1 //
   2 // Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // AMD64 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // R8-R15 must be encoded with REX.  (RSP, RBP, RSI, RDI need REX when
  64 // used as byte registers)
  65 
  66 // Previously set RBX, RSI, and RDI as save-on-entry for java code
  67 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  68 // Now that allocator is better, turn on RSI and RDI as SOE registers.
  69 
  70 reg_def RAX  (SOC, SOC, Op_RegI,  0, rax->as_VMReg());
  71 reg_def RAX_H(SOC, SOC, Op_RegI,  0, rax->as_VMReg()->next());
  72 
  73 reg_def RCX  (SOC, SOC, Op_RegI,  1, rcx->as_VMReg());
  74 reg_def RCX_H(SOC, SOC, Op_RegI,  1, rcx->as_VMReg()->next());
  75 
  76 reg_def RDX  (SOC, SOC, Op_RegI,  2, rdx->as_VMReg());
  77 reg_def RDX_H(SOC, SOC, Op_RegI,  2, rdx->as_VMReg()->next());
  78 
  79 reg_def RBX  (SOC, SOE, Op_RegI,  3, rbx->as_VMReg());
  80 reg_def RBX_H(SOC, SOE, Op_RegI,  3, rbx->as_VMReg()->next());
  81 
  82 reg_def RSP  (NS,  NS,  Op_RegI,  4, rsp->as_VMReg());
  83 reg_def RSP_H(NS,  NS,  Op_RegI,  4, rsp->as_VMReg()->next());
  84 
  85 // now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
  86 reg_def RBP  (NS, SOE, Op_RegI,  5, rbp->as_VMReg());
  87 reg_def RBP_H(NS, SOE, Op_RegI,  5, rbp->as_VMReg()->next());
  88 
  89 #ifdef _WIN64
  90 
  91 reg_def RSI  (SOC, SOE, Op_RegI,  6, rsi->as_VMReg());
  92 reg_def RSI_H(SOC, SOE, Op_RegI,  6, rsi->as_VMReg()->next());
  93 
  94 reg_def RDI  (SOC, SOE, Op_RegI,  7, rdi->as_VMReg());
  95 reg_def RDI_H(SOC, SOE, Op_RegI,  7, rdi->as_VMReg()->next());
  96 
  97 #else
  98 
  99 reg_def RSI  (SOC, SOC, Op_RegI,  6, rsi->as_VMReg());
 100 reg_def RSI_H(SOC, SOC, Op_RegI,  6, rsi->as_VMReg()->next());
 101 
 102 reg_def RDI  (SOC, SOC, Op_RegI,  7, rdi->as_VMReg());
 103 reg_def RDI_H(SOC, SOC, Op_RegI,  7, rdi->as_VMReg()->next());
 104 
 105 #endif
 106 
 107 reg_def R8   (SOC, SOC, Op_RegI,  8, r8->as_VMReg());
 108 reg_def R8_H (SOC, SOC, Op_RegI,  8, r8->as_VMReg()->next());
 109 
 110 reg_def R9   (SOC, SOC, Op_RegI,  9, r9->as_VMReg());
 111 reg_def R9_H (SOC, SOC, Op_RegI,  9, r9->as_VMReg()->next());
 112 
 113 reg_def R10  (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
 114 reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
 115 
 116 reg_def R11  (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
 117 reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
 118 
 119 reg_def R12  (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
 120 reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
 121 
 122 reg_def R13  (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
 123 reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
 124 
 125 reg_def R14  (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
 126 reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
 127 
 128 reg_def R15  (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
 129 reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
 130 
 131 
 132 // Floating Point Registers
 133 
 134 // Specify priority of register selection within phases of register
 135 // allocation.  Highest priority is first.  A useful heuristic is to
 136 // give registers a low priority when they are required by machine
 137 // instructions, like EAX and EDX on I486, and choose no-save registers
 138 // before save-on-call, & save-on-call before save-on-entry.  Registers
 139 // which participate in fixed calling sequences should come last.
