pipe_slow );
5737 %}
5738 
5739 instruct loadD_partial(regD dst, memory mem) %{
5740   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
5741   match(Set dst (LoadD mem));
5742   ins_cost(145);
5743   format %{ "MOVLPD $dst,$mem" %}
5744   ins_encode %{
5745     __ movdbl ($dst$$XMMRegister, $mem$$Address);
5746   %}
5747   ins_pipe( pipe_slow );
5748 %}
5749 
5750 // Load to XMM register (single-precision floating point)
5751 // MOVSS instruction
5752 instruct loadF(regF dst, memory mem) %{
5753   predicate(UseSSE>=1);
5754   match(Set dst (LoadF mem));
5755   ins_cost(145);
5756   format %{ "MOVSS  $dst,$mem" %}
5757   ins_encode %{
5758     __ movflt ($dst$$XMMRegister, $mem$$Address);
5759   %}
5760   ins_pipe( pipe_slow );
5761 %}
5762 
5763 // Load Float
5764 instruct loadFPR(regFPR dst, memory mem) %{
5765   predicate(UseSSE==0);
5766   match(Set dst (LoadF mem));
5767 
5768   ins_cost(150);
5769   format %{ "FLD_S  ST,$mem\n\t"
5770             "FSTP   $dst" %}
5771   opcode(0xD9);               /* D9 /0 */
5772   ins_encode( OpcP, RMopc_Mem(0x00,mem),
5773               Pop_Reg_FPR(dst) );
5774   ins_pipe( fpu_reg_mem );
5775 %}
5776 
5777 // Load Effective Address
5778 instruct leaP8(eRegP dst, indOffset8 mem) %{
5779   match(Set dst mem);
5780 
5781   ins_cost(110);
5782   format %{ "LEA    $dst,$mem" %}
5783   opcode(0x8D);
5784   ins_encode( OpcP, RegMem(dst,mem));
5785   ins_pipe( ialu_reg_reg_fat );
5786 %}
5787 
5788 instruct leaP32(eRegP dst, indOffset32 mem) %{
5789   match(Set dst mem);
5790 
5791   ins_cost(110);
5792   format %{ "LEA    $dst,$mem" %}
5793   opcode(0x8D);
5794   ins_encode( OpcP, RegMem(dst,mem));
5795   ins_pipe( ialu_reg_reg_fat );
5796 %}
5797 
5798 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
5799   match(Set dst mem);
5800 
5801   ins_cost(110);
5802   format %{ "LEA    $dst,$mem" %}
5803   opcode(0x8D);
5804   ins_encode( OpcP, RegMem(dst,mem));
5805   ins_pipe( ialu_reg_reg_fat );
5806 %}
5807 
5808 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
5809   match(Set dst mem);
5810 
5811   ins_cost(110);
5812   format %{ "LEA    $dst,$mem" %}
5813   opcode(0x8D);
5814   ins_encode( OpcP, RegMem(dst,mem));
5815   ins_pipe( ialu_reg_reg_fat );
5816 %}
5817 
5818 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
5819   match(Set dst mem);
5820 
5821   ins_cost(110);
5822   format %{ "LEA    $dst,$mem" %}
5823   opcode(0x8D);
5824   ins_encode( OpcP, RegMem(dst,mem));
5825   ins_pipe( ialu_reg_reg_fat );
5826 %}
5827 
5828 // Load Constant
5829 instruct loadConI(rRegI dst, immI src) %{
5830   match(Set dst src);
5831 
5832   format %{ "MOV    $dst,$src" %}
5833   ins_encode( LdImmI(dst, src) );
5834   ins_pipe( ialu_reg_fat );
5835 %}
5836 
5837 // Load Constant zero
5838 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
5839   match(Set dst src);
5840   effect(KILL cr);
5841 
5842   ins_cost(50);
5843   format %{ "XOR    $dst,$dst" %}
5844   opcode(0x33);  /* + rd */
5845   ins_encode( OpcP, RegReg( dst, dst ) );
5846   ins_pipe( ialu_reg );
5847 %}
5848 
5849 instruct loadConP(eRegP dst, immP src) %{
5850   match(Set dst src);
5851 
5852   format %{ "MOV    $dst,$src" %}
5853   opcode(0xB8);  /* + rd */
5854   ins_encode( LdImmP(dst, src) );
5855   ins_pipe( ialu_reg_fat );
5856 %}
5857 
5858 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
5859   match(Set dst src);
5860   effect(KILL cr);
5861   ins_cost(200);
5862   format %{ "MOV    $dst.lo,$src.lo\n\t"
5863             "MOV    $dst.hi,$src.hi" %}
5864   opcode(0xB8);
5865   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
5866   ins_pipe( ialu_reg_long_fat );
5867 %}
5868 
5869 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
5870   match(Set dst src);
5871   effect(KILL cr);
5872   ins_cost(150);
5873   format %{ "XOR    $dst.lo,$dst.lo\n\t"
5874             "XOR    $dst.hi,$dst.hi" %}
5875   opcode(0x33,0x33);
5876   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
5877   ins_pipe( ialu_reg_long );
5878 %}
5879 
5880 // The instruction usage is guarded by predicate in operand immFPR().
5881 instruct loadConFPR(regFPR dst, immFPR con) %{
5882   match(Set dst con);
5883   ins_cost(125);
5884   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
5885             "FSTP   $dst" %}
5886   ins_encode %{
5887     __ fld_s($constantaddress($con));
5888     __ fstp_d($dst$$reg);
5889   %}
5890   ins_pipe(fpu_reg_con);
5891 %}
5892 
5893 // The instruction usage is guarded by predicate in operand immFPR0().
5894 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
5895   match(Set dst con);
5896   ins_cost(125);
5897   format %{ "FLDZ   ST\n\t"
5898             "FSTP   $dst" %}
5899   ins_encode %{
5900     __ fldz();
5901     __ fstp_d($dst$$reg);
5902   %}
5903   ins_pipe(fpu_reg_con);
5904 %}
5905 
5906 // The instruction usage is guarded by predicate in operand immFPR1().
5907 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
5908   match(Set dst con);
5909   ins_cost(125);
5910   format %{ "FLD1   ST\n\t"
5911             "FSTP   $dst" %}
5912   ins_encode %{
5913     __ fld1();
5914     __ fstp_d($dst$$reg);
5915   %}
5916   ins_pipe(fpu_reg_con);
5917 %}
5918 
5919 // The instruction usage is guarded by predicate in operand immF().
5920 instruct loadConF(regF dst, immF con) %{
5921   match(Set dst con);
5922   ins_cost(125);
5923   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
5924   ins_encode %{
5925     __ movflt($dst$$XMMRegister, $constantaddress($con));
5926   %}
5927   ins_pipe(pipe_slow);
5928 %}
5929 
5930 // The instruction usage is guarded by predicate in operand immF0().
5931 instruct loadConF0(regF dst, immF0 src) %{
5932   match(Set dst src);
5933   ins_cost(100);
5934   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
5935   ins_encode %{
5936     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
5937   %}
5938   ins_pipe(pipe_slow);
5939 %}
5940 
5941 // The instruction usage is guarded by predicate in operand immDPR().
5942 instruct loadConDPR(regDPR dst, immDPR con) %{
5943   match(Set dst con);
5944   ins_cost(125);
5945 
5946   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
5947             "FSTP   $dst" %}
5948   ins_encode %{
5949     __ fld_d($constantaddress($con));
5950     __ fstp_d($dst$$reg);
5951   %}
5952   ins_pipe(fpu_reg_con);
5953 %}
5954 
5955 // The instruction usage is guarded by predicate in operand immDPR0().
5956 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
5957   match(Set dst con);
5958   ins_cost(125);
5959 
5960   format %{ "FLDZ   ST\n\t"
5961             "FSTP   $dst" %}
5962   ins_encode %{
5963     __ fldz();
5964     __ fstp_d($dst$$reg);
5965   %}
5966   ins_pipe(fpu_reg_con);
5967 %}
5968 
5969 // The instruction usage is guarded by predicate in operand immDPR1().
5970 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
5971   match(Set dst con);
5972   ins_cost(125);
5973 
5974   format %{ "FLD1   ST\n\t"
5975             "FSTP   $dst" %}
5976   ins_encode %{
5977     __ fld1();
5978     __ fstp_d($dst$$reg);
5979   %}
5980   ins_pipe(fpu_reg_con);
5981 %}
5982 
5983 // The instruction usage is guarded by predicate in operand immD().
5984 instruct loadConD(regD dst, immD con) %{
5985   match(Set dst con);
5986   ins_cost(125);
5987   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
5988   ins_encode %{
5989     __ movdbl($dst$$XMMRegister, $constantaddress($con));
5990   %}
5991   ins_pipe(pipe_slow);
5992 %}
5993 
5994 // The instruction usage is guarded by predicate in operand immD0().
5995 instruct loadConD0(regD dst, immD0 src) %{
5996   match(Set dst src);
5997   ins_cost(100);
5998   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
5999   ins_encode %{
6000     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
6001   %}
6002   ins_pipe( pipe_slow );
6003 %}
6004 
6005 // Load Stack Slot
6006 instruct loadSSI(rRegI dst, stackSlotI src) %{
6007   match(Set dst src);
6008   ins_cost(125);
6009 
6010   format %{ "MOV    $dst,$src" %}
6011   opcode(0x8B);
6012   ins_encode( OpcP, RegMem(dst,src));
6013   ins_pipe( ialu_reg_mem );
6014 %}
6015 
6016 instruct loadSSL(eRegL dst, stackSlotL src) %{
6017   match(Set dst src);
6018 
6019   ins_cost(200);
6020   format %{ "MOV    $dst,$src.lo\n\t"
6021             "MOV    $dst+4,$src.hi" %}
6022   opcode(0x8B, 0x8B);
6023   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
6024   ins_pipe( ialu_mem_long_reg );
6025 %}
6026 
6027 // Load Stack Slot
6028 instruct loadSSP(eRegP dst, stackSlotP src) %{
6029   match(Set dst src);
6030   ins_cost(125);
6031 
6032   format %{ "MOV    $dst,$src" %}
6033   opcode(0x8B);
6034   ins_encode( OpcP, RegMem(dst,src));
6035   ins_pipe( ialu_reg_mem );
6036 %}
6037 
6038 // Load Stack Slot
6039 instruct loadSSF(regFPR dst, stackSlotF src) %{
6040   match(Set dst src);
6041   ins_cost(125);
6042 
6043   format %{ "FLD_S  $src\n\t"
6044             "FSTP   $dst" %}
6045   opcode(0xD9);               /* D9 /0, FLD m32real */
6046   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6047               Pop_Reg_FPR(dst) );
6048   ins_pipe( fpu_reg_mem );
6049 %}
6050 
6051 // Load Stack Slot
6052 instruct loadSSD(regDPR dst, stackSlotD src) %{
6053   match(Set dst src);
6054   ins_cost(125);
6055 
6056   format %{ "FLD_D  $src\n\t"
6057             "FSTP   $dst" %}
6058   opcode(0xDD);               /* DD /0, FLD m64real */
6059   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6060               Pop_Reg_DPR(dst) );
6061   ins_pipe( fpu_reg_mem );
6062 %}
6063 
6064 // Prefetch instructions for allocation.
6065 // Must be safe to execute with invalid address (cannot fault).
6066 
6067 instruct prefetchAlloc0( memory mem ) %{
6068   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
6069   match(PrefetchAllocation mem);
6070   ins_cost(0);
6071   size(0);
6072   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
6073   ins_encode();
6074   ins_pipe(empty);
6075 %}
6076 
6077 instruct prefetchAlloc( memory mem ) %{
6078   predicate(AllocatePrefetchInstr==3);
6079   match( PrefetchAllocation mem );
6080   ins_cost(100);
6081 
6082   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
6083   ins_encode %{
6084     __ prefetchw($mem$$Address);
6085   %}
6086   ins_pipe(ialu_mem);
6087 %}
6088 
6089 instruct prefetchAllocNTA( memory mem ) %{
6090   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
6091   match(PrefetchAllocation mem);
6092   ins_cost(100);
6093 
6094   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
6095   ins_encode %{
6096     __ prefetchnta($mem$$Address);
6097   %}
6098   ins_pipe(ialu_mem);
6099 %}
6100 
6101 instruct prefetchAllocT0( memory mem ) %{
6102   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
6103   match(PrefetchAllocation mem);
6104   ins_cost(100);
6105 
6106   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
6107   ins_encode %{
6108     __ prefetcht0($mem$$Address);
6109   %}
6110   ins_pipe(ialu_mem);
6111 %}
6112 
6113 instruct prefetchAllocT2( memory mem ) %{
6114   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
6115   match(PrefetchAllocation mem);
6116   ins_cost(100);
6117 
6118   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
6119   ins_encode %{
6120     __ prefetcht2($mem$$Address);
6121   %}
6122   ins_pipe(ialu_mem);
6123 %}
6124 
6125 //----------Store Instructions-------------------------------------------------
6126 
6127 // Store Byte
6128 instruct storeB(memory mem, xRegI src) %{
6129   match(Set mem (StoreB mem src));
6130 
6131   ins_cost(125);
6132   format %{ "MOV8   $mem,$src" %}
6133   opcode(0x88);
6134   ins_encode( OpcP, RegMem( src, mem ) );
6135   ins_pipe( ialu_mem_reg );
6136 %}
6137 
6138 // Store Char/Short
6139 instruct storeC(memory mem, rRegI src) %{
6140   match(Set mem (StoreC mem src));
6141 
6142   ins_cost(125);
6143   format %{ "MOV16  $mem,$src" %}
6144   opcode(0x89, 0x66);
6145   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
6146   ins_pipe( ialu_mem_reg );
6147 %}
6148 
6149 // Store Integer
6150 instruct storeI(memory mem, rRegI src) %{
6151   match(Set mem (StoreI mem src));
6152 
6153   ins_cost(125);
6154   format %{ "MOV    $mem,$src" %}
6155   opcode(0x89);
6156   ins_encode( OpcP, RegMem( src, mem ) );
6157   ins_pipe( ialu_mem_reg );
6158 %}
6159 
6160 // Store Long
6161 instruct storeL(long_memory mem, eRegL src) %{
6162   predicate(!((StoreLNode*)n)->require_atomic_access());
6163   match(Set mem (StoreL mem src));
6164 
6165   ins_cost(200);
6166   format %{ "MOV    $mem,$src.lo\n\t"
6167             "MOV    $mem+4,$src.hi" %}
6168   opcode(0x89, 0x89);
6169   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
6170   ins_pipe( ialu_mem_long_reg );
6171 %}
6172 
6173 // Store Long to Integer
6174 instruct storeL2I(memory mem, eRegL src) %{
6175   match(Set mem (StoreI mem (ConvL2I src)));
6176 
6177   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
6178   ins_encode %{
6179     __ movl($mem$$Address, $src$$Register);
6180   %}
6181   ins_pipe(ialu_mem_reg);
6182 %}
6183 
6184 // Volatile Store Long.  Must be atomic, so move it into
6185 // the FP TOS and then do a 64-bit FIST.  Has to probe the
6186 // target address before the store (for null-ptr checks)
6187 // so the memory operand is used twice in the encoding.
6188 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
6189   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
6190   match(Set mem (StoreL mem src));
6191   effect( KILL cr );
6192   ins_cost(400);
6193   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6194             "FILD   $src\n\t"
6195             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
6196   opcode(0x3B);
6197   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
6198   ins_pipe( fpu_reg_mem );
6199 %}
6200 
6201 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
6202   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6203   match(Set mem (StoreL mem src));
6204   effect( TEMP tmp, KILL cr );
6205   ins_cost(380);
6206   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6207             "MOVSD  $tmp,$src\n\t"
6208             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6209   ins_encode %{
6210     __ cmpl(rax, $mem$$Address);
6211     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
6212     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6213   %}
6214   ins_pipe( pipe_slow );
6215 %}
6216 
6217 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
6218   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6219   match(Set mem (StoreL mem src));
6220   effect( TEMP tmp2 , TEMP tmp, KILL cr );
6221   ins_cost(360);
6222   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6223             "MOVD   $tmp,$src.lo\n\t"
6224             "MOVD   $tmp2,$src.hi\n\t"
6225             "PUNPCKLDQ $tmp,$tmp2\n\t"
6226             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6227   ins_encode %{
6228     __ cmpl(rax, $mem$$Address);
6229     __ movdl($tmp$$XMMRegister, $src$$Register);
6230     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
6231     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
6232     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6233   %}
6234   ins_pipe( pipe_slow );
6235 %}
6236 
6237 // Store Pointer; for storing unknown oops and raw pointers
6238 instruct storeP(memory mem, anyRegP src) %{
6239   match(Set mem (StoreP mem src));
6240 
6241   ins_cost(125);
6242   format %{ "MOV    $mem,$src" %}
6243   opcode(0x89);
6244   ins_encode( OpcP, RegMem( src, mem ) );
6245   ins_pipe( ialu_mem_reg );
6246 %}
6247 
6248 // Store Integer Immediate
6249 instruct storeImmI(memory mem, immI src) %{
6250   match(Set mem (StoreI mem src));
6251 
6252   ins_cost(150);
6253   format %{ "MOV    $mem,$src" %}
6254   opcode(0xC7);               /* C7 /0 */
6255   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6256   ins_pipe( ialu_mem_imm );
6257 %}
6258 
6259 // Store Short/Char Immediate
6260 instruct storeImmI16(memory mem, immI16 src) %{
6261   predicate(UseStoreImmI16);
6262   match(Set mem (StoreC mem src));
6263 
6264   ins_cost(150);
6265   format %{ "MOV16  $mem,$src" %}
6266   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
6267   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
6268   ins_pipe( ialu_mem_imm );
6269 %}
6270 
6271 // Store Pointer Immediate; null pointers or constant oops that do not
6272 // need card-mark barriers.
6273 instruct storeImmP(memory mem, immP src) %{
6274   match(Set mem (StoreP mem src));
6275 
6276   ins_cost(150);
6277   format %{ "MOV    $mem,$src" %}
6278   opcode(0xC7);               /* C7 /0 */
6279   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6280   ins_pipe( ialu_mem_imm );
6281 %}
6282 
6283 // Store Byte Immediate
6284 instruct storeImmB(memory mem, immI8 src) %{
6285   match(Set mem (StoreB mem src));
6286 
6287   ins_cost(150);
6288   format %{ "MOV8   $mem,$src" %}
6289   opcode(0xC6);               /* C6 /0 */
6290   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6291   ins_pipe( ialu_mem_imm );
6292 %}
6293 
6294 // Store CMS card-mark Immediate
6295 instruct storeImmCM(memory mem, immI8 src) %{
6296   match(Set mem (StoreCM mem src));
6297 
6298   ins_cost(150);
6299   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
6300   opcode(0xC6);               /* C6 /0 */
6301   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6302   ins_pipe( ialu_mem_imm );
6303 %}
6304 
6305 // Store Double
6306 instruct storeDPR( memory mem, regDPR1 src) %{
6307   predicate(UseSSE<=1);
6308   match(Set mem (StoreD mem src));
6309 
6310   ins_cost(100);
6311   format %{ "FST_D  $mem,$src" %}
6312   opcode(0xDD);       /* DD /2 */
6313   ins_encode( enc_FPR_store(mem,src) );
6314   ins_pipe( fpu_mem_reg );
6315 %}
6316 
6317 // Store double does rounding on x86
6318 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
6319   predicate(UseSSE<=1);
6320   match(Set mem (StoreD mem (RoundDouble src)));
6321 
6322   ins_cost(100);
6323   format %{ "FST_D  $mem,$src\t# round" %}
6324   opcode(0xDD);       /* DD /2 */
6325   ins_encode( enc_FPR_store(mem,src) );
6326   ins_pipe( fpu_mem_reg );
6327 %}
6328 
6329 // Store XMM register to memory (double-precision floating points)
6330 // MOVSD instruction
6331 instruct storeD(memory mem, regD src) %{
6332   predicate(UseSSE>=2);
6333   match(Set mem (StoreD mem src));
6334   ins_cost(95);
6335   format %{ "MOVSD  $mem,$src" %}
6336   ins_encode %{
6337     __ movdbl($mem$$Address, $src$$XMMRegister);
6338   %}
6339   ins_pipe( pipe_slow );
6340 %}
6341 
6342 // Store XMM register to memory (single-precision floating point)
6343 // MOVSS instruction
6344 instruct storeF(memory mem, regF src) %{
6345   predicate(UseSSE>=1);
6346   match(Set mem (StoreF mem src));
6347   ins_cost(95);
6348   format %{ "MOVSS  $mem,$src" %}
6349   ins_encode %{
6350     __ movflt($mem$$Address, $src$$XMMRegister);
6351   %}
6352   ins_pipe( pipe_slow );
6353 %}
6354 
6355 // Store Float
6356 instruct storeFPR( memory mem, regFPR1 src) %{
6357   predicate(UseSSE==0);
6358   match(Set mem (StoreF mem src));
6359 
6360   ins_cost(100);
6361   format %{ "FST_S  $mem,$src" %}
6362   opcode(0xD9);       /* D9 /2 */
6363   ins_encode( enc_FPR_store(mem,src) );
6364   ins_pipe( fpu_mem_reg );
6365 %}
6366 
6367 // Store Float does rounding on x86
6368 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
6369   predicate(UseSSE==0);
6370   match(Set mem (StoreF mem (RoundFloat src)));
6371 
6372   ins_cost(100);
6373   format %{ "FST_S  $mem,$src\t# round" %}
6374   opcode(0xD9);       /* D9 /2 */
6375   ins_encode( enc_FPR_store(mem,src) );
6376   ins_pipe( fpu_mem_reg );
6377 %}
6378 
6379 // Store Float does rounding on x86
6380 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
6381   predicate(UseSSE<=1);
6382   match(Set mem (StoreF mem (ConvD2F src)));
6383 
6384   ins_cost(100);
6385   format %{ "FST_S  $mem,$src\t# D-round" %}
6386   opcode(0xD9);       /* D9 /2 */
6387   ins_encode( enc_FPR_store(mem,src) );
6388   ins_pipe( fpu_mem_reg );
6389 %}
6390 
6391 // Store immediate Float value (it is faster than store from FPU register)
6392 // The instruction usage is guarded by predicate in operand immFPR().
6393 instruct storeFPR_imm( memory mem, immFPR src) %{
6394   match(Set mem (StoreF mem src));
6395 
6396   ins_cost(50);
6397   format %{ "MOV    $mem,$src\t# store float" %}
6398   opcode(0xC7);               /* C7 /0 */
6399   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
6400   ins_pipe( ialu_mem_imm );
6401 %}
6402 
6403 // Store immediate Float value (it is faster than store from XMM register)
6404 // The instruction usage is guarded by predicate in operand immF().
6405 instruct storeF_imm( memory mem, immF src) %{
6406   match(Set mem (StoreF mem src));
6407 
6408   ins_cost(50);
6409   format %{ "MOV    $mem,$src\t# store float" %}
6410   opcode(0xC7);               /* C7 /0 */
6411   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
6412   ins_pipe( ialu_mem_imm );
6413 %}
6414 
6415 // Store Integer to stack slot
6416 instruct storeSSI(stackSlotI dst, rRegI src) %{
6417   match(Set dst src);
6418 
6419   ins_cost(100);
6420   format %{ "MOV    $dst,$src" %}
6421   opcode(0x89);
6422   ins_encode( OpcPRegSS( dst, src ) );
6423   ins_pipe( ialu_mem_reg );
6424 %}
6425 
6426 // Store Integer to stack slot
6427 instruct storeSSP(stackSlotP dst, eRegP src) %{
6428   match(Set dst src);
6429 
6430   ins_cost(100);
6431   format %{ "MOV    $dst,$src" %}
6432   opcode(0x89);
6433   ins_encode( OpcPRegSS( dst, src ) );
6434   ins_pipe( ialu_mem_reg );
6435 %}
6436 
6437 // Store Long to stack slot
6438 instruct storeSSL(stackSlotL dst, eRegL src) %{
6439   match(Set dst src);
6440 
6441   ins_cost(200);
6442   format %{ "MOV    $dst,$src.lo\n\t"
6443             "MOV    $dst+4,$src.hi" %}
6444   opcode(0x89, 0x89);
6445   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
6446   ins_pipe( ialu_mem_long_reg );
6447 %}
6448 
6449 //----------MemBar Instructions-----------------------------------------------
6450 // Memory barrier flavors
6451 
6452 instruct membar_acquire() %{
6453   match(MemBarAcquire);
6454   match(LoadFence);
6455   ins_cost(400);
6456 
6457   size(0);
6458   format %{ "MEMBAR-acquire ! (empty encoding)" %}
6459   ins_encode();
6460   ins_pipe(empty);
6461 %}
6462 
6463 instruct membar_acquire_lock() %{
6464   match(MemBarAcquireLock);
6465   ins_cost(0);
6466 
6467   size(0);
6468   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
6469   ins_encode( );
6470   ins_pipe(empty);
6471 %}
6472 
6473 instruct membar_release() %{
6474   match(MemBarRelease);
6475   match(StoreFence);
6476   ins_cost(400);
6477 
6478   size(0);
6479   format %{ "MEMBAR-release ! (empty encoding)" %}
6480   ins_encode( );
6481   ins_pipe(empty);
6482 %}
6483 
6484 instruct membar_release_lock() %{
6485   match(MemBarReleaseLock);
6486   ins_cost(0);
6487 
6488   size(0);
6489   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
6490   ins_encode( );
6491   ins_pipe(empty);
6492 %}
6493 
6494 instruct membar_volatile(eFlagsReg cr) %{
6495   match(MemBarVolatile);
6496   effect(KILL cr);
6497   ins_cost(400);
6498 
6499   format %{ 
6500     $$template
6501     if (os::is_MP()) {
6502       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
6503     } else {
6504       $$emit$$"MEMBAR-volatile ! (empty encoding)"
6505     }
6506   %}
6507   ins_encode %{
6508     __ membar(Assembler::StoreLoad);
6509   %}
6510   ins_pipe(pipe_slow);
6511 %}
6512 
6513 instruct unnecessary_membar_volatile() %{
6514   match(MemBarVolatile);
6515   predicate(Matcher::post_store_load_barrier(n));
6516   ins_cost(0);
6517 
6518   size(0);
6519   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
6520   ins_encode( );
6521   ins_pipe(empty);
6522 %}
6523 
6524 instruct membar_storestore() %{
6525   match(MemBarStoreStore);
6526   ins_cost(0);
6527 
6528   size(0);
6529   format %{ "MEMBAR-storestore (empty encoding)" %}
6530   ins_encode( );
6531   ins_pipe(empty);
6532 %}
6533 
6534 //----------Move Instructions--------------------------------------------------
6535 instruct castX2P(eAXRegP dst, eAXRegI src) %{
6536   match(Set dst (CastX2P src));
6537   format %{ "# X2P  $dst, $src" %}
6538   ins_encode( /*empty encoding*/ );
6539   ins_cost(0);
6540   ins_pipe(empty);
6541 %}
6542 
6543 instruct castP2X(rRegI dst, eRegP src ) %{
6544   match(Set dst (CastP2X src));
6545   ins_cost(50);
6546   format %{ "MOV    $dst, $src\t# CastP2X" %}
6547   ins_encode( enc_Copy( dst, src) );
6548   ins_pipe( ialu_reg_reg );
6549 %}
6550 
6551 //----------Conditional Move---------------------------------------------------
6552 // Conditional move
6553 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
6554   predicate(!VM_Version::supports_cmov() );
6555   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6556   ins_cost(200);
6557   format %{ "J$cop,us skip\t# signed cmove\n\t"
6558             "MOV    $dst,$src\n"
6559       "skip:" %}
6560   ins_encode %{
6561     Label Lskip;
6562     // Invert sense of branch from sense of CMOV
6563     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
6564     __ movl($dst$$Register, $src$$Register);
6565     __ bind(Lskip);
6566   %}
6567   ins_pipe( pipe_cmov_reg );
6568 %}
6569 
6570 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
6571   predicate(!VM_Version::supports_cmov() );
6572   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6573   ins_cost(200);
6574   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
6575             "MOV    $dst,$src\n"
6576       "skip:" %}
6577   ins_encode %{
6578     Label Lskip;
6579     // Invert sense of branch from sense of CMOV
6580     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
6581     __ movl($dst$$Register, $src$$Register);
6582     __ bind(Lskip);
6583   %}
6584   ins_pipe( pipe_cmov_reg );
6585 %}
6586 
6587 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
6588   predicate(VM_Version::supports_cmov() );
6589   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6590   ins_cost(200);
6591   format %{ "CMOV$cop $dst,$src" %}
6592   opcode(0x0F,0x40);
6593   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
6594   ins_pipe( pipe_cmov_reg );
6595 %}
6596 
6597 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
6598   predicate(VM_Version::supports_cmov() );
6599   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6600   ins_cost(200);
6601   format %{ "CMOV$cop $dst,$src" %}
6602   opcode(0x0F,0x40);
6603   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
6604   ins_pipe( pipe_cmov_reg );
6605 %}
6606 
6607 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
6608   predicate(VM_Version::supports_cmov() );
6609   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6610   ins_cost(200);
6611   expand %{
6612     cmovI_regU(cop, cr, dst, src);
6613   %}
6614 %}
6615 
6616 // Conditional move
6617 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
6618   predicate(VM_Version::supports_cmov() );
6619   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6620   ins_cost(250);
6621   format %{ "CMOV$cop $dst,$src" %}
6622   opcode(0x0F,0x40);
6623   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
6624   ins_pipe( pipe_cmov_mem );
6625 %}
6626 
6627 // Conditional move
6628 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
6629   predicate(VM_Version::supports_cmov() );
6630   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6631   ins_cost(250);
6632   format %{ "CMOV$cop $dst,$src" %}
6633   opcode(0x0F,0x40);
6634   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
6635   ins_pipe( pipe_cmov_mem );
6636 %}
6637 
6638 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
6639   predicate(VM_Version::supports_cmov() );
6640   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6641   ins_cost(250);
6642   expand %{
6643     cmovI_memU(cop, cr, dst, src);
6644   %}
6645 %}
6646 
6647 // Conditional move
6648 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
6649   predicate(VM_Version::supports_cmov() );
6650   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6651   ins_cost(200);
6652   format %{ "CMOV$cop $dst,$src\t# ptr" %}
6653   opcode(0x0F,0x40);
6654   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
6655   ins_pipe( pipe_cmov_reg );
6656 %}
6657 
6658 // Conditional move (non-P6 version)
6659 // Note:  a CMoveP is generated for  stubs and native wrappers
6660 //        regardless of whether we are on a P6, so we
6661 //        emulate a cmov here
6662 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
6663   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6664   ins_cost(300);
6665   format %{ "Jn$cop   skip\n\t"
6666           "MOV    $dst,$src\t# pointer\n"
6667       "skip:" %}
6668   opcode(0x8b);
6669   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
6670   ins_pipe( pipe_cmov_reg );
6671 %}
6672 
6673 // Conditional move
6674 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
6675   predicate(VM_Version::supports_cmov() );
6676   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6677   ins_cost(200);
6678   format %{ "CMOV$cop $dst,$src\t# ptr" %}
6679   opcode(0x0F,0x40);
6680   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
6681   ins_pipe( pipe_cmov_reg );
6682 %}
6683 
6684 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
6685   predicate(VM_Version::supports_cmov() );
6686   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6687   ins_cost(200);
6688   expand %{
6689     cmovP_regU(cop, cr, dst, src);
6690   %}
6691 %}
6692 
6693 // DISABLED: Requires the ADLC to emit a bottom_type call that
6694 // correctly meets the two pointer arguments; one is an incoming
6695 // register but the other is a memory operand.  ALSO appears to
6696 // be buggy with implicit null checks.
