src/cpu/x86/vm/vm_version_x86.hpp
Index Unified diffs Context diffs Sdiffs Wdiffs Patch New Old Previous File Next File 8076276 Sdiff src/cpu/x86/vm

src/cpu/x86/vm/vm_version_x86.hpp

Print this page
rev 8344 : 8076276: Add support for AVX512
Reviewed-by: kvn, roland
Contributed-by: michael.c.berg@intel.com


 192     } bits;
 193   };
 194 
 195   union SefCpuid7Eax {
 196     uint32_t value;
 197   };
 198 
 199   union SefCpuid7Ebx {
 200     uint32_t value;
 201     struct {
 202       uint32_t fsgsbase : 1,
 203                         : 2,
 204                    bmi1 : 1,
 205                         : 1,
 206                    avx2 : 1,
 207                         : 2,
 208                    bmi2 : 1,
 209                    erms : 1,
 210                         : 1,
 211                    rtm  : 1,
 212                         : 7,



 213                    adx  : 1,
 214                         : 12;






 215     } bits;
 216   };
 217 
 218   union XemXcr0Eax {
 219     uint32_t value;
 220     struct {
 221       uint32_t x87 : 1,
 222                sse : 1,
 223                ymm : 1,
 224                    : 29;




 225     } bits;
 226   };
 227 
 228 protected:
 229   static int _cpu;
 230   static int _model;
 231   static int _stepping;
 232   static int _cpuFeatures;     // features returned by the "cpuid" instruction
 233                                // 0 if this instruction is not available
 234   static const char* _features_str;
 235 
 236   static address   _cpuinfo_segv_addr; // address of instruction which causes SEGV
 237   static address   _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
 238 
 239   enum {
 240     CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
 241     CPU_CMOV   = (1 << 1),
 242     CPU_FXSR   = (1 << 2),
 243     CPU_HT     = (1 << 3),
 244     CPU_MMX    = (1 << 4),
 245     CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
 246                                     // may not necessarily support other 3dnow instructions
 247     CPU_SSE    = (1 << 6),
 248     CPU_SSE2   = (1 << 7),
 249     CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
 250     CPU_SSSE3  = (1 << 9),
 251     CPU_SSE4A  = (1 << 10),
 252     CPU_SSE4_1 = (1 << 11),
 253     CPU_SSE4_2 = (1 << 12),
 254     CPU_POPCNT = (1 << 13),
 255     CPU_LZCNT  = (1 << 14),
 256     CPU_TSC    = (1 << 15),
 257     CPU_TSCINV = (1 << 16),
 258     CPU_AVX    = (1 << 17),
 259     CPU_AVX2   = (1 << 18),
 260     CPU_AES    = (1 << 19),
 261     CPU_ERMS   = (1 << 20), // enhanced 'rep movsb/stosb' instructions
 262     CPU_CLMUL  = (1 << 21), // carryless multiply for CRC
 263     CPU_BMI1   = (1 << 22),
 264     CPU_BMI2   = (1 << 23),
 265     CPU_RTM    = (1 << 24),  // Restricted Transactional Memory instructions
 266     CPU_ADX    = (1 << 25)






 267   } cpuFeatureFlags;
 268 


 269   enum {
 270     // AMD
 271     CPU_FAMILY_AMD_11H       = 0x11,
 272     // Intel
 273     CPU_FAMILY_INTEL_CORE    = 6,
 274     CPU_MODEL_NEHALEM        = 0x1e,
 275     CPU_MODEL_NEHALEM_EP     = 0x1a,
 276     CPU_MODEL_NEHALEM_EX     = 0x2e,
 277     CPU_MODEL_WESTMERE       = 0x25,
 278     CPU_MODEL_WESTMERE_EP    = 0x2c,
 279     CPU_MODEL_WESTMERE_EX    = 0x2f,
 280     CPU_MODEL_SANDYBRIDGE    = 0x2a,
 281     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
 282     CPU_MODEL_IVYBRIDGE_EP   = 0x3a,
 283     CPU_MODEL_HASWELL_E3     = 0x3c,
 284     CPU_MODEL_HASWELL_E7     = 0x3f,
 285     CPU_MODEL_BROADWELL      = 0x3d

