1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
  26 #define CPU_X86_VM_VM_VERSION_X86_HPP
  27 
  28 #include "runtime/globals_extension.hpp"
  29 #include "runtime/vm_version.hpp"
  30 
  31 class VM_Version : public Abstract_VM_Version {
  32 public:
  33   // cpuid result register layouts.  These are all unions of a uint32_t
  34   // (in case anyone wants access to the register as a whole) and a bitfield.
  35 
  36   union StdCpuid1Eax {
  37     uint32_t value;
  38     struct {
  39       uint32_t stepping   : 4,
  40                model      : 4,
  41                family     : 4,
  42                proc_type  : 2,
  43                           : 2,
  44                ext_model  : 4,
  45                ext_family : 8,
  46                           : 4;
  47     } bits;
  48   };
  49 
  50   union StdCpuid1Ebx { // example, unused
  51     uint32_t value;
  52     struct {
  53       uint32_t brand_id         : 8,
  54                clflush_size     : 8,
  55                threads_per_cpu  : 8,
  56                apic_id          : 8;
  57     } bits;
  58   };
  59 
  60   union StdCpuid1Ecx {
  61     uint32_t value;
  62     struct {
  63       uint32_t sse3     : 1,
  64                clmul    : 1,
  65                         : 1,
  66                monitor  : 1,
  67                         : 1,
  68                vmx      : 1,
  69                         : 1,
  70                est      : 1,
  71                         : 1,
  72                ssse3    : 1,
  73                cid      : 1,
  74                         : 2,
  75                cmpxchg16: 1,
  76                         : 4,
  77                dca      : 1,
  78                sse4_1   : 1,
  79                sse4_2   : 1,
  80                         : 2,
  81                popcnt   : 1,
  82                         : 1,
  83                aes      : 1,
  84                         : 1,
  85                osxsave  : 1,
  86                avx      : 1,
  87                         : 3;
  88     } bits;
  89   };
  90 
  91   union StdCpuid1Edx {
  92     uint32_t value;
  93     struct {
  94       uint32_t          : 4,
  95                tsc      : 1,
  96                         : 3,
  97                cmpxchg8 : 1,
  98                         : 6,
  99                cmov     : 1,
 100                         : 3,
 101                clflush  : 1,
 102                         : 3,
 103                mmx      : 1,
 104                fxsr     : 1,
 105                sse      : 1,
 106                sse2     : 1,
 107                         : 1,
 108                ht       : 1,
 109                         : 3;
 110     } bits;
 111   };
 112 
 113   union DcpCpuid4Eax {
 114     uint32_t value;
 115     struct {
 116       uint32_t cache_type    : 5,
 117                              : 21,
 118                cores_per_cpu : 6;
 119     } bits;
 120   };
 121 
 122   union DcpCpuid4Ebx {
 123     uint32_t value;
 124     struct {
 125       uint32_t L1_line_size  : 12,
 126                partitions    : 10,
 127                associativity : 10;
 128     } bits;
 129   };
 130 
 131   union TplCpuidBEbx {
 132     uint32_t value;
 133     struct {
 134       uint32_t logical_cpus : 16,
 135                             : 16;
 136     } bits;
 137   };
 138 
 139   union ExtCpuid1Ecx {
 140     uint32_t value;
 141     struct {
 142       uint32_t LahfSahf     : 1,
 143                CmpLegacy    : 1,
 144                             : 3,
 145                lzcnt_intel  : 1,