6697 //
6698 //// Conditional move
6699 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
6700 //  predicate(VM_Version::supports_cmov() );
6701 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6702 //  ins_cost(250);
6703 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
6704 //  opcode(0x0F,0x40);
6705 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
6706 //  ins_pipe( pipe_cmov_mem );
6707 //%}
6708 //
6709 //// Conditional move
6710 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
6711 //  predicate(VM_Version::supports_cmov() );
6712 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6713 //  ins_cost(250);
6714 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
6715 //  opcode(0x0F,0x40);
6716 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
6717 //  ins_pipe( pipe_cmov_mem );
6718 //%}
6719 
6720 // Conditional move
6721 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
6722   predicate(UseSSE<=1);
6723   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6724   ins_cost(200);
6725   format %{ "FCMOV$cop $dst,$src\t# double" %}
6726   opcode(0xDA);
6727   ins_encode( enc_cmov_dpr(cop,src) );
6728   ins_pipe( pipe_cmovDPR_reg );
6729 %}
6730 
6731 // Conditional move
6732 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
6733   predicate(UseSSE==0);
6734   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6735   ins_cost(200);
6736   format %{ "FCMOV$cop $dst,$src\t# float" %}
6737   opcode(0xDA);
6738   ins_encode( enc_cmov_dpr(cop,src) );
6739   ins_pipe( pipe_cmovDPR_reg );
6740 %}
6741 
6742 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
6743 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
6744   predicate(UseSSE<=1);
6745   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6746   ins_cost(200);
6747   format %{ "Jn$cop   skip\n\t"
6748             "MOV    $dst,$src\t# double\n"
6749       "skip:" %}
6750   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
6751   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
6752   ins_pipe( pipe_cmovDPR_reg );
6753 %}
6754 
6755 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
6756 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
6757   predicate(UseSSE==0);
6758   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6759   ins_cost(200);
6760   format %{ "Jn$cop    skip\n\t"
6761             "MOV    $dst,$src\t# float\n"
6762       "skip:" %}
6763   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
6764   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
6765   ins_pipe( pipe_cmovDPR_reg );
6766 %}
6767 
6768 // No CMOVE with SSE/SSE2
6769 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
6770   predicate (UseSSE>=1);
6771   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6772   ins_cost(200);
6773   format %{ "Jn$cop   skip\n\t"
6774             "MOVSS  $dst,$src\t# float\n"
6775       "skip:" %}
6776   ins_encode %{
6777     Label skip;
6778     // Invert sense of branch from sense of CMOV
6779     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
6780     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
6781     __ bind(skip);
6782   %}
6783   ins_pipe( pipe_slow );
6784 %}
6785 
6786 // No CMOVE with SSE/SSE2
6787 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
6788   predicate (UseSSE>=2);
6789   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6790   ins_cost(200);
6791   format %{ "Jn$cop   skip\n\t"
6792             "MOVSD  $dst,$src\t# float\n"
6793       "skip:" %}
6794   ins_encode %{
6795     Label skip;
6796     // Invert sense of branch from sense of CMOV
6797     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
6798     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
6799     __ bind(skip);
6800   %}
6801   ins_pipe( pipe_slow );
6802 %}
6803 
6804 // unsigned version
6805 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
6806   predicate (UseSSE>=1);
6807   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6808   ins_cost(200);
6809   format %{ "Jn$cop   skip\n\t"
6810             "MOVSS  $dst,$src\t# float\n"
6811       "skip:" %}
6812   ins_encode %{
6813     Label skip;
6814     // Invert sense of branch from sense of CMOV
6815     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
6816     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
6817     __ bind(skip);
6818   %}
6819   ins_pipe( pipe_slow );
6820 %}
6821 
6822 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
6823   predicate (UseSSE>=1);
6824   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6825   ins_cost(200);
6826   expand %{
6827     fcmovF_regU(cop, cr, dst, src);
6828   %}
6829 %}
6830 
6831 // unsigned version
6832 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
6833   predicate (UseSSE>=2);
6834   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6835   ins_cost(200);
6836   format %{ "Jn$cop   skip\n\t"
6837             "MOVSD  $dst,$src\t# float\n"
6838       "skip:" %}
6839   ins_encode %{
6840     Label skip;
6841     // Invert sense of branch from sense of CMOV
6842     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
6843     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
6844     __ bind(skip);
6845   %}
6846   ins_pipe( pipe_slow );
6847 %}
6848 
6849 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
6850   predicate (UseSSE>=2);
6851   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6852   ins_cost(200);
6853   expand %{
6854     fcmovD_regU(cop, cr, dst, src);
6855   %}
6856 %}
6857 
6858 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
6859   predicate(VM_Version::supports_cmov() );
6860   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6861   ins_cost(200);
6862   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
6863             "CMOV$cop $dst.hi,$src.hi" %}
6864   opcode(0x0F,0x40);
6865   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
6866   ins_pipe( pipe_cmov_reg_long );
6867 %}
6868 
6869 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
6870   predicate(VM_Version::supports_cmov() );
6871   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6872   ins_cost(200);
6873   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
6874             "CMOV$cop $dst.hi,$src.hi" %}
6875   opcode(0x0F,0x40);
6876   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
6877   ins_pipe( pipe_cmov_reg_long );
6878 %}
6879 
6880 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
6881   predicate(VM_Version::supports_cmov() );
6882   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6883   ins_cost(200);
6884   expand %{
6885     cmovL_regU(cop, cr, dst, src);
6886   %}
6887 %}
6888 
6889 //----------Arithmetic Instructions--------------------------------------------
6890 //----------Addition Instructions----------------------------------------------
6891 
6892 // Integer Addition Instructions
6893 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
6894   match(Set dst (AddI dst src));
6895   effect(KILL cr);
6896 
6897   size(2);
6898   format %{ "ADD    $dst,$src" %}
6899   opcode(0x03);
6900   ins_encode( OpcP, RegReg( dst, src) );
6901   ins_pipe( ialu_reg_reg );
6902 %}
6903 
6904 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
6905   match(Set dst (AddI dst src));
6906   effect(KILL cr);
6907 
6908   format %{ "ADD    $dst,$src" %}
6909   opcode(0x81, 0x00); /* /0 id */
6910   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
6911   ins_pipe( ialu_reg );
6912 %}
6913 
6914 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
6915   predicate(UseIncDec);
6916   match(Set dst (AddI dst src));
6917   effect(KILL cr);
6918 
6919   size(1);
6920   format %{ "INC    $dst" %}
6921   opcode(0x40); /*  */
6922   ins_encode( Opc_plus( primary, dst ) );
6923   ins_pipe( ialu_reg );
6924 %}
6925 
6926 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
6927   match(Set dst (AddI src0 src1));
6928   ins_cost(110);
6929 
6930   format %{ "LEA    $dst,[$src0 + $src1]" %}
6931   opcode(0x8D); /* 0x8D /r */
6932   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
6933   ins_pipe( ialu_reg_reg );
6934 %}
6935 
6936 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
6937   match(Set dst (AddP src0 src1));
6938   ins_cost(110);
6939 
6940   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
6941   opcode(0x8D); /* 0x8D /r */
6942   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
6943   ins_pipe( ialu_reg_reg );
6944 %}
6945 
6946 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
6947   predicate(UseIncDec);
6948   match(Set dst (AddI dst src));
6949   effect(KILL cr);
6950 
6951   size(1);
6952   format %{ "DEC    $dst" %}
6953   opcode(0x48); /*  */
6954   ins_encode( Opc_plus( primary, dst ) );
6955   ins_pipe( ialu_reg );
6956 %}
6957 
6958 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
6959   match(Set dst (AddP dst src));
6960   effect(KILL cr);
6961 
6962   size(2);
6963   format %{ "ADD    $dst,$src" %}
6964   opcode(0x03);
6965   ins_encode( OpcP, RegReg( dst, src) );
6966   ins_pipe( ialu_reg_reg );
6967 %}
6968 
6969 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
6970   match(Set dst (AddP dst src));
6971   effect(KILL cr);
6972 
6973   format %{ "ADD    $dst,$src" %}
6974   opcode(0x81,0x00); /* Opcode 81 /0 id */
6975   // ins_encode( RegImm( dst, src) );
6976   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
6977   ins_pipe( ialu_reg );
6978 %}
6979 
6980 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
6981   match(Set dst (AddI dst (LoadI src)));
6982   effect(KILL cr);
6983 
6984   ins_cost(125);
6985   format %{ "ADD    $dst,$src" %}
6986   opcode(0x03);
6987   ins_encode( OpcP, RegMem( dst, src) );
6988   ins_pipe( ialu_reg_mem );
6989 %}
6990 
6991 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
6992   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
6993   effect(KILL cr);
6994 
6995   ins_cost(150);
6996   format %{ "ADD    $dst,$src" %}
6997   opcode(0x01);  /* Opcode 01 /r */
6998   ins_encode( OpcP, RegMem( src, dst ) );
6999   ins_pipe( ialu_mem_reg );
7000 %}
7001 
7002 // Add Memory with Immediate
7003 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
7004   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7005   effect(KILL cr);
7006 
7007   ins_cost(125);
7008   format %{ "ADD    $dst,$src" %}
7009   opcode(0x81);               /* Opcode 81 /0 id */
7010   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
7011   ins_pipe( ialu_mem_imm );
7012 %}
7013 
7014 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
7015   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7016   effect(KILL cr);
7017 
7018   ins_cost(125);
7019   format %{ "INC    $dst" %}
7020   opcode(0xFF);               /* Opcode FF /0 */
7021   ins_encode( OpcP, RMopc_Mem(0x00,dst));
7022   ins_pipe( ialu_mem_imm );
7023 %}
7024 
7025 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
7026   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7027   effect(KILL cr);
7028 
7029   ins_cost(125);
7030   format %{ "DEC    $dst" %}
7031   opcode(0xFF);               /* Opcode FF /1 */
7032   ins_encode( OpcP, RMopc_Mem(0x01,dst));
7033   ins_pipe( ialu_mem_imm );
7034 %}
7035 
7036 
7037 instruct checkCastPP( eRegP dst ) %{
7038   match(Set dst (CheckCastPP dst));
7039 
7040   size(0);
7041   format %{ "#checkcastPP of $dst" %}
7042   ins_encode( /*empty encoding*/ );
7043   ins_pipe( empty );
7044 %}
7045 
7046 instruct castPP( eRegP dst ) %{
7047   match(Set dst (CastPP dst));
7048   format %{ "#castPP of $dst" %}
7049   ins_encode( /*empty encoding*/ );
7050   ins_pipe( empty );
7051 %}
7052 
7053 instruct castII( rRegI dst ) %{
7054   match(Set dst (CastII dst));
7055   format %{ "#castII of $dst" %}
7056   ins_encode( /*empty encoding*/ );
7057   ins_cost(0);
7058   ins_pipe( empty );
7059 %}
7060 
7061 
7062 // Load-locked - same as a regular pointer load when used with compare-swap
7063 instruct loadPLocked(eRegP dst, memory mem) %{
7064   match(Set dst (LoadPLocked mem));
7065 
7066   ins_cost(125);
7067   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
7068   opcode(0x8B);
7069   ins_encode( OpcP, RegMem(dst,mem));
7070   ins_pipe( ialu_reg_mem );
7071 %}
7072 
7073 // Conditional-store of the updated heap-top.
7074 // Used during allocation of the shared heap.
7075 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7076 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
7077   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7078   // EAX is killed if there is contention, but then it's also unused.
7079   // In the common case of no contention, EAX holds the new oop address.
7080   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
7081   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
7082   ins_pipe( pipe_cmpxchg );
7083 %}
7084 
7085 // Conditional-store of an int value.
7086 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
7087 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
7088   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7089   effect(KILL oldval);
7090   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
7091   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
7092   ins_pipe( pipe_cmpxchg );
7093 %}
7094 
7095 // Conditional-store of a long value.
7096 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
7097 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7098   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7099   effect(KILL oldval);
7100   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
7101             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
7102             "XCHG   EBX,ECX"
7103   %}
7104   ins_encode %{
7105     // Note: we need to swap rbx, and rcx before and after the
7106     //       cmpxchg8 instruction because the instruction uses
7107     //       rcx as the high order word of the new value to store but
7108     //       our register encoding uses rbx.
7109     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7110     if( os::is_MP() )
7111       __ lock();
7112     __ cmpxchg8($mem$$Address);
7113     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7114   %}
7115   ins_pipe( pipe_cmpxchg );
7116 %}
7117 
7118 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7119 
7120 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7121   predicate(VM_Version::supports_cx8());
7122   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7123   effect(KILL cr, KILL oldval);
7124   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7125             "MOV    $res,0\n\t"
7126             "JNE,s  fail\n\t"
7127             "MOV    $res,1\n"
7128           "fail:" %}
7129   ins_encode( enc_cmpxchg8(mem_ptr),
7130               enc_flags_ne_to_boolean(res) );
7131   ins_pipe( pipe_cmpxchg );
7132 %}
7133 
7134 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
7135   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7136   effect(KILL cr, KILL oldval);
7137   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7138             "MOV    $res,0\n\t"
7139             "JNE,s  fail\n\t"
7140             "MOV    $res,1\n"
7141           "fail:" %}
7142   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7143   ins_pipe( pipe_cmpxchg );
7144 %}
7145 
7146 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
7147   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7148   effect(KILL cr, KILL oldval);
7149   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7150             "MOV    $res,0\n\t"
7151             "JNE,s  fail\n\t"
7152             "MOV    $res,1\n"
7153           "fail:" %}
7154   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7155   ins_pipe( pipe_cmpxchg );
7156 %}
7157 
7158 instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
7159   predicate(n->as_LoadStore()->result_not_used());
7160   match(Set dummy (GetAndAddI mem add));
7161   effect(KILL cr);
7162   format %{ "ADDL  [$mem],$add" %}
7163   ins_encode %{
7164     if (os::is_MP()) { __ lock(); }
7165     __ addl($mem$$Address, $add$$constant);
7166   %}
7167   ins_pipe( pipe_cmpxchg );
7168 %}
7169 
7170 instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
7171   match(Set newval (GetAndAddI mem newval));
7172   effect(KILL cr);
7173   format %{ "XADDL  [$mem],$newval" %}
7174   ins_encode %{
7175     if (os::is_MP()) { __ lock(); }
7176     __ xaddl($mem$$Address, $newval$$Register);
7177   %}
7178   ins_pipe( pipe_cmpxchg );
7179 %}
7180 
7181 instruct xchgI( memory mem, rRegI newval) %{
7182   match(Set newval (GetAndSetI mem newval));
7183   format %{ "XCHGL  $newval,[$mem]" %}
7184   ins_encode %{
7185     __ xchgl($newval$$Register, $mem$$Address);
7186   %}
7187   ins_pipe( pipe_cmpxchg );
7188 %}
7189 
7190 instruct xchgP( memory mem, pRegP newval) %{
7191   match(Set newval (GetAndSetP mem newval));
7192   format %{ "XCHGL  $newval,[$mem]" %}
7193   ins_encode %{
7194     __ xchgl($newval$$Register, $mem$$Address);
7195   %}
7196   ins_pipe( pipe_cmpxchg );
7197 %}
7198 
7199 //----------Subtraction Instructions-------------------------------------------
7200 
7201 // Integer Subtraction Instructions
7202 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7203   match(Set dst (SubI dst src));
7204   effect(KILL cr);
7205 
7206   size(2);
7207   format %{ "SUB    $dst,$src" %}
7208   opcode(0x2B);
7209   ins_encode( OpcP, RegReg( dst, src) );
7210   ins_pipe( ialu_reg_reg );
7211 %}
7212 
7213 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7214   match(Set dst (SubI dst src));
7215   effect(KILL cr);
7216 
7217   format %{ "SUB    $dst,$src" %}
7218   opcode(0x81,0x05);  /* Opcode 81 /5 */
7219   // ins_encode( RegImm( dst, src) );
7220   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7221   ins_pipe( ialu_reg );
7222 %}
7223 
7224 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7225   match(Set dst (SubI dst (LoadI src)));
7226   effect(KILL cr);
7227 
7228   ins_cost(125);
7229   format %{ "SUB    $dst,$src" %}
7230   opcode(0x2B);
7231   ins_encode( OpcP, RegMem( dst, src) );
7232   ins_pipe( ialu_reg_mem );
7233 %}
7234 
7235 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7236   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7237   effect(KILL cr);
7238 
7239   ins_cost(150);
7240   format %{ "SUB    $dst,$src" %}
7241   opcode(0x29);  /* Opcode 29 /r */
7242   ins_encode( OpcP, RegMem( src, dst ) );
7243   ins_pipe( ialu_mem_reg );
7244 %}
7245 
7246 // Subtract from a pointer
7247 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
7248   match(Set dst (AddP dst (SubI zero src)));
7249   effect(KILL cr);
7250 
7251   size(2);
7252   format %{ "SUB    $dst,$src" %}
7253   opcode(0x2B);
7254   ins_encode( OpcP, RegReg( dst, src) );
7255   ins_pipe( ialu_reg_reg );
7256 %}
7257 
7258 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
7259   match(Set dst (SubI zero dst));
7260   effect(KILL cr);
7261 
7262   size(2);
7263   format %{ "NEG    $dst" %}
7264   opcode(0xF7,0x03);  // Opcode F7 /3
7265   ins_encode( OpcP, RegOpc( dst ) );
7266   ins_pipe( ialu_reg );
7267 %}
7268 
7269 //----------Multiplication/Division Instructions-------------------------------
7270 // Integer Multiplication Instructions
7271 // Multiply Register
7272 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7273   match(Set dst (MulI dst src));
7274   effect(KILL cr);
7275 
7276   size(3);
7277   ins_cost(300);
7278   format %{ "IMUL   $dst,$src" %}
7279   opcode(0xAF, 0x0F);
7280   ins_encode( OpcS, OpcP, RegReg( dst, src) );
7281   ins_pipe( ialu_reg_reg_alu0 );
7282 %}
7283 
7284 // Multiply 32-bit Immediate
7285 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
7286   match(Set dst (MulI src imm));
7287   effect(KILL cr);
7288 
7289   ins_cost(300);
7290   format %{ "IMUL   $dst,$src,$imm" %}
7291   opcode(0x69);  /* 69 /r id */
7292   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
7293   ins_pipe( ialu_reg_reg_alu0 );
7294 %}
7295 
7296 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
7297   match(Set dst src);
7298   effect(KILL cr);
7299 
7300   // Note that this is artificially increased to make it more expensive than loadConL
7301   ins_cost(250);
7302   format %{ "MOV    EAX,$src\t// low word only" %}
7303   opcode(0xB8);
7304   ins_encode( LdImmL_Lo(dst, src) );
7305   ins_pipe( ialu_reg_fat );
7306 %}
7307 
7308 // Multiply by 32-bit Immediate, taking the shifted high order results
7309 //  (special case for shift by 32)
7310 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
7311   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7312   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7313              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7314              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7315   effect(USE src1, KILL cr);
7316 
7317   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7318   ins_cost(0*100 + 1*400 - 150);
7319   format %{ "IMUL   EDX:EAX,$src1" %}
7320   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7321   ins_pipe( pipe_slow );
7322 %}
7323 
7324 // Multiply by 32-bit Immediate, taking the shifted high order results
7325 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
7326   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7327   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7328              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7329              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7330   effect(USE src1, KILL cr);
7331 
7332   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7333   ins_cost(1*100 + 1*400 - 150);
7334   format %{ "IMUL   EDX:EAX,$src1\n\t"
7335             "SAR    EDX,$cnt-32" %}
7336   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7337   ins_pipe( pipe_slow );
7338 %}
7339 
7340 // Multiply Memory 32-bit Immediate
7341 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
7342   match(Set dst (MulI (LoadI src) imm));
7343   effect(KILL cr);
7344 
7345   ins_cost(300);
7346   format %{ "IMUL   $dst,$src,$imm" %}
7347   opcode(0x69);  /* 69 /r id */
7348   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
7349   ins_pipe( ialu_reg_mem_alu0 );
7350 %}
7351 
7352 // Multiply Memory
7353 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
7354   match(Set dst (MulI dst (LoadI src)));
7355   effect(KILL cr);
7356 
7357   ins_cost(350);
7358   format %{ "IMUL   $dst,$src" %}
7359   opcode(0xAF, 0x0F);
7360   ins_encode( OpcS, OpcP, RegMem( dst, src) );
7361   ins_pipe( ialu_reg_mem_alu0 );
7362 %}
7363 
7364 // Multiply Register Int to Long
7365 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
7366   // Basic Idea: long = (long)int * (long)int
7367   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
7368   effect(DEF dst, USE src, USE src1, KILL flags);
7369 
7370   ins_cost(300);
7371   format %{ "IMUL   $dst,$src1" %}
7372 
7373   ins_encode( long_int_multiply( dst, src1 ) );
7374   ins_pipe( ialu_reg_reg_alu0 );
7375 %}
7376 
7377 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
7378   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
7379   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
7380   effect(KILL flags);
7381 
7382   ins_cost(300);
7383   format %{ "MUL    $dst,$src1" %}
7384 
7385   ins_encode( long_uint_multiply(dst, src1) );
7386   ins_pipe( ialu_reg_reg_alu0 );
7387 %}
7388 
7389 // Multiply Register Long
7390 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
7391   match(Set dst (MulL dst src));
7392   effect(KILL cr, TEMP tmp);
7393   ins_cost(4*100+3*400);
7394 // Basic idea: lo(result) = lo(x_lo * y_lo)
7395 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
7396   format %{ "MOV    $tmp,$src.lo\n\t"
7397             "IMUL   $tmp,EDX\n\t"
7398             "MOV    EDX,$src.hi\n\t"
7399             "IMUL   EDX,EAX\n\t"
7400             "ADD    $tmp,EDX\n\t"
7401             "MUL    EDX:EAX,$src.lo\n\t"
7402             "ADD    EDX,$tmp" %}
7403   ins_encode( long_multiply( dst, src, tmp ) );
7404   ins_pipe( pipe_slow );
7405 %}
7406 
7407 // Multiply Register Long where the left operand's high 32 bits are zero
7408 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
7409   predicate(is_operand_hi32_zero(n->in(1)));
7410   match(Set dst (MulL dst src));
7411   effect(KILL cr, TEMP tmp);
7412   ins_cost(2*100+2*400);
7413 // Basic idea: lo(result) = lo(x_lo * y_lo)
7414 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
7415   format %{ "MOV    $tmp,$src.hi\n\t"
7416             "IMUL   $tmp,EAX\n\t"
7417             "MUL    EDX:EAX,$src.lo\n\t"
7418             "ADD    EDX,$tmp" %}
7419   ins_encode %{
7420     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
7421     __ imull($tmp$$Register, rax);
7422     __ mull($src$$Register);
7423     __ addl(rdx, $tmp$$Register);
7424   %}
7425   ins_pipe( pipe_slow );
7426 %}
7427 
7428 // Multiply Register Long where the right operand's high 32 bits are zero
7429 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
7430   predicate(is_operand_hi32_zero(n->in(2)));
7431   match(Set dst (MulL dst src));
7432   effect(KILL cr, TEMP tmp);
7433   ins_cost(2*100+2*400);
7434 // Basic idea: lo(result) = lo(x_lo * y_lo)
7435 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
7436   format %{ "MOV    $tmp,$src.lo\n\t"
7437             "IMUL   $tmp,EDX\n\t"
7438             "MUL    EDX:EAX,$src.lo\n\t"
7439             "ADD    EDX,$tmp" %}
7440   ins_encode %{
7441     __ movl($tmp$$Register, $src$$Register);
7442     __ imull($tmp$$Register, rdx);
7443     __ mull($src$$Register);
7444     __ addl(rdx, $tmp$$Register);
7445   %}
7446   ins_pipe( pipe_slow );
7447 %}
7448 
7449 // Multiply Register Long where the left and the right operands' high 32 bits are zero
7450 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
7451   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
7452   match(Set dst (MulL dst src));
7453   effect(KILL cr);
7454   ins_cost(1*400);
7455 // Basic idea: lo(result) = lo(x_lo * y_lo)
7456 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
7457   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
7458   ins_encode %{
7459     __ mull($src$$Register);
7460   %}
7461   ins_pipe( pipe_slow );
7462 %}
7463 
7464 // Multiply Register Long by small constant
7465 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
7466   match(Set dst (MulL dst src));
7467   effect(KILL cr, TEMP tmp);
7468   ins_cost(2*100+2*400);
7469   size(12);
7470 // Basic idea: lo(result) = lo(src * EAX)
7471 //             hi(result) = hi(src * EAX) + lo(src * EDX)
7472   format %{ "IMUL   $tmp,EDX,$src\n\t"
7473             "MOV    EDX,$src\n\t"
7474             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
7475             "ADD    EDX,$tmp" %}
7476   ins_encode( long_multiply_con( dst, src, tmp ) );
7477   ins_pipe( pipe_slow );
7478 %}
7479 
7480 // Integer DIV with Register
7481 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
7482   match(Set rax (DivI rax div));
7483   effect(KILL rdx, KILL cr);
7484   size(26);
7485   ins_cost(30*100+10*100);
7486   format %{ "CMP    EAX,0x80000000\n\t"
7487             "JNE,s  normal\n\t"
7488             "XOR    EDX,EDX\n\t"
7489             "CMP    ECX,-1\n\t"
7490             "JE,s   done\n"
7491     "normal: CDQ\n\t"
7492             "IDIV   $div\n\t"
7493     "done:"        %}
7494   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7495   ins_encode( cdq_enc, OpcP, RegOpc(div) );
7496   ins_pipe( ialu_reg_reg_alu0 );
7497 %}
7498 
7499 // Divide Register Long
7500 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
7501   match(Set dst (DivL src1 src2));
7502   effect( KILL cr, KILL cx, KILL bx );
7503   ins_cost(10000);
7504   format %{ "PUSH   $src1.hi\n\t"
7505             "PUSH   $src1.lo\n\t"
7506             "PUSH   $src2.hi\n\t"
7507             "PUSH   $src2.lo\n\t"
7508             "CALL   SharedRuntime::ldiv\n\t"
7509             "ADD    ESP,16" %}
7510   ins_encode( long_div(src1,src2) );
7511   ins_pipe( pipe_slow );
7512 %}
7513 
7514 // Integer DIVMOD with Register, both quotient and mod results
7515 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
7516   match(DivModI rax div);
7517   effect(KILL cr);
7518   size(26);
7519   ins_cost(30*100+10*100);
7520   format %{ "CMP    EAX,0x80000000\n\t"
7521             "JNE,s  normal\n\t"
7522             "XOR    EDX,EDX\n\t"
7523             "CMP    ECX,-1\n\t"
7524             "JE,s   done\n"
7525     "normal: CDQ\n\t"
7526             "IDIV   $div\n\t"
7527     "done:"        %}
7528   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7529   ins_encode( cdq_enc, OpcP, RegOpc(div) );
7530   ins_pipe( pipe_slow );
7531 %}
7532 
7533 // Integer MOD with Register
7534 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
7535   match(Set rdx (ModI rax div));
7536   effect(KILL rax, KILL cr);
7537 
7538   size(26);
7539   ins_cost(300);
7540   format %{ "CDQ\n\t"
7541             "IDIV   $div" %}
7542   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7543   ins_encode( cdq_enc, OpcP, RegOpc(div) );
7544   ins_pipe( ialu_reg_reg_alu0 );
7545 %}
7546 
7547 // Remainder Register Long
7548 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
7549   match(Set dst (ModL src1 src2));
7550   effect( KILL cr, KILL cx, KILL bx );
7551   ins_cost(10000);
7552   format %{ "PUSH   $src1.hi\n\t"
7553             "PUSH   $src1.lo\n\t"
7554             "PUSH   $src2.hi\n\t"
7555             "PUSH   $src2.lo\n\t"
7556             "CALL   SharedRuntime::lrem\n\t"
7557             "ADD    ESP,16" %}
7558   ins_encode( long_mod(src1,src2) );
7559   ins_pipe( pipe_slow );
7560 %}
7561 
7562 // Divide Register Long (no special case since divisor != -1)
7563 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
7564   match(Set dst (DivL dst imm));
7565   effect( TEMP tmp, TEMP tmp2, KILL cr );
7566   ins_cost(1000);
7567   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
7568             "XOR    $tmp2,$tmp2\n\t"
7569             "CMP    $tmp,EDX\n\t"
7570             "JA,s   fast\n\t"
7571             "MOV    $tmp2,EAX\n\t"
7572             "MOV    EAX,EDX\n\t"
7573             "MOV    EDX,0\n\t"
7574             "JLE,s  pos\n\t"
7575             "LNEG   EAX : $tmp2\n\t"
7576             "DIV    $tmp # unsigned division\n\t"
7577             "XCHG   EAX,$tmp2\n\t"
7578             "DIV    $tmp\n\t"
7579             "LNEG   $tmp2 : EAX\n\t"
7580             "JMP,s  done\n"
7581     "pos:\n\t"
7582             "DIV    $tmp\n\t"
7583             "XCHG   EAX,$tmp2\n"
7584     "fast:\n\t"
7585             "DIV    $tmp\n"
7586     "done:\n\t"
7587             "MOV    EDX,$tmp2\n\t"
7588             "NEG    EDX:EAX # if $imm < 0" %}
7589   ins_encode %{
7590     int con = (int)$imm$$constant;
7591     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
7592     int pcon = (con > 0) ? con : -con;
7593     Label Lfast, Lpos, Ldone;
7594 
7595     __ movl($tmp$$Register, pcon);
7596     __ xorl($tmp2$$Register,$tmp2$$Register);
7597     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
7598     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
7599 
7600     __ movl($tmp2$$Register, $dst$$Register); // save
7601     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
7602     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
7603     __ jccb(Assembler::lessEqual, Lpos); // result is positive
7604 
7605     // Negative dividend.