 286   } cpuExtendedFamily;
 287 
 288   // cpuid information block.  All info derived from executing cpuid with
 289   // various function numbers is stored here.  Intel and AMD info is
 290   // merged in this block: accessor methods disentangle it.
 291   //
 292   // The info block is laid out in subblocks of 4 dwords corresponding to
 293   // eax, ebx, ecx and edx, whether or not they contain anything useful.
 294   struct CpuidInfo {
 295     // cpuid function 0
 296     uint32_t std_max_function;
 297     uint32_t std_vendor_name_0;
 298     uint32_t std_vendor_name_1;
 299     uint32_t std_vendor_name_2;
 300 
 301     // cpuid function 1
 302     StdCpuid1Eax std_cpuid1_eax;
 303     StdCpuid1Ebx std_cpuid1_ebx;
 304     StdCpuid1Ecx std_cpuid1_ecx;
 305     StdCpuid1Edx std_cpuid1_edx;


 359     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
 360 
 361     // cpuid function 0x80000007
 362     uint32_t     ext_cpuid7_eax; // reserved
 363     uint32_t     ext_cpuid7_ebx; // reserved
 364     uint32_t     ext_cpuid7_ecx; // reserved
 365     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
 366 
 367     // cpuid function 0x80000008
 368     uint32_t     ext_cpuid8_eax; // unused currently
 369     uint32_t     ext_cpuid8_ebx; // reserved
 370     ExtCpuid8Ecx ext_cpuid8_ecx;
 371     uint32_t     ext_cpuid8_edx; // reserved
 372 
 373     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
 374     XemXcr0Eax   xem_xcr0_eax;
 375     uint32_t     xem_xcr0_edx; // reserved
 376 
 377     // Space to save ymm registers after signal handle
 378     int          ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15



 379   };
 380 
 381   // The actual cpuid info block
 382   static CpuidInfo _cpuid_info;
 383 
 384   // Extractors and predicates
 385   static uint32_t extended_cpu_family() {
 386     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
 387     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
 388     return result;
 389   }
 390 
 391   static uint32_t extended_cpu_model() {
 392     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
 393     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
 394     return result;
 395   }
 396 
 397   static uint32_t cpu_stepping() {
 398     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
 399     return result;
 400   }
 401 
 402   static uint logical_processor_count() {
 403     uint result = threads_per_core();
 404     return result;
 405   }
 406 
 407   static uint32_t feature_flags() {
 408     uint32_t result = 0;
 409     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
 410       result |= CPU_CX8;
 411     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
 412       result |= CPU_CMOV;
 413     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
 414         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
 415       result |= CPU_FXSR;
 416     // HT flag is set for multi-core processors also.
 417     if (threads_per_core() > 1)
 418       result |= CPU_HT;
 419     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
 420         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
 421       result |= CPU_MMX;
 422     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
 423       result |= CPU_SSE;
 424     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
 425       result |= CPU_SSE2;
 426     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
 427       result |= CPU_SSE3;
 428     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
 429       result |= CPU_SSSE3;
 430     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
 431       result |= CPU_SSE4_1;
 432     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
 433       result |= CPU_SSE4_2;
 434     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
 435       result |= CPU_POPCNT;
 436     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
 437         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
 438         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
 439         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
 440       result |= CPU_AVX;
 441       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
 442         result |= CPU_AVX2;


