 146                lzcnt        : 1,
 147                sse4a        : 1,
 148                misalignsse  : 1,
 149                prefetchw    : 1,
 150                             : 22;
 151     } bits;
 152   };
 153 
 154   union ExtCpuid1Edx {
 155     uint32_t value;
 156     struct {
 157       uint32_t           : 22,
 158                mmx_amd   : 1,
 159                mmx       : 1,
 160                fxsr      : 1,
 161                          : 4,
 162                long_mode : 1,
 163                tdnow2    : 1,
 164                tdnow     : 1;
 165     } bits;
 166   };
 167 
 168   union ExtCpuid5Ex {
 169     uint32_t value;
 170     struct {
 171       uint32_t L1_line_size : 8,
 172                L1_tag_lines : 8,
 173                L1_assoc     : 8,
 174                L1_size      : 8;
 175     } bits;
 176   };
 177 
 178   union ExtCpuid7Edx {
 179     uint32_t value;
 180     struct {
 181       uint32_t               : 8,
 182               tsc_invariance : 1,
 183                              : 23;
 184     } bits;
 185   };
 186 
 187   union ExtCpuid8Ecx {
 188     uint32_t value;
 189     struct {
 190       uint32_t cores_per_cpu : 8,
 191                              : 24;
 192     } bits;
 193   };
 194 
 195   union SefCpuid7Eax {
 196     uint32_t value;
 197   };
 198 
 199   union SefCpuid7Ebx {
 200     uint32_t value;
 201     struct {
 202       uint32_t fsgsbase : 1,
 203                         : 2,
 204                    bmi1 : 1,
 205                         : 1,
 206                    avx2 : 1,
 207                         : 2,
 208                    bmi2 : 1,
 209                    erms : 1,
 210                         : 1,
 211                     rtm : 1,
 212                         : 4,
 213                 avx512f : 1,
 214                avx512dq : 1,
 215                         : 1,
 216                     adx : 1,
 217                         : 6,
 218                avx512pf : 1,
 219                avx512er : 1,
 220                avx512cd : 1,
 221                         : 1,
 222                avx512bw : 1,
 223                avx512vl : 1;
 224     } bits;
 225   };
 226 
 227   union XemXcr0Eax {
 228     uint32_t value;
 229     struct {
 230       uint32_t x87    : 1,
 231                sse    : 1,
 232                ymm    : 1,
 233                       : 2,
 234                opmask : 1,
 235                zmm512 : 1,
 236                 zmm32 : 1,
 237                       : 24;
 238     } bits;
 239   };
 240 
 241 protected:
 242   static int _cpu;
 243   static int _model;
 244   static int _stepping;
 245   static uint64_t _cpuFeatures; // features returned by the "cpuid" instruction
 246                                 // 0 if this instruction is not available
 247   static const char* _features_str;
 248 
 249   static address   _cpuinfo_segv_addr; // address of instruction which causes SEGV
 250   static address   _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
 251 
 252   enum {
 253     CPU_CX8      = (1 << 0), // next bits are from cpuid 1 (EDX)
 254     CPU_CMOV     = (1 << 1),
 255     CPU_FXSR     = (1 << 2),
 256     CPU_HT       = (1 << 3),
 257     CPU_MMX      = (1 << 4),
 258     CPU_3DNOW_PREFETCH = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
 259                                    // may not necessarily support other 3dnow instructions
 260     CPU_SSE      = (1 << 6),
 261     CPU_SSE2     = (1 << 7),
 262     CPU_SSE3     = (1 << 8),  // SSE3 comes from cpuid 1 (ECX)