7606     // convert value to positive to use unsigned division
7607     __ lneg($dst$$Register, $tmp2$$Register);
7608     __ divl($tmp$$Register);
7609     __ xchgl($dst$$Register, $tmp2$$Register);
7610     __ divl($tmp$$Register);
7611     // revert result back to negative
7612     __ lneg($tmp2$$Register, $dst$$Register);
7613     __ jmpb(Ldone);
7614 
7615     __ bind(Lpos);
7616     __ divl($tmp$$Register); // Use unsigned division
7617     __ xchgl($dst$$Register, $tmp2$$Register);
7618     // Fallthrow for final divide, tmp2 has 32 bit hi result
7619 
7620     __ bind(Lfast);
7621     // fast path: src is positive
7622     __ divl($tmp$$Register); // Use unsigned division
7623 
7624     __ bind(Ldone);
7625     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
7626     if (con < 0) {
7627       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
7628     }
7629   %}
7630   ins_pipe( pipe_slow );
7631 %}
7632 
7633 // Remainder Register Long (remainder fit into 32 bits)
7634 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
7635   match(Set dst (ModL dst imm));
7636   effect( TEMP tmp, TEMP tmp2, KILL cr );
7637   ins_cost(1000);
7638   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
7639             "CMP    $tmp,EDX\n\t"
7640             "JA,s   fast\n\t"
7641             "MOV    $tmp2,EAX\n\t"
7642             "MOV    EAX,EDX\n\t"
7643             "MOV    EDX,0\n\t"
7644             "JLE,s  pos\n\t"
7645             "LNEG   EAX : $tmp2\n\t"
7646             "DIV    $tmp # unsigned division\n\t"
7647             "MOV    EAX,$tmp2\n\t"
7648             "DIV    $tmp\n\t"
7649             "NEG    EDX\n\t"
7650             "JMP,s  done\n"
7651     "pos:\n\t"
7652             "DIV    $tmp\n\t"
7653             "MOV    EAX,$tmp2\n"
7654     "fast:\n\t"
7655             "DIV    $tmp\n"
7656     "done:\n\t"
7657             "MOV    EAX,EDX\n\t"
7658             "SAR    EDX,31\n\t" %}
7659   ins_encode %{
7660     int con = (int)$imm$$constant;
7661     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
7662     int pcon = (con > 0) ? con : -con;
7663     Label  Lfast, Lpos, Ldone;
7664 
7665     __ movl($tmp$$Register, pcon);
7666     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
7667     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
7668 
7669     __ movl($tmp2$$Register, $dst$$Register); // save
7670     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
7671     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
7672     __ jccb(Assembler::lessEqual, Lpos); // result is positive
7673 
7674     // Negative dividend.
7675     // convert value to positive to use unsigned division
7676     __ lneg($dst$$Register, $tmp2$$Register);
7677     __ divl($tmp$$Register);
7678     __ movl($dst$$Register, $tmp2$$Register);
7679     __ divl($tmp$$Register);
7680     // revert remainder back to negative
7681     __ negl(HIGH_FROM_LOW($dst$$Register));
7682     __ jmpb(Ldone);
7683 
7684     __ bind(Lpos);
7685     __ divl($tmp$$Register);
7686     __ movl($dst$$Register, $tmp2$$Register);
7687 
7688     __ bind(Lfast);
7689     // fast path: src is positive
7690     __ divl($tmp$$Register);
7691 
7692     __ bind(Ldone);
7693     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
7694     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
7695 
7696   %}
7697   ins_pipe( pipe_slow );
7698 %}
7699 
7700 // Integer Shift Instructions
7701 // Shift Left by one
7702 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
7703   match(Set dst (LShiftI dst shift));
7704   effect(KILL cr);
7705 
7706   size(2);
7707   format %{ "SHL    $dst,$shift" %}
7708   opcode(0xD1, 0x4);  /* D1 /4 */
7709   ins_encode( OpcP, RegOpc( dst ) );
7710   ins_pipe( ialu_reg );
7711 %}
7712 
7713 // Shift Left by 8-bit immediate
7714 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
7715   match(Set dst (LShiftI dst shift));
7716   effect(KILL cr);
7717 
7718   size(3);
7719   format %{ "SHL    $dst,$shift" %}
7720   opcode(0xC1, 0x4);  /* C1 /4 ib */
7721   ins_encode( RegOpcImm( dst, shift) );
7722   ins_pipe( ialu_reg );
7723 %}
7724 
7725 // Shift Left by variable
7726 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
7727   match(Set dst (LShiftI dst shift));
7728   effect(KILL cr);
7729 
7730   size(2);
7731   format %{ "SHL    $dst,$shift" %}
7732   opcode(0xD3, 0x4);  /* D3 /4 */
7733   ins_encode( OpcP, RegOpc( dst ) );
7734   ins_pipe( ialu_reg_reg );
7735 %}
7736 
7737 // Arithmetic shift right by one
7738 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
7739   match(Set dst (RShiftI dst shift));
7740   effect(KILL cr);
7741 
7742   size(2);
7743   format %{ "SAR    $dst,$shift" %}
7744   opcode(0xD1, 0x7);  /* D1 /7 */
7745   ins_encode( OpcP, RegOpc( dst ) );
7746   ins_pipe( ialu_reg );
7747 %}
7748 
7749 // Arithmetic shift right by one
7750 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
7751   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
7752   effect(KILL cr);
7753   format %{ "SAR    $dst,$shift" %}
7754   opcode(0xD1, 0x7);  /* D1 /7 */
7755   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
7756   ins_pipe( ialu_mem_imm );
7757 %}
7758 
7759 // Arithmetic Shift Right by 8-bit immediate
7760 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
7761   match(Set dst (RShiftI dst shift));
7762   effect(KILL cr);
7763 
7764   size(3);
7765   format %{ "SAR    $dst,$shift" %}
7766   opcode(0xC1, 0x7);  /* C1 /7 ib */
7767   ins_encode( RegOpcImm( dst, shift ) );
7768   ins_pipe( ialu_mem_imm );
7769 %}
7770 
7771 // Arithmetic Shift Right by 8-bit immediate
7772 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
7773   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
7774   effect(KILL cr);
7775 
7776   format %{ "SAR    $dst,$shift" %}
7777   opcode(0xC1, 0x7);  /* C1 /7 ib */
7778   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
7779   ins_pipe( ialu_mem_imm );
7780 %}
7781 
7782 // Arithmetic Shift Right by variable
7783 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
7784   match(Set dst (RShiftI dst shift));
7785   effect(KILL cr);
7786 
7787   size(2);
7788   format %{ "SAR    $dst,$shift" %}
7789   opcode(0xD3, 0x7);  /* D3 /7 */
7790   ins_encode( OpcP, RegOpc( dst ) );
7791   ins_pipe( ialu_reg_reg );
7792 %}
7793 
7794 // Logical shift right by one
7795 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
7796   match(Set dst (URShiftI dst shift));
7797   effect(KILL cr);
7798 
7799   size(2);
7800   format %{ "SHR    $dst,$shift" %}
7801   opcode(0xD1, 0x5);  /* D1 /5 */
7802   ins_encode( OpcP, RegOpc( dst ) );
7803   ins_pipe( ialu_reg );
7804 %}
7805 
7806 // Logical Shift Right by 8-bit immediate
7807 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
7808   match(Set dst (URShiftI dst shift));
7809   effect(KILL cr);
7810 
7811   size(3);
7812   format %{ "SHR    $dst,$shift" %}
7813   opcode(0xC1, 0x5);  /* C1 /5 ib */
7814   ins_encode( RegOpcImm( dst, shift) );
7815   ins_pipe( ialu_reg );
7816 %}
7817 
7818 
7819 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
7820 // This idiom is used by the compiler for the i2b bytecode.
7821 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
7822   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
7823 
7824   size(3);
7825   format %{ "MOVSX  $dst,$src :8" %}
7826   ins_encode %{
7827     __ movsbl($dst$$Register, $src$$Register);
7828   %}
7829   ins_pipe(ialu_reg_reg);
7830 %}
7831 
7832 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
7833 // This idiom is used by the compiler the i2s bytecode.
7834 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
7835   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
7836 
7837   size(3);
7838   format %{ "MOVSX  $dst,$src :16" %}
7839   ins_encode %{
7840     __ movswl($dst$$Register, $src$$Register);
7841   %}
7842   ins_pipe(ialu_reg_reg);
7843 %}
7844 
7845 
7846 // Logical Shift Right by variable
7847 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
7848   match(Set dst (URShiftI dst shift));
7849   effect(KILL cr);
7850 
7851   size(2);
7852   format %{ "SHR    $dst,$shift" %}
7853   opcode(0xD3, 0x5);  /* D3 /5 */
7854   ins_encode( OpcP, RegOpc( dst ) );
7855   ins_pipe( ialu_reg_reg );
7856 %}
7857 
7858 
7859 //----------Logical Instructions-----------------------------------------------
7860 //----------Integer Logical Instructions---------------------------------------
7861 // And Instructions
7862 // And Register with Register
7863 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7864   match(Set dst (AndI dst src));
7865   effect(KILL cr);
7866 
7867   size(2);
7868   format %{ "AND    $dst,$src" %}
7869   opcode(0x23);
7870   ins_encode( OpcP, RegReg( dst, src) );
7871   ins_pipe( ialu_reg_reg );
7872 %}
7873 
7874 // And Register with Immediate
7875 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7876   match(Set dst (AndI dst src));
7877   effect(KILL cr);
7878 
7879   format %{ "AND    $dst,$src" %}
7880   opcode(0x81,0x04);  /* Opcode 81 /4 */
7881   // ins_encode( RegImm( dst, src) );
7882   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7883   ins_pipe( ialu_reg );
7884 %}
7885 
7886 // And Register with Memory
7887 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7888   match(Set dst (AndI dst (LoadI src)));
7889   effect(KILL cr);
7890 
7891   ins_cost(125);
7892   format %{ "AND    $dst,$src" %}
7893   opcode(0x23);
7894   ins_encode( OpcP, RegMem( dst, src) );
7895   ins_pipe( ialu_reg_mem );
7896 %}
7897 
7898 // And Memory with Register
7899 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7900   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
7901   effect(KILL cr);
7902 
7903   ins_cost(150);
7904   format %{ "AND    $dst,$src" %}
7905   opcode(0x21);  /* Opcode 21 /r */
7906   ins_encode( OpcP, RegMem( src, dst ) );
7907   ins_pipe( ialu_mem_reg );
7908 %}
7909 
7910 // And Memory with Immediate
7911 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
7912   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
7913   effect(KILL cr);
7914 
7915   ins_cost(125);
7916   format %{ "AND    $dst,$src" %}
7917   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
7918   // ins_encode( MemImm( dst, src) );
7919   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
7920   ins_pipe( ialu_mem_imm );
7921 %}
7922 
7923 // BMI1 instructions
7924 instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, eFlagsReg cr) %{
7925   match(Set dst (AndI (XorI src1 minus_1) src2));
7926   predicate(UseBMI1Instructions);
7927   effect(KILL cr);
7928 
7929   format %{ "ANDNL  $dst, $src1, $src2" %}
7930 
7931   ins_encode %{
7932     __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
7933   %}
7934   ins_pipe(ialu_reg);
7935 %}
7936 
7937 instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, eFlagsReg cr) %{
7938   match(Set dst (AndI (XorI src1 minus_1) (LoadI src2) ));
7939   predicate(UseBMI1Instructions);
7940   effect(KILL cr);
7941 
7942   ins_cost(125);
7943   format %{ "ANDNL  $dst, $src1, $src2" %}
7944 
7945   ins_encode %{
7946     __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
7947   %}
7948   ins_pipe(ialu_reg_mem);
7949 %}
7950 
7951 instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI0 imm_zero, eFlagsReg cr) %{
7952   match(Set dst (AndI (SubI imm_zero src) src));
7953   predicate(UseBMI1Instructions);
7954   effect(KILL cr);
7955 
7956   format %{ "BLSIL  $dst, $src" %}
7957 
7958   ins_encode %{
7959     __ blsil($dst$$Register, $src$$Register);
7960   %}
7961   ins_pipe(ialu_reg);
7962 %}
7963 
7964 instruct blsiI_rReg_mem(rRegI dst, memory src, immI0 imm_zero, eFlagsReg cr) %{
7965   match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
7966   predicate(UseBMI1Instructions);
7967   effect(KILL cr);
7968 
7969   ins_cost(125);
7970   format %{ "BLSIL  $dst, $src" %}
7971 
7972   ins_encode %{
7973     __ blsil($dst$$Register, $src$$Address);
7974   %}
7975   ins_pipe(ialu_reg_mem);
7976 %}
7977 
7978 instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
7979 %{
7980   match(Set dst (XorI (AddI src minus_1) src));
7981   predicate(UseBMI1Instructions);
7982   effect(KILL cr);
7983 
7984   format %{ "BLSMSKL $dst, $src" %}
7985 
7986   ins_encode %{
7987     __ blsmskl($dst$$Register, $src$$Register);
7988   %}
7989 
7990   ins_pipe(ialu_reg);
7991 %}
7992 
7993 instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
7994 %{
7995   match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ));
7996   predicate(UseBMI1Instructions);
7997   effect(KILL cr);
7998 
7999   ins_cost(125);
8000   format %{ "BLSMSKL $dst, $src" %}
8001 
8002   ins_encode %{
8003     __ blsmskl($dst$$Register, $src$$Address);
8004   %}
8005 
8006   ins_pipe(ialu_reg_mem);
8007 %}
8008 
8009 instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
8010 %{
8011   match(Set dst (AndI (AddI src minus_1) src) );
8012   predicate(UseBMI1Instructions);
8013   effect(KILL cr);
8014 
8015   format %{ "BLSRL  $dst, $src" %}
8016 
8017   ins_encode %{
8018     __ blsrl($dst$$Register, $src$$Register);
8019   %}
8020 
8021   ins_pipe(ialu_reg);
8022 %}
8023 
8024 instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
8025 %{
8026   match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ));
8027   predicate(UseBMI1Instructions);
8028   effect(KILL cr);
8029 
8030   ins_cost(125);
8031   format %{ "BLSRL  $dst, $src" %}
8032 
8033   ins_encode %{
8034     __ blsrl($dst$$Register, $src$$Address);
8035   %}
8036 
8037   ins_pipe(ialu_reg_mem);
8038 %}
8039 
8040 // Or Instructions
8041 // Or Register with Register
8042 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8043   match(Set dst (OrI dst src));
8044   effect(KILL cr);
8045 
8046   size(2);
8047   format %{ "OR     $dst,$src" %}
8048   opcode(0x0B);
8049   ins_encode( OpcP, RegReg( dst, src) );
8050   ins_pipe( ialu_reg_reg );
8051 %}
8052 
8053 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
8054   match(Set dst (OrI dst (CastP2X src)));
8055   effect(KILL cr);
8056 
8057   size(2);
8058   format %{ "OR     $dst,$src" %}
8059   opcode(0x0B);
8060   ins_encode( OpcP, RegReg( dst, src) );
8061   ins_pipe( ialu_reg_reg );
8062 %}
8063 
8064 
8065 // Or Register with Immediate
8066 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8067   match(Set dst (OrI dst src));
8068   effect(KILL cr);
8069 
8070   format %{ "OR     $dst,$src" %}
8071   opcode(0x81,0x01);  /* Opcode 81 /1 id */
8072   // ins_encode( RegImm( dst, src) );
8073   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8074   ins_pipe( ialu_reg );
8075 %}
8076 
8077 // Or Register with Memory
8078 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8079   match(Set dst (OrI dst (LoadI src)));
8080   effect(KILL cr);
8081 
8082   ins_cost(125);
8083   format %{ "OR     $dst,$src" %}
8084   opcode(0x0B);
8085   ins_encode( OpcP, RegMem( dst, src) );
8086   ins_pipe( ialu_reg_mem );
8087 %}
8088 
8089 // Or Memory with Register
8090 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8091   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8092   effect(KILL cr);
8093 
8094   ins_cost(150);
8095   format %{ "OR     $dst,$src" %}
8096   opcode(0x09);  /* Opcode 09 /r */
8097   ins_encode( OpcP, RegMem( src, dst ) );
8098   ins_pipe( ialu_mem_reg );
8099 %}
8100 
8101 // Or Memory with Immediate
8102 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8103   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8104   effect(KILL cr);
8105 
8106   ins_cost(125);
8107   format %{ "OR     $dst,$src" %}
8108   opcode(0x81,0x1);  /* Opcode 81 /1 id */
8109   // ins_encode( MemImm( dst, src) );
8110   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8111   ins_pipe( ialu_mem_imm );
8112 %}
8113 
8114 // ROL/ROR
8115 // ROL expand
8116 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8117   effect(USE_DEF dst, USE shift, KILL cr);
8118 
8119   format %{ "ROL    $dst, $shift" %}
8120   opcode(0xD1, 0x0); /* Opcode D1 /0 */
8121   ins_encode( OpcP, RegOpc( dst ));
8122   ins_pipe( ialu_reg );
8123 %}
8124 
8125 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8126   effect(USE_DEF dst, USE shift, KILL cr);
8127 
8128   format %{ "ROL    $dst, $shift" %}
8129   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
8130   ins_encode( RegOpcImm(dst, shift) );
8131   ins_pipe(ialu_reg);
8132 %}
8133 
8134 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
8135   effect(USE_DEF dst, USE shift, KILL cr);
8136 
8137   format %{ "ROL    $dst, $shift" %}
8138   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
8139   ins_encode(OpcP, RegOpc(dst));
8140   ins_pipe( ialu_reg_reg );
8141 %}
8142 // end of ROL expand
8143 
8144 // ROL 32bit by one once
8145 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
8146   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8147 
8148   expand %{
8149     rolI_eReg_imm1(dst, lshift, cr);
8150   %}
8151 %}
8152 
8153 // ROL 32bit var by imm8 once
8154 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
8155   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8156   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8157 
8158   expand %{
8159     rolI_eReg_imm8(dst, lshift, cr);
8160   %}
8161 %}
8162 
8163 // ROL 32bit var by var once
8164 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8165   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8166 
8167   expand %{
8168     rolI_eReg_CL(dst, shift, cr);
8169   %}
8170 %}
8171 
8172 // ROL 32bit var by var once
8173 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8174   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8175 
8176   expand %{
8177     rolI_eReg_CL(dst, shift, cr);
8178   %}
8179 %}
8180 
8181 // ROR expand
8182 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8183   effect(USE_DEF dst, USE shift, KILL cr);
8184 
8185   format %{ "ROR    $dst, $shift" %}
8186   opcode(0xD1,0x1);  /* Opcode D1 /1 */
8187   ins_encode( OpcP, RegOpc( dst ) );
8188   ins_pipe( ialu_reg );
8189 %}
8190 
8191 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8192   effect (USE_DEF dst, USE shift, KILL cr);
8193 
8194   format %{ "ROR    $dst, $shift" %}
8195   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
8196   ins_encode( RegOpcImm(dst, shift) );
8197   ins_pipe( ialu_reg );
8198 %}
8199 
8200 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
8201   effect(USE_DEF dst, USE shift, KILL cr);
8202 
8203   format %{ "ROR    $dst, $shift" %}
8204   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
8205   ins_encode(OpcP, RegOpc(dst));
8206   ins_pipe( ialu_reg_reg );
8207 %}
8208 // end of ROR expand
8209 
8210 // ROR right once
8211 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
8212   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8213 
8214   expand %{
8215     rorI_eReg_imm1(dst, rshift, cr);
8216   %}
8217 %}
8218 
8219 // ROR 32bit by immI8 once
8220 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
8221   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8222   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8223 
8224   expand %{
8225     rorI_eReg_imm8(dst, rshift, cr);
8226   %}
8227 %}
8228 
8229 // ROR 32bit var by var once
8230 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8231   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8232 
8233   expand %{
8234     rorI_eReg_CL(dst, shift, cr);
8235   %}
8236 %}
8237 
8238 // ROR 32bit var by var once
8239 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8240   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8241 
8242   expand %{
8243     rorI_eReg_CL(dst, shift, cr);
8244   %}
8245 %}
8246 
8247 // Xor Instructions
8248 // Xor Register with Register
8249 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8250   match(Set dst (XorI dst src));
8251   effect(KILL cr);
8252 
8253   size(2);
8254   format %{ "XOR    $dst,$src" %}
8255   opcode(0x33);
8256   ins_encode( OpcP, RegReg( dst, src) );
8257   ins_pipe( ialu_reg_reg );
8258 %}
8259 
8260 // Xor Register with Immediate -1
8261 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
8262   match(Set dst (XorI dst imm));  
8263 
8264   size(2);
8265   format %{ "NOT    $dst" %}  
8266   ins_encode %{
8267      __ notl($dst$$Register);
8268   %}
8269   ins_pipe( ialu_reg );
8270 %}
8271 
8272 // Xor Register with Immediate
8273 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8274   match(Set dst (XorI dst src));
8275   effect(KILL cr);
8276 
8277   format %{ "XOR    $dst,$src" %}
8278   opcode(0x81,0x06);  /* Opcode 81 /6 id */
8279   // ins_encode( RegImm( dst, src) );
8280   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8281   ins_pipe( ialu_reg );
8282 %}
8283 
8284 // Xor Register with Memory
8285 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8286   match(Set dst (XorI dst (LoadI src)));
8287   effect(KILL cr);
8288 
8289   ins_cost(125);
8290   format %{ "XOR    $dst,$src" %}
8291   opcode(0x33);
8292   ins_encode( OpcP, RegMem(dst, src) );
8293   ins_pipe( ialu_reg_mem );
8294 %}
8295 
8296 // Xor Memory with Register
8297 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8298   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8299   effect(KILL cr);
8300 
8301   ins_cost(150);
8302   format %{ "XOR    $dst,$src" %}
8303   opcode(0x31);  /* Opcode 31 /r */
8304   ins_encode( OpcP, RegMem( src, dst ) );
8305   ins_pipe( ialu_mem_reg );
8306 %}
8307 
8308 // Xor Memory with Immediate
8309 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8310   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8311   effect(KILL cr);
8312 
8313   ins_cost(125);
8314   format %{ "XOR    $dst,$src" %}
8315   opcode(0x81,0x6);  /* Opcode 81 /6 id */
8316   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8317   ins_pipe( ialu_mem_imm );
8318 %}
8319 
8320 //----------Convert Int to Boolean---------------------------------------------
8321 
8322 instruct movI_nocopy(rRegI dst, rRegI src) %{
8323   effect( DEF dst, USE src );
8324   format %{ "MOV    $dst,$src" %}
8325   ins_encode( enc_Copy( dst, src) );
8326   ins_pipe( ialu_reg_reg );
8327 %}
8328 
8329 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
8330   effect( USE_DEF dst, USE src, KILL cr );
8331 
8332   size(4);
8333   format %{ "NEG    $dst\n\t"
8334             "ADC    $dst,$src" %}
8335   ins_encode( neg_reg(dst),
8336               OpcRegReg(0x13,dst,src) );
8337   ins_pipe( ialu_reg_reg_long );
8338 %}
8339 
8340 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
8341   match(Set dst (Conv2B src));
8342 
8343   expand %{
8344     movI_nocopy(dst,src);
8345     ci2b(dst,src,cr);
8346   %}
8347 %}
8348 
8349 instruct movP_nocopy(rRegI dst, eRegP src) %{
8350   effect( DEF dst, USE src );
8351   format %{ "MOV    $dst,$src" %}
8352   ins_encode( enc_Copy( dst, src) );
8353   ins_pipe( ialu_reg_reg );
8354 %}
8355 
8356 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
8357   effect( USE_DEF dst, USE src, KILL cr );
8358   format %{ "NEG    $dst\n\t"
8359             "ADC    $dst,$src" %}
8360   ins_encode( neg_reg(dst),
8361               OpcRegReg(0x13,dst,src) );
8362   ins_pipe( ialu_reg_reg_long );
8363 %}
8364 
8365 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
8366   match(Set dst (Conv2B src));
8367 
8368   expand %{
8369     movP_nocopy(dst,src);
8370     cp2b(dst,src,cr);
8371   %}
8372 %}
8373 
8374 instruct cmpLTMask(eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr) %{
8375   match(Set dst (CmpLTMask p q));
8376   effect(KILL cr);
8377   ins_cost(400);
8378 
8379   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
8380   format %{ "XOR    $dst,$dst\n\t"
8381             "CMP    $p,$q\n\t"
8382             "SETlt  $dst\n\t"
8383             "NEG    $dst" %}
8384   ins_encode %{
8385     Register Rp = $p$$Register;
8386     Register Rq = $q$$Register;
8387     Register Rd = $dst$$Register;
8388     Label done;
8389     __ xorl(Rd, Rd);
8390     __ cmpl(Rp, Rq);
8391     __ setb(Assembler::less, Rd);
8392     __ negl(Rd);
8393   %}
8394 
8395   ins_pipe(pipe_slow);
8396 %}
8397 
8398 instruct cmpLTMask0(rRegI dst, immI0 zero, eFlagsReg cr) %{
8399   match(Set dst (CmpLTMask dst zero));
8400   effect(DEF dst, KILL cr);
8401   ins_cost(100);
8402 
8403   format %{ "SAR    $dst,31\t# cmpLTMask0" %}
8404   ins_encode %{
8405   __ sarl($dst$$Register, 31);
8406   %}
8407   ins_pipe(ialu_reg);
8408 %}
8409 
8410 /* better to save a register than avoid a branch */
8411 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
8412   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8413   effect(KILL cr);
8414   ins_cost(400);
8415   format %{ "SUB    $p,$q\t# cadd_cmpLTMask\n\t"
8416             "JGE    done\n\t"
8417             "ADD    $p,$y\n"
8418             "done:  " %}
8419   ins_encode %{
8420     Register Rp = $p$$Register;
8421     Register Rq = $q$$Register;
8422     Register Ry = $y$$Register;
8423     Label done;
8424     __ subl(Rp, Rq);
8425     __ jccb(Assembler::greaterEqual, done);
8426     __ addl(Rp, Ry);
8427     __ bind(done);
8428   %}
8429 
8430   ins_pipe(pipe_cmplt);
8431 %}
8432 
8433 /* better to save a register than avoid a branch */
8434 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
8435   match(Set y (AndI (CmpLTMask p q) y));
8436   effect(KILL cr);
8437 
8438   ins_cost(300);
8439 
8440   format %{ "CMPL     $p, $q\t# and_cmpLTMask\n\t"
8441             "JLT      done\n\t"
8442             "XORL     $y, $y\n"
8443             "done:  " %}
8444   ins_encode %{
8445     Register Rp = $p$$Register;
8446     Register Rq = $q$$Register;
8447     Register Ry = $y$$Register;
8448     Label done;
8449     __ cmpl(Rp, Rq);
8450     __ jccb(Assembler::less, done);
8451     __ xorl(Ry, Ry);
8452     __ bind(done);
8453   %}
8454 
8455   ins_pipe(pipe_cmplt);
8456 %}
8457 
8458 /* If I enable this, I encourage spilling in the inner loop of compress.