 140 // Registers which are used as pairs must fall on an even boundary.
 141 
 142 alloc_class chunk0(R10,         R10_H,
 143                    R11,         R11_H,
 144                    R8,          R8_H,
 145                    R9,          R9_H,
 146                    R12,         R12_H,
 147                    RCX,         RCX_H,
 148                    RBX,         RBX_H,
 149                    RDI,         RDI_H,
 150                    RDX,         RDX_H,
 151                    RSI,         RSI_H,
 152                    RAX,         RAX_H,
 153                    RBP,         RBP_H,
 154                    R13,         R13_H,
 155                    R14,         R14_H,
 156                    R15,         R15_H,
 157                    RSP,         RSP_H);
 158 
 159 
 160 //----------Architecture Description Register Classes--------------------------
 161 // Several register classes are automatically defined based upon information in
 162 // this architecture description.
 163 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 164 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 165 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 166 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 167 //
 168 
 169 // Empty register class.
 170 reg_class no_reg();
 171 
 172 // Class for all pointer/long registers
 173 reg_class all_reg(RAX, RAX_H,
 174                   RDX, RDX_H,
 175                   RBP, RBP_H,
 176                   RDI, RDI_H,
 177                   RSI, RSI_H,
 178                   RCX, RCX_H,
 179                   RBX, RBX_H,
 180                   RSP, RSP_H,
 181                   R8,  R8_H,
 182                   R9,  R9_H,
 183                   R10, R10_H,
 184                   R11, R11_H,
 185                   R12, R12_H,
 186                   R13, R13_H,
 187                   R14, R14_H,
 188                   R15, R15_H);
 189 
 190 // Class for all int registers
 191 reg_class all_int_reg(RAX
 192                       RDX,
 193                       RBP,
 194                       RDI,
 195                       RSI,
 196                       RCX,
 197                       RBX,
 198                       R8,
 199                       R9,
 200                       R10,
 201                       R11,
 202                       R12,
 203                       R13,
 204                       R14);
 205 
 206 // Class for all pointer registers
 207 reg_class any_reg %{
 208   return _ANY_REG_mask;
 209 %}
 210 
 211 // Class for all pointer registers (excluding RSP)
 212 reg_class ptr_reg %{
 213   return _PTR_REG_mask;
 214 %}
 215 
 216 // Class for all pointer registers (excluding RSP and RBP)
 217 reg_class ptr_reg_no_rbp %{
 218   return _PTR_REG_NO_RBP_mask;
 219 %}
 220 
 221 // Class for all pointer registers (excluding RAX and RSP)
 222 reg_class ptr_no_rax_reg %{
 223   return _PTR_NO_RAX_REG_mask;
 224 %}
 225 
 226 // Class for all pointer registers (excluding RAX, RBX, and RSP)
 227 reg_class ptr_no_rax_rbx_reg %{
 228   return _PTR_NO_RAX_RBX_REG_mask;
 229 %}
 230 
 231 // Class for all long registers (excluding RSP)
 232 reg_class long_reg %{
 233   return _LONG_REG_mask;
 234 %}
 235 
 236 // Class for all long registers (excluding RAX, RDX and RSP)
 237 reg_class long_no_rax_rdx_reg %{