 443     }
 444     if(_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
 445       result |= CPU_BMI1;
 446     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
 447       result |= CPU_TSC;
 448     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
 449       result |= CPU_TSCINV;
 450     if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
 451       result |= CPU_AES;
 452     if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
 453       result |= CPU_ERMS;
 454     if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
 455       result |= CPU_CLMUL;
 456     if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0)
 457       result |= CPU_RTM;
 458 
 459     // AMD features.
 460     if (is_amd()) {
 461       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
 462           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))


 467         result |= CPU_SSE4A;
 468     }
 469     // Intel features.
 470     if(is_intel()) {
 471       if(_cpuid_info.sef_cpuid7_ebx.bits.adx != 0)
 472          result |= CPU_ADX;
 473       if(_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
 474         result |= CPU_BMI2;
 475       if(_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
 476         result |= CPU_LZCNT;
 477       // for Intel, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw
 478       if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) {
 479         result |= CPU_3DNOW_PREFETCH;
 480       }
 481     }
 482 
 483     return result;
 484   }
 485 
 486   static bool os_supports_avx_vectors() {
 487     if (!supports_avx()) {
 488       return false;









 489     }

 490     // Verify that OS save/restore all bits of AVX registers
 491     // during signal processing.
 492     int nreg = 2 LP64_ONLY(+2);

 493     for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
 494       if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
 495         return false;

 496       }
 497     }
 498     return true;

 499   }
 500 
 501   static void get_processor_features();
 502 
 503 public:
 504   // Offsets for cpuid asm stub
 505   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
 506   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
 507   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
 508   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
 509   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
 510   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
 511   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
 512   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
 513   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
 514   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
 515   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
 516   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
 517   static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }

 518 
 519   // The value used to check ymm register after signal handle
 520   static int ymm_test_value()    { return 0xCAFEBABE; }
 521 
 522   static void get_cpu_info_wrapper();
 523   static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
 524   static bool  is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
 525   static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
 526   static address  cpuinfo_cont_addr()           { return _cpuinfo_cont_addr; }
 527 
 528   static void clean_cpuFeatures()   { _cpuFeatures = 0; }
 529   static void set_avx_cpuFeatures() { _cpuFeatures = (CPU_SSE | CPU_SSE2 | CPU_AVX); }

 530 
 531 
 532   // Initialization
 533   static void initialize();
 534 
 535   // Override Abstract_VM_Version implementation
 536   static bool use_biased_locking();
 537 
 538   // Asserts
 539   static void assert_is_initialized() {
 540     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
 541   }
 542 
 543   //
 544   // Processor family:
 545   //       3   -  386
 546   //       4   -  486
 547   //       5   -  Pentium
 548   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
 549   //              Pentium M, Core Solo, Core Duo, Core2 Duo


 620   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
 621   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
 622   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
 623   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
 624   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
 625   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
 626   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
 627   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
 628   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
 629   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
 630   static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
 631   static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
 632   static bool supports_tsc()      { return (_cpuFeatures & CPU_TSC)    != 0; }
 633   static bool supports_aes()      { return (_cpuFeatures & CPU_AES) != 0; }
 634   static bool supports_erms()     { return (_cpuFeatures & CPU_ERMS) != 0; }
 635   static bool supports_clmul()    { return (_cpuFeatures & CPU_CLMUL) != 0; }
 636   static bool supports_rtm()      { return (_cpuFeatures & CPU_RTM) != 0; }
 637   static bool supports_bmi1()     { return (_cpuFeatures & CPU_BMI1) != 0; }
 638   static bool supports_bmi2()     { return (_cpuFeatures & CPU_BMI2) != 0; }
 639   static bool supports_adx()     { return (_cpuFeatures & CPU_ADX) != 0; }







 640   // Intel features
 641   static bool is_intel_family_core() { return is_intel() &&
 642                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
 643 
 644   static bool is_intel_tsc_synched_at_init()  {
 645     if (is_intel_family_core()) {
 646       uint32_t ext_model = extended_cpu_model();
 647       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
 648           ext_model == CPU_MODEL_WESTMERE_EP    ||
 649           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
 650           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
 651         // <= 2-socket invariant tsc support. EX versions are usually used
 652         // in > 2-socket systems and likely don't synchronize tscs at
 653         // initialization.
 654         // Code that uses tsc values must be prepared for them to arbitrarily
 655         // jump forward or backward.
 656         return true;
 657       }
 658     }
 659     return false;