8459 instruct cadd_cmpLTMask_mem(ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr) %{
8460   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
8461 */
8462 //----------Overflow Math Instructions-----------------------------------------
8463 
8464 instruct overflowAddI_eReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
8465 %{
8466   match(Set cr (OverflowAddI op1 op2));
8467   effect(DEF cr, USE_KILL op1, USE op2);
8468 
8469   format %{ "ADD    $op1, $op2\t# overflow check int" %}
8470 
8471   ins_encode %{
8472     __ addl($op1$$Register, $op2$$Register);
8473   %}
8474   ins_pipe(ialu_reg_reg);
8475 %}
8476 
8477 instruct overflowAddI_rReg_imm(eFlagsReg cr, eAXRegI op1, immI op2)
8478 %{
8479   match(Set cr (OverflowAddI op1 op2));
8480   effect(DEF cr, USE_KILL op1, USE op2);
8481 
8482   format %{ "ADD    $op1, $op2\t# overflow check int" %}
8483 
8484   ins_encode %{
8485     __ addl($op1$$Register, $op2$$constant);
8486   %}
8487   ins_pipe(ialu_reg_reg);
8488 %}
8489 
8490 instruct overflowSubI_rReg(eFlagsReg cr, rRegI op1, rRegI op2)
8491 %{
8492   match(Set cr (OverflowSubI op1 op2));
8493 
8494   format %{ "CMP    $op1, $op2\t# overflow check int" %}
8495   ins_encode %{
8496     __ cmpl($op1$$Register, $op2$$Register);
8497   %}
8498   ins_pipe(ialu_reg_reg);
8499 %}
8500 
8501 instruct overflowSubI_rReg_imm(eFlagsReg cr, rRegI op1, immI op2)
8502 %{
8503   match(Set cr (OverflowSubI op1 op2));
8504 
8505   format %{ "CMP    $op1, $op2\t# overflow check int" %}
8506   ins_encode %{
8507     __ cmpl($op1$$Register, $op2$$constant);
8508   %}
8509   ins_pipe(ialu_reg_reg);
8510 %}
8511 
8512 instruct overflowNegI_rReg(eFlagsReg cr, immI0 zero, eAXRegI op2)
8513 %{
8514   match(Set cr (OverflowSubI zero op2));
8515   effect(DEF cr, USE_KILL op2);
8516 
8517   format %{ "NEG    $op2\t# overflow check int" %}
8518   ins_encode %{
8519     __ negl($op2$$Register);
8520   %}
8521   ins_pipe(ialu_reg_reg);
8522 %}
8523 
8524 instruct overflowMulI_rReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
8525 %{
8526   match(Set cr (OverflowMulI op1 op2));
8527   effect(DEF cr, USE_KILL op1, USE op2);
8528 
8529   format %{ "IMUL    $op1, $op2\t# overflow check int" %}
8530   ins_encode %{
8531     __ imull($op1$$Register, $op2$$Register);
8532   %}
8533   ins_pipe(ialu_reg_reg_alu0);
8534 %}
8535 
8536 instruct overflowMulI_rReg_imm(eFlagsReg cr, rRegI op1, immI op2, rRegI tmp)
8537 %{
8538   match(Set cr (OverflowMulI op1 op2));
8539   effect(DEF cr, TEMP tmp, USE op1, USE op2);
8540 
8541   format %{ "IMUL    $tmp, $op1, $op2\t# overflow check int" %}
8542   ins_encode %{
8543     __ imull($tmp$$Register, $op1$$Register, $op2$$constant);
8544   %}
8545   ins_pipe(ialu_reg_reg_alu0);
8546 %}
8547 
8548 //----------Long Instructions------------------------------------------------
8549 // Add Long Register with Register
8550 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8551   match(Set dst (AddL dst src));
8552   effect(KILL cr);
8553   ins_cost(200);
8554   format %{ "ADD    $dst.lo,$src.lo\n\t"
8555             "ADC    $dst.hi,$src.hi" %}
8556   opcode(0x03, 0x13);
8557   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8558   ins_pipe( ialu_reg_reg_long );
8559 %}
8560 
8561 // Add Long Register with Immediate
8562 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8563   match(Set dst (AddL dst src));
8564   effect(KILL cr);
8565   format %{ "ADD    $dst.lo,$src.lo\n\t"
8566             "ADC    $dst.hi,$src.hi" %}
8567   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
8568   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8569   ins_pipe( ialu_reg_long );
8570 %}
8571 
8572 // Add Long Register with Memory
8573 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8574   match(Set dst (AddL dst (LoadL mem)));
8575   effect(KILL cr);
8576   ins_cost(125);
8577   format %{ "ADD    $dst.lo,$mem\n\t"
8578             "ADC    $dst.hi,$mem+4" %}
8579   opcode(0x03, 0x13);
8580   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8581   ins_pipe( ialu_reg_long_mem );
8582 %}
8583 
8584 // Subtract Long Register with Register.
8585 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8586   match(Set dst (SubL dst src));
8587   effect(KILL cr);
8588   ins_cost(200);
8589   format %{ "SUB    $dst.lo,$src.lo\n\t"
8590             "SBB    $dst.hi,$src.hi" %}
8591   opcode(0x2B, 0x1B);
8592   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8593   ins_pipe( ialu_reg_reg_long );
8594 %}
8595 
8596 // Subtract Long Register with Immediate
8597 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8598   match(Set dst (SubL dst src));
8599   effect(KILL cr);
8600   format %{ "SUB    $dst.lo,$src.lo\n\t"
8601             "SBB    $dst.hi,$src.hi" %}
8602   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
8603   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8604   ins_pipe( ialu_reg_long );
8605 %}
8606 
8607 // Subtract Long Register with Memory
8608 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8609   match(Set dst (SubL dst (LoadL mem)));
8610   effect(KILL cr);
8611   ins_cost(125);
8612   format %{ "SUB    $dst.lo,$mem\n\t"
8613             "SBB    $dst.hi,$mem+4" %}
8614   opcode(0x2B, 0x1B);
8615   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8616   ins_pipe( ialu_reg_long_mem );
8617 %}
8618 
8619 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
8620   match(Set dst (SubL zero dst));
8621   effect(KILL cr);
8622   ins_cost(300);
8623   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
8624   ins_encode( neg_long(dst) );
8625   ins_pipe( ialu_reg_reg_long );
8626 %}
8627 
8628 // And Long Register with Register
8629 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8630   match(Set dst (AndL dst src));
8631   effect(KILL cr);
8632   format %{ "AND    $dst.lo,$src.lo\n\t"
8633             "AND    $dst.hi,$src.hi" %}
8634   opcode(0x23,0x23);
8635   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
8636   ins_pipe( ialu_reg_reg_long );
8637 %}
8638 
8639 // And Long Register with Immediate
8640 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8641   match(Set dst (AndL dst src));
8642   effect(KILL cr);
8643   format %{ "AND    $dst.lo,$src.lo\n\t"
8644             "AND    $dst.hi,$src.hi" %}
8645   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
8646   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8647   ins_pipe( ialu_reg_long );
8648 %}
8649 
8650 // And Long Register with Memory
8651 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8652   match(Set dst (AndL dst (LoadL mem)));
8653   effect(KILL cr);
8654   ins_cost(125);
8655   format %{ "AND    $dst.lo,$mem\n\t"
8656             "AND    $dst.hi,$mem+4" %}
8657   opcode(0x23, 0x23);
8658   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8659   ins_pipe( ialu_reg_long_mem );
8660 %}
8661 
8662 // BMI1 instructions
8663 instruct andnL_eReg_eReg_eReg(eRegL dst, eRegL src1, eRegL src2, immL_M1 minus_1, eFlagsReg cr) %{
8664   match(Set dst (AndL (XorL src1 minus_1) src2));
8665   predicate(UseBMI1Instructions);
8666   effect(KILL cr, TEMP dst);
8667 
8668   format %{ "ANDNL  $dst.lo, $src1.lo, $src2.lo\n\t"
8669             "ANDNL  $dst.hi, $src1.hi, $src2.hi"
8670          %}
8671 
8672   ins_encode %{
8673     Register Rdst = $dst$$Register;
8674     Register Rsrc1 = $src1$$Register;
8675     Register Rsrc2 = $src2$$Register;
8676     __ andnl(Rdst, Rsrc1, Rsrc2);
8677     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), HIGH_FROM_LOW(Rsrc2));
8678   %}
8679   ins_pipe(ialu_reg_reg_long);
8680 %}
8681 
8682 instruct andnL_eReg_eReg_mem(eRegL dst, eRegL src1, memory src2, immL_M1 minus_1, eFlagsReg cr) %{
8683   match(Set dst (AndL (XorL src1 minus_1) (LoadL src2) ));
8684   predicate(UseBMI1Instructions);
8685   effect(KILL cr, TEMP dst);
8686 
8687   ins_cost(125);
8688   format %{ "ANDNL  $dst.lo, $src1.lo, $src2\n\t"
8689             "ANDNL  $dst.hi, $src1.hi, $src2+4"
8690          %}
8691 
8692   ins_encode %{
8693     Register Rdst = $dst$$Register;
8694     Register Rsrc1 = $src1$$Register;
8695     Address src2_hi = Address::make_raw($src2$$base, $src2$$index, $src2$$scale, $src2$$disp + 4, relocInfo::none);
8696 
8697     __ andnl(Rdst, Rsrc1, $src2$$Address);
8698     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), src2_hi);
8699   %}
8700   ins_pipe(ialu_reg_mem);
8701 %}
8702 
8703 instruct blsiL_eReg_eReg(eRegL dst, eRegL src, immL0 imm_zero, eFlagsReg cr) %{
8704   match(Set dst (AndL (SubL imm_zero src) src));
8705   predicate(UseBMI1Instructions);
8706   effect(KILL cr, TEMP dst);
8707 
8708   format %{ "MOVL   $dst.hi, 0\n\t"
8709             "BLSIL  $dst.lo, $src.lo\n\t"
8710             "JNZ    done\n\t"
8711             "BLSIL  $dst.hi, $src.hi\n"
8712             "done:"
8713          %}
8714 
8715   ins_encode %{
8716     Label done;
8717     Register Rdst = $dst$$Register;
8718     Register Rsrc = $src$$Register;
8719     __ movl(HIGH_FROM_LOW(Rdst), 0);
8720     __ blsil(Rdst, Rsrc);
8721     __ jccb(Assembler::notZero, done);
8722     __ blsil(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
8723     __ bind(done);
8724   %}
8725   ins_pipe(ialu_reg);
8726 %}
8727 
8728 instruct blsiL_eReg_mem(eRegL dst, memory src, immL0 imm_zero, eFlagsReg cr) %{
8729   match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
8730   predicate(UseBMI1Instructions);
8731   effect(KILL cr, TEMP dst);
8732 
8733   ins_cost(125);
8734   format %{ "MOVL   $dst.hi, 0\n\t"
8735             "BLSIL  $dst.lo, $src\n\t"
8736             "JNZ    done\n\t"
8737             "BLSIL  $dst.hi, $src+4\n"
8738             "done:"
8739          %}
8740 
8741   ins_encode %{
8742     Label done;
8743     Register Rdst = $dst$$Register;
8744     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
8745 
8746     __ movl(HIGH_FROM_LOW(Rdst), 0);
8747     __ blsil(Rdst, $src$$Address);
8748     __ jccb(Assembler::notZero, done);
8749     __ blsil(HIGH_FROM_LOW(Rdst), src_hi);
8750     __ bind(done);
8751   %}
8752   ins_pipe(ialu_reg_mem);
8753 %}
8754 
8755 instruct blsmskL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
8756 %{
8757   match(Set dst (XorL (AddL src minus_1) src));
8758   predicate(UseBMI1Instructions);
8759   effect(KILL cr, TEMP dst);
8760 
8761   format %{ "MOVL    $dst.hi, 0\n\t"
8762             "BLSMSKL $dst.lo, $src.lo\n\t"
8763             "JNC     done\n\t"
8764             "BLSMSKL $dst.hi, $src.hi\n"
8765             "done:"
8766          %}
8767 
8768   ins_encode %{
8769     Label done;
8770     Register Rdst = $dst$$Register;
8771     Register Rsrc = $src$$Register;
8772     __ movl(HIGH_FROM_LOW(Rdst), 0);
8773     __ blsmskl(Rdst, Rsrc);
8774     __ jccb(Assembler::carryClear, done);
8775     __ blsmskl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
8776     __ bind(done);
8777   %}
8778 
8779   ins_pipe(ialu_reg);
8780 %}
8781 
8782 instruct blsmskL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
8783 %{
8784   match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ));
8785   predicate(UseBMI1Instructions);
8786   effect(KILL cr, TEMP dst);
8787 
8788   ins_cost(125);
8789   format %{ "MOVL    $dst.hi, 0\n\t"
8790             "BLSMSKL $dst.lo, $src\n\t"
8791             "JNC     done\n\t"
8792             "BLSMSKL $dst.hi, $src+4\n"
8793             "done:"
8794          %}
8795 
8796   ins_encode %{
8797     Label done;
8798     Register Rdst = $dst$$Register;
8799     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
8800 
8801     __ movl(HIGH_FROM_LOW(Rdst), 0);
8802     __ blsmskl(Rdst, $src$$Address);
8803     __ jccb(Assembler::carryClear, done);
8804     __ blsmskl(HIGH_FROM_LOW(Rdst), src_hi);
8805     __ bind(done);
8806   %}
8807 
8808   ins_pipe(ialu_reg_mem);
8809 %}
8810 
8811 instruct blsrL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
8812 %{
8813   match(Set dst (AndL (AddL src minus_1) src) );
8814   predicate(UseBMI1Instructions);
8815   effect(KILL cr, TEMP dst);
8816 
8817   format %{ "MOVL   $dst.hi, $src.hi\n\t"
8818             "BLSRL  $dst.lo, $src.lo\n\t"
8819             "JNC    done\n\t"
8820             "BLSRL  $dst.hi, $src.hi\n"
8821             "done:"
8822   %}
8823 
8824   ins_encode %{
8825     Label done;
8826     Register Rdst = $dst$$Register;
8827     Register Rsrc = $src$$Register;
8828     __ movl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
8829     __ blsrl(Rdst, Rsrc);
8830     __ jccb(Assembler::carryClear, done);
8831     __ blsrl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
8832     __ bind(done);
8833   %}
8834 
8835   ins_pipe(ialu_reg);
8836 %}
8837 
8838 instruct blsrL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
8839 %{
8840   match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src) ));
8841   predicate(UseBMI1Instructions);
8842   effect(KILL cr, TEMP dst);
8843 
8844   ins_cost(125);
8845   format %{ "MOVL   $dst.hi, $src+4\n\t"
8846             "BLSRL  $dst.lo, $src\n\t"
8847             "JNC    done\n\t"
8848             "BLSRL  $dst.hi, $src+4\n"
8849             "done:"
8850   %}
8851 
8852   ins_encode %{
8853     Label done;
8854     Register Rdst = $dst$$Register;
8855     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
8856     __ movl(HIGH_FROM_LOW(Rdst), src_hi);
8857     __ blsrl(Rdst, $src$$Address);
8858     __ jccb(Assembler::carryClear, done);
8859     __ blsrl(HIGH_FROM_LOW(Rdst), src_hi);
8860     __ bind(done);
8861   %}
8862 
8863   ins_pipe(ialu_reg_mem);
8864 %}
8865 
8866 // Or Long Register with Register
8867 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8868   match(Set dst (OrL dst src));
8869   effect(KILL cr);
8870   format %{ "OR     $dst.lo,$src.lo\n\t"
8871             "OR     $dst.hi,$src.hi" %}
8872   opcode(0x0B,0x0B);
8873   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
8874   ins_pipe( ialu_reg_reg_long );
8875 %}
8876 
8877 // Or Long Register with Immediate
8878 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8879   match(Set dst (OrL dst src));
8880   effect(KILL cr);
8881   format %{ "OR     $dst.lo,$src.lo\n\t"
8882             "OR     $dst.hi,$src.hi" %}
8883   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
8884   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8885   ins_pipe( ialu_reg_long );
8886 %}
8887 
8888 // Or Long Register with Memory
8889 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8890   match(Set dst (OrL dst (LoadL mem)));
8891   effect(KILL cr);
8892   ins_cost(125);
8893   format %{ "OR     $dst.lo,$mem\n\t"
8894             "OR     $dst.hi,$mem+4" %}
8895   opcode(0x0B,0x0B);
8896   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8897   ins_pipe( ialu_reg_long_mem );
8898 %}
8899 
8900 // Xor Long Register with Register
8901 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8902   match(Set dst (XorL dst src));
8903   effect(KILL cr);
8904   format %{ "XOR    $dst.lo,$src.lo\n\t"
8905             "XOR    $dst.hi,$src.hi" %}
8906   opcode(0x33,0x33);
8907   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
8908   ins_pipe( ialu_reg_reg_long );
8909 %}
8910 
8911 // Xor Long Register with Immediate -1
8912 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
8913   match(Set dst (XorL dst imm));  
8914   format %{ "NOT    $dst.lo\n\t"
8915             "NOT    $dst.hi" %}
8916   ins_encode %{
8917      __ notl($dst$$Register);
8918      __ notl(HIGH_FROM_LOW($dst$$Register));
8919   %}
8920   ins_pipe( ialu_reg_long );
8921 %}
8922 
8923 // Xor Long Register with Immediate
8924 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8925   match(Set dst (XorL dst src));
8926   effect(KILL cr);
8927   format %{ "XOR    $dst.lo,$src.lo\n\t"
8928             "XOR    $dst.hi,$src.hi" %}
8929   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
8930   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8931   ins_pipe( ialu_reg_long );
8932 %}
8933 
8934 // Xor Long Register with Memory
8935 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8936   match(Set dst (XorL dst (LoadL mem)));
8937   effect(KILL cr);
8938   ins_cost(125);
8939   format %{ "XOR    $dst.lo,$mem\n\t"
8940             "XOR    $dst.hi,$mem+4" %}
8941   opcode(0x33,0x33);
8942   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8943   ins_pipe( ialu_reg_long_mem );
8944 %}
8945 
8946 // Shift Left Long by 1
8947 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
8948   predicate(UseNewLongLShift);
8949   match(Set dst (LShiftL dst cnt));
8950   effect(KILL cr);
8951   ins_cost(100);
8952   format %{ "ADD    $dst.lo,$dst.lo\n\t"
8953             "ADC    $dst.hi,$dst.hi" %}
8954   ins_encode %{
8955     __ addl($dst$$Register,$dst$$Register);
8956     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
8957   %}
8958   ins_pipe( ialu_reg_long );
8959 %}
8960 
8961 // Shift Left Long by 2
8962 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
8963   predicate(UseNewLongLShift);
8964   match(Set dst (LShiftL dst cnt));
8965   effect(KILL cr);
8966   ins_cost(100);
8967   format %{ "ADD    $dst.lo,$dst.lo\n\t"
8968             "ADC    $dst.hi,$dst.hi\n\t" 
8969             "ADD    $dst.lo,$dst.lo\n\t"
8970             "ADC    $dst.hi,$dst.hi" %}
8971   ins_encode %{
8972     __ addl($dst$$Register,$dst$$Register);
8973     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
8974     __ addl($dst$$Register,$dst$$Register);
8975     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
8976   %}
8977   ins_pipe( ialu_reg_long );
8978 %}
8979 
8980 // Shift Left Long by 3
8981 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
8982   predicate(UseNewLongLShift);
8983   match(Set dst (LShiftL dst cnt));
8984   effect(KILL cr);
8985   ins_cost(100);
8986   format %{ "ADD    $dst.lo,$dst.lo\n\t"
8987             "ADC    $dst.hi,$dst.hi\n\t" 
8988             "ADD    $dst.lo,$dst.lo\n\t"
8989             "ADC    $dst.hi,$dst.hi\n\t" 
8990             "ADD    $dst.lo,$dst.lo\n\t"
8991             "ADC    $dst.hi,$dst.hi" %}
8992   ins_encode %{
8993     __ addl($dst$$Register,$dst$$Register);
8994     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
8995     __ addl($dst$$Register,$dst$$Register);
8996     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
8997     __ addl($dst$$Register,$dst$$Register);
8998     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
8999   %}
9000   ins_pipe( ialu_reg_long );
9001 %}
9002 
9003 // Shift Left Long by 1-31
9004 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9005   match(Set dst (LShiftL dst cnt));
9006   effect(KILL cr);
9007   ins_cost(200);
9008   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9009             "SHL    $dst.lo,$cnt" %}
9010   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9011   ins_encode( move_long_small_shift(dst,cnt) );
9012   ins_pipe( ialu_reg_long );
9013 %}
9014 
9015 // Shift Left Long by 32-63
9016 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9017   match(Set dst (LShiftL dst cnt));
9018   effect(KILL cr);
9019   ins_cost(300);
9020   format %{ "MOV    $dst.hi,$dst.lo\n"
9021           "\tSHL    $dst.hi,$cnt-32\n"
9022           "\tXOR    $dst.lo,$dst.lo" %}
9023   opcode(0xC1, 0x4);  /* C1 /4 ib */
9024   ins_encode( move_long_big_shift_clr(dst,cnt) );
9025   ins_pipe( ialu_reg_long );
9026 %}
9027 
9028 // Shift Left Long by variable
9029 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9030   match(Set dst (LShiftL dst shift));
9031   effect(KILL cr);
9032   ins_cost(500+200);
9033   size(17);
9034   format %{ "TEST   $shift,32\n\t"
9035             "JEQ,s  small\n\t"
9036             "MOV    $dst.hi,$dst.lo\n\t"
9037             "XOR    $dst.lo,$dst.lo\n"
9038     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9039             "SHL    $dst.lo,$shift" %}
9040   ins_encode( shift_left_long( dst, shift ) );
9041   ins_pipe( pipe_slow );
9042 %}
9043 
9044 // Shift Right Long by 1-31
9045 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9046   match(Set dst (URShiftL dst cnt));
9047   effect(KILL cr);
9048   ins_cost(200);
9049   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9050             "SHR    $dst.hi,$cnt" %}
9051   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9052   ins_encode( move_long_small_shift(dst,cnt) );
9053   ins_pipe( ialu_reg_long );
9054 %}
9055 
9056 // Shift Right Long by 32-63
9057 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9058   match(Set dst (URShiftL dst cnt));
9059   effect(KILL cr);
9060   ins_cost(300);
9061   format %{ "MOV    $dst.lo,$dst.hi\n"
9062           "\tSHR    $dst.lo,$cnt-32\n"
9063           "\tXOR    $dst.hi,$dst.hi" %}
9064   opcode(0xC1, 0x5);  /* C1 /5 ib */
9065   ins_encode( move_long_big_shift_clr(dst,cnt) );
9066   ins_pipe( ialu_reg_long );
9067 %}
9068 
9069 // Shift Right Long by variable
9070 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9071   match(Set dst (URShiftL dst shift));
9072   effect(KILL cr);
9073   ins_cost(600);
9074   size(17);
9075   format %{ "TEST   $shift,32\n\t"
9076             "JEQ,s  small\n\t"
9077             "MOV    $dst.lo,$dst.hi\n\t"
9078             "XOR    $dst.hi,$dst.hi\n"
9079     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9080             "SHR    $dst.hi,$shift" %}
9081   ins_encode( shift_right_long( dst, shift ) );
9082   ins_pipe( pipe_slow );
9083 %}
9084 
9085 // Shift Right Long by 1-31
9086 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9087   match(Set dst (RShiftL dst cnt));
9088   effect(KILL cr);
9089   ins_cost(200);
9090   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9091             "SAR    $dst.hi,$cnt" %}
9092   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9093   ins_encode( move_long_small_shift(dst,cnt) );
9094   ins_pipe( ialu_reg_long );
9095 %}
9096 
9097 // Shift Right Long by 32-63
9098 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9099   match(Set dst (RShiftL dst cnt));
9100   effect(KILL cr);
9101   ins_cost(300);
9102   format %{ "MOV    $dst.lo,$dst.hi\n"
9103           "\tSAR    $dst.lo,$cnt-32\n"
9104           "\tSAR    $dst.hi,31" %}
9105   opcode(0xC1, 0x7);  /* C1 /7 ib */
9106   ins_encode( move_long_big_shift_sign(dst,cnt) );
9107   ins_pipe( ialu_reg_long );
9108 %}
9109 
9110 // Shift Right arithmetic Long by variable
9111 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9112   match(Set dst (RShiftL dst shift));
9113   effect(KILL cr);
9114   ins_cost(600);
9115   size(18);
9116   format %{ "TEST   $shift,32\n\t"
9117             "JEQ,s  small\n\t"
9118             "MOV    $dst.lo,$dst.hi\n\t"
9119             "SAR    $dst.hi,31\n"
9120     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9121             "SAR    $dst.hi,$shift" %}
9122   ins_encode( shift_right_arith_long( dst, shift ) );
9123   ins_pipe( pipe_slow );
9124 %}
9125 
9126 
9127 //----------Double Instructions------------------------------------------------
9128 // Double Math
9129 
9130 // Compare & branch
9131 
9132 // P6 version of float compare, sets condition codes in EFLAGS
9133 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9134   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9135   match(Set cr (CmpD src1 src2));
9136   effect(KILL rax);
9137   ins_cost(150);
9138   format %{ "FLD    $src1\n\t"
9139             "FUCOMIP ST,$src2  // P6 instruction\n\t"
9140             "JNP    exit\n\t"
9141             "MOV    ah,1       // saw a NaN, set CF\n\t"
9142             "SAHF\n"
9143      "exit:\tNOP               // avoid branch to branch" %}
9144   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9145   ins_encode( Push_Reg_DPR(src1),
9146               OpcP, RegOpc(src2),
9147               cmpF_P6_fixup );
9148   ins_pipe( pipe_slow );
9149 %}
9150 
9151 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
9152   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9153   match(Set cr (CmpD src1 src2));
9154   ins_cost(150);
9155   format %{ "FLD    $src1\n\t"
9156             "FUCOMIP ST,$src2  // P6 instruction" %}
9157   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9158   ins_encode( Push_Reg_DPR(src1),
9159               OpcP, RegOpc(src2));
9160   ins_pipe( pipe_slow );
9161 %}
9162 
9163 // Compare & branch
9164 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9165   predicate(UseSSE<=1);
9166   match(Set cr (CmpD src1 src2));
9167   effect(KILL rax);
9168   ins_cost(200);
9169   format %{ "FLD    $src1\n\t"
9170             "FCOMp  $src2\n\t"
9171             "FNSTSW AX\n\t"
9172             "TEST   AX,0x400\n\t"
9173             "JZ,s   flags\n\t"
9174             "MOV    AH,1\t# unordered treat as LT\n"
9175     "flags:\tSAHF" %}
9176   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9177   ins_encode( Push_Reg_DPR(src1),
9178               OpcP, RegOpc(src2),
9179               fpu_flags);
9180   ins_pipe( pipe_slow );
9181 %}
9182 
9183 // Compare vs zero into -1,0,1
9184 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
9185   predicate(UseSSE<=1);
9186   match(Set dst (CmpD3 src1 zero));
9187   effect(KILL cr, KILL rax);
9188   ins_cost(280);
9189   format %{ "FTSTD  $dst,$src1" %}
9190   opcode(0xE4, 0xD9);
9191   ins_encode( Push_Reg_DPR(src1),
9192               OpcS, OpcP, PopFPU,
9193               CmpF_Result(dst));
9194   ins_pipe( pipe_slow );
9195 %}
9196 
9197 // Compare into -1,0,1
9198 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
9199   predicate(UseSSE<=1);
9200   match(Set dst (CmpD3 src1 src2));
9201   effect(KILL cr, KILL rax);
9202   ins_cost(300);
9203   format %{ "FCMPD  $dst,$src1,$src2" %}
9204   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9205   ins_encode( Push_Reg_DPR(src1),
9206               OpcP, RegOpc(src2),
9207               CmpF_Result(dst));
9208   ins_pipe( pipe_slow );
9209 %}
9210 
9211 // float compare and set condition codes in EFLAGS by XMM regs
9212 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
9213   predicate(UseSSE>=2);
9214   match(Set cr (CmpD src1 src2));
9215   ins_cost(145);
9216   format %{ "UCOMISD $src1,$src2\n\t"
9217             "JNP,s   exit\n\t"
9218             "PUSHF\t# saw NaN, set CF\n\t"
9219             "AND     [rsp], #0xffffff2b\n\t"
9220             "POPF\n"
9221     "exit:" %}
9222   ins_encode %{
9223     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9224     emit_cmpfp_fixup(_masm);
9225   %}
9226   ins_pipe( pipe_slow );
9227 %}
9228 
9229 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
9230   predicate(UseSSE>=2);
9231   match(Set cr (CmpD src1 src2));
9232   ins_cost(100);
9233   format %{ "UCOMISD $src1,$src2" %}
9234   ins_encode %{
9235     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9236   %}
9237   ins_pipe( pipe_slow );
9238 %}
9239 
9240 // float compare and set condition codes in EFLAGS by XMM regs
9241 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
9242   predicate(UseSSE>=2);
9243   match(Set cr (CmpD src1 (LoadD src2)));
9244   ins_cost(145);
9245   format %{ "UCOMISD $src1,$src2\n\t"
9246             "JNP,s   exit\n\t"
9247             "PUSHF\t# saw NaN, set CF\n\t"
9248             "AND     [rsp], #0xffffff2b\n\t"
9249             "POPF\n"
9250     "exit:" %}
9251   ins_encode %{
9252     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9253     emit_cmpfp_fixup(_masm);
9254   %}
9255   ins_pipe( pipe_slow );
9256 %}
9257 
9258 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
9259   predicate(UseSSE>=2);
9260   match(Set cr (CmpD src1 (LoadD src2)));
9261   ins_cost(100);
9262   format %{ "UCOMISD $src1,$src2" %}
9263   ins_encode %{
9264     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9265   %}
9266   ins_pipe( pipe_slow );
9267 %}
9268 
9269 // Compare into -1,0,1 in XMM
9270 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
9271   predicate(UseSSE>=2);
9272   match(Set dst (CmpD3 src1 src2));
9273   effect(KILL cr);
9274   ins_cost(255);
9275   format %{ "UCOMISD $src1, $src2\n\t"
9276             "MOV     $dst, #-1\n\t"
9277             "JP,s    done\n\t"
9278             "JB,s    done\n\t"
9279             "SETNE   $dst\n\t"
9280             "MOVZB   $dst, $dst\n"
9281     "done:" %}
9282   ins_encode %{
9283     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9284     emit_cmpfp3(_masm, $dst$$Register);
9285   %}
9286   ins_pipe( pipe_slow );
9287 %}
9288 
9289 // Compare into -1,0,1 in XMM and memory
9290 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
9291   predicate(UseSSE>=2);
9292   match(Set dst (CmpD3 src1 (LoadD src2)));
9293   effect(KILL cr);
9294   ins_cost(275);
9295   format %{ "UCOMISD $src1, $src2\n\t"
9296             "MOV     $dst, #-1\n\t"
9297             "JP,s    done\n\t"
9298             "JB,s    done\n\t"
9299             "SETNE   $dst\n\t"
9300             "MOVZB   $dst, $dst\n"
9301     "done:" %}
9302   ins_encode %{
9303     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9304     emit_cmpfp3(_masm, $dst$$Register);
9305   %}
9306   ins_pipe( pipe_slow );
9307 %}
9308 
9309 
9310 instruct subDPR_reg(regDPR dst, regDPR src) %{
9311   predicate (UseSSE <=1);
9312   match(Set dst (SubD dst src));
9313 
9314   format %{ "FLD    $src\n\t"
9315             "DSUBp  $dst,ST" %}
9316   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
9317   ins_cost(150);
9318   ins_encode( Push_Reg_DPR(src),
9319               OpcP, RegOpc(dst) );
9320   ins_pipe( fpu_reg_reg );
9321 %}
9322 
9323 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9324   predicate (UseSSE <=1);
9325   match(Set dst (RoundDouble (SubD src1 src2)));
9326   ins_cost(250);
9327 
9328   format %{ "FLD    $src2\n\t"
9329             "DSUB   ST,$src1\n\t"
9330             "FSTP_D $dst\t# D-round" %}
9331   opcode(0xD8, 0x5);
9332   ins_encode( Push_Reg_DPR(src2),
9333               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9334   ins_pipe( fpu_mem_reg_reg );
9335 %}
9336 
9337 
9338 instruct subDPR_reg_mem(regDPR dst, memory src) %{
9339   predicate (UseSSE <=1);
9340   match(Set dst (SubD dst (LoadD src)));
9341   ins_cost(150);
9342 
9343   format %{ "FLD    $src\n\t"
9344             "DSUBp  $dst,ST" %}
9345   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9346   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9347               OpcP, RegOpc(dst) );
9348   ins_pipe( fpu_reg_mem );
9349 %}
9350 
9351 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
9352   predicate (UseSSE<=1);
9353   match(Set dst (AbsD src));
9354   ins_cost(100);
9355   format %{ "FABS" %}
9356   opcode(0xE1, 0xD9);
9357   ins_encode( OpcS, OpcP );
9358   ins_pipe( fpu_reg_reg );
9359 %}
9360 
9361 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
9362   predicate(UseSSE<=1);
9363   match(Set dst (NegD src));
9364   ins_cost(100);
9365   format %{ "FCHS" %}
9366   opcode(0xE0, 0xD9);
9367   ins_encode( OpcS, OpcP );
9368   ins_pipe( fpu_reg_reg );
9369 %}
9370 
9371 instruct addDPR_reg(regDPR dst, regDPR src) %{
9372   predicate(UseSSE<=1);
9373   match(Set dst (AddD dst src));
9374   format %{ "FLD    $src\n\t"
9375             "DADD   $dst,ST" %}
9376   size(4);
9377   ins_cost(150);
9378   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
9379   ins_encode( Push_Reg_DPR(src),
9380               OpcP, RegOpc(dst) );
9381   ins_pipe( fpu_reg_reg );
9382 %}
9383 
9384 
9385 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9386   predicate(UseSSE<=1);
9387   match(Set dst (RoundDouble (AddD src1 src2)));
9388   ins_cost(250);
9389 
9390   format %{ "FLD    $src2\n\t"
9391             "DADD   ST,$src1\n\t"
9392             "FSTP_D $dst\t# D-round" %}
9393   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
9394   ins_encode( Push_Reg_DPR(src2),
9395               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9396   ins_pipe( fpu_mem_reg_reg );
9397 %}
9398 
9399 
9400 instruct addDPR_reg_mem(regDPR dst, memory src) %{
9401   predicate(UseSSE<=1);
9402   match(Set dst (AddD dst (LoadD src)));
9403   ins_cost(150);
9404 
9405   format %{ "FLD    $src\n\t"
9406             "DADDp  $dst,ST" %}
9407   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9408   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9409               OpcP, RegOpc(dst) );
9410   ins_pipe( fpu_reg_mem );
9411 %}
9412 
9413 // add-to-memory
9414 instruct addDPR_mem_reg(memory dst, regDPR src) %{
9415   predicate(UseSSE<=1);
9416   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
9417   ins_cost(150);
9418 
9419   format %{ "FLD_D  $dst\n\t"
9420             "DADD   ST,$src\n\t"
9421             "FST_D  $dst" %}
9422   opcode(0xDD, 0x0);
9423   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
9424               Opcode(0xD8), RegOpc(src),
9425               set_instruction_start,
9426               Opcode(0xDD), RMopc_Mem(0x03,dst) );
9427   ins_pipe( fpu_reg_mem );
9428 %}
9429 
9430 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
9431   predicate(UseSSE<=1);
9432   match(Set dst (AddD dst con));
9433   ins_cost(125);
9434   format %{ "FLD1\n\t"
9435             "DADDp  $dst,ST" %}
9436   ins_encode %{
9437     __ fld1();
9438     __ faddp($dst$$reg);
9439   %}
9440   ins_pipe(fpu_reg);
9441 %}
9442 
9443 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
9444   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9445   match(Set dst (AddD dst con));
9446   ins_cost(200);
9447   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9448             "DADDp  $dst,ST" %}
9449   ins_encode %{
9450     __ fld_d($constantaddress($con));
9451     __ faddp($dst$$reg);
9452   %}
9453   ins_pipe(fpu_reg_mem);
9454 %}
9455 
9456 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
9457   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
9458   match(Set dst (RoundDouble (AddD src con)));
9459   ins_cost(200);
9460   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9461             "DADD   ST,$src\n\t"
9462             "FSTP_D $dst\t# D-round" %}
9463   ins_encode %{
9464     __ fld_d($constantaddress($con));
9465     __ fadd($src$$reg);
9466     __ fstp_d(Address(rsp, $dst$$disp));
9467   %}
9468   ins_pipe(fpu_mem_reg_con);
9469 %}
9470 
9471 instruct mulDPR_reg(regDPR dst, regDPR src) %{
9472   predicate(UseSSE<=1);
9473   match(Set dst (MulD dst src));
9474   format %{ "FLD    $src\n\t"
9475             "DMULp  $dst,ST" %}
9476   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9477   ins_cost(150);
9478   ins_encode( Push_Reg_DPR(src),
9479               OpcP, RegOpc(dst) );
9480   ins_pipe( fpu_reg_reg );
9481 %}
9482 
9483 // Strict FP instruction biases argument before multiply then
9484 // biases result to avoid double rounding of subnormals.