 238   return _LONG_NO_RAX_RDX_REG_mask;
 239 %}
 240 
 241 // Class for all long registers (excluding RCX and RSP)
 242 reg_class long_no_rcx_reg %{
 243   return _LONG_NO_RCX_REG_mask;
 244 %}
 245 
 246 // Class for all int registers (excluding RSP)
 247 reg_class int_reg %{
 248   return _INT_REG_mask;
 249 %}
 250 
 251 // Class for all int registers (excluding RAX, RDX, and RSP)
 252 reg_class int_no_rax_rdx_reg %{
 253   return _INT_NO_RAX_RDX_REG_mask;
 254 %}
 255 
 256 // Class for all int registers (excluding RCX and RSP)
 257 reg_class int_no_rcx_reg %{
 258   return _INT_NO_RCX_REG_mask;
 259 %}
 260 
 261 // Singleton class for RAX pointer register
 262 reg_class ptr_rax_reg(RAX, RAX_H);
 263 
 264 // Singleton class for RBX pointer register
 265 reg_class ptr_rbx_reg(RBX, RBX_H);
 266 
 267 // Singleton class for RSI pointer register
 268 reg_class ptr_rsi_reg(RSI, RSI_H);
 269 
 270 // Singleton class for RBP pointer register
 271 reg_class ptr_rbp_reg(RBP, RBP_H);
 272 
 273 // Singleton class for RDI pointer register
 274 reg_class ptr_rdi_reg(RDI, RDI_H);
 275 
 276 // Singleton class for stack pointer
 277 reg_class ptr_rsp_reg(RSP, RSP_H);
 278 
 279 // Singleton class for TLS pointer
 280 reg_class ptr_r15_reg(R15, R15_H);
 281 
 282 // Singleton class for RAX long register
 283 reg_class long_rax_reg(RAX, RAX_H);
 284 
 285 // Singleton class for RCX long register
 286 reg_class long_rcx_reg(RCX, RCX_H);
 287 
 288 // Singleton class for RDX long register
 289 reg_class long_rdx_reg(RDX, RDX_H);
 290 
 291 // Singleton class for RAX int register
 292 reg_class int_rax_reg(RAX);
 293 
 294 // Singleton class for RBX int register
 295 reg_class int_rbx_reg(RBX);
 296 
 297 // Singleton class for RCX int register
 298 reg_class int_rcx_reg(RCX);
 299 
 300 // Singleton class for RCX int register
 301 reg_class int_rdx_reg(RDX);
 302 
 303 // Singleton class for RCX int register
 304 reg_class int_rdi_reg(RDI);
 305 
 306 // Singleton class for instruction pointer
 307 // reg_class ip_reg(RIP);
 308 
 309 %}
 310 
 311 //----------SOURCE BLOCK-------------------------------------------------------
 312 // This is a block of C++ code which provides values, functions, and
 313 // definitions necessary in the rest of the architecture description
 314 source_hpp %{
 315 
 316 extern RegMask _ANY_REG_mask;
 317 extern RegMask _PTR_REG_mask;
 318 extern RegMask _PTR_REG_NO_RBP_mask;
 319 extern RegMask _PTR_NO_RAX_REG_mask;
 320 extern RegMask _PTR_NO_RAX_RBX_REG_mask;
 321 extern RegMask _LONG_REG_mask;
 322 extern RegMask _LONG_NO_RAX_RDX_REG_mask;
 323 extern RegMask _LONG_NO_RCX_REG_mask;
 324 extern RegMask _INT_REG_mask;
 325 extern RegMask _INT_NO_RAX_RDX_REG_mask;
 326 extern RegMask _INT_NO_RCX_REG_mask;
 327 
 328 extern RegMask _STACK_OR_PTR_REG_mask;
 329 extern RegMask _STACK_OR_LONG_REG_mask;
 330 extern RegMask _STACK_OR_INT_REG_mask;
 331 
 332 inline const RegMask& STACK_OR_PTR_REG_mask()  { return _STACK_OR_PTR_REG_mask;  }
 333 inline const RegMask& STACK_OR_LONG_REG_mask() { return _STACK_OR_LONG_REG_mask; }
 334 inline const RegMask& STACK_OR_INT_REG_mask()  { return _STACK_OR_INT_REG_mask;  }
 335 
 336 %}
 337 
 338 source %{
 339 #define   RELOC_IMM64    Assembler::imm_operand
 340 #define   RELOC_DISP32   Assembler::disp32_operand
 341 
 342 #define __ _masm.