 192     } bits;
 193   };
 194 
 195   union SefCpuid7Eax {
 196     uint32_t value;
 197   };
 198 
 199   union SefCpuid7Ebx {
 200     uint32_t value;
 201     struct {
 202       uint32_t fsgsbase : 1,
 203                         : 2,
 204                    bmi1 : 1,
 205                         : 1,
 206                    avx2 : 1,
 207                         : 2,
 208                    bmi2 : 1,
 209                    erms : 1,
 210                         : 1,
 211                     rtm : 1,
 212                         : 4,
 213                 avx512f : 1,
 214                avx512dq : 1,
 215                         : 1,
 216                     adx : 1,
 217                         : 6,
 218                avx512pf : 1,
 219                avx512er : 1,
 220                avx512cd : 1,
 221                         : 1,
 222                avx512bw : 1,
 223                avx512vl : 1;
 224     } bits;
 225   };
 226 
 227   union XemXcr0Eax {
 228     uint32_t value;
 229     struct {
 230       uint32_t x87    : 1,
 231                sse    : 1,
 232                ymm    : 1,
 233                       : 2,
 234                opmask : 1,
 235                zmm512 : 1,
 236                 zmm32 : 1,
 237                       : 24;
 238     } bits;
 239   };
 240 
 241 protected:
 242   static int _cpu;
 243   static int _model;
 244   static int _stepping;
 245   static uint64_t _cpuFeatures; // features returned by the "cpuid" instruction
 246                                 // 0 if this instruction is not available
 247   static const char* _features_str;
 248 
 249   static address   _cpuinfo_segv_addr; // address of instruction which causes SEGV
 250   static address   _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
 251 
 252   enum {
 253     CPU_CX8      = (1 << 0), // next bits are from cpuid 1 (EDX)
 254     CPU_CMOV     = (1 << 1),
 255     CPU_FXSR     = (1 << 2),
 256     CPU_HT       = (1 << 3),
 257     CPU_MMX      = (1 << 4),
 258     CPU_3DNOW_PREFETCH = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
 259                                    // may not necessarily support other 3dnow instructions
 260     CPU_SSE      = (1 << 6),
 261     CPU_SSE2     = (1 << 7),
 262     CPU_SSE3     = (1 << 8),  // SSE3 comes from cpuid 1 (ECX)
 263     CPU_SSSE3    = (1 << 9),
 264     CPU_SSE4A    = (1 << 10),
 265     CPU_SSE4_1   = (1 << 11),
 266     CPU_SSE4_2   = (1 << 12),
 267     CPU_POPCNT   = (1 << 13),
 268     CPU_LZCNT    = (1 << 14),
 269     CPU_TSC      = (1 << 15),
 270     CPU_TSCINV   = (1 << 16),
 271     CPU_AVX      = (1 << 17),
 272     CPU_AVX2     = (1 << 18),
 273     CPU_AES      = (1 << 19),
 274     CPU_ERMS     = (1 << 20), // enhanced 'rep movsb/stosb' instructions
 275     CPU_CLMUL    = (1 << 21), // carryless multiply for CRC
 276     CPU_BMI1     = (1 << 22),
 277     CPU_BMI2     = (1 << 23),
 278     CPU_RTM      = (1 << 24), // Restricted Transactional Memory instructions
 279     CPU_ADX      = (1 << 25),
 280     CPU_AVX512F  = (1 << 26), // AVX 512bit foundation instructions
 281     CPU_AVX512DQ = (1 << 27),
 282     CPU_AVX512PF = (1 << 28),
 283     CPU_AVX512ER = (1 << 29),
 284     CPU_AVX512CD = (1 << 30),
 285     CPU_AVX512BW = (1 << 31)
 286   } cpuFeatureFlags;
 287 
 288 #define CPU_AVX512VL 0x100000000 // EVEX instructions with smaller vector length : enums are limited to 32bit
 289 
 290   enum {
 291     // AMD
 292     CPU_FAMILY_AMD_11H       = 0x11,
 293     // Intel
 294     CPU_FAMILY_INTEL_CORE    = 6,
 295     CPU_MODEL_NEHALEM        = 0x1e,
 296     CPU_MODEL_NEHALEM_EP     = 0x1a,
 297     CPU_MODEL_NEHALEM_EX     = 0x2e,
 298     CPU_MODEL_WESTMERE       = 0x25,
 299     CPU_MODEL_WESTMERE_EP    = 0x2c,
 300     CPU_MODEL_WESTMERE_EX    = 0x2f,
 301     CPU_MODEL_SANDYBRIDGE    = 0x2a,
 302     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
 303     CPU_MODEL_IVYBRIDGE_EP   = 0x3a,
 304     CPU_MODEL_HASWELL_E3     = 0x3c,
 305     CPU_MODEL_HASWELL_E7     = 0x3f,
 306     CPU_MODEL_BROADWELL      = 0x3d,
 307     CPU_MODEL_SKYLAKE        = CPU_MODEL_HASWELL_E3
 308   } cpuExtendedFamily;
 309 
 310   // cpuid information block.  All info derived from executing cpuid with
 311   // various function numbers is stored here.  Intel and AMD info is
 312   // merged in this block: accessor methods disentangle it.
 313   //
 314   // The info block is laid out in subblocks of 4 dwords corresponding to
 315   // eax, ebx, ecx and edx, whether or not they contain anything useful.
 316   struct CpuidInfo {
 317     // cpuid function 0
 318     uint32_t std_max_function;
 319     uint32_t std_vendor_name_0;
 320     uint32_t std_vendor_name_1;
 321     uint32_t std_vendor_name_2;
 322 
 323     // cpuid function 1
 324     StdCpuid1Eax std_cpuid1_eax;
 325     StdCpuid1Ebx std_cpuid1_ebx;
 326     StdCpuid1Ecx std_cpuid1_ecx;
 327     StdCpuid1Edx std_cpuid1_edx;