 263     CPU_SSSE3    = (1 << 9),
 264     CPU_SSE4A    = (1 << 10),
 265     CPU_SSE4_1   = (1 << 11),
 266     CPU_SSE4_2   = (1 << 12),
 267     CPU_POPCNT   = (1 << 13),
 268     CPU_LZCNT    = (1 << 14),
 269     CPU_TSC      = (1 << 15),
 270     CPU_TSCINV   = (1 << 16),
 271     CPU_AVX      = (1 << 17),
 272     CPU_AVX2     = (1 << 18),
 273     CPU_AES      = (1 << 19),
 274     CPU_ERMS     = (1 << 20), // enhanced 'rep movsb/stosb' instructions
 275     CPU_CLMUL    = (1 << 21), // carryless multiply for CRC
 276     CPU_BMI1     = (1 << 22),
 277     CPU_BMI2     = (1 << 23),
 278     CPU_RTM      = (1 << 24), // Restricted Transactional Memory instructions
 279     CPU_ADX      = (1 << 25),
 280     CPU_AVX512F  = (1 << 26), // AVX 512bit foundation instructions
 281     CPU_AVX512DQ = (1 << 27),
 282     CPU_AVX512PF = (1 << 28),
 283     CPU_AVX512ER = (1 << 29),
 284     CPU_AVX512CD = (1 << 30),
 285     CPU_AVX512BW = (1 << 31)
 286   } cpuFeatureFlags;
 287 
 288 #define CPU_AVX512VL 0x100000000 // EVEX instructions with smaller vector length : enums are limited to 32bit
 289 
 290   enum {
 291     // AMD
 292     CPU_FAMILY_AMD_11H       = 0x11,
 293     // Intel
 294     CPU_FAMILY_INTEL_CORE    = 6,
 295     CPU_MODEL_NEHALEM        = 0x1e,
 296     CPU_MODEL_NEHALEM_EP     = 0x1a,
 297     CPU_MODEL_NEHALEM_EX     = 0x2e,
 298     CPU_MODEL_WESTMERE       = 0x25,
 299     CPU_MODEL_WESTMERE_EP    = 0x2c,
 300     CPU_MODEL_WESTMERE_EX    = 0x2f,
 301     CPU_MODEL_SANDYBRIDGE    = 0x2a,
 302     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
 303     CPU_MODEL_IVYBRIDGE_EP   = 0x3a,
 304     CPU_MODEL_HASWELL_E3     = 0x3c,
 305     CPU_MODEL_HASWELL_E7     = 0x3f,
 306     CPU_MODEL_BROADWELL      = 0x3d,
 307     CPU_MODEL_SKYLAKE        = CPU_MODEL_HASWELL_E3
 308   } cpuExtendedFamily;
 309 
 310   // cpuid information block.  All info derived from executing cpuid with
 311   // various function numbers is stored here.  Intel and AMD info is
 312   // merged in this block: accessor methods disentangle it.
 313   //
 314   // The info block is laid out in subblocks of 4 dwords corresponding to
 315   // eax, ebx, ecx and edx, whether or not they contain anything useful.
 316   struct CpuidInfo {
 317     // cpuid function 0
 318     uint32_t std_max_function;
 319     uint32_t std_vendor_name_0;
 320     uint32_t std_vendor_name_1;
 321     uint32_t std_vendor_name_2;
 322 
 323     // cpuid function 1
 324     StdCpuid1Eax std_cpuid1_eax;
 325     StdCpuid1Ebx std_cpuid1_ebx;
 326     StdCpuid1Ecx std_cpuid1_ecx;
 327     StdCpuid1Edx std_cpuid1_edx;
 328 
 329     // cpuid function 4 (deterministic cache parameters)
 330     DcpCpuid4Eax dcp_cpuid4_eax;
 331     DcpCpuid4Ebx dcp_cpuid4_ebx;
 332     uint32_t     dcp_cpuid4_ecx; // unused currently
 333     uint32_t     dcp_cpuid4_edx; // unused currently
 334 
 335     // cpuid function 7 (structured extended features)
 336     SefCpuid7Eax sef_cpuid7_eax;
 337     SefCpuid7Ebx sef_cpuid7_ebx;
 338     uint32_t     sef_cpuid7_ecx; // unused currently
 339     uint32_t     sef_cpuid7_edx; // unused currently
 340 
 341     // cpuid function 0xB (processor topology)
 342     // ecx = 0
 343     uint32_t     tpl_cpuidB0_eax;
 344     TplCpuidBEbx tpl_cpuidB0_ebx;
 345     uint32_t     tpl_cpuidB0_ecx; // unused currently
 346     uint32_t     tpl_cpuidB0_edx; // unused currently
 347 
 348     // ecx = 1
 349     uint32_t     tpl_cpuidB1_eax;
 350     TplCpuidBEbx tpl_cpuidB1_ebx;