 343 
 344 RegMask _ANY_REG_mask;
 345 RegMask _PTR_REG_mask;
 346 RegMask _PTR_REG_NO_RBP_mask;
 347 RegMask _PTR_NO_RAX_REG_mask;
 348 RegMask _PTR_NO_RAX_RBX_REG_mask;
 349 RegMask _LONG_REG_mask;
 350 RegMask _LONG_NO_RAX_RDX_REG_mask;
 351 RegMask _LONG_NO_RCX_REG_mask;
 352 RegMask _INT_REG_mask;
 353 RegMask _INT_NO_RAX_RDX_REG_mask;
 354 RegMask _INT_NO_RCX_REG_mask;
 355 RegMask _STACK_OR_PTR_REG_mask;
 356 RegMask _STACK_OR_LONG_REG_mask;
 357 RegMask _STACK_OR_INT_REG_mask;
 358 
 359 static bool need_r12_heapbase() {
 360   return UseCompressedOops;
 361 }
 362 
 363 void reg_mask_init() {
 364   // _ALL_REG_mask is generated by adlc from the all_reg register class below.
 365   // We derive a number of subsets from it.
 366   _ANY_REG_mask = _ALL_REG_mask;
 367 
 368   if (PreserveFramePointer) {
 369     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
 370     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()->next()));
 371   }
 372   if (need_r12_heapbase()) {
 373     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(r12->as_VMReg()));
 374     _ANY_REG_mask.Remove(OptoReg::as_OptoReg(r12->as_VMReg()->next()));
 375   }
 376 
 377   _PTR_REG_mask = _ANY_REG_mask;
 378   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(rsp->as_VMReg()));
 379   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(rsp->as_VMReg()->next()));
 380   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(r15->as_VMReg()));
 381   _PTR_REG_mask.Remove(OptoReg::as_OptoReg(r15->as_VMReg()->next()));
 382 
 383   _STACK_OR_PTR_REG_mask = _PTR_REG_mask;
 384   _STACK_OR_PTR_REG_mask.OR(STACK_OR_STACK_SLOTS_mask());
 385 
 386   _PTR_REG_NO_RBP_mask = _PTR_REG_mask;
 387   _PTR_REG_NO_RBP_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
 388   _PTR_REG_NO_RBP_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()->next()));
 389 
 390   _PTR_NO_RAX_REG_mask = _PTR_REG_mask;
 391   _PTR_NO_RAX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()));
 392   _PTR_NO_RAX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()->next()));
 393 
 394   _PTR_NO_RAX_RBX_REG_mask = _PTR_NO_RAX_REG_mask;
 395   _PTR_NO_RAX_RBX_REG_mask.Remove(OptoReg::as_OptoReg(rbx->as_VMReg()));
 396   _PTR_NO_RAX_RBX_REG_mask.Remove(OptoReg::as_OptoReg(rbx->as_VMReg()->next()));
 397 
 398   _LONG_REG_mask = _PTR_REG_mask;
 399   _STACK_OR_LONG_REG_mask = _LONG_REG_mask;
 400   _STACK_OR_LONG_REG_mask.OR(STACK_OR_STACK_SLOTS_mask());
 401 
 402   _LONG_NO_RAX_RDX_REG_mask = _LONG_REG_mask;
 403   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()));
 404   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()->next()));
 405   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rdx->as_VMReg()));
 406   _LONG_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rdx->as_VMReg()->next()));
 407 
 408   _LONG_NO_RCX_REG_mask = _LONG_REG_mask;
 409   _LONG_NO_RCX_REG_mask.Remove(OptoReg::as_OptoReg(rcx->as_VMReg()));
 410   _LONG_NO_RCX_REG_mask.Remove(OptoReg::as_OptoReg(rcx->as_VMReg()->next()));
 411 
 412   _INT_REG_mask = _ALL_INT_REG_mask;
 413   if (PreserveFramePointer) {
 414     _INT_REG_mask.Remove(OptoReg::as_OptoReg(rbp->as_VMReg()));
 415   }
 416   if (need_r12_heapbase()) {
 417     _INT_REG_mask.Remove(OptoReg::as_OptoReg(r12->as_VMReg()));
 418   }
 419 
 420   _STACK_OR_INT_REG_mask = _INT_REG_mask;
 421   _STACK_OR_INT_REG_mask.OR(STACK_OR_STACK_SLOTS_mask());
 422 
 423   _INT_NO_RAX_RDX_REG_mask = _INT_REG_mask;
 424   _INT_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rax->as_VMReg()));
 425   _INT_NO_RAX_RDX_REG_mask.Remove(OptoReg::as_OptoReg(rdx->as_VMReg()));
 426 
 427   _INT_NO_RCX_REG_mask = _INT_REG_mask;
 428   _INT_NO_RCX_REG_mask.Remove(OptoReg::as_OptoReg(rcx->as_VMReg()));
 429 }
 430 
 431 static bool generate_vzeroupper(Compile* C) {
 432   return (VM_Version::supports_vzeroupper() && (C->max_vector_size() > 16 || C->clear_upper_avx() == true)) ? true: false;  // Generate vzeroupper
 433 }
 434 
 435 static int clear_avx_size() {
 436   return generate_vzeroupper(Compile::current()) ? 3: 0;  // vzeroupper
 437 }
 438 
 439 // !!!!! Special hack to get all types of calls to specify the byte offset
 440 //       from the start of the call to the point where the return address
 441 //       will point.