9485 //
9486 // scale arg1 by multiplying arg1 by 2^(-15360)
9487 // load arg2
9488 // multiply scaled arg1 by arg2
9489 // rescale product by 2^(15360)
9490 //
9491 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9492   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9493   match(Set dst (MulD dst src));
9494   ins_cost(1);   // Select this instruction for all strict FP double multiplies
9495 
9496   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9497             "DMULp  $dst,ST\n\t"
9498             "FLD    $src\n\t"
9499             "DMULp  $dst,ST\n\t"
9500             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9501             "DMULp  $dst,ST\n\t" %}
9502   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9503   ins_encode( strictfp_bias1(dst),
9504               Push_Reg_DPR(src),
9505               OpcP, RegOpc(dst),
9506               strictfp_bias2(dst) );
9507   ins_pipe( fpu_reg_reg );
9508 %}
9509 
9510 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
9511   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9512   match(Set dst (MulD dst con));
9513   ins_cost(200);
9514   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9515             "DMULp  $dst,ST" %}
9516   ins_encode %{
9517     __ fld_d($constantaddress($con));
9518     __ fmulp($dst$$reg);
9519   %}
9520   ins_pipe(fpu_reg_mem);
9521 %}
9522 
9523 
9524 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
9525   predicate( UseSSE<=1 );
9526   match(Set dst (MulD dst (LoadD src)));
9527   ins_cost(200);
9528   format %{ "FLD_D  $src\n\t"
9529             "DMULp  $dst,ST" %}
9530   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
9531   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9532               OpcP, RegOpc(dst) );
9533   ins_pipe( fpu_reg_mem );
9534 %}
9535 
9536 //
9537 // Cisc-alternate to reg-reg multiply
9538 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
9539   predicate( UseSSE<=1 );
9540   match(Set dst (MulD src (LoadD mem)));
9541   ins_cost(250);
9542   format %{ "FLD_D  $mem\n\t"
9543             "DMUL   ST,$src\n\t"
9544             "FSTP_D $dst" %}
9545   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
9546   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
9547               OpcReg_FPR(src),
9548               Pop_Reg_DPR(dst) );
9549   ins_pipe( fpu_reg_reg_mem );
9550 %}
9551 
9552 
9553 // MACRO3 -- addDPR a mulDPR
9554 // This instruction is a '2-address' instruction in that the result goes
9555 // back to src2.  This eliminates a move from the macro; possibly the
9556 // register allocator will have to add it back (and maybe not).
9557 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9558   predicate( UseSSE<=1 );
9559   match(Set src2 (AddD (MulD src0 src1) src2));
9560   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9561             "DMUL   ST,$src1\n\t"
9562             "DADDp  $src2,ST" %}
9563   ins_cost(250);
9564   opcode(0xDD); /* LoadD DD /0 */
9565   ins_encode( Push_Reg_FPR(src0),
9566               FMul_ST_reg(src1),
9567               FAddP_reg_ST(src2) );
9568   ins_pipe( fpu_reg_reg_reg );
9569 %}
9570 
9571 
9572 // MACRO3 -- subDPR a mulDPR
9573 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9574   predicate( UseSSE<=1 );
9575   match(Set src2 (SubD (MulD src0 src1) src2));
9576   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9577             "DMUL   ST,$src1\n\t"
9578             "DSUBRp $src2,ST" %}
9579   ins_cost(250);
9580   ins_encode( Push_Reg_FPR(src0),
9581               FMul_ST_reg(src1),
9582               Opcode(0xDE), Opc_plus(0xE0,src2));
9583   ins_pipe( fpu_reg_reg_reg );
9584 %}
9585 
9586 
9587 instruct divDPR_reg(regDPR dst, regDPR src) %{
9588   predicate( UseSSE<=1 );
9589   match(Set dst (DivD dst src));
9590 
9591   format %{ "FLD    $src\n\t"
9592             "FDIVp  $dst,ST" %}
9593   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9594   ins_cost(150);
9595   ins_encode( Push_Reg_DPR(src),
9596               OpcP, RegOpc(dst) );
9597   ins_pipe( fpu_reg_reg );
9598 %}
9599 
9600 // Strict FP instruction biases argument before division then
9601 // biases result, to avoid double rounding of subnormals.
9602 //
9603 // scale dividend by multiplying dividend by 2^(-15360)
9604 // load divisor
9605 // divide scaled dividend by divisor
9606 // rescale quotient by 2^(15360)
9607 //
9608 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9609   predicate (UseSSE<=1);
9610   match(Set dst (DivD dst src));
9611   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9612   ins_cost(01);
9613 
9614   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9615             "DMULp  $dst,ST\n\t"
9616             "FLD    $src\n\t"
9617             "FDIVp  $dst,ST\n\t"
9618             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9619             "DMULp  $dst,ST\n\t" %}
9620   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9621   ins_encode( strictfp_bias1(dst),
9622               Push_Reg_DPR(src),
9623               OpcP, RegOpc(dst),
9624               strictfp_bias2(dst) );
9625   ins_pipe( fpu_reg_reg );
9626 %}
9627 
9628 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9629   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
9630   match(Set dst (RoundDouble (DivD src1 src2)));
9631 
9632   format %{ "FLD    $src1\n\t"
9633             "FDIV   ST,$src2\n\t"
9634             "FSTP_D $dst\t# D-round" %}
9635   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
9636   ins_encode( Push_Reg_DPR(src1),
9637               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
9638   ins_pipe( fpu_mem_reg_reg );
9639 %}
9640 
9641 
9642 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
9643   predicate(UseSSE<=1);
9644   match(Set dst (ModD dst src));
9645   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
9646 
9647   format %{ "DMOD   $dst,$src" %}
9648   ins_cost(250);
9649   ins_encode(Push_Reg_Mod_DPR(dst, src),
9650               emitModDPR(),
9651               Push_Result_Mod_DPR(src),
9652               Pop_Reg_DPR(dst));
9653   ins_pipe( pipe_slow );
9654 %}
9655 
9656 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
9657   predicate(UseSSE>=2);
9658   match(Set dst (ModD src0 src1));
9659   effect(KILL rax, KILL cr);
9660 
9661   format %{ "SUB    ESP,8\t # DMOD\n"
9662           "\tMOVSD  [ESP+0],$src1\n"
9663           "\tFLD_D  [ESP+0]\n"
9664           "\tMOVSD  [ESP+0],$src0\n"
9665           "\tFLD_D  [ESP+0]\n"
9666      "loop:\tFPREM\n"
9667           "\tFWAIT\n"
9668           "\tFNSTSW AX\n"
9669           "\tSAHF\n"
9670           "\tJP     loop\n"
9671           "\tFSTP_D [ESP+0]\n"
9672           "\tMOVSD  $dst,[ESP+0]\n"
9673           "\tADD    ESP,8\n"
9674           "\tFSTP   ST0\t # Restore FPU Stack"
9675     %}
9676   ins_cost(250);
9677   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
9678   ins_pipe( pipe_slow );
9679 %}
9680 
9681 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
9682   predicate (UseSSE<=1);
9683   match(Set dst (SinD src));
9684   ins_cost(1800);
9685   format %{ "DSIN   $dst" %}
9686   opcode(0xD9, 0xFE);
9687   ins_encode( OpcP, OpcS );
9688   ins_pipe( pipe_slow );
9689 %}
9690 
9691 instruct sinD_reg(regD dst, eFlagsReg cr) %{
9692   predicate (UseSSE>=2);
9693   match(Set dst (SinD dst));
9694   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9695   ins_cost(1800);
9696   format %{ "DSIN   $dst" %}
9697   opcode(0xD9, 0xFE);
9698   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
9699   ins_pipe( pipe_slow );
9700 %}
9701 
9702 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
9703   predicate (UseSSE<=1);
9704   match(Set dst (CosD src));
9705   ins_cost(1800);
9706   format %{ "DCOS   $dst" %}
9707   opcode(0xD9, 0xFF);
9708   ins_encode( OpcP, OpcS );
9709   ins_pipe( pipe_slow );
9710 %}
9711 
9712 instruct cosD_reg(regD dst, eFlagsReg cr) %{
9713   predicate (UseSSE>=2);
9714   match(Set dst (CosD dst));
9715   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9716   ins_cost(1800);
9717   format %{ "DCOS   $dst" %}
9718   opcode(0xD9, 0xFF);
9719   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
9720   ins_pipe( pipe_slow );
9721 %}
9722 
9723 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
9724   predicate (UseSSE<=1);
9725   match(Set dst(TanD src));
9726   format %{ "DTAN   $dst" %}
9727   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
9728               Opcode(0xDD), Opcode(0xD8));   // fstp st
9729   ins_pipe( pipe_slow );
9730 %}
9731 
9732 instruct tanD_reg(regD dst, eFlagsReg cr) %{
9733   predicate (UseSSE>=2);
9734   match(Set dst(TanD dst));
9735   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9736   format %{ "DTAN   $dst" %}
9737   ins_encode( Push_SrcD(dst),
9738               Opcode(0xD9), Opcode(0xF2),    // fptan
9739               Opcode(0xDD), Opcode(0xD8),   // fstp st
9740               Push_ResultD(dst) );
9741   ins_pipe( pipe_slow );
9742 %}
9743 
9744 instruct atanDPR_reg(regDPR dst, regDPR src) %{
9745   predicate (UseSSE<=1);
9746   match(Set dst(AtanD dst src));
9747   format %{ "DATA   $dst,$src" %}
9748   opcode(0xD9, 0xF3);
9749   ins_encode( Push_Reg_DPR(src),
9750               OpcP, OpcS, RegOpc(dst) );
9751   ins_pipe( pipe_slow );
9752 %}
9753 
9754 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
9755   predicate (UseSSE>=2);
9756   match(Set dst(AtanD dst src));
9757   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9758   format %{ "DATA   $dst,$src" %}
9759   opcode(0xD9, 0xF3);
9760   ins_encode( Push_SrcD(src),
9761               OpcP, OpcS, Push_ResultD(dst) );
9762   ins_pipe( pipe_slow );
9763 %}
9764 
9765 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
9766   predicate (UseSSE<=1);
9767   match(Set dst (SqrtD src));
9768   format %{ "DSQRT  $dst,$src" %}
9769   opcode(0xFA, 0xD9);
9770   ins_encode( Push_Reg_DPR(src),
9771               OpcS, OpcP, Pop_Reg_DPR(dst) );
9772   ins_pipe( pipe_slow );
9773 %}
9774 
9775 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9776   predicate (UseSSE<=1);
9777   match(Set Y (PowD X Y));  // Raise X to the Yth power
9778   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
9779   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
9780   ins_encode %{
9781     __ subptr(rsp, 8);
9782     __ fld_s($X$$reg - 1);
9783     __ fast_pow();
9784     __ addptr(rsp, 8);
9785   %}
9786   ins_pipe( pipe_slow );
9787 %}
9788 
9789 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9790   predicate (UseSSE>=2);
9791   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
9792   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
9793   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
9794   ins_encode %{
9795     __ subptr(rsp, 8);
9796     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
9797     __ fld_d(Address(rsp, 0));
9798     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
9799     __ fld_d(Address(rsp, 0));
9800     __ fast_pow();
9801     __ fstp_d(Address(rsp, 0));
9802     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
9803     __ addptr(rsp, 8);
9804   %}
9805   ins_pipe( pipe_slow );
9806 %}
9807 
9808 
9809 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9810   predicate (UseSSE<=1);
9811   match(Set dpr1 (ExpD dpr1));
9812   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
9813   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
9814   ins_encode %{
9815     __ fast_exp();
9816   %}
9817   ins_pipe( pipe_slow );
9818 %}
9819 
9820 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9821   predicate (UseSSE>=2);
9822   match(Set dst (ExpD src));
9823   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
9824   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
9825   ins_encode %{
9826     __ subptr(rsp, 8);
9827     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
9828     __ fld_d(Address(rsp, 0));
9829     __ fast_exp();
9830     __ fstp_d(Address(rsp, 0));
9831     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
9832     __ addptr(rsp, 8);
9833   %}
9834   ins_pipe( pipe_slow );
9835 %}
9836 
9837 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
9838   predicate (UseSSE<=1);
9839   // The source Double operand on FPU stack
9840   match(Set dst (Log10D src));
9841   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
9842   // fxch         ; swap ST(0) with ST(1)
9843   // fyl2x        ; compute log_10(2) * log_2(x)
9844   format %{ "FLDLG2 \t\t\t#Log10\n\t"
9845             "FXCH   \n\t"
9846             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
9847          %}
9848   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
9849               Opcode(0xD9), Opcode(0xC9),   // fxch
9850               Opcode(0xD9), Opcode(0xF1));  // fyl2x
9851 
9852   ins_pipe( pipe_slow );
9853 %}
9854 
9855 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
9856   predicate (UseSSE>=2);
9857   effect(KILL cr);
9858   match(Set dst (Log10D src));
9859   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
9860   // fyl2x        ; compute log_10(2) * log_2(x)
9861   format %{ "FLDLG2 \t\t\t#Log10\n\t"
9862             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
9863          %}
9864   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
9865               Push_SrcD(src),
9866               Opcode(0xD9), Opcode(0xF1),   // fyl2x
9867               Push_ResultD(dst));
9868 
9869   ins_pipe( pipe_slow );
9870 %}
9871 
9872 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
9873   predicate (UseSSE<=1);
9874   // The source Double operand on FPU stack
9875   match(Set dst (LogD src));
9876   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
9877   // fxch         ; swap ST(0) with ST(1)
9878   // fyl2x        ; compute log_e(2) * log_2(x)
9879   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
9880             "FXCH   \n\t"
9881             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
9882          %}
9883   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
9884               Opcode(0xD9), Opcode(0xC9),   // fxch
9885               Opcode(0xD9), Opcode(0xF1));  // fyl2x
9886 
9887   ins_pipe( pipe_slow );
9888 %}
9889 
9890 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
9891   predicate (UseSSE>=2);
9892   effect(KILL cr);
9893   // The source and result Double operands in XMM registers
9894   match(Set dst (LogD src));
9895   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
9896   // fyl2x        ; compute log_e(2) * log_2(x)
9897   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
9898             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
9899          %}
9900   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
9901               Push_SrcD(src),
9902               Opcode(0xD9), Opcode(0xF1),   // fyl2x
9903               Push_ResultD(dst));
9904   ins_pipe( pipe_slow );
9905 %}
9906 
9907 //-------------Float Instructions-------------------------------
9908 // Float Math
9909 
9910 // Code for float compare:
9911 //     fcompp();
9912 //     fwait(); fnstsw_ax();
9913 //     sahf();
9914 //     movl(dst, unordered_result);
9915 //     jcc(Assembler::parity, exit);
9916 //     movl(dst, less_result);
9917 //     jcc(Assembler::below, exit);
9918 //     movl(dst, equal_result);
9919 //     jcc(Assembler::equal, exit);
9920 //     movl(dst, greater_result);
9921 //   exit:
9922 
9923 // P6 version of float compare, sets condition codes in EFLAGS
9924 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
9925   predicate(VM_Version::supports_cmov() && UseSSE == 0);
9926   match(Set cr (CmpF src1 src2));
9927   effect(KILL rax);
9928   ins_cost(150);
9929   format %{ "FLD    $src1\n\t"
9930             "FUCOMIP ST,$src2  // P6 instruction\n\t"
9931             "JNP    exit\n\t"
9932             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
9933             "SAHF\n"
9934      "exit:\tNOP               // avoid branch to branch" %}
9935   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9936   ins_encode( Push_Reg_DPR(src1),
9937               OpcP, RegOpc(src2),
9938               cmpF_P6_fixup );
9939   ins_pipe( pipe_slow );
9940 %}
9941 
9942 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
9943   predicate(VM_Version::supports_cmov() && UseSSE == 0);
9944   match(Set cr (CmpF src1 src2));
9945   ins_cost(100);
9946   format %{ "FLD    $src1\n\t"
9947             "FUCOMIP ST,$src2  // P6 instruction" %}
9948   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9949   ins_encode( Push_Reg_DPR(src1),
9950               OpcP, RegOpc(src2));
9951   ins_pipe( pipe_slow );
9952 %}
9953 
9954 
9955 // Compare & branch
9956 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
9957   predicate(UseSSE == 0);
9958   match(Set cr (CmpF src1 src2));
9959   effect(KILL rax);
9960   ins_cost(200);
9961   format %{ "FLD    $src1\n\t"
9962             "FCOMp  $src2\n\t"
9963             "FNSTSW AX\n\t"
9964             "TEST   AX,0x400\n\t"
9965             "JZ,s   flags\n\t"
9966             "MOV    AH,1\t# unordered treat as LT\n"
9967     "flags:\tSAHF" %}
9968   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9969   ins_encode( Push_Reg_DPR(src1),
9970               OpcP, RegOpc(src2),
9971               fpu_flags);
9972   ins_pipe( pipe_slow );
9973 %}
9974 
9975 // Compare vs zero into -1,0,1
9976 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
9977   predicate(UseSSE == 0);
9978   match(Set dst (CmpF3 src1 zero));
9979   effect(KILL cr, KILL rax);
9980   ins_cost(280);
9981   format %{ "FTSTF  $dst,$src1" %}
9982   opcode(0xE4, 0xD9);
9983   ins_encode( Push_Reg_DPR(src1),
9984               OpcS, OpcP, PopFPU,
9985               CmpF_Result(dst));
9986   ins_pipe( pipe_slow );
9987 %}
9988 
9989 // Compare into -1,0,1
9990 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
9991   predicate(UseSSE == 0);
9992   match(Set dst (CmpF3 src1 src2));
9993   effect(KILL cr, KILL rax);
9994   ins_cost(300);
9995   format %{ "FCMPF  $dst,$src1,$src2" %}
9996   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9997   ins_encode( Push_Reg_DPR(src1),
9998               OpcP, RegOpc(src2),
9999               CmpF_Result(dst));
10000   ins_pipe( pipe_slow );
10001 %}
10002 
10003 // float compare and set condition codes in EFLAGS by XMM regs
10004 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
10005   predicate(UseSSE>=1);
10006   match(Set cr (CmpF src1 src2));
10007   ins_cost(145);
10008   format %{ "UCOMISS $src1,$src2\n\t"
10009             "JNP,s   exit\n\t"
10010             "PUSHF\t# saw NaN, set CF\n\t"
10011             "AND     [rsp], #0xffffff2b\n\t"
10012             "POPF\n"
10013     "exit:" %}
10014   ins_encode %{
10015     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10016     emit_cmpfp_fixup(_masm);
10017   %}
10018   ins_pipe( pipe_slow );
10019 %}
10020 
10021 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
10022   predicate(UseSSE>=1);
10023   match(Set cr (CmpF src1 src2));
10024   ins_cost(100);
10025   format %{ "UCOMISS $src1,$src2" %}
10026   ins_encode %{
10027     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10028   %}
10029   ins_pipe( pipe_slow );
10030 %}
10031 
10032 // float compare and set condition codes in EFLAGS by XMM regs
10033 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
10034   predicate(UseSSE>=1);
10035   match(Set cr (CmpF src1 (LoadF src2)));
10036   ins_cost(165);
10037   format %{ "UCOMISS $src1,$src2\n\t"
10038             "JNP,s   exit\n\t"
10039             "PUSHF\t# saw NaN, set CF\n\t"
10040             "AND     [rsp], #0xffffff2b\n\t"
10041             "POPF\n"
10042     "exit:" %}
10043   ins_encode %{
10044     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10045     emit_cmpfp_fixup(_masm);
10046   %}
10047   ins_pipe( pipe_slow );
10048 %}
10049 
10050 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
10051   predicate(UseSSE>=1);
10052   match(Set cr (CmpF src1 (LoadF src2)));
10053   ins_cost(100);
10054   format %{ "UCOMISS $src1,$src2" %}
10055   ins_encode %{
10056     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10057   %}
10058   ins_pipe( pipe_slow );
10059 %}
10060 
10061 // Compare into -1,0,1 in XMM
10062 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
10063   predicate(UseSSE>=1);
10064   match(Set dst (CmpF3 src1 src2));
10065   effect(KILL cr);
10066   ins_cost(255);
10067   format %{ "UCOMISS $src1, $src2\n\t"
10068             "MOV     $dst, #-1\n\t"
10069             "JP,s    done\n\t"
10070             "JB,s    done\n\t"
10071             "SETNE   $dst\n\t"
10072             "MOVZB   $dst, $dst\n"
10073     "done:" %}
10074   ins_encode %{
10075     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10076     emit_cmpfp3(_masm, $dst$$Register);
10077   %}
10078   ins_pipe( pipe_slow );
10079 %}
10080 
10081 // Compare into -1,0,1 in XMM and memory
10082 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
10083   predicate(UseSSE>=1);
10084   match(Set dst (CmpF3 src1 (LoadF src2)));
10085   effect(KILL cr);
10086   ins_cost(275);
10087   format %{ "UCOMISS $src1, $src2\n\t"
10088             "MOV     $dst, #-1\n\t"
10089             "JP,s    done\n\t"
10090             "JB,s    done\n\t"
10091             "SETNE   $dst\n\t"
10092             "MOVZB   $dst, $dst\n"
10093     "done:" %}
10094   ins_encode %{
10095     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10096     emit_cmpfp3(_masm, $dst$$Register);
10097   %}
10098   ins_pipe( pipe_slow );
10099 %}
10100 
10101 // Spill to obtain 24-bit precision
10102 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10103   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10104   match(Set dst (SubF src1 src2));
10105 
10106   format %{ "FSUB   $dst,$src1 - $src2" %}
10107   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10108   ins_encode( Push_Reg_FPR(src1),
10109               OpcReg_FPR(src2),
10110               Pop_Mem_FPR(dst) );
10111   ins_pipe( fpu_mem_reg_reg );
10112 %}
10113 //
10114 // This instruction does not round to 24-bits
10115 instruct subFPR_reg(regFPR dst, regFPR src) %{
10116   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10117   match(Set dst (SubF dst src));
10118 
10119   format %{ "FSUB   $dst,$src" %}
10120   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10121   ins_encode( Push_Reg_FPR(src),
10122               OpcP, RegOpc(dst) );
10123   ins_pipe( fpu_reg_reg );
10124 %}
10125 
10126 // Spill to obtain 24-bit precision
10127 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10128   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10129   match(Set dst (AddF src1 src2));
10130 
10131   format %{ "FADD   $dst,$src1,$src2" %}
10132   opcode(0xD8, 0x0); /* D8 C0+i */
10133   ins_encode( Push_Reg_FPR(src2),
10134               OpcReg_FPR(src1),
10135               Pop_Mem_FPR(dst) );
10136   ins_pipe( fpu_mem_reg_reg );
10137 %}
10138 //
10139 // This instruction does not round to 24-bits
10140 instruct addFPR_reg(regFPR dst, regFPR src) %{
10141   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10142   match(Set dst (AddF dst src));
10143 
10144   format %{ "FLD    $src\n\t"
10145             "FADDp  $dst,ST" %}
10146   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10147   ins_encode( Push_Reg_FPR(src),
10148               OpcP, RegOpc(dst) );
10149   ins_pipe( fpu_reg_reg );
10150 %}
10151 
10152 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
10153   predicate(UseSSE==0);
10154   match(Set dst (AbsF src));
10155   ins_cost(100);
10156   format %{ "FABS" %}
10157   opcode(0xE1, 0xD9);
10158   ins_encode( OpcS, OpcP );
10159   ins_pipe( fpu_reg_reg );
10160 %}
10161 
10162 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
10163   predicate(UseSSE==0);
10164   match(Set dst (NegF src));
10165   ins_cost(100);
10166   format %{ "FCHS" %}
10167   opcode(0xE0, 0xD9);
10168   ins_encode( OpcS, OpcP );
10169   ins_pipe( fpu_reg_reg );
10170 %}
10171 
10172 // Cisc-alternate to addFPR_reg
10173 // Spill to obtain 24-bit precision
10174 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10175   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10176   match(Set dst (AddF src1 (LoadF src2)));
10177 
10178   format %{ "FLD    $src2\n\t"
10179             "FADD   ST,$src1\n\t"
10180             "FSTP_S $dst" %}
10181   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10182   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10183               OpcReg_FPR(src1),
10184               Pop_Mem_FPR(dst) );
10185   ins_pipe( fpu_mem_reg_mem );
10186 %}
10187 //
10188 // Cisc-alternate to addFPR_reg
10189 // This instruction does not round to 24-bits
10190 instruct addFPR_reg_mem(regFPR dst, memory src) %{
10191   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10192   match(Set dst (AddF dst (LoadF src)));
10193 
10194   format %{ "FADD   $dst,$src" %}
10195   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
10196   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10197               OpcP, RegOpc(dst) );
10198   ins_pipe( fpu_reg_mem );
10199 %}
10200 
10201 // // Following two instructions for _222_mpegaudio
10202 // Spill to obtain 24-bit precision
10203 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
10204   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10205   match(Set dst (AddF src1 src2));
10206 
10207   format %{ "FADD   $dst,$src1,$src2" %}
10208   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10209   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
10210               OpcReg_FPR(src2),
10211               Pop_Mem_FPR(dst) );
10212   ins_pipe( fpu_mem_reg_mem );
10213 %}
10214 
10215 // Cisc-spill variant
10216 // Spill to obtain 24-bit precision
10217 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
10218   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10219   match(Set dst (AddF src1 (LoadF src2)));
10220 
10221   format %{ "FADD   $dst,$src1,$src2 cisc" %}
10222   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10223   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10224               set_instruction_start,
10225               OpcP, RMopc_Mem(secondary,src1),
10226               Pop_Mem_FPR(dst) );
10227   ins_pipe( fpu_mem_mem_mem );
10228 %}
10229 
10230 // Spill to obtain 24-bit precision
10231 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10232   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10233   match(Set dst (AddF src1 src2));
10234 
10235   format %{ "FADD   $dst,$src1,$src2" %}
10236   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
10237   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10238               set_instruction_start,
10239               OpcP, RMopc_Mem(secondary,src1),
10240               Pop_Mem_FPR(dst) );
10241   ins_pipe( fpu_mem_mem_mem );
10242 %}
10243 
10244 
10245 // Spill to obtain 24-bit precision
10246 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10247   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10248   match(Set dst (AddF src con));
10249   format %{ "FLD    $src\n\t"
10250             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10251             "FSTP_S $dst"  %}
10252   ins_encode %{
10253     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10254     __ fadd_s($constantaddress($con));
10255     __ fstp_s(Address(rsp, $dst$$disp));
10256   %}
10257   ins_pipe(fpu_mem_reg_con);
10258 %}
10259 //
10260 // This instruction does not round to 24-bits
10261 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10262   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10263   match(Set dst (AddF src con));
10264   format %{ "FLD    $src\n\t"
10265             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10266             "FSTP   $dst"  %}
10267   ins_encode %{
10268     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10269     __ fadd_s($constantaddress($con));
10270     __ fstp_d($dst$$reg);
10271   %}
10272   ins_pipe(fpu_reg_reg_con);
10273 %}
10274 
10275 // Spill to obtain 24-bit precision
10276 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10277   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10278   match(Set dst (MulF src1 src2));
10279 
10280   format %{ "FLD    $src1\n\t"
10281             "FMUL   $src2\n\t"
10282             "FSTP_S $dst"  %}
10283   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
10284   ins_encode( Push_Reg_FPR(src1),
10285               OpcReg_FPR(src2),
10286               Pop_Mem_FPR(dst) );
10287   ins_pipe( fpu_mem_reg_reg );
10288 %}
10289 //
10290 // This instruction does not round to 24-bits
10291 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
10292   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10293   match(Set dst (MulF src1 src2));
10294 
10295   format %{ "FLD    $src1\n\t"
10296             "FMUL   $src2\n\t"
10297             "FSTP_S $dst"  %}
10298   opcode(0xD8, 0x1); /* D8 C8+i */
10299   ins_encode( Push_Reg_FPR(src2),
10300               OpcReg_FPR(src1),
10301               Pop_Reg_FPR(dst) );
10302   ins_pipe( fpu_reg_reg_reg );
10303 %}
10304 
10305 
10306 // Spill to obtain 24-bit precision
10307 // Cisc-alternate to reg-reg multiply
10308 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10309   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10310   match(Set dst (MulF src1 (LoadF src2)));
10311 
10312   format %{ "FLD_S  $src2\n\t"
10313             "FMUL   $src1\n\t"
10314             "FSTP_S $dst"  %}
10315   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
10316   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10317               OpcReg_FPR(src1),
10318               Pop_Mem_FPR(dst) );
10319   ins_pipe( fpu_mem_reg_mem );
10320 %}
10321 //
10322 // This instruction does not round to 24-bits
10323 // Cisc-alternate to reg-reg multiply
10324 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
10325   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10326   match(Set dst (MulF src1 (LoadF src2)));
10327 
10328   format %{ "FMUL   $dst,$src1,$src2" %}
10329   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
10330   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10331               OpcReg_FPR(src1),
10332               Pop_Reg_FPR(dst) );
10333   ins_pipe( fpu_reg_reg_mem );
10334 %}
10335 
10336 // Spill to obtain 24-bit precision
10337 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10338   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10339   match(Set dst (MulF src1 src2));
10340 
10341   format %{ "FMUL   $dst,$src1,$src2" %}
10342   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
10343   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10344               set_instruction_start,
10345               OpcP, RMopc_Mem(secondary,src1),
10346               Pop_Mem_FPR(dst) );
10347   ins_pipe( fpu_mem_mem_mem );
10348 %}
10349 
10350 // Spill to obtain 24-bit precision
10351 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10352   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10353   match(Set dst (MulF src con));
10354 
10355   format %{ "FLD    $src\n\t"
10356             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10357             "FSTP_S $dst"  %}
10358   ins_encode %{
10359     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10360     __ fmul_s($constantaddress($con));
10361     __ fstp_s(Address(rsp, $dst$$disp));
10362   %}
10363   ins_pipe(fpu_mem_reg_con);
10364 %}
10365 //
10366 // This instruction does not round to 24-bits
10367 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10368   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10369   match(Set dst (MulF src con));
10370 
10371   format %{ "FLD    $src\n\t"
10372             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10373             "FSTP   $dst"  %}
10374   ins_encode %{
10375     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10376     __ fmul_s($constantaddress($con));
10377     __ fstp_d($dst$$reg);
10378   %}
10379   ins_pipe(fpu_reg_reg_con);
10380 %}
10381 
10382 
10383 //
10384 // MACRO1 -- subsume unshared load into mulFPR
10385 // This instruction does not round to 24-bits
10386 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
10387   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10388   match(Set dst (MulF (LoadF mem1) src));
10389 
10390   format %{ "FLD    $mem1    ===MACRO1===\n\t"
10391             "FMUL   ST,$src\n\t"
10392             "FSTP   $dst" %}
10393   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
10394   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
10395               OpcReg_FPR(src),
10396               Pop_Reg_FPR(dst) );
10397   ins_pipe( fpu_reg_reg_mem );
10398 %}
10399 //
10400 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
10401 // This instruction does not round to 24-bits
10402 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
10403   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10404   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
10405   ins_cost(95);
10406 
10407   format %{ "FLD    $mem1     ===MACRO2===\n\t"
10408             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
10409             "FADD   ST,$src2\n\t"
10410             "FSTP   $dst" %}
10411   opcode(0xD9); /* LoadF D9 /0 */
10412   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
10413               FMul_ST_reg(src1),
10414               FAdd_ST_reg(src2),
10415               Pop_Reg_FPR(dst) );
10416   ins_pipe( fpu_reg_mem_reg_reg );
10417 %}
10418 
10419 // MACRO3 -- addFPR a mulFPR
10420 // This instruction does not round to 24-bits.  It is a '2-address'
10421 // instruction in that the result goes back to src2.  This eliminates
10422 // a move from the macro; possibly the register allocator will have
10423 // to add it back (and maybe not).