 351     uint32_t     tpl_cpuidB1_ecx; // unused currently
 352     uint32_t     tpl_cpuidB1_edx; // unused currently
 353 
 354     // ecx = 2
 355     uint32_t     tpl_cpuidB2_eax;
 356     TplCpuidBEbx tpl_cpuidB2_ebx;
 357     uint32_t     tpl_cpuidB2_ecx; // unused currently
 358     uint32_t     tpl_cpuidB2_edx; // unused currently
 359 
 360     // cpuid function 0x80000000 // example, unused
 361     uint32_t ext_max_function;
 362     uint32_t ext_vendor_name_0;
 363     uint32_t ext_vendor_name_1;
 364     uint32_t ext_vendor_name_2;
 365 
 366     // cpuid function 0x80000001
 367     uint32_t     ext_cpuid1_eax; // reserved
 368     uint32_t     ext_cpuid1_ebx; // reserved
 369     ExtCpuid1Ecx ext_cpuid1_ecx;
 370     ExtCpuid1Edx ext_cpuid1_edx;
 371 
 372     // cpuid functions 0x80000002 thru 0x80000004: example, unused
 373     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
 374     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
 375     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
 376 
 377     // cpuid function 0x80000005 // AMD L1, Intel reserved
 378     uint32_t     ext_cpuid5_eax; // unused currently
 379     uint32_t     ext_cpuid5_ebx; // reserved
 380     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
 381     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
 382 
 383     // cpuid function 0x80000007
 384     uint32_t     ext_cpuid7_eax; // reserved
 385     uint32_t     ext_cpuid7_ebx; // reserved
 386     uint32_t     ext_cpuid7_ecx; // reserved
 387     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
 388 
 389     // cpuid function 0x80000008
 390     uint32_t     ext_cpuid8_eax; // unused currently
 391     uint32_t     ext_cpuid8_ebx; // reserved
 392     ExtCpuid8Ecx ext_cpuid8_ecx;
 393     uint32_t     ext_cpuid8_edx; // reserved
 394 
 395     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
 396     XemXcr0Eax   xem_xcr0_eax;
 397     uint32_t     xem_xcr0_edx; // reserved
 398 
 399     // Space to save ymm registers after signal handle
 400     int          ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
 401 
 402     // Space to save zmm registers after signal handle
 403     int          zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31
 404   };
 405 
 406   // The actual cpuid info block
 407   static CpuidInfo _cpuid_info;
 408 
 409   // Extractors and predicates
 410   static uint32_t extended_cpu_family() {
 411     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
 412     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
 413     return result;
 414   }
 415 
 416   static uint32_t extended_cpu_model() {
 417     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
 418     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
 419     return result;
 420   }
 421 
 422   static uint32_t cpu_stepping() {
 423     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
 424     return result;
 425   }
 426 
 427   static uint logical_processor_count() {
 428     uint result = threads_per_core();
 429     return result;
 430   }
 431 
 432   static uint64_t feature_flags() {
 433     uint64_t result = 0;
 434     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
 435       result |= CPU_CX8;
 436     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
 437       result |= CPU_CMOV;
 438     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
 439         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
 440       result |= CPU_FXSR;
 441     // HT flag is set for multi-core processors also.