 442 int MachCallStaticJavaNode::ret_addr_offset()
 443 {
 444   int offset = 5; // 5 bytes from start of call to where return address points
 445   offset += clear_avx_size();
 446   return offset;
 447 }
 448 
 449 int MachCallDynamicJavaNode::ret_addr_offset()
 450 {
 451   int offset = 15; // 15 bytes from start of call to where return address points
 452   offset += clear_avx_size();
 453   return offset;
 454 }
 455 
 456 int MachCallRuntimeNode::ret_addr_offset() {
 457   int offset = 13; // movq r10,#addr; callq (r10)
 458   offset += clear_avx_size();
 459   return offset;
 460 }
 461 
 462 //
 463 // Compute padding required for nodes which need alignment
 464 //
 465 
 466 // The address of the call instruction needs to be 4-byte aligned to
 467 // ensure that it does not span a cache line so that it can be patched.
 468 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
 469 {
 470   current_offset += clear_avx_size(); // skip vzeroupper
 471   current_offset += 1; // skip call opcode byte
 472   return align_up(current_offset, alignment_required()) - current_offset;
 473 }
 474 
 475 // The address of the call instruction needs to be 4-byte aligned to
 476 // ensure that it does not span a cache line so that it can be patched.
 477 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
 478 {
 479   current_offset += clear_avx_size(); // skip vzeroupper
 480   current_offset += 11; // skip movq instruction + call opcode byte
 481   return align_up(current_offset, alignment_required()) - current_offset;
 482 }
 483 
 484 // EMIT_RM()
 485 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 486   unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
 487   cbuf.insts()->emit_int8(c);
 488 }
 489 
 490 // EMIT_CC()
 491 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 492   unsigned char c = (unsigned char) (f1 | f2);
 493   cbuf.insts()->emit_int8(c);
 494 }
 495 
 496 // EMIT_OPCODE()
 497 void emit_opcode(CodeBuffer &cbuf, int code) {
 498   cbuf.insts()->emit_int8((unsigned char) code);
 499 }
 500 
 501 // EMIT_OPCODE() w/ relocation information
 502 void emit_opcode(CodeBuffer &cbuf,
 503                  int code, relocInfo::relocType reloc, int offset, int format)
 504 {
 505   cbuf.relocate(cbuf.insts_mark() + offset, reloc, format);
 506   emit_opcode(cbuf, code);
 507 }
 508 
 509 // EMIT_D8()
 510 void emit_d8(CodeBuffer &cbuf, int d8) {
 511   cbuf.insts()->emit_int8((unsigned char) d8);
 512 }
 513 
 514 // EMIT_D16()
 515 void emit_d16(CodeBuffer &cbuf, int d16) {
 516   cbuf.insts()->emit_int16(d16);
 517 }
 518 
 519 // EMIT_D32()
 520 void emit_d32(CodeBuffer &cbuf, int d32) {
 521   cbuf.insts()->emit_int32(d32);
 522 }
 523 
 524 // EMIT_D64()
 525 void emit_d64(CodeBuffer &cbuf, int64_t d64) {
 526   cbuf.insts()->emit_int64(d64);
 527 }
 528 
 529 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 530 void emit_d32_reloc(CodeBuffer& cbuf,
 531                     int d32,
 532                     relocInfo::relocType reloc,
 533                     int format)
 534 {
 535   assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
 536   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 537   cbuf.insts()->emit_int32(d32);
 538 }
 539 
 540 // emit 32 bit value and construct relocation entry from RelocationHolder
 541 void emit_d32_reloc(CodeBuffer& cbuf, int d32, RelocationHolder const& rspec, int format) {