 381     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
 382 
 383     // cpuid function 0x80000007
 384     uint32_t     ext_cpuid7_eax; // reserved
 385     uint32_t     ext_cpuid7_ebx; // reserved
 386     uint32_t     ext_cpuid7_ecx; // reserved
 387     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
 388 
 389     // cpuid function 0x80000008
 390     uint32_t     ext_cpuid8_eax; // unused currently
 391     uint32_t     ext_cpuid8_ebx; // reserved
 392     ExtCpuid8Ecx ext_cpuid8_ecx;
 393     uint32_t     ext_cpuid8_edx; // reserved
 394 
 395     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
 396     XemXcr0Eax   xem_xcr0_eax;
 397     uint32_t     xem_xcr0_edx; // reserved
 398 
 399     // Space to save ymm registers after signal handle
 400     int          ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
 401 
 402     // Space to save zmm registers after signal handle
 403     int          zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31
 404   };
 405 
 406   // The actual cpuid info block
 407   static CpuidInfo _cpuid_info;
 408 
 409   // Extractors and predicates
 410   static uint32_t extended_cpu_family() {
 411     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
 412     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
 413     return result;
 414   }
 415 
 416   static uint32_t extended_cpu_model() {
 417     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
 418     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
 419     return result;
 420   }
 421 
 422   static uint32_t cpu_stepping() {
 423     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
 424     return result;
 425   }
 426 
 427   static uint logical_processor_count() {
 428     uint result = threads_per_core();
 429     return result;
 430   }
 431 
 432   static uint64_t feature_flags() {
 433     uint64_t result = 0;
 434     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
 435       result |= CPU_CX8;
 436     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
 437       result |= CPU_CMOV;
 438     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
 439         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
 440       result |= CPU_FXSR;
 441     // HT flag is set for multi-core processors also.
 442     if (threads_per_core() > 1)
 443       result |= CPU_HT;
 444     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
 445         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
 446       result |= CPU_MMX;
 447     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
 448       result |= CPU_SSE;
 449     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
 450       result |= CPU_SSE2;
 451     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
 452       result |= CPU_SSE3;
 453     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
 454       result |= CPU_SSSE3;
 455     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
 456       result |= CPU_SSE4_1;
 457     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
 458       result |= CPU_SSE4_2;
 459     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
 460       result |= CPU_POPCNT;
 461     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
 462         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
 463         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
 464         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
 465       result |= CPU_AVX;
 466       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
 467         result |= CPU_AVX2;
 468       if (_cpuid_info.sef_cpuid7_ebx.bits.avx512f != 0 &&
 469           _cpuid_info.xem_xcr0_eax.bits.opmask != 0 &&
 470           _cpuid_info.xem_xcr0_eax.bits.zmm512 != 0 &&
 471           _cpuid_info.xem_xcr0_eax.bits.zmm32 != 0) {
 472         result |= CPU_AVX512F;
 473         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512cd != 0)
 474           result |= CPU_AVX512CD;
 475         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512dq != 0)
 476           result |= CPU_AVX512DQ;
 477         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512pf != 0)
 478           result |= CPU_AVX512PF;
 479         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512er != 0)
 480           result |= CPU_AVX512ER;
 481         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512bw != 0)
 482           result |= CPU_AVX512BW;
 483         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512vl != 0)
 484           result |= CPU_AVX512VL;
 485       }
 486     }
 487     if(_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
 488       result |= CPU_BMI1;
 489     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
 490       result |= CPU_TSC;
 491     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
 492       result |= CPU_TSCINV;
 493     if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
 494       result |= CPU_AES;
 495     if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
 496       result |= CPU_ERMS;
 497     if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
 498       result |= CPU_CLMUL;
 499     if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0)
 500       result |= CPU_RTM;
 501 
 502     // AMD features.
 503     if (is_amd()) {
 504       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
 505           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))