 442     if (threads_per_core() > 1)
 443       result |= CPU_HT;
 444     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
 445         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
 446       result |= CPU_MMX;
 447     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
 448       result |= CPU_SSE;
 449     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
 450       result |= CPU_SSE2;
 451     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
 452       result |= CPU_SSE3;
 453     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
 454       result |= CPU_SSSE3;
 455     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
 456       result |= CPU_SSE4_1;
 457     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
 458       result |= CPU_SSE4_2;
 459     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
 460       result |= CPU_POPCNT;
 461     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
 462         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
 463         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
 464         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
 465       result |= CPU_AVX;
 466       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
 467         result |= CPU_AVX2;
 468       if (_cpuid_info.sef_cpuid7_ebx.bits.avx512f != 0 &&
 469           _cpuid_info.xem_xcr0_eax.bits.opmask != 0 &&
 470           _cpuid_info.xem_xcr0_eax.bits.zmm512 != 0 &&
 471           _cpuid_info.xem_xcr0_eax.bits.zmm32 != 0) {
 472         result |= CPU_AVX512F;
 473         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512cd != 0)
 474           result |= CPU_AVX512CD;
 475         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512dq != 0)
 476           result |= CPU_AVX512DQ;
 477         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512pf != 0)
 478           result |= CPU_AVX512PF;
 479         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512er != 0)
 480           result |= CPU_AVX512ER;
 481         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512bw != 0)
 482           result |= CPU_AVX512BW;
 483         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512vl != 0)
 484           result |= CPU_AVX512VL;
 485       }
 486     }
 487     if(_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
 488       result |= CPU_BMI1;
 489     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
 490       result |= CPU_TSC;
 491     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
 492       result |= CPU_TSCINV;
 493     if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
 494       result |= CPU_AES;
 495     if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
 496       result |= CPU_ERMS;
 497     if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
 498       result |= CPU_CLMUL;
 499     if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0)
 500       result |= CPU_RTM;
 501 
 502     // AMD features.
 503     if (is_amd()) {
 504       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
 505           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
 506         result |= CPU_3DNOW_PREFETCH;
 507       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
 508         result |= CPU_LZCNT;
 509       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
 510         result |= CPU_SSE4A;
 511     }
 512     // Intel features.
 513     if(is_intel()) {
 514       if(_cpuid_info.sef_cpuid7_ebx.bits.adx != 0)
 515          result |= CPU_ADX;
 516       if(_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
 517         result |= CPU_BMI2;
 518       if(_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
 519         result |= CPU_LZCNT;
 520       // for Intel, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw
 521       if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) {
 522         result |= CPU_3DNOW_PREFETCH;
 523       }
 524     }
 525 
 526     return result;
 527   }
 528 
 529   static bool os_supports_avx_vectors() {
 530     bool retVal = false;
 531     if (supports_evex()) {
 532       // Verify that OS save/restore all bits of EVEX registers
 533       // during signal processing.
 534       int nreg = 2 LP64_ONLY(+2);
 535       retVal = true;
 536       for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
 537         if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
 538           retVal = false;
 539           break;
 540         }
 541       }
 542     } else if (supports_avx()) {
 543       // Verify that OS save/restore all bits of AVX registers
 544       // during signal processing.
 545       int nreg = 2 LP64_ONLY(+2);
 546       retVal = true;
 547       for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
 548         if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
 549           retVal = false;
 550           break;
 551         }
 552       }
 553     }
 554     return retVal;
 555   }
 556 
 557   static void get_processor_features();
 558 
 559 public:
 560   // Offsets for cpuid asm stub
 561   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
 562   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
 563   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
 564   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
 565   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
 566   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
 567   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
 568   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
 569   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
 570   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
 571   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
 572   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
 573   static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
 574   static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); }
 575 
 576   // The value used to check ymm register after signal handle
 577   static int ymm_test_value()    { return 0xCAFEBABE; }
 578 
 579   static void get_cpu_info_wrapper();
 580   static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
 581   static bool  is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
 582   static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
 583   static address  cpuinfo_cont_addr()           { return _cpuinfo_cont_addr; }
 584 
 585   static void clean_cpuFeatures()   { _cpuFeatures = 0; }
 586   static void set_avx_cpuFeatures() { _cpuFeatures = (CPU_SSE | CPU_SSE2 | CPU_AVX); }
 587   static void set_evex_cpuFeatures() { _cpuFeatures = (CPU_AVX512F | CPU_SSE | CPU_SSE2 ); }
 588 
 589 
 590   // Initialization
 591   static void initialize();
 592 
 593   // Override Abstract_VM_Version implementation
 594   static bool use_biased_locking();
 595 
 596   // Asserts
 597   static void assert_is_initialized() {
 598     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
 599   }
 600 
 601   //
 602   // Processor family:
 603   //       3   -  386
 604   //       4   -  486
 605   //       5   -  Pentium
 606   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
 607   //              Pentium M, Core Solo, Core Duo, Core2 Duo
 608   //    family 6 model:   9,        13,       14,        15
 609   //    0x0f   -  Pentium 4, Opteron
 610   //
 611   // Note: The cpu family should be used to select between
 612   //       instruction sequences which are valid on all Intel
 613   //       processors.  Use the feature test functions below to
 614   //       determine whether a particular instruction is supported.