10424 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
10425   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10426   match(Set src2 (AddF (MulF src0 src1) src2));
10427 
10428   format %{ "FLD    $src0     ===MACRO3===\n\t"
10429             "FMUL   ST,$src1\n\t"
10430             "FADDP  $src2,ST" %}
10431   opcode(0xD9); /* LoadF D9 /0 */
10432   ins_encode( Push_Reg_FPR(src0),
10433               FMul_ST_reg(src1),
10434               FAddP_reg_ST(src2) );
10435   ins_pipe( fpu_reg_reg_reg );
10436 %}
10437 
10438 // MACRO4 -- divFPR subFPR
10439 // This instruction does not round to 24-bits
10440 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
10441   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10442   match(Set dst (DivF (SubF src2 src1) src3));
10443 
10444   format %{ "FLD    $src2   ===MACRO4===\n\t"
10445             "FSUB   ST,$src1\n\t"
10446             "FDIV   ST,$src3\n\t"
10447             "FSTP  $dst" %}
10448   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10449   ins_encode( Push_Reg_FPR(src2),
10450               subFPR_divFPR_encode(src1,src3),
10451               Pop_Reg_FPR(dst) );
10452   ins_pipe( fpu_reg_reg_reg_reg );
10453 %}
10454 
10455 // Spill to obtain 24-bit precision
10456 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10457   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10458   match(Set dst (DivF src1 src2));
10459 
10460   format %{ "FDIV   $dst,$src1,$src2" %}
10461   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
10462   ins_encode( Push_Reg_FPR(src1),
10463               OpcReg_FPR(src2),
10464               Pop_Mem_FPR(dst) );
10465   ins_pipe( fpu_mem_reg_reg );
10466 %}
10467 //
10468 // This instruction does not round to 24-bits
10469 instruct divFPR_reg(regFPR dst, regFPR src) %{
10470   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10471   match(Set dst (DivF dst src));
10472 
10473   format %{ "FDIV   $dst,$src" %}
10474   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10475   ins_encode( Push_Reg_FPR(src),
10476               OpcP, RegOpc(dst) );
10477   ins_pipe( fpu_reg_reg );
10478 %}
10479 
10480 
10481 // Spill to obtain 24-bit precision
10482 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10483   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
10484   match(Set dst (ModF src1 src2));
10485   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10486 
10487   format %{ "FMOD   $dst,$src1,$src2" %}
10488   ins_encode( Push_Reg_Mod_DPR(src1, src2),
10489               emitModDPR(),
10490               Push_Result_Mod_DPR(src2),
10491               Pop_Mem_FPR(dst));
10492   ins_pipe( pipe_slow );
10493 %}
10494 //
10495 // This instruction does not round to 24-bits
10496 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
10497   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
10498   match(Set dst (ModF dst src));
10499   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10500 
10501   format %{ "FMOD   $dst,$src" %}
10502   ins_encode(Push_Reg_Mod_DPR(dst, src),
10503               emitModDPR(),
10504               Push_Result_Mod_DPR(src),
10505               Pop_Reg_FPR(dst));
10506   ins_pipe( pipe_slow );
10507 %}
10508 
10509 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
10510   predicate(UseSSE>=1);
10511   match(Set dst (ModF src0 src1));
10512   effect(KILL rax, KILL cr);
10513   format %{ "SUB    ESP,4\t # FMOD\n"
10514           "\tMOVSS  [ESP+0],$src1\n"
10515           "\tFLD_S  [ESP+0]\n"
10516           "\tMOVSS  [ESP+0],$src0\n"
10517           "\tFLD_S  [ESP+0]\n"
10518      "loop:\tFPREM\n"
10519           "\tFWAIT\n"
10520           "\tFNSTSW AX\n"
10521           "\tSAHF\n"
10522           "\tJP     loop\n"
10523           "\tFSTP_S [ESP+0]\n"
10524           "\tMOVSS  $dst,[ESP+0]\n"
10525           "\tADD    ESP,4\n"
10526           "\tFSTP   ST0\t # Restore FPU Stack"
10527     %}
10528   ins_cost(250);
10529   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
10530   ins_pipe( pipe_slow );
10531 %}
10532 
10533 
10534 //----------Arithmetic Conversion Instructions---------------------------------
10535 // The conversions operations are all Alpha sorted.  Please keep it that way!
10536 
10537 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
10538   predicate(UseSSE==0);
10539   match(Set dst (RoundFloat src));
10540   ins_cost(125);
10541   format %{ "FST_S  $dst,$src\t# F-round" %}
10542   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
10543   ins_pipe( fpu_mem_reg );
10544 %}
10545 
10546 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
10547   predicate(UseSSE<=1);
10548   match(Set dst (RoundDouble src));
10549   ins_cost(125);
10550   format %{ "FST_D  $dst,$src\t# D-round" %}
10551   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
10552   ins_pipe( fpu_mem_reg );
10553 %}
10554 
10555 // Force rounding to 24-bit precision and 6-bit exponent
10556 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
10557   predicate(UseSSE==0);
10558   match(Set dst (ConvD2F src));
10559   format %{ "FST_S  $dst,$src\t# F-round" %}
10560   expand %{
10561     roundFloat_mem_reg(dst,src);
10562   %}
10563 %}
10564 
10565 // Force rounding to 24-bit precision and 6-bit exponent
10566 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
10567   predicate(UseSSE==1);
10568   match(Set dst (ConvD2F src));
10569   effect( KILL cr );
10570   format %{ "SUB    ESP,4\n\t"
10571             "FST_S  [ESP],$src\t# F-round\n\t"
10572             "MOVSS  $dst,[ESP]\n\t"
10573             "ADD ESP,4" %}
10574   ins_encode %{
10575     __ subptr(rsp, 4);
10576     if ($src$$reg != FPR1L_enc) {
10577       __ fld_s($src$$reg-1);
10578       __ fstp_s(Address(rsp, 0));
10579     } else {
10580       __ fst_s(Address(rsp, 0));
10581     }
10582     __ movflt($dst$$XMMRegister, Address(rsp, 0));
10583     __ addptr(rsp, 4);
10584   %}
10585   ins_pipe( pipe_slow );
10586 %}
10587 
10588 // Force rounding double precision to single precision
10589 instruct convD2F_reg(regF dst, regD src) %{
10590   predicate(UseSSE>=2);
10591   match(Set dst (ConvD2F src));
10592   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
10593   ins_encode %{
10594     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10595   %}
10596   ins_pipe( pipe_slow );
10597 %}
10598 
10599 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
10600   predicate(UseSSE==0);
10601   match(Set dst (ConvF2D src));
10602   format %{ "FST_S  $dst,$src\t# D-round" %}
10603   ins_encode( Pop_Reg_Reg_DPR(dst, src));
10604   ins_pipe( fpu_reg_reg );
10605 %}
10606 
10607 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
10608   predicate(UseSSE==1);
10609   match(Set dst (ConvF2D src));
10610   format %{ "FST_D  $dst,$src\t# D-round" %}
10611   expand %{
10612     roundDouble_mem_reg(dst,src);
10613   %}
10614 %}
10615 
10616 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
10617   predicate(UseSSE==1);
10618   match(Set dst (ConvF2D src));
10619   effect( KILL cr );
10620   format %{ "SUB    ESP,4\n\t"
10621             "MOVSS  [ESP] $src\n\t"
10622             "FLD_S  [ESP]\n\t"
10623             "ADD    ESP,4\n\t"
10624             "FSTP   $dst\t# D-round" %}
10625   ins_encode %{
10626     __ subptr(rsp, 4);
10627     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10628     __ fld_s(Address(rsp, 0));
10629     __ addptr(rsp, 4);
10630     __ fstp_d($dst$$reg);
10631   %}
10632   ins_pipe( pipe_slow );
10633 %}
10634 
10635 instruct convF2D_reg(regD dst, regF src) %{
10636   predicate(UseSSE>=2);
10637   match(Set dst (ConvF2D src));
10638   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
10639   ins_encode %{
10640     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
10641   %}
10642   ins_pipe( pipe_slow );
10643 %}
10644 
10645 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10646 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
10647   predicate(UseSSE<=1);
10648   match(Set dst (ConvD2I src));
10649   effect( KILL tmp, KILL cr );
10650   format %{ "FLD    $src\t# Convert double to int \n\t"
10651             "FLDCW  trunc mode\n\t"
10652             "SUB    ESP,4\n\t"
10653             "FISTp  [ESP + #0]\n\t"
10654             "FLDCW  std/24-bit mode\n\t"
10655             "POP    EAX\n\t"
10656             "CMP    EAX,0x80000000\n\t"
10657             "JNE,s  fast\n\t"
10658             "FLD_D  $src\n\t"
10659             "CALL   d2i_wrapper\n"
10660       "fast:" %}
10661   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
10662   ins_pipe( pipe_slow );
10663 %}
10664 
10665 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10666 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
10667   predicate(UseSSE>=2);
10668   match(Set dst (ConvD2I src));
10669   effect( KILL tmp, KILL cr );
10670   format %{ "CVTTSD2SI $dst, $src\n\t"
10671             "CMP    $dst,0x80000000\n\t"
10672             "JNE,s  fast\n\t"
10673             "SUB    ESP, 8\n\t"
10674             "MOVSD  [ESP], $src\n\t"
10675             "FLD_D  [ESP]\n\t"
10676             "ADD    ESP, 8\n\t"
10677             "CALL   d2i_wrapper\n"
10678       "fast:" %}
10679   ins_encode %{
10680     Label fast;
10681     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
10682     __ cmpl($dst$$Register, 0x80000000);
10683     __ jccb(Assembler::notEqual, fast);
10684     __ subptr(rsp, 8);
10685     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10686     __ fld_d(Address(rsp, 0));
10687     __ addptr(rsp, 8);
10688     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
10689     __ bind(fast);
10690   %}
10691   ins_pipe( pipe_slow );
10692 %}
10693 
10694 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
10695   predicate(UseSSE<=1);
10696   match(Set dst (ConvD2L src));
10697   effect( KILL cr );
10698   format %{ "FLD    $src\t# Convert double to long\n\t"
10699             "FLDCW  trunc mode\n\t"
10700             "SUB    ESP,8\n\t"
10701             "FISTp  [ESP + #0]\n\t"
10702             "FLDCW  std/24-bit mode\n\t"
10703             "POP    EAX\n\t"
10704             "POP    EDX\n\t"
10705             "CMP    EDX,0x80000000\n\t"
10706             "JNE,s  fast\n\t"
10707             "TEST   EAX,EAX\n\t"
10708             "JNE,s  fast\n\t"
10709             "FLD    $src\n\t"
10710             "CALL   d2l_wrapper\n"
10711       "fast:" %}
10712   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
10713   ins_pipe( pipe_slow );
10714 %}
10715 
10716 // XMM lacks a float/double->long conversion, so use the old FPU stack.
10717 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
10718   predicate (UseSSE>=2);
10719   match(Set dst (ConvD2L src));
10720   effect( KILL cr );
10721   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
10722             "MOVSD  [ESP],$src\n\t"
10723             "FLD_D  [ESP]\n\t"
10724             "FLDCW  trunc mode\n\t"
10725             "FISTp  [ESP + #0]\n\t"
10726             "FLDCW  std/24-bit mode\n\t"
10727             "POP    EAX\n\t"
10728             "POP    EDX\n\t"
10729             "CMP    EDX,0x80000000\n\t"
10730             "JNE,s  fast\n\t"
10731             "TEST   EAX,EAX\n\t"
10732             "JNE,s  fast\n\t"
10733             "SUB    ESP,8\n\t"
10734             "MOVSD  [ESP],$src\n\t"
10735             "FLD_D  [ESP]\n\t"
10736             "ADD    ESP,8\n\t"
10737             "CALL   d2l_wrapper\n"
10738       "fast:" %}
10739   ins_encode %{
10740     Label fast;
10741     __ subptr(rsp, 8);
10742     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10743     __ fld_d(Address(rsp, 0));
10744     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
10745     __ fistp_d(Address(rsp, 0));
10746     // Restore the rounding mode, mask the exception
10747     if (Compile::current()->in_24_bit_fp_mode()) {
10748       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
10749     } else {
10750       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
10751     }
10752     // Load the converted long, adjust CPU stack
10753     __ pop(rax);
10754     __ pop(rdx);
10755     __ cmpl(rdx, 0x80000000);
10756     __ jccb(Assembler::notEqual, fast);
10757     __ testl(rax, rax);
10758     __ jccb(Assembler::notEqual, fast);
10759     __ subptr(rsp, 8);
10760     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10761     __ fld_d(Address(rsp, 0));
10762     __ addptr(rsp, 8);
10763     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
10764     __ bind(fast);
10765   %}
10766   ins_pipe( pipe_slow );
10767 %}
10768 
10769 // Convert a double to an int.  Java semantics require we do complex
10770 // manglations in the corner cases.  So we set the rounding mode to
10771 // 'zero', store the darned double down as an int, and reset the
10772 // rounding mode to 'nearest'.  The hardware stores a flag value down
10773 // if we would overflow or converted a NAN; we check for this and
10774 // and go the slow path if needed.
10775 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
10776   predicate(UseSSE==0);
10777   match(Set dst (ConvF2I src));
10778   effect( KILL tmp, KILL cr );
10779   format %{ "FLD    $src\t# Convert float to int \n\t"
10780             "FLDCW  trunc mode\n\t"
10781             "SUB    ESP,4\n\t"
10782             "FISTp  [ESP + #0]\n\t"
10783             "FLDCW  std/24-bit mode\n\t"
10784             "POP    EAX\n\t"
10785             "CMP    EAX,0x80000000\n\t"
10786             "JNE,s  fast\n\t"
10787             "FLD    $src\n\t"
10788             "CALL   d2i_wrapper\n"
10789       "fast:" %}
10790   // DPR2I_encoding works for FPR2I
10791   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
10792   ins_pipe( pipe_slow );
10793 %}
10794 
10795 // Convert a float in xmm to an int reg.
10796 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
10797   predicate(UseSSE>=1);
10798   match(Set dst (ConvF2I src));
10799   effect( KILL tmp, KILL cr );
10800   format %{ "CVTTSS2SI $dst, $src\n\t"
10801             "CMP    $dst,0x80000000\n\t"
10802             "JNE,s  fast\n\t"
10803             "SUB    ESP, 4\n\t"
10804             "MOVSS  [ESP], $src\n\t"
10805             "FLD    [ESP]\n\t"
10806             "ADD    ESP, 4\n\t"
10807             "CALL   d2i_wrapper\n"
10808       "fast:" %}
10809   ins_encode %{
10810     Label fast;
10811     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
10812     __ cmpl($dst$$Register, 0x80000000);
10813     __ jccb(Assembler::notEqual, fast);
10814     __ subptr(rsp, 4);
10815     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10816     __ fld_s(Address(rsp, 0));
10817     __ addptr(rsp, 4);
10818     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
10819     __ bind(fast);
10820   %}
10821   ins_pipe( pipe_slow );
10822 %}
10823 
10824 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
10825   predicate(UseSSE==0);
10826   match(Set dst (ConvF2L src));
10827   effect( KILL cr );
10828   format %{ "FLD    $src\t# Convert float to long\n\t"
10829             "FLDCW  trunc mode\n\t"
10830             "SUB    ESP,8\n\t"
10831             "FISTp  [ESP + #0]\n\t"
10832             "FLDCW  std/24-bit mode\n\t"
10833             "POP    EAX\n\t"
10834             "POP    EDX\n\t"
10835             "CMP    EDX,0x80000000\n\t"
10836             "JNE,s  fast\n\t"
10837             "TEST   EAX,EAX\n\t"
10838             "JNE,s  fast\n\t"
10839             "FLD    $src\n\t"
10840             "CALL   d2l_wrapper\n"
10841       "fast:" %}
10842   // DPR2L_encoding works for FPR2L
10843   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
10844   ins_pipe( pipe_slow );
10845 %}
10846 
10847 // XMM lacks a float/double->long conversion, so use the old FPU stack.
10848 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
10849   predicate (UseSSE>=1);
10850   match(Set dst (ConvF2L src));
10851   effect( KILL cr );
10852   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
10853             "MOVSS  [ESP],$src\n\t"
10854             "FLD_S  [ESP]\n\t"
10855             "FLDCW  trunc mode\n\t"
10856             "FISTp  [ESP + #0]\n\t"
10857             "FLDCW  std/24-bit mode\n\t"
10858             "POP    EAX\n\t"
10859             "POP    EDX\n\t"
10860             "CMP    EDX,0x80000000\n\t"
10861             "JNE,s  fast\n\t"
10862             "TEST   EAX,EAX\n\t"
10863             "JNE,s  fast\n\t"
10864             "SUB    ESP,4\t# Convert float to long\n\t"
10865             "MOVSS  [ESP],$src\n\t"
10866             "FLD_S  [ESP]\n\t"
10867             "ADD    ESP,4\n\t"
10868             "CALL   d2l_wrapper\n"
10869       "fast:" %}
10870   ins_encode %{
10871     Label fast;
10872     __ subptr(rsp, 8);
10873     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10874     __ fld_s(Address(rsp, 0));
10875     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
10876     __ fistp_d(Address(rsp, 0));
10877     // Restore the rounding mode, mask the exception
10878     if (Compile::current()->in_24_bit_fp_mode()) {
10879       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
10880     } else {
10881       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
10882     }
10883     // Load the converted long, adjust CPU stack
10884     __ pop(rax);
10885     __ pop(rdx);
10886     __ cmpl(rdx, 0x80000000);
10887     __ jccb(Assembler::notEqual, fast);
10888     __ testl(rax, rax);
10889     __ jccb(Assembler::notEqual, fast);
10890     __ subptr(rsp, 4);
10891     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10892     __ fld_s(Address(rsp, 0));
10893     __ addptr(rsp, 4);
10894     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
10895     __ bind(fast);
10896   %}
10897   ins_pipe( pipe_slow );
10898 %}
10899 
10900 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
10901   predicate( UseSSE<=1 );
10902   match(Set dst (ConvI2D src));
10903   format %{ "FILD   $src\n\t"
10904             "FSTP   $dst" %}
10905   opcode(0xDB, 0x0);  /* DB /0 */
10906   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
10907   ins_pipe( fpu_reg_mem );
10908 %}
10909 
10910 instruct convI2D_reg(regD dst, rRegI src) %{
10911   predicate( UseSSE>=2 && !UseXmmI2D );
10912   match(Set dst (ConvI2D src));
10913   format %{ "CVTSI2SD $dst,$src" %}
10914   ins_encode %{
10915     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
10916   %}
10917   ins_pipe( pipe_slow );
10918 %}
10919 
10920 instruct convI2D_mem(regD dst, memory mem) %{
10921   predicate( UseSSE>=2 );
10922   match(Set dst (ConvI2D (LoadI mem)));
10923   format %{ "CVTSI2SD $dst,$mem" %}
10924   ins_encode %{
10925     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
10926   %}
10927   ins_pipe( pipe_slow );
10928 %}
10929 
10930 instruct convXI2D_reg(regD dst, rRegI src)
10931 %{
10932   predicate( UseSSE>=2 && UseXmmI2D );
10933   match(Set dst (ConvI2D src));
10934 
10935   format %{ "MOVD  $dst,$src\n\t"
10936             "CVTDQ2PD $dst,$dst\t# i2d" %}
10937   ins_encode %{
10938     __ movdl($dst$$XMMRegister, $src$$Register);
10939     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
10940   %}
10941   ins_pipe(pipe_slow); // XXX
10942 %}
10943 
10944 instruct convI2DPR_mem(regDPR dst, memory mem) %{
10945   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
10946   match(Set dst (ConvI2D (LoadI mem)));
10947   format %{ "FILD   $mem\n\t"
10948             "FSTP   $dst" %}
10949   opcode(0xDB);      /* DB /0 */
10950   ins_encode( OpcP, RMopc_Mem(0x00,mem),
10951               Pop_Reg_DPR(dst));
10952   ins_pipe( fpu_reg_mem );
10953 %}
10954 
10955 // Convert a byte to a float; no rounding step needed.
10956 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
10957   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
10958   match(Set dst (ConvI2F src));
10959   format %{ "FILD   $src\n\t"
10960             "FSTP   $dst" %}
10961 
10962   opcode(0xDB, 0x0);  /* DB /0 */
10963   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
10964   ins_pipe( fpu_reg_mem );
10965 %}
10966 
10967 // In 24-bit mode, force exponent rounding by storing back out
10968 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
10969   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
10970   match(Set dst (ConvI2F src));
10971   ins_cost(200);
10972   format %{ "FILD   $src\n\t"
10973             "FSTP_S $dst" %}
10974   opcode(0xDB, 0x0);  /* DB /0 */
10975   ins_encode( Push_Mem_I(src),
10976               Pop_Mem_FPR(dst));
10977   ins_pipe( fpu_mem_mem );
10978 %}
10979 
10980 // In 24-bit mode, force exponent rounding by storing back out
10981 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
10982   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
10983   match(Set dst (ConvI2F (LoadI mem)));
10984   ins_cost(200);
10985   format %{ "FILD   $mem\n\t"
10986             "FSTP_S $dst" %}
10987   opcode(0xDB);  /* DB /0 */
10988   ins_encode( OpcP, RMopc_Mem(0x00,mem),
10989               Pop_Mem_FPR(dst));
10990   ins_pipe( fpu_mem_mem );
10991 %}
10992 
10993 // This instruction does not round to 24-bits
10994 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
10995   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
10996   match(Set dst (ConvI2F src));
10997   format %{ "FILD   $src\n\t"
10998             "FSTP   $dst" %}
10999   opcode(0xDB, 0x0);  /* DB /0 */
11000   ins_encode( Push_Mem_I(src),
11001               Pop_Reg_FPR(dst));
11002   ins_pipe( fpu_reg_mem );
11003 %}
11004 
11005 // This instruction does not round to 24-bits
11006 instruct convI2FPR_mem(regFPR dst, memory mem) %{
11007   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11008   match(Set dst (ConvI2F (LoadI mem)));
11009   format %{ "FILD   $mem\n\t"
11010             "FSTP   $dst" %}
11011   opcode(0xDB);      /* DB /0 */
11012   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11013               Pop_Reg_FPR(dst));
11014   ins_pipe( fpu_reg_mem );
11015 %}
11016 
11017 // Convert an int to a float in xmm; no rounding step needed.