 510         result |= CPU_SSE4A;
 511     }
 512     // Intel features.
 513     if(is_intel()) {
 514       if(_cpuid_info.sef_cpuid7_ebx.bits.adx != 0)
 515          result |= CPU_ADX;
 516       if(_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
 517         result |= CPU_BMI2;
 518       if(_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
 519         result |= CPU_LZCNT;
 520       // for Intel, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw
 521       if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) {
 522         result |= CPU_3DNOW_PREFETCH;
 523       }
 524     }
 525 
 526     return result;
 527   }
 528 
 529   static bool os_supports_avx_vectors() {
 530     bool retVal = false;
 531     if (supports_evex()) {
 532       // Verify that OS save/restore all bits of EVEX registers
 533       // during signal processing.
 534       int nreg = 2 LP64_ONLY(+2);
 535       retVal = true;
 536       for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
 537         if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
 538           retVal = false;
 539           break;
 540         }
 541       }
 542     } else if (supports_avx()) {
 543       // Verify that OS save/restore all bits of AVX registers
 544       // during signal processing.
 545       int nreg = 2 LP64_ONLY(+2);
 546       retVal = true;
 547       for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
 548         if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
 549           retVal = false;
 550           break;
 551         }
 552       }
 553     }
 554     return retVal;
 555   }
 556 
 557   static void get_processor_features();
 558 
 559 public:
 560   // Offsets for cpuid asm stub
 561   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
 562   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
 563   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
 564   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
 565   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
 566   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
 567   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
 568   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
 569   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
 570   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
 571   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
 572   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
 573   static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
 574   static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); }
 575 
 576   // The value used to check ymm register after signal handle
 577   static int ymm_test_value()    { return 0xCAFEBABE; }
 578 
 579   static void get_cpu_info_wrapper();
 580   static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
 581   static bool  is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
 582   static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
 583   static address  cpuinfo_cont_addr()           { return _cpuinfo_cont_addr; }
 584 
 585   static void clean_cpuFeatures()   { _cpuFeatures = 0; }
 586   static void set_avx_cpuFeatures() { _cpuFeatures = (CPU_SSE | CPU_SSE2 | CPU_AVX); }
 587   static void set_evex_cpuFeatures() { _cpuFeatures = (CPU_AVX512F | CPU_SSE | CPU_SSE2 ); }
 588 
 589 
 590   // Initialization
 591   static void initialize();
 592 
 593   // Override Abstract_VM_Version implementation
 594   static bool use_biased_locking();
 595 
 596   // Asserts
 597   static void assert_is_initialized() {
 598     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
 599   }
 600 
 601   //
 602   // Processor family:
 603   //       3   -  386
 604   //       4   -  486
 605   //       5   -  Pentium
 606   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
 607   //              Pentium M, Core Solo, Core Duo, Core2 Duo