 615   //
 616   static int  cpu_family()        { return _cpu;}
 617   static bool is_P6()             { return cpu_family() >= 6; }
 618   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
 619   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
 620 
 621   static bool supports_processor_topology() {
 622     return (_cpuid_info.std_max_function >= 0xB) &&
 623            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
 624            // Some cpus have max cpuid >= 0xB but do not support processor topology.
 625            (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
 626   }
 627 
 628   static uint cores_per_cpu()  {
 629     uint result = 1;
 630     if (is_intel()) {
 631       bool supports_topology = supports_processor_topology();
 632       if (supports_topology) {
 633         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
 634                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 635       }
 636       if (!supports_topology || result == 0) {
 637         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
 638       }
 639     } else if (is_amd()) {
 640       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
 641     }
 642     return result;
 643   }
 644 
 645   static uint threads_per_core()  {
 646     uint result = 1;
 647     if (is_intel() && supports_processor_topology()) {
 648       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 649     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
 650       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
 651                cores_per_cpu();
 652     }
 653     return result;
 654   }
 655 
 656   static intx L1_line_size()  {
 657     intx result = 0;
 658     if (is_intel()) {
 659       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
 660     } else if (is_amd()) {
 661       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
 662     }
 663     if (result < 32) // not defined ?
 664       result = 32;   // 32 bytes by default on x86 and other x64
 665     return result;
 666   }
 667 
 668   static intx prefetch_data_size()  {
 669     return L1_line_size();
 670   }
 671 
 672   //
 673   // Feature identification
 674   //
 675   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
 676   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
 677   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
 678   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
 679   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
 680   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
 681   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
 682   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
 683   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
 684   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
 685   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
 686   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
 687   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
 688   static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
 689   static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
 690   static bool supports_tsc()      { return (_cpuFeatures & CPU_TSC)    != 0; }
 691   static bool supports_aes()      { return (_cpuFeatures & CPU_AES) != 0; }
 692   static bool supports_erms()     { return (_cpuFeatures & CPU_ERMS) != 0; }
 693   static bool supports_clmul()    { return (_cpuFeatures & CPU_CLMUL) != 0; }
 694   static bool supports_rtm()      { return (_cpuFeatures & CPU_RTM) != 0; }
 695   static bool supports_bmi1()     { return (_cpuFeatures & CPU_BMI1) != 0; }
 696   static bool supports_bmi2()     { return (_cpuFeatures & CPU_BMI2) != 0; }
 697   static bool supports_adx()      { return (_cpuFeatures & CPU_ADX) != 0; }
 698   static bool supports_evex()     { return (_cpuFeatures & CPU_AVX512F) != 0; }
 699   static bool supports_avx512dq() { return (_cpuFeatures & CPU_AVX512DQ) != 0; }
 700   static bool supports_avx512pf() { return (_cpuFeatures & CPU_AVX512PF) != 0; }
 701   static bool supports_avx512er() { return (_cpuFeatures & CPU_AVX512ER) != 0; }
 702   static bool supports_avx512cd() { return (_cpuFeatures & CPU_AVX512CD) != 0; }
 703   static bool supports_avx512bw() { return (_cpuFeatures & CPU_AVX512BW) != 0; }
 704   static bool supports_avx512vl() { return (_cpuFeatures & CPU_AVX512VL) != 0; }
 705   // Intel features
 706   static bool is_intel_family_core() { return is_intel() &&
 707                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
 708 
 709   static bool is_intel_tsc_synched_at_init()  {
 710     if (is_intel_family_core()) {
 711       uint32_t ext_model = extended_cpu_model();
 712       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
 713           ext_model == CPU_MODEL_WESTMERE_EP    ||
 714           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
 715           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
 716         // <= 2-socket invariant tsc support. EX versions are usually used
 717         // in > 2-socket systems and likely don't synchronize tscs at
 718         // initialization.