11018 instruct convI2F_reg(regF dst, rRegI src) %{
11019   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11020   match(Set dst (ConvI2F src));
11021   format %{ "CVTSI2SS $dst, $src" %}
11022   ins_encode %{
11023     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
11024   %}
11025   ins_pipe( pipe_slow );
11026 %}
11027 
11028  instruct convXI2F_reg(regF dst, rRegI src)
11029 %{
11030   predicate( UseSSE>=2 && UseXmmI2F );
11031   match(Set dst (ConvI2F src));
11032 
11033   format %{ "MOVD  $dst,$src\n\t"
11034             "CVTDQ2PS $dst,$dst\t# i2f" %}
11035   ins_encode %{
11036     __ movdl($dst$$XMMRegister, $src$$Register);
11037     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11038   %}
11039   ins_pipe(pipe_slow); // XXX
11040 %}
11041 
11042 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
11043   match(Set dst (ConvI2L src));
11044   effect(KILL cr);
11045   ins_cost(375);
11046   format %{ "MOV    $dst.lo,$src\n\t"
11047             "MOV    $dst.hi,$src\n\t"
11048             "SAR    $dst.hi,31" %}
11049   ins_encode(convert_int_long(dst,src));
11050   ins_pipe( ialu_reg_reg_long );
11051 %}
11052 
11053 // Zero-extend convert int to long
11054 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
11055   match(Set dst (AndL (ConvI2L src) mask) );
11056   effect( KILL flags );
11057   ins_cost(250);
11058   format %{ "MOV    $dst.lo,$src\n\t"
11059             "XOR    $dst.hi,$dst.hi" %}
11060   opcode(0x33); // XOR
11061   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11062   ins_pipe( ialu_reg_reg_long );
11063 %}
11064 
11065 // Zero-extend long
11066 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11067   match(Set dst (AndL src mask) );
11068   effect( KILL flags );
11069   ins_cost(250);
11070   format %{ "MOV    $dst.lo,$src.lo\n\t"
11071             "XOR    $dst.hi,$dst.hi\n\t" %}
11072   opcode(0x33); // XOR
11073   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11074   ins_pipe( ialu_reg_reg_long );
11075 %}
11076 
11077 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
11078   predicate (UseSSE<=1);
11079   match(Set dst (ConvL2D src));
11080   effect( KILL cr );
11081   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11082             "PUSH   $src.lo\n\t"
11083             "FILD   ST,[ESP + #0]\n\t"
11084             "ADD    ESP,8\n\t"
11085             "FSTP_D $dst\t# D-round" %}
11086   opcode(0xDF, 0x5);  /* DF /5 */
11087   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
11088   ins_pipe( pipe_slow );
11089 %}
11090 
11091 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
11092   predicate (UseSSE>=2);
11093   match(Set dst (ConvL2D src));
11094   effect( KILL cr );
11095   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11096             "PUSH   $src.lo\n\t"
11097             "FILD_D [ESP]\n\t"
11098             "FSTP_D [ESP]\n\t"
11099             "MOVSD  $dst,[ESP]\n\t"
11100             "ADD    ESP,8" %}
11101   opcode(0xDF, 0x5);  /* DF /5 */
11102   ins_encode(convert_long_double2(src), Push_ResultD(dst));
11103   ins_pipe( pipe_slow );
11104 %}
11105 
11106 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
11107   predicate (UseSSE>=1);
11108   match(Set dst (ConvL2F src));
11109   effect( KILL cr );
11110   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11111             "PUSH   $src.lo\n\t"
11112             "FILD_D [ESP]\n\t"
11113             "FSTP_S [ESP]\n\t"
11114             "MOVSS  $dst,[ESP]\n\t"
11115             "ADD    ESP,8" %}
11116   opcode(0xDF, 0x5);  /* DF /5 */
11117   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
11118   ins_pipe( pipe_slow );
11119 %}
11120 
11121 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
11122   match(Set dst (ConvL2F src));
11123   effect( KILL cr );
11124   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11125             "PUSH   $src.lo\n\t"
11126             "FILD   ST,[ESP + #0]\n\t"
11127             "ADD    ESP,8\n\t"
11128             "FSTP_S $dst\t# F-round" %}
11129   opcode(0xDF, 0x5);  /* DF /5 */
11130   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
11131   ins_pipe( pipe_slow );
11132 %}
11133 
11134 instruct convL2I_reg( rRegI dst, eRegL src ) %{
11135   match(Set dst (ConvL2I src));
11136   effect( DEF dst, USE src );
11137   format %{ "MOV    $dst,$src.lo" %}
11138   ins_encode(enc_CopyL_Lo(dst,src));
11139   ins_pipe( ialu_reg_reg );
11140 %}
11141 
11142 
11143 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
11144   match(Set dst (MoveF2I src));
11145   effect( DEF dst, USE src );
11146   ins_cost(100);
11147   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
11148   ins_encode %{
11149     __ movl($dst$$Register, Address(rsp, $src$$disp));
11150   %}
11151   ins_pipe( ialu_reg_mem );
11152 %}
11153 
11154 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
11155   predicate(UseSSE==0);
11156   match(Set dst (MoveF2I src));
11157   effect( DEF dst, USE src );
11158 
11159   ins_cost(125);
11160   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
11161   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
11162   ins_pipe( fpu_mem_reg );
11163 %}
11164 
11165 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
11166   predicate(UseSSE>=1);
11167   match(Set dst (MoveF2I src));
11168   effect( DEF dst, USE src );
11169 
11170   ins_cost(95);
11171   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
11172   ins_encode %{
11173     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
11174   %}
11175   ins_pipe( pipe_slow );
11176 %}
11177 
11178 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
11179   predicate(UseSSE>=2);
11180   match(Set dst (MoveF2I src));
11181   effect( DEF dst, USE src );
11182   ins_cost(85);
11183   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
11184   ins_encode %{
11185     __ movdl($dst$$Register, $src$$XMMRegister);
11186   %}
11187   ins_pipe( pipe_slow );
11188 %}
11189 
11190 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
11191   match(Set dst (MoveI2F src));
11192   effect( DEF dst, USE src );
11193 
11194   ins_cost(100);
11195   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
11196   ins_encode %{
11197     __ movl(Address(rsp, $dst$$disp), $src$$Register);
11198   %}
11199   ins_pipe( ialu_mem_reg );
11200 %}
11201 
11202 
11203 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
11204   predicate(UseSSE==0);
11205   match(Set dst (MoveI2F src));
11206   effect(DEF dst, USE src);
11207 
11208   ins_cost(125);
11209   format %{ "FLD_S  $src\n\t"
11210             "FSTP   $dst\t# MoveI2F_stack_reg" %}
11211   opcode(0xD9);               /* D9 /0, FLD m32real */
11212   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11213               Pop_Reg_FPR(dst) );
11214   ins_pipe( fpu_reg_mem );
11215 %}
11216 
11217 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
11218   predicate(UseSSE>=1);
11219   match(Set dst (MoveI2F src));
11220   effect( DEF dst, USE src );
11221 
11222   ins_cost(95);
11223   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
11224   ins_encode %{
11225     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
11226   %}
11227   ins_pipe( pipe_slow );
11228 %}
11229 
11230 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
11231   predicate(UseSSE>=2);
11232   match(Set dst (MoveI2F src));
11233   effect( DEF dst, USE src );
11234 
11235   ins_cost(85);
11236   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
11237   ins_encode %{
11238     __ movdl($dst$$XMMRegister, $src$$Register);
11239   %}
11240   ins_pipe( pipe_slow );
11241 %}
11242 
11243 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
11244   match(Set dst (MoveD2L src));
11245   effect(DEF dst, USE src);
11246 
11247   ins_cost(250);
11248   format %{ "MOV    $dst.lo,$src\n\t"
11249             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
11250   opcode(0x8B, 0x8B);
11251   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
11252   ins_pipe( ialu_mem_long_reg );
11253 %}
11254 
11255 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
11256   predicate(UseSSE<=1);
11257   match(Set dst (MoveD2L src));
11258   effect(DEF dst, USE src);
11259 
11260   ins_cost(125);
11261   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
11262   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
11263   ins_pipe( fpu_mem_reg );
11264 %}
11265 
11266 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
11267   predicate(UseSSE>=2);
11268   match(Set dst (MoveD2L src));
11269   effect(DEF dst, USE src);
11270   ins_cost(95);
11271   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
11272   ins_encode %{
11273     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
11274   %}
11275   ins_pipe( pipe_slow );
11276 %}
11277 
11278 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
11279   predicate(UseSSE>=2);
11280   match(Set dst (MoveD2L src));
11281   effect(DEF dst, USE src, TEMP tmp);
11282   ins_cost(85);
11283   format %{ "MOVD   $dst.lo,$src\n\t"
11284             "PSHUFLW $tmp,$src,0x4E\n\t"
11285             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
11286   ins_encode %{
11287     __ movdl($dst$$Register, $src$$XMMRegister);
11288     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
11289     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
11290   %}
11291   ins_pipe( pipe_slow );
11292 %}
11293 
11294 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
11295   match(Set dst (MoveL2D src));
11296   effect(DEF dst, USE src);
11297 
11298   ins_cost(200);
11299   format %{ "MOV    $dst,$src.lo\n\t"
11300             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
11301   opcode(0x89, 0x89);
11302   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
11303   ins_pipe( ialu_mem_long_reg );
11304 %}
11305 
11306 
11307 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
11308   predicate(UseSSE<=1);
11309   match(Set dst (MoveL2D src));
11310   effect(DEF dst, USE src);
11311   ins_cost(125);
11312 
11313   format %{ "FLD_D  $src\n\t"
11314             "FSTP   $dst\t# MoveL2D_stack_reg" %}
11315   opcode(0xDD);               /* DD /0, FLD m64real */
11316   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11317               Pop_Reg_DPR(dst) );
11318   ins_pipe( fpu_reg_mem );
11319 %}
11320 
11321 
11322 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
11323   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
11324   match(Set dst (MoveL2D src));
11325   effect(DEF dst, USE src);
11326 
11327   ins_cost(95);
11328   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
11329   ins_encode %{
11330     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11331   %}
11332   ins_pipe( pipe_slow );
11333 %}
11334 
11335 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
11336   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
11337   match(Set dst (MoveL2D src));
11338   effect(DEF dst, USE src);
11339 
11340   ins_cost(95);
11341   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
11342   ins_encode %{
11343     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11344   %}
11345   ins_pipe( pipe_slow );
11346 %}
11347 
11348 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
11349   predicate(UseSSE>=2);
11350   match(Set dst (MoveL2D src));
11351   effect(TEMP dst, USE src, TEMP tmp);
11352   ins_cost(85);
11353   format %{ "MOVD   $dst,$src.lo\n\t"
11354             "MOVD   $tmp,$src.hi\n\t"
11355             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
11356   ins_encode %{
11357     __ movdl($dst$$XMMRegister, $src$$Register);
11358     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
11359     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
11360   %}
11361   ins_pipe( pipe_slow );
11362 %}
11363 
11364 
11365 // =======================================================================
11366 // fast clearing of an array
11367 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11368   predicate(!UseFastStosb);
11369   match(Set dummy (ClearArray cnt base));
11370   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11371   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
11372             "SHL    ECX,1\t# Convert doublewords to words\n\t"
11373             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
11374   ins_encode %{ 
11375     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
11376   %}
11377   ins_pipe( pipe_slow );
11378 %}
11379 
11380 instruct rep_fast_stosb(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11381   predicate(UseFastStosb);
11382   match(Set dummy (ClearArray cnt base));
11383   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11384   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
11385             "SHL    ECX,3\t# Convert doublewords to bytes\n\t"
11386             "REP STOSB\t# store EAX into [EDI++] while ECX--" %}
11387   ins_encode %{ 
11388     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
11389   %}
11390   ins_pipe( pipe_slow );
11391 %}
11392 
11393 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
11394                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
11395   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11396   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11397 
11398   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11399   ins_encode %{
11400     __ string_compare($str1$$Register, $str2$$Register,
11401                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11402                       $tmp1$$XMMRegister);
11403   %}
11404   ins_pipe( pipe_slow );
11405 %}
11406 
11407 // fast string equals
11408 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
11409                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
11410   match(Set result (StrEquals (Binary str1 str2) cnt));
11411   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11412 
11413   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11414   ins_encode %{
11415     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
11416                           $cnt$$Register, $result$$Register, $tmp3$$Register,
11417                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11418   %}
11419   ins_pipe( pipe_slow );
11420 %}
11421 
11422 // fast search of substring with known size.
11423 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
11424                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
11425   predicate(UseSSE42Intrinsics);
11426   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11427   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11428 
11429   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
11430   ins_encode %{
11431     int icnt2 = (int)$int_cnt2$$constant;
11432     if (icnt2 >= 8) {
11433       // IndexOf for constant substrings with size >= 8 elements
11434       // which don't need to be loaded through stack.
11435       __ string_indexofC8($str1$$Register, $str2$$Register,
11436                           $cnt1$$Register, $cnt2$$Register,
11437                           icnt2, $result$$Register,
11438                           $vec$$XMMRegister, $tmp$$Register);
11439     } else {
11440       // Small strings are loaded through stack if they cross page boundary.
11441       __ string_indexof($str1$$Register, $str2$$Register,
11442                         $cnt1$$Register, $cnt2$$Register,
11443                         icnt2, $result$$Register,
11444                         $vec$$XMMRegister, $tmp$$Register);
11445     }
11446   %}
11447   ins_pipe( pipe_slow );
11448 %}
11449 
11450 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
11451                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
11452   predicate(UseSSE42Intrinsics);
11453   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11454   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11455 
11456   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11457   ins_encode %{
11458     __ string_indexof($str1$$Register, $str2$$Register,
11459                       $cnt1$$Register, $cnt2$$Register,
11460                       (-1), $result$$Register,
11461                       $vec$$XMMRegister, $tmp$$Register);
11462   %}
11463   ins_pipe( pipe_slow );
11464 %}
11465 
11466 // fast array equals
11467 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
11468                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
11469 %{
11470   match(Set result (AryEq ary1 ary2));
11471   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11472   //ins_cost(300);
11473 
11474   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11475   ins_encode %{
11476     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
11477                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
11478                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11479   %}
11480   ins_pipe( pipe_slow );
11481 %}
11482 
11483 // encode char[] to byte[] in ISO_8859_1
11484 instruct encode_iso_array(eSIRegP src, eDIRegP dst, eDXRegI len,
11485                           regD tmp1, regD tmp2, regD tmp3, regD tmp4,
11486                           eCXRegI tmp5, eAXRegI result, eFlagsReg cr) %{
11487   match(Set result (EncodeISOArray src (Binary dst len)));
11488   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11489 
11490   format %{ "Encode array $src,$dst,$len -> $result    // KILL ECX, EDX, $tmp1, $tmp2, $tmp3, $tmp4, ESI, EDI " %}
11491   ins_encode %{
11492     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
11493                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11494                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11495   %}
11496   ins_pipe( pipe_slow );
11497 %}
11498 
11499 
11500 //----------Control Flow Instructions------------------------------------------
11501 // Signed compare Instructions
11502 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
11503   match(Set cr (CmpI op1 op2));
11504   effect( DEF cr, USE op1, USE op2 );
11505   format %{ "CMP    $op1,$op2" %}
11506   opcode(0x3B);  /* Opcode 3B /r */
11507   ins_encode( OpcP, RegReg( op1, op2) );
11508   ins_pipe( ialu_cr_reg_reg );
11509 %}
11510 
11511 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
11512   match(Set cr (CmpI op1 op2));
11513   effect( DEF cr, USE op1 );
11514   format %{ "CMP    $op1,$op2" %}
11515   opcode(0x81,0x07);  /* Opcode 81 /7 */
11516   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
11517   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11518   ins_pipe( ialu_cr_reg_imm );
11519 %}
11520 
11521 // Cisc-spilled version of cmpI_eReg
11522 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
11523   match(Set cr (CmpI op1 (LoadI op2)));
11524 
11525   format %{ "CMP    $op1,$op2" %}
11526   ins_cost(500);
11527   opcode(0x3B);  /* Opcode 3B /r */
11528   ins_encode( OpcP, RegMem( op1, op2) );
11529   ins_pipe( ialu_cr_reg_mem );
11530 %}
11531 
11532 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
11533   match(Set cr (CmpI src zero));
11534   effect( DEF cr, USE src );
11535 
11536   format %{ "TEST   $src,$src" %}
11537   opcode(0x85);
11538   ins_encode( OpcP, RegReg( src, src ) );
11539   ins_pipe( ialu_cr_reg_imm );
11540 %}
11541 
11542 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
11543   match(Set cr (CmpI (AndI src con) zero));
11544 
11545   format %{ "TEST   $src,$con" %}
11546   opcode(0xF7,0x00);
11547   ins_encode( OpcP, RegOpc(src), Con32(con) );
11548   ins_pipe( ialu_cr_reg_imm );
11549 %}
11550 
11551 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
11552   match(Set cr (CmpI (AndI src mem) zero));
11553 
11554   format %{ "TEST   $src,$mem" %}
11555   opcode(0x85);
11556   ins_encode( OpcP, RegMem( src, mem ) );
11557   ins_pipe( ialu_cr_reg_mem );
11558 %}
11559 
11560 // Unsigned compare Instructions; really, same as signed except they
11561 // produce an eFlagsRegU instead of eFlagsReg.
11562 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
11563   match(Set cr (CmpU op1 op2));
11564 
11565   format %{ "CMPu   $op1,$op2" %}
11566   opcode(0x3B);  /* Opcode 3B /r */
11567   ins_encode( OpcP, RegReg( op1, op2) );
11568   ins_pipe( ialu_cr_reg_reg );
11569 %}
11570 
11571 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
11572   match(Set cr (CmpU op1 op2));
11573 
11574   format %{ "CMPu   $op1,$op2" %}
11575   opcode(0x81,0x07);  /* Opcode 81 /7 */
11576   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11577   ins_pipe( ialu_cr_reg_imm );
11578 %}
11579 
11580 // // Cisc-spilled version of cmpU_eReg
11581 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
11582   match(Set cr (CmpU op1 (LoadI op2)));
11583 
11584   format %{ "CMPu   $op1,$op2" %}
11585   ins_cost(500);
11586   opcode(0x3B);  /* Opcode 3B /r */
11587   ins_encode( OpcP, RegMem( op1, op2) );
11588   ins_pipe( ialu_cr_reg_mem );
11589 %}
11590 
11591 // // Cisc-spilled version of cmpU_eReg
11592 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
11593 //  match(Set cr (CmpU (LoadI op1) op2));
11594 //
11595 //  format %{ "CMPu   $op1,$op2" %}
11596 //  ins_cost(500);
11597 //  opcode(0x39);  /* Opcode 39 /r */
11598 //  ins_encode( OpcP, RegMem( op1, op2) );
11599 //%}
11600 
11601 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
11602   match(Set cr (CmpU src zero));
11603 
11604   format %{ "TESTu  $src,$src" %}
11605   opcode(0x85);
11606   ins_encode( OpcP, RegReg( src, src ) );
11607   ins_pipe( ialu_cr_reg_imm );
11608 %}
11609 
11610 // Unsigned pointer compare Instructions
11611 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
11612   match(Set cr (CmpP op1 op2));
11613 
11614   format %{ "CMPu   $op1,$op2" %}
11615   opcode(0x3B);  /* Opcode 3B /r */
11616   ins_encode( OpcP, RegReg( op1, op2) );
11617   ins_pipe( ialu_cr_reg_reg );
11618 %}
11619 
11620 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
11621   match(Set cr (CmpP op1 op2));
11622 
11623   format %{ "CMPu   $op1,$op2" %}
11624   opcode(0x81,0x07);  /* Opcode 81 /7 */
11625   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11626   ins_pipe( ialu_cr_reg_imm );
11627 %}
11628 
11629 // // Cisc-spilled version of cmpP_eReg
11630 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
11631   match(Set cr (CmpP op1 (LoadP op2)));
11632 
11633   format %{ "CMPu   $op1,$op2" %}
11634   ins_cost(500);
11635   opcode(0x3B);  /* Opcode 3B /r */
11636   ins_encode( OpcP, RegMem( op1, op2) );
11637   ins_pipe( ialu_cr_reg_mem );
11638 %}
11639 
11640 // // Cisc-spilled version of cmpP_eReg
11641 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
11642 //  match(Set cr (CmpP (LoadP op1) op2));
11643 //
11644 //  format %{ "CMPu   $op1,$op2" %}
11645 //  ins_cost(500);
11646 //  opcode(0x39);  /* Opcode 39 /r */
11647 //  ins_encode( OpcP, RegMem( op1, op2) );
11648 //%}
11649 
11650 // Compare raw pointer (used in out-of-heap check).
11651 // Only works because non-oop pointers must be raw pointers
11652 // and raw pointers have no anti-dependencies.
11653 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
11654   predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
11655   match(Set cr (CmpP op1 (LoadP op2)));
11656 
11657   format %{ "CMPu   $op1,$op2" %}
11658   opcode(0x3B);  /* Opcode 3B /r */
11659   ins_encode( OpcP, RegMem( op1, op2) );
11660   ins_pipe( ialu_cr_reg_mem );
11661 %}
11662 
11663 //
11664 // This will generate a signed flags result. This should be ok
11665 // since any compare to a zero should be eq/neq.
11666 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
11667   match(Set cr (CmpP src zero));
11668 
11669   format %{ "TEST   $src,$src" %}
11670   opcode(0x85);
11671   ins_encode( OpcP, RegReg( src, src ) );
11672   ins_pipe( ialu_cr_reg_imm );
11673 %}
11674 
11675 // Cisc-spilled version of testP_reg
11676 // This will generate a signed flags result. This should be ok
11677 // since any compare to a zero should be eq/neq.
11678 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
11679   match(Set cr (CmpP (LoadP op) zero));
11680 
11681   format %{ "TEST   $op,0xFFFFFFFF" %}
11682   ins_cost(500);
11683   opcode(0xF7);               /* Opcode F7 /0 */
11684   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
11685   ins_pipe( ialu_cr_reg_imm );
11686 %}
11687 
11688 // Yanked all unsigned pointer compare operations.
11689 // Pointer compares are done with CmpP which is already unsigned.
11690 
11691 //----------Max and Min--------------------------------------------------------
11692 // Min Instructions
11693 ////
11694 //   *** Min and Max using the conditional move are slower than the
11695 //   *** branch version on a Pentium III.
11696 // // Conditional move for min
11697 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
11698 //  effect( USE_DEF op2, USE op1, USE cr );
11699 //  format %{ "CMOVlt $op2,$op1\t! min" %}
11700 //  opcode(0x4C,0x0F);
11701 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11702 //  ins_pipe( pipe_cmov_reg );
11703 //%}
11704 //
11705 //// Min Register with Register (P6 version)
11706 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
11707 //  predicate(VM_Version::supports_cmov() );
11708 //  match(Set op2 (MinI op1 op2));
11709 //  ins_cost(200);
11710 //  expand %{
11711 //    eFlagsReg cr;
11712 //    compI_eReg(cr,op1,op2);
11713 //    cmovI_reg_lt(op2,op1,cr);
11714 //  %}
11715 //%}
11716 
11717 // Min Register with Register (generic version)
11718 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
11719   match(Set dst (MinI dst src));
11720   effect(KILL flags);
11721   ins_cost(300);
11722 
11723   format %{ "MIN    $dst,$src" %}
11724   opcode(0xCC);
11725   ins_encode( min_enc(dst,src) );
11726   ins_pipe( pipe_slow );
11727 %}
11728 
11729 // Max Register with Register
11730 //   *** Min and Max using the conditional move are slower than the
11731 //   *** branch version on a Pentium III.
11732 // // Conditional move for max
11733 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
11734 //  effect( USE_DEF op2, USE op1, USE cr );
11735 //  format %{ "CMOVgt $op2,$op1\t! max" %}
11736 //  opcode(0x4F,0x0F);
11737 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11738 //  ins_pipe( pipe_cmov_reg );
11739 //%}
11740 //
11741 // // Max Register with Register (P6 version)
11742 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
11743 //  predicate(VM_Version::supports_cmov() );
11744 //  match(Set op2 (MaxI op1 op2));
11745 //  ins_cost(200);
11746 //  expand %{
11747 //    eFlagsReg cr;
11748 //    compI_eReg(cr,op1,op2);
11749 //    cmovI_reg_gt(op2,op1,cr);
11750 //  %}
11751 //%}
11752 
11753 // Max Register with Register (generic version)
11754 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
11755   match(Set dst (MaxI dst src));
11756   effect(KILL flags);
11757   ins_cost(300);
11758 
11759   format %{ "MAX    $dst,$src" %}
11760   opcode(0xCC);
11761   ins_encode( max_enc(dst,src) );
11762   ins_pipe( pipe_slow );
11763 %}
11764 
11765 // ============================================================================
11766 // Counted Loop limit node which represents exact final iterator value.
11767 // Note: the resulting value should fit into integer range since
11768 // counted loops have limit check on overflow.
11769 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
11770   match(Set limit (LoopLimit (Binary init limit) stride));
11771   effect(TEMP limit_hi, TEMP tmp, KILL flags);
11772   ins_cost(300);
11773 
11774   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
11775   ins_encode %{
11776     int strd = (int)$stride$$constant;
11777     assert(strd != 1 && strd != -1, "sanity");
11778     int m1 = (strd > 0) ? 1 : -1;
11779     // Convert limit to long (EAX:EDX)
11780     __ cdql();
11781     // Convert init to long (init:tmp)
11782     __ movl($tmp$$Register, $init$$Register);
11783     __ sarl($tmp$$Register, 31);
11784     // $limit - $init
11785     __ subl($limit$$Register, $init$$Register);
11786     __ sbbl($limit_hi$$Register, $tmp$$Register);
11787     // + ($stride - 1)
11788     if (strd > 0) {
11789       __ addl($limit$$Register, (strd - 1));
11790       __ adcl($limit_hi$$Register, 0);
11791       __ movl($tmp$$Register, strd);
11792     } else {
11793       __ addl($limit$$Register, (strd + 1));
11794       __ adcl($limit_hi$$Register, -1);
11795       __ lneg($limit_hi$$Register, $limit$$Register);
11796       __ movl($tmp$$Register, -strd);
11797     }
11798     // signed devision: (EAX:EDX) / pos_stride
11799     __ idivl($tmp$$Register);
11800     if (strd < 0) {
11801       // restore sign
11802       __ negl($tmp$$Register);
11803     }
11804     // (EAX) * stride
11805     __ mull($tmp$$Register);
11806     // + init (ignore upper bits)
11807     __ addl($limit$$Register, $init$$Register);
11808   %}
11809   ins_pipe( pipe_slow );
11810 %}
11811 
11812 // ============================================================================
11813 // Branch Instructions
11814 // Jump Table
11815 instruct jumpXtnd(rRegI switch_val) %{
11816   match(Jump switch_val);
11817   ins_cost(350);
11818   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
11819   ins_encode %{
11820     // Jump to Address(table_base + switch_reg)
11821     Address index(noreg, $switch_val$$Register, Address::times_1);
11822     __ jump(ArrayAddress($constantaddress, index));
11823   %}
11824   ins_pipe(pipe_jmp);
11825 %}
11826 
11827 // Jump Direct - Label defines a relative address from JMP+1
11828 instruct jmpDir(label labl) %{
11829   match(Goto);
11830   effect(USE labl);
11831 
11832   ins_cost(300);
11833   format %{ "JMP    $labl" %}
11834   size(5);
11835   ins_encode %{
11836     Label* L = $labl$$label;
11837     __ jmp(*L, false); // Always long jump
11838   %}
11839   ins_pipe( pipe_jmp );
11840 %}
11841 
11842 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11843 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
11844   match(If cop cr);
11845   effect(USE labl);
11846 
11847   ins_cost(300);
11848   format %{ "J$cop    $labl" %}
11849   size(6);
11850   ins_encode %{
11851     Label* L = $labl$$label;
11852     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11853   %}
11854   ins_pipe( pipe_jcc );
11855 %}
11856 
11857 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11858 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
11859   match(CountedLoopEnd cop cr);
11860   effect(USE labl);
11861 
11862   ins_cost(300);
11863   format %{ "J$cop    $labl\t# Loop end" %}
11864   size(6);
11865   ins_encode %{
11866     Label* L = $labl$$label;
11867     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11868   %}
11869   ins_pipe( pipe_jcc );
11870 %}
11871 
11872 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11873 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
11874   match(CountedLoopEnd cop cmp);
11875   effect(USE labl);
11876 
11877   ins_cost(300);
11878   format %{ "J$cop,u  $labl\t# Loop end" %}
11879   size(6);
11880   ins_encode %{
11881     Label* L = $labl$$label;
11882     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11883   %}
11884   ins_pipe( pipe_jcc );
11885 %}
11886 
11887 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
11888   match(CountedLoopEnd cop cmp);
11889   effect(USE labl);
11890 
11891   ins_cost(200);
11892   format %{ "J$cop,u  $labl\t# Loop end" %}
11893   size(6);
11894   ins_encode %{
11895     Label* L = $labl$$label;
11896     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11897   %}
11898   ins_pipe( pipe_jcc );
11899 %}
11900 
11901 // Jump Direct Conditional - using unsigned comparison
11902 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
11903   match(If cop cmp);
11904   effect(USE labl);
11905 
11906   ins_cost(300);
11907   format %{ "J$cop,u  $labl" %}
11908   size(6);
11909   ins_encode %{
11910     Label* L = $labl$$label;
11911     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11912   %}
11913   ins_pipe(pipe_jcc);
11914 %}
11915 
11916 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
11917   match(If cop cmp);
11918   effect(USE labl);
11919 
11920   ins_cost(200);
11921   format %{ "J$cop,u  $labl" %}
11922   size(6);
11923   ins_encode %{
11924     Label* L = $labl$$label;
11925     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11926   %}
11927   ins_pipe(pipe_jcc);
11928 %}
11929 
11930 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
11931   match(If cop cmp);
11932   effect(USE labl);
11933 
11934   ins_cost(200);
11935   format %{ $$template
11936     if ($cop$$cmpcode == Assembler::notEqual) {
11937       $$emit$$"JP,u   $labl\n\t"
11938       $$emit$$"J$cop,u   $labl"
11939     } else {
11940       $$emit$$"JP,u   done\n\t"
11941       $$emit$$"J$cop,u   $labl\n\t"
11942       $$emit$$"done:"
11943     }
11944   %}
11945   ins_encode %{
11946     Label* l = $labl$$label;
11947     if ($cop$$cmpcode == Assembler::notEqual) {
11948       __ jcc(Assembler::parity, *l, false);
11949       __ jcc(Assembler::notEqual, *l, false);
11950     } else if ($cop$$cmpcode == Assembler::equal) {
11951       Label done;
11952       __ jccb(Assembler::parity, done);
11953       __ jcc(Assembler::equal, *l, false);
11954       __ bind(done);
11955     } else {
11956        ShouldNotReachHere();
11957     }
11958   %}
11959   ins_pipe(pipe_jcc);
11960 %}
11961 
11962 // ============================================================================
11963 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
11964 // array for an instance of the superklass.  Set a hidden internal cache on a
11965 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
11966 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
11967 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
11968   match(Set result (PartialSubtypeCheck sub super));
11969   effect( KILL rcx, KILL cr );
11970 
11971   ins_cost(1100);  // slightly larger than the next version
11972   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
11973             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
11974             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
11975             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
11976             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
11977             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
11978             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
11979      "miss:\t" %}
11980 
11981   opcode(0x1); // Force a XOR of EDI
11982   ins_encode( enc_PartialSubtypeCheck() );
11983   ins_pipe( pipe_slow );
11984 %}
11985 
11986 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
11987   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
11988   effect( KILL rcx, KILL result );
11989 
11990   ins_cost(1000);
11991   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
11992             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
11993             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
11994             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
11995             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
11996             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
11997      "miss:\t" %}
11998 
11999   opcode(0x0);  // No need to XOR EDI
12000   ins_encode( enc_PartialSubtypeCheck() );
12001   ins_pipe( pipe_slow );
12002 %}
12003 
12004 // ============================================================================
12005 // Branch Instructions -- short offset versions
12006 //
12007 // These instructions are used to replace jumps of a long offset (the default
12008 // match) with jumps of a shorter offset.  These instructions are all tagged
12009 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12010 // match rules in general matching.  Instead, the ADLC generates a conversion
12011 // method in the MachNode which can be used to do in-place replacement of the
12012 // long variant with the shorter variant.  The compiler will determine if a
12013 // branch can be taken by the is_short_branch_offset() predicate in the machine
12014 // specific code section of the file.