 678   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
 679   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
 680   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
 681   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
 682   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
 683   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
 684   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
 685   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
 686   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
 687   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
 688   static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
 689   static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
 690   static bool supports_tsc()      { return (_cpuFeatures & CPU_TSC)    != 0; }
 691   static bool supports_aes()      { return (_cpuFeatures & CPU_AES) != 0; }
 692   static bool supports_erms()     { return (_cpuFeatures & CPU_ERMS) != 0; }
 693   static bool supports_clmul()    { return (_cpuFeatures & CPU_CLMUL) != 0; }
 694   static bool supports_rtm()      { return (_cpuFeatures & CPU_RTM) != 0; }
 695   static bool supports_bmi1()     { return (_cpuFeatures & CPU_BMI1) != 0; }
 696   static bool supports_bmi2()     { return (_cpuFeatures & CPU_BMI2) != 0; }
 697   static bool supports_adx()      { return (_cpuFeatures & CPU_ADX) != 0; }
 698   static bool supports_evex()     { return (_cpuFeatures & CPU_AVX512F) != 0; }
 699   static bool supports_avx512dq() { return (_cpuFeatures & CPU_AVX512DQ) != 0; }
 700   static bool supports_avx512pf() { return (_cpuFeatures & CPU_AVX512PF) != 0; }
 701   static bool supports_avx512er() { return (_cpuFeatures & CPU_AVX512ER) != 0; }
 702   static bool supports_avx512cd() { return (_cpuFeatures & CPU_AVX512CD) != 0; }
 703   static bool supports_avx512bw() { return (_cpuFeatures & CPU_AVX512BW) != 0; }
 704   static bool supports_avx512vl() { return (_cpuFeatures & CPU_AVX512VL) != 0; }
 705   // Intel features
 706   static bool is_intel_family_core() { return is_intel() &&
 707                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
 708 
 709   static bool is_intel_tsc_synched_at_init()  {
 710     if (is_intel_family_core()) {
 711       uint32_t ext_model = extended_cpu_model();
 712       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
 713           ext_model == CPU_MODEL_WESTMERE_EP    ||
 714           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
 715           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
 716         // <= 2-socket invariant tsc support. EX versions are usually used
 717         // in > 2-socket systems and likely don't synchronize tscs at
 718         // initialization.
 719         // Code that uses tsc values must be prepared for them to arbitrarily
 720         // jump forward or backward.
 721         return true;
 722       }
 723     }
 724     return false;


src/cpu/x86/vm/vm_version_x86.hpp
Index Unified diffs Context diffs Sdiffs Wdiffs Patch New Old Previous File Next File