 719         // Code that uses tsc values must be prepared for them to arbitrarily
 720         // jump forward or backward.
 721         return true;
 722       }
 723     }
 724     return false;
 725   }
 726 
 727   // AMD features
 728   static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
 729   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
 730   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
 731   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
 732 
 733   static bool is_amd_Barcelona()  { return is_amd() &&
 734                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
 735 
 736   // Intel and AMD newer cores support fast timestamps well
 737   static bool supports_tscinv_bit() {
 738     return (_cpuFeatures & CPU_TSCINV) != 0;
 739   }
 740   static bool supports_tscinv() {
 741     return supports_tscinv_bit() &&
 742            ( (is_amd() && !is_amd_Barcelona()) ||
 743              is_intel_tsc_synched_at_init() );
 744   }
 745 
 746   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
 747   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
 748                                            supports_sse3() && _model != 0x1C; }
 749 
 750   static bool supports_compare_and_exchange() { return true; }
 751 
 752   static const char* cpu_features()           { return _features_str; }
 753 
 754   static intx allocate_prefetch_distance() {
 755     // This method should be called before allocate_prefetch_style().
 756     //
 757     // Hardware prefetching (distance/size in bytes):
 758     // Pentium 3 -  64 /  32
 759     // Pentium 4 - 256 / 128
 760     // Athlon    -  64 /  32 ????
 761     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
 762     // Core      - 128 /  64
 763     //
 764     // Software prefetching (distance in bytes / instruction with best score):
 765     // Pentium 3 - 128 / prefetchnta
 766     // Pentium 4 - 512 / prefetchnta
 767     // Athlon    - 128 / prefetchnta
 768     // Opteron   - 256 / prefetchnta
 769     // Core      - 256 / prefetchnta
 770     // It will be used only when AllocatePrefetchStyle > 0
 771 
 772     intx count = AllocatePrefetchDistance;
 773     if (count < 0) {   // default ?
 774       if (is_amd()) {  // AMD
 775         if (supports_sse2())
 776           count = 256; // Opteron
 777         else
 778           count = 128; // Athlon
 779       } else {         // Intel
 780         if (supports_sse2())
 781           if (cpu_family() == 6) {
 782             count = 256; // Pentium M, Core, Core2
 783           } else {
 784             count = 512; // Pentium 4
 785           }
 786         else
 787           count = 128; // Pentium 3 (and all other old CPUs)
 788       }
 789     }
 790     return count;
 791   }
 792   static intx allocate_prefetch_style() {
 793     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
 794     // Return 0 if AllocatePrefetchDistance was not defined.
 795     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
 796   }
 797 
 798   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
 799   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
 800   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
 801   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
 802 
 803   // gc copy/scan is disabled if prefetchw isn't supported, because
 804   // Prefetch::write emits an inlined prefetchw on Linux.
 805   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
 806   // The used prefetcht0 instruction works for both amd64 and em64t.
 807   static intx prefetch_copy_interval_in_bytes() {
 808     intx interval = PrefetchCopyIntervalInBytes;
 809     return interval >= 0 ? interval : 576;
 810   }
 811   static intx prefetch_scan_interval_in_bytes() {
 812     intx interval = PrefetchScanIntervalInBytes;
 813     return interval >= 0 ? interval : 576;
 814   }
 815   static intx prefetch_fields_ahead() {
 816     intx count = PrefetchFieldsAhead;
 817     return count >= 0 ? count : 1;
 818   }
 819 };
 820 
 821 #endif // CPU_X86_VM_VM_VERSION_X86_HPP