12015 
12016 // Jump Direct - Label defines a relative address from JMP+1
12017 instruct jmpDir_short(label labl) %{
12018   match(Goto);
12019   effect(USE labl);
12020 
12021   ins_cost(300);
12022   format %{ "JMP,s  $labl" %}
12023   size(2);
12024   ins_encode %{
12025     Label* L = $labl$$label;
12026     __ jmpb(*L);
12027   %}
12028   ins_pipe( pipe_jmp );
12029   ins_short_branch(1);
12030 %}
12031 
12032 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12033 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12034   match(If cop cr);
12035   effect(USE labl);
12036 
12037   ins_cost(300);
12038   format %{ "J$cop,s  $labl" %}
12039   size(2);
12040   ins_encode %{
12041     Label* L = $labl$$label;
12042     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12043   %}
12044   ins_pipe( pipe_jcc );
12045   ins_short_branch(1);
12046 %}
12047 
12048 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12049 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12050   match(CountedLoopEnd cop cr);
12051   effect(USE labl);
12052 
12053   ins_cost(300);
12054   format %{ "J$cop,s  $labl\t# Loop end" %}
12055   size(2);
12056   ins_encode %{
12057     Label* L = $labl$$label;
12058     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12059   %}
12060   ins_pipe( pipe_jcc );
12061   ins_short_branch(1);
12062 %}
12063 
12064 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12065 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12066   match(CountedLoopEnd cop cmp);
12067   effect(USE labl);
12068 
12069   ins_cost(300);
12070   format %{ "J$cop,us $labl\t# Loop end" %}
12071   size(2);
12072   ins_encode %{
12073     Label* L = $labl$$label;
12074     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12075   %}
12076   ins_pipe( pipe_jcc );
12077   ins_short_branch(1);
12078 %}
12079 
12080 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12081   match(CountedLoopEnd cop cmp);
12082   effect(USE labl);
12083 
12084   ins_cost(300);
12085   format %{ "J$cop,us $labl\t# Loop end" %}
12086   size(2);
12087   ins_encode %{
12088     Label* L = $labl$$label;
12089     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12090   %}
12091   ins_pipe( pipe_jcc );
12092   ins_short_branch(1);
12093 %}
12094 
12095 // Jump Direct Conditional - using unsigned comparison
12096 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12097   match(If cop cmp);
12098   effect(USE labl);
12099 
12100   ins_cost(300);
12101   format %{ "J$cop,us $labl" %}
12102   size(2);
12103   ins_encode %{
12104     Label* L = $labl$$label;
12105     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12106   %}
12107   ins_pipe( pipe_jcc );
12108   ins_short_branch(1);
12109 %}
12110 
12111 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12112   match(If cop cmp);
12113   effect(USE labl);
12114 
12115   ins_cost(300);
12116   format %{ "J$cop,us $labl" %}
12117   size(2);
12118   ins_encode %{
12119     Label* L = $labl$$label;
12120     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12121   %}
12122   ins_pipe( pipe_jcc );
12123   ins_short_branch(1);
12124 %}
12125 
12126 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12127   match(If cop cmp);
12128   effect(USE labl);
12129 
12130   ins_cost(300);
12131   format %{ $$template
12132     if ($cop$$cmpcode == Assembler::notEqual) {
12133       $$emit$$"JP,u,s   $labl\n\t"
12134       $$emit$$"J$cop,u,s   $labl"
12135     } else {
12136       $$emit$$"JP,u,s   done\n\t"
12137       $$emit$$"J$cop,u,s  $labl\n\t"
12138       $$emit$$"done:"
12139     }
12140   %}
12141   size(4);
12142   ins_encode %{
12143     Label* l = $labl$$label;
12144     if ($cop$$cmpcode == Assembler::notEqual) {
12145       __ jccb(Assembler::parity, *l);
12146       __ jccb(Assembler::notEqual, *l);
12147     } else if ($cop$$cmpcode == Assembler::equal) {
12148       Label done;
12149       __ jccb(Assembler::parity, done);
12150       __ jccb(Assembler::equal, *l);
12151       __ bind(done);
12152     } else {
12153        ShouldNotReachHere();
12154     }
12155   %}
12156   ins_pipe(pipe_jcc);
12157   ins_short_branch(1);
12158 %}
12159 
12160 // ============================================================================
12161 // Long Compare
12162 //
12163 // Currently we hold longs in 2 registers.  Comparing such values efficiently
12164 // is tricky.  The flavor of compare used depends on whether we are testing
12165 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
12166 // The GE test is the negated LT test.  The LE test can be had by commuting
12167 // the operands (yielding a GE test) and then negating; negate again for the
12168 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
12169 // NE test is negated from that.
12170 
12171 // Due to a shortcoming in the ADLC, it mixes up expressions like:
12172 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
12173 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
12174 // are collapsed internally in the ADLC's dfa-gen code.  The match for
12175 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
12176 // foo match ends up with the wrong leaf.  One fix is to not match both
12177 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
12178 // both forms beat the trinary form of long-compare and both are very useful
12179 // on Intel which has so few registers.
12180 
12181 // Manifest a CmpL result in an integer register.  Very painful.
12182 // This is the test to avoid.
12183 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
12184   match(Set dst (CmpL3 src1 src2));
12185   effect( KILL flags );
12186   ins_cost(1000);
12187   format %{ "XOR    $dst,$dst\n\t"
12188             "CMP    $src1.hi,$src2.hi\n\t"
12189             "JLT,s  m_one\n\t"
12190             "JGT,s  p_one\n\t"
12191             "CMP    $src1.lo,$src2.lo\n\t"
12192             "JB,s   m_one\n\t"
12193             "JEQ,s  done\n"
12194     "p_one:\tINC    $dst\n\t"
12195             "JMP,s  done\n"
12196     "m_one:\tDEC    $dst\n"
12197      "done:" %}
12198   ins_encode %{
12199     Label p_one, m_one, done;
12200     __ xorptr($dst$$Register, $dst$$Register);
12201     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
12202     __ jccb(Assembler::less,    m_one);
12203     __ jccb(Assembler::greater, p_one);
12204     __ cmpl($src1$$Register, $src2$$Register);
12205     __ jccb(Assembler::below,   m_one);
12206     __ jccb(Assembler::equal,   done);
12207     __ bind(p_one);
12208     __ incrementl($dst$$Register);
12209     __ jmpb(done);
12210     __ bind(m_one);
12211     __ decrementl($dst$$Register);
12212     __ bind(done);
12213   %}
12214   ins_pipe( pipe_slow );
12215 %}
12216 
12217 //======
12218 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12219 // compares.  Can be used for LE or GT compares by reversing arguments.
12220 // NOT GOOD FOR EQ/NE tests.
12221 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
12222   match( Set flags (CmpL src zero ));
12223   ins_cost(100);
12224   format %{ "TEST   $src.hi,$src.hi" %}
12225   opcode(0x85);
12226   ins_encode( OpcP, RegReg_Hi2( src, src ) );
12227   ins_pipe( ialu_cr_reg_reg );
12228 %}
12229 
12230 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12231 // compares.  Can be used for LE or GT compares by reversing arguments.
12232 // NOT GOOD FOR EQ/NE tests.
12233 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12234   match( Set flags (CmpL src1 src2 ));
12235   effect( TEMP tmp );
12236   ins_cost(300);
12237   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12238             "MOV    $tmp,$src1.hi\n\t"
12239             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
12240   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
12241   ins_pipe( ialu_cr_reg_reg );
12242 %}
12243 
12244 // Long compares reg < zero/req OR reg >= zero/req.
12245 // Just a wrapper for a normal branch, plus the predicate test.
12246 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
12247   match(If cmp flags);
12248   effect(USE labl);
12249   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12250   expand %{
12251     jmpCon(cmp,flags,labl);    // JLT or JGE...
12252   %}
12253 %}
12254 
12255 // Compare 2 longs and CMOVE longs.
12256 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
12257   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12258   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12259   ins_cost(400);
12260   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12261             "CMOV$cmp $dst.hi,$src.hi" %}
12262   opcode(0x0F,0x40);
12263   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12264   ins_pipe( pipe_cmov_reg_long );
12265 %}
12266 
12267 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
12268   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12269   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12270   ins_cost(500);
12271   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12272             "CMOV$cmp $dst.hi,$src.hi" %}
12273   opcode(0x0F,0x40);
12274   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12275   ins_pipe( pipe_cmov_reg_long );
12276 %}
12277 
12278 // Compare 2 longs and CMOVE ints.
12279 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
12280   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12281   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12282   ins_cost(200);
12283   format %{ "CMOV$cmp $dst,$src" %}
12284   opcode(0x0F,0x40);
12285   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12286   ins_pipe( pipe_cmov_reg );
12287 %}
12288 
12289 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
12290   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12291   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12292   ins_cost(250);
12293   format %{ "CMOV$cmp $dst,$src" %}
12294   opcode(0x0F,0x40);
12295   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12296   ins_pipe( pipe_cmov_mem );
12297 %}
12298 
12299 // Compare 2 longs and CMOVE ints.
12300 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
12301   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12302   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12303   ins_cost(200);
12304   format %{ "CMOV$cmp $dst,$src" %}
12305   opcode(0x0F,0x40);
12306   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12307   ins_pipe( pipe_cmov_reg );
12308 %}
12309 
12310 // Compare 2 longs and CMOVE doubles
12311 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
12312   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12313   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12314   ins_cost(200);
12315   expand %{
12316     fcmovDPR_regS(cmp,flags,dst,src);
12317   %}
12318 %}
12319 
12320 // Compare 2 longs and CMOVE doubles
12321 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
12322   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12323   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12324   ins_cost(200);
12325   expand %{
12326     fcmovD_regS(cmp,flags,dst,src);
12327   %}
12328 %}
12329 
12330 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
12331   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12332   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12333   ins_cost(200);
12334   expand %{
12335     fcmovFPR_regS(cmp,flags,dst,src);
12336   %}
12337 %}
12338 
12339 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
12340   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12341   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12342   ins_cost(200);
12343   expand %{
12344     fcmovF_regS(cmp,flags,dst,src);
12345   %}
12346 %}
12347 
12348 //======
12349 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12350 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
12351   match( Set flags (CmpL src zero ));
12352   effect(TEMP tmp);
12353   ins_cost(200);
12354   format %{ "MOV    $tmp,$src.lo\n\t"
12355             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
12356   ins_encode( long_cmp_flags0( src, tmp ) );
12357   ins_pipe( ialu_reg_reg_long );
12358 %}
12359 
12360 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12361 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
12362   match( Set flags (CmpL src1 src2 ));
12363   ins_cost(200+300);
12364   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12365             "JNE,s  skip\n\t"
12366             "CMP    $src1.hi,$src2.hi\n\t"
12367      "skip:\t" %}
12368   ins_encode( long_cmp_flags1( src1, src2 ) );
12369   ins_pipe( ialu_cr_reg_reg );
12370 %}
12371 
12372 // Long compare reg == zero/reg OR reg != zero/reg
12373 // Just a wrapper for a normal branch, plus the predicate test.
12374 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
12375   match(If cmp flags);
12376   effect(USE labl);
12377   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12378   expand %{
12379     jmpCon(cmp,flags,labl);    // JEQ or JNE...
12380   %}
12381 %}
12382 
12383 // Compare 2 longs and CMOVE longs.
12384 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
12385   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12386   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12387   ins_cost(400);
12388   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12389             "CMOV$cmp $dst.hi,$src.hi" %}
12390   opcode(0x0F,0x40);
12391   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12392   ins_pipe( pipe_cmov_reg_long );
12393 %}
12394 
12395 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
12396   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12397   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12398   ins_cost(500);
12399   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12400             "CMOV$cmp $dst.hi,$src.hi" %}
12401   opcode(0x0F,0x40);
12402   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12403   ins_pipe( pipe_cmov_reg_long );
12404 %}
12405 
12406 // Compare 2 longs and CMOVE ints.
12407 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
12408   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12409   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12410   ins_cost(200);
12411   format %{ "CMOV$cmp $dst,$src" %}
12412   opcode(0x0F,0x40);
12413   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12414   ins_pipe( pipe_cmov_reg );
12415 %}
12416 
12417 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
12418   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12419   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12420   ins_cost(250);
12421   format %{ "CMOV$cmp $dst,$src" %}
12422   opcode(0x0F,0x40);
12423   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12424   ins_pipe( pipe_cmov_mem );
12425 %}
12426 
12427 // Compare 2 longs and CMOVE ints.
12428 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
12429   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12430   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12431   ins_cost(200);
12432   format %{ "CMOV$cmp $dst,$src" %}
12433   opcode(0x0F,0x40);
12434   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12435   ins_pipe( pipe_cmov_reg );
12436 %}
12437 
12438 // Compare 2 longs and CMOVE doubles
12439 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
12440   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12441   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12442   ins_cost(200);
12443   expand %{
12444     fcmovDPR_regS(cmp,flags,dst,src);
12445   %}
12446 %}
12447 
12448 // Compare 2 longs and CMOVE doubles
12449 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
12450   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12451   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12452   ins_cost(200);
12453   expand %{
12454     fcmovD_regS(cmp,flags,dst,src);
12455   %}
12456 %}
12457 
12458 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
12459   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12460   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12461   ins_cost(200);
12462   expand %{
12463     fcmovFPR_regS(cmp,flags,dst,src);
12464   %}
12465 %}
12466 
12467 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
12468   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12469   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12470   ins_cost(200);
12471   expand %{
12472     fcmovF_regS(cmp,flags,dst,src);
12473   %}
12474 %}
12475 
12476 //======
12477 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12478 // Same as cmpL_reg_flags_LEGT except must negate src
12479 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
12480   match( Set flags (CmpL src zero ));
12481   effect( TEMP tmp );
12482   ins_cost(300);
12483   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
12484             "CMP    $tmp,$src.lo\n\t"
12485             "SBB    $tmp,$src.hi\n\t" %}
12486   ins_encode( long_cmp_flags3(src, tmp) );
12487   ins_pipe( ialu_reg_reg_long );
12488 %}
12489 
12490 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12491 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
12492 // requires a commuted test to get the same result.
12493 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12494   match( Set flags (CmpL src1 src2 ));
12495   effect( TEMP tmp );
12496   ins_cost(300);
12497   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
12498             "MOV    $tmp,$src2.hi\n\t"
12499             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
12500   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
12501   ins_pipe( ialu_cr_reg_reg );
12502 %}
12503 
12504 // Long compares reg < zero/req OR reg >= zero/req.
12505 // Just a wrapper for a normal branch, plus the predicate test
12506 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
12507   match(If cmp flags);
12508   effect(USE labl);
12509   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
12510   ins_cost(300);
12511   expand %{
12512     jmpCon(cmp,flags,labl);    // JGT or JLE...
12513   %}
12514 %}
12515 
12516 // Compare 2 longs and CMOVE longs.
12517 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
12518   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12519   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12520   ins_cost(400);
12521   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12522             "CMOV$cmp $dst.hi,$src.hi" %}
12523   opcode(0x0F,0x40);
12524   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12525   ins_pipe( pipe_cmov_reg_long );
12526 %}
12527 
12528 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
12529   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12530   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12531   ins_cost(500);
12532   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12533             "CMOV$cmp $dst.hi,$src.hi+4" %}
12534   opcode(0x0F,0x40);
12535   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12536   ins_pipe( pipe_cmov_reg_long );
12537 %}
12538 
12539 // Compare 2 longs and CMOVE ints.
12540 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
12541   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12542   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12543   ins_cost(200);
12544   format %{ "CMOV$cmp $dst,$src" %}
12545   opcode(0x0F,0x40);
12546   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12547   ins_pipe( pipe_cmov_reg );
12548 %}
12549 
12550 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
12551   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12552   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12553   ins_cost(250);
12554   format %{ "CMOV$cmp $dst,$src" %}
12555   opcode(0x0F,0x40);
12556   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12557   ins_pipe( pipe_cmov_mem );
12558 %}
12559 
12560 // Compare 2 longs and CMOVE ptrs.
12561 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
12562   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12563   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12564   ins_cost(200);
12565   format %{ "CMOV$cmp $dst,$src" %}
12566   opcode(0x0F,0x40);
12567   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12568   ins_pipe( pipe_cmov_reg );
12569 %}
12570 
12571 // Compare 2 longs and CMOVE doubles
12572 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
12573   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12574   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12575   ins_cost(200);
12576   expand %{
12577     fcmovDPR_regS(cmp,flags,dst,src);
12578   %}
12579 %}
12580 
12581 // Compare 2 longs and CMOVE doubles
12582 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
12583   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12584   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12585   ins_cost(200);
12586   expand %{
12587     fcmovD_regS(cmp,flags,dst,src);
12588   %}
12589 %}
12590 
12591 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
12592   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12593   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12594   ins_cost(200);
12595   expand %{
12596     fcmovFPR_regS(cmp,flags,dst,src);
12597   %}
12598 %}
12599 
12600 
12601 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
12602   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12603   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12604   ins_cost(200);
12605   expand %{
12606     fcmovF_regS(cmp,flags,dst,src);
12607   %}
12608 %}
12609 
12610 
12611 // ============================================================================
12612 // Procedure Call/Return Instructions
12613 // Call Java Static Instruction
12614 // Note: If this code changes, the corresponding ret_addr_offset() and
12615 //       compute_padding() functions will have to be adjusted.
12616 instruct CallStaticJavaDirect(method meth) %{
12617   match(CallStaticJava);
12618   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
12619   effect(USE meth);
12620 
12621   ins_cost(300);
12622   format %{ "CALL,static " %}
12623   opcode(0xE8); /* E8 cd */
12624   ins_encode( pre_call_resets,
12625               Java_Static_Call( meth ),
12626               call_epilog,
12627               post_call_FPU );
12628   ins_pipe( pipe_slow );
12629   ins_alignment(4);
12630 %}
12631 
12632 // Call Java Static Instruction (method handle version)
12633 // Note: If this code changes, the corresponding ret_addr_offset() and
12634 //       compute_padding() functions will have to be adjusted.
12635 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
12636   match(CallStaticJava);
12637   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
12638   effect(USE meth);
12639   // EBP is saved by all callees (for interpreter stack correction).
12640   // We use it here for a similar purpose, in {preserve,restore}_SP.
12641 
12642   ins_cost(300);
12643   format %{ "CALL,static/MethodHandle " %}
12644   opcode(0xE8); /* E8 cd */
12645   ins_encode( pre_call_resets,
12646               preserve_SP,
12647               Java_Static_Call( meth ),
12648               restore_SP,
12649               call_epilog,
12650               post_call_FPU );
12651   ins_pipe( pipe_slow );
12652   ins_alignment(4);
12653 %}
12654 
12655 // Call Java Dynamic Instruction
12656 // Note: If this code changes, the corresponding ret_addr_offset() and
12657 //       compute_padding() functions will have to be adjusted.
12658 instruct CallDynamicJavaDirect(method meth) %{
12659   match(CallDynamicJava);
12660   effect(USE meth);
12661 
12662   ins_cost(300);
12663   format %{ "MOV    EAX,(oop)-1\n\t"
12664             "CALL,dynamic" %}
12665   opcode(0xE8); /* E8 cd */
12666   ins_encode( pre_call_resets,
12667               Java_Dynamic_Call( meth ),
12668               call_epilog,
12669               post_call_FPU );
12670   ins_pipe( pipe_slow );
12671   ins_alignment(4);
12672 %}
12673 
12674 // Call Runtime Instruction
12675 instruct CallRuntimeDirect(method meth) %{
12676   match(CallRuntime );
12677   effect(USE meth);
12678 
12679   ins_cost(300);
12680   format %{ "CALL,runtime " %}
12681   opcode(0xE8); /* E8 cd */
12682   // Use FFREEs to clear entries in float stack
12683   ins_encode( pre_call_resets,
12684               FFree_Float_Stack_All,
12685               Java_To_Runtime( meth ),
12686               post_call_FPU );
12687   ins_pipe( pipe_slow );
12688 %}
12689 
12690 // Call runtime without safepoint
12691 instruct CallLeafDirect(method meth) %{
12692   match(CallLeaf);
12693   effect(USE meth);
12694 
12695   ins_cost(300);
12696   format %{ "CALL_LEAF,runtime " %}
12697   opcode(0xE8); /* E8 cd */
12698   ins_encode( pre_call_resets,
12699               FFree_Float_Stack_All,
12700               Java_To_Runtime( meth ),
12701               Verify_FPU_For_Leaf, post_call_FPU );
12702   ins_pipe( pipe_slow );
12703 %}
12704 
12705 instruct CallLeafNoFPDirect(method meth) %{
12706   match(CallLeafNoFP);
12707   effect(USE meth);
12708 
12709   ins_cost(300);
12710   format %{ "CALL_LEAF_NOFP,runtime " %}
12711   opcode(0xE8); /* E8 cd */
12712   ins_encode(Java_To_Runtime(meth));
12713   ins_pipe( pipe_slow );
12714 %}
12715 
12716 
12717 // Return Instruction
12718 // Remove the return address & jump to it.
12719 instruct Ret() %{
12720   match(Return);
12721   format %{ "RET" %}
12722   opcode(0xC3);
12723   ins_encode(OpcP);
12724   ins_pipe( pipe_jmp );
12725 %}
12726 
12727 // Tail Call; Jump from runtime stub to Java code.
12728 // Also known as an 'interprocedural jump'.
12729 // Target of jump will eventually return to caller.
12730 // TailJump below removes the return address.
12731 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
12732   match(TailCall jump_target method_oop );
12733   ins_cost(300);
12734   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
12735   opcode(0xFF, 0x4);  /* Opcode FF /4 */
12736   ins_encode( OpcP, RegOpc(jump_target) );
12737   ins_pipe( pipe_jmp );
12738 %}
12739 
12740 
12741 // Tail Jump; remove the return address; jump to target.
12742 // TailCall above leaves the return address around.
12743 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
12744   match( TailJump jump_target ex_oop );
12745   ins_cost(300);
12746   format %{ "POP    EDX\t# pop return address into dummy\n\t"
12747             "JMP    $jump_target " %}
12748   opcode(0xFF, 0x4);  /* Opcode FF /4 */
12749   ins_encode( enc_pop_rdx,
12750               OpcP, RegOpc(jump_target) );
12751   ins_pipe( pipe_jmp );
12752 %}
12753 
12754 // Create exception oop: created by stack-crawling runtime code.
12755 // Created exception is now available to this handler, and is setup
12756 // just prior to jumping to this handler.  No code emitted.
12757 instruct CreateException( eAXRegP ex_oop )
12758 %{
12759   match(Set ex_oop (CreateEx));
12760 
12761   size(0);
12762   // use the following format syntax
12763   format %{ "# exception oop is in EAX; no code emitted" %}
12764   ins_encode();
12765   ins_pipe( empty );
12766 %}
12767 
12768 
12769 // Rethrow exception:
12770 // The exception oop will come in the first argument position.
12771 // Then JUMP (not call) to the rethrow stub code.
12772 instruct RethrowException()
12773 %{
12774   match(Rethrow);
12775 
12776   // use the following format syntax
12777   format %{ "JMP    rethrow_stub" %}
12778   ins_encode(enc_rethrow);
12779   ins_pipe( pipe_jmp );
12780 %}
12781 
12782 // inlined locking and unlocking
12783 
12784 instruct cmpFastLockRTM(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eDXRegI scr, rRegI cx1, rRegI cx2) %{
12785   predicate(Compile::current()->use_rtm());
12786   match(Set cr (FastLock object box));
12787   effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
12788   ins_cost(300);
12789   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
12790   ins_encode %{
12791     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12792                  $scr$$Register, $cx1$$Register, $cx2$$Register,
12793                  _counters, _rtm_counters, _stack_rtm_counters,
12794                  ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
12795                  true, ra_->C->profile_rtm());
12796   %}
12797   ins_pipe(pipe_slow);
12798 %}
12799 
12800 instruct cmpFastLock(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
12801   predicate(!Compile::current()->use_rtm());
12802   match(Set cr (FastLock object box));
12803   effect(TEMP tmp, TEMP scr, USE_KILL box);
12804   ins_cost(300);
12805   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
12806   ins_encode %{
12807     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12808                  $scr$$Register, noreg, noreg, _counters, NULL, NULL, NULL, false, false);
12809   %}
12810   ins_pipe(pipe_slow);
12811 %}
12812 
12813 instruct cmpFastUnlock(eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
12814   match(Set cr (FastUnlock object box));
12815   effect(TEMP tmp, USE_KILL box);
12816   ins_cost(300);
12817   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
12818   ins_encode %{
12819     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
12820   %}
12821   ins_pipe(pipe_slow);
12822 %}
12823 
12824 
12825 
12826 // ============================================================================
12827 // Safepoint Instruction
12828 instruct safePoint_poll(eFlagsReg cr) %{
12829   match(SafePoint);
12830   effect(KILL cr);
12831 
12832   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
12833   // On SPARC that might be acceptable as we can generate the address with
12834   // just a sethi, saving an or.  By polling at offset 0 we can end up
12835   // putting additional pressure on the index-0 in the D$.  Because of
12836   // alignment (just like the situation at hand) the lower indices tend
12837   // to see more traffic.  It'd be better to change the polling address
12838   // to offset 0 of the last $line in the polling page.
12839 
12840   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
12841   ins_cost(125);
12842   size(6) ;
12843   ins_encode( Safepoint_Poll() );
12844   ins_pipe( ialu_reg_mem );
12845 %}
12846 
12847 
12848 // ============================================================================
12849 // This name is KNOWN by the ADLC and cannot be changed.
12850 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
12851 // for this guy.
12852 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
12853   match(Set dst (ThreadLocal));
12854   effect(DEF dst, KILL cr);
12855 
12856   format %{ "MOV    $dst, Thread::current()" %}
12857   ins_encode %{
12858     Register dstReg = as_Register($dst$$reg);
12859     __ get_thread(dstReg);
12860   %}
12861   ins_pipe( ialu_reg_fat );
12862 %}
12863 
12864 
12865 
12866 //----------PEEPHOLE RULES-----------------------------------------------------
12867 // These must follow all instruction definitions as they use the names
12868 // defined in the instructions definitions.
12869 //
12870 // peepmatch ( root_instr_name [preceding_instruction]* );
12871 //
12872 // peepconstraint %{
12873 // (instruction_number.operand_name relational_op instruction_number.operand_name
12874 //  [, ...] );
12875 // // instruction numbers are zero-based using left to right order in peepmatch
12876 //
12877 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
12878 // // provide an instruction_number.operand_name for each operand that appears
12879 // // in the replacement instruction's match rule
12880 //
12881 // ---------VM FLAGS---------------------------------------------------------
12882 //
12883 // All peephole optimizations can be turned off using -XX:-OptoPeephole
12884 //
12885 // Each peephole rule is given an identifying number starting with zero and
12886 // increasing by one in the order seen by the parser.  An individual peephole
12887 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12888 // on the command-line.
12889 //
12890 // ---------CURRENT LIMITATIONS----------------------------------------------
12891 //
12892 // Only match adjacent instructions in same basic block
12893 // Only equality constraints
12894 // Only constraints between operands, not (0.dest_reg == EAX_enc)
12895 // Only one replacement instruction
12896 //
12897 // ---------EXAMPLE----------------------------------------------------------
12898 //
12899 // // pertinent parts of existing instructions in architecture description
12900 // instruct movI(rRegI dst, rRegI src) %{
12901 //   match(Set dst (CopyI src));
12902 // %}
12903 //
12904 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
12905 //   match(Set dst (AddI dst src));
12906 //   effect(KILL cr);
12907 // %}
12908 //
12909 // // Change (inc mov) to lea
12910 // peephole %{
12911 //   // increment preceeded by register-register move
12912 //   peepmatch ( incI_eReg movI );
12913 //   // require that the destination register of the increment
12914 //   // match the destination register of the move
12915 //   peepconstraint ( 0.dst == 1.dst );
12916 //   // construct a replacement instruction that sets
12917 //   // the destination to ( move's source register + one )
12918 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12919 // %}
12920 //
12921 // Implementation no longer uses movX instructions since
12922 // machine-independent system no longer uses CopyX nodes.
12923 //
12924 // peephole %{
12925 //   peepmatch ( incI_eReg movI );
12926 //   peepconstraint ( 0.dst == 1.dst );
12927 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12928 // %}
12929 //
12930 // peephole %{
12931 //   peepmatch ( decI_eReg movI );
12932 //   peepconstraint ( 0.dst == 1.dst );
12933 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12934 // %}
12935 //
12936 // peephole %{
12937 //   peepmatch ( addI_eReg_imm movI );
12938 //   peepconstraint ( 0.dst == 1.dst );
12939 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12940 // %}
12941 //
12942 // peephole %{
12943 //   peepmatch ( addP_eReg_imm movP );
12944 //   peepconstraint ( 0.dst == 1.dst );
12945 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
12946 // %}
12947 
12948 // // Change load of spilled value to only a spill
12949 // instruct storeI(memory mem, rRegI src) %{
12950 //   match(Set mem (StoreI mem src));
12951 // %}
12952 //
12953 // instruct loadI(rRegI dst, memory mem) %{
12954 //   match(Set dst (LoadI mem));
12955 // %}
12956 //
12957 peephole %{
12958   peepmatch ( loadI storeI );
12959   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12960   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
12961 %}
12962 
12963 //----------SMARTSPILL RULES---------------------------------------------------
12964 // These must follow all instruction definitions as they use the names
12965 // defined in the instructions definitions.