 542 #ifdef ASSERT
 543   if (rspec.reloc()->type() == relocInfo::oop_type &&
 544       d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
 545     assert(Universe::heap()->is_in((address)(intptr_t)d32), "should be real oop");
 546     assert(oopDesc::is_oop(cast_to_oop((intptr_t)d32)), "cannot embed broken oops in code");
 547   }
 548 #endif
 549   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 550   cbuf.insts()->emit_int32(d32);
 551 }
 552 
 553 void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
 554   address next_ip = cbuf.insts_end() + 4;
 555   emit_d32_reloc(cbuf, (int) (addr - next_ip),
 556                  external_word_Relocation::spec(addr),
 557                  RELOC_DISP32);
 558 }
 559 
 560 
 561 // emit 64 bit value and construct relocation entry from relocInfo::relocType
 562 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, relocInfo::relocType reloc, int format) {
 563   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 564   cbuf.insts()->emit_int64(d64);
 565 }
 566 
 567 // emit 64 bit value and construct relocation entry from RelocationHolder
 568 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, RelocationHolder const& rspec, int format) {
 569 #ifdef ASSERT
 570   if (rspec.reloc()->type() == relocInfo::oop_type &&
 571       d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
 572     assert(Universe::heap()->is_in((address)d64), "should be real oop");
 573     assert(oopDesc::is_oop(cast_to_oop(d64)), "cannot embed broken oops in code");
 574   }
 575 #endif
 576   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 577   cbuf.insts()->emit_int64(d64);
 578 }
 579 
 580 // Access stack slot for load or store
 581 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
 582 {
 583   emit_opcode(cbuf, opcode);                  // (e.g., FILD   [RSP+src])
 584   if (-0x80 <= disp && disp < 0x80) {
 585     emit_rm(cbuf, 0x01, rm_field, RSP_enc);   // R/M byte
 586     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 587     emit_d8(cbuf, disp);     // Displacement  // R/M byte
 588   } else {
 589     emit_rm(cbuf, 0x02, rm_field, RSP_enc);   // R/M byte
 590     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 591     emit_d32(cbuf, disp);     // Displacement // R/M byte
 592   }
 593 }
 594 
 595    // rRegI ereg, memory mem) %{    // emit_reg_mem
 596 void encode_RegMem(CodeBuffer &cbuf,
 597                    int reg,
 598                    int base, int index, int scale, int disp, relocInfo::relocType disp_reloc)
 599 {
 600   assert(disp_reloc == relocInfo::none, "cannot have disp");
 601   int regenc = reg & 7;
 602   int baseenc = base & 7;
 603   int indexenc = index & 7;
 604 
 605   // There is no index & no scale, use form without SIB byte
 606   if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
 607     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 608     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 609       emit_rm(cbuf, 0x0, regenc, baseenc); // *
 610     } else if (-0x80 <= disp && disp < 0x80 && disp_reloc == relocInfo::none) {
 611       // If 8-bit displacement, mode 0x1
 612       emit_rm(cbuf, 0x1, regenc, baseenc); // *
 613       emit_d8(cbuf, disp);
 614     } else {
 615       // If 32-bit displacement
 616       if (base == -1) { // Special flag for absolute address
 617         emit_rm(cbuf, 0x0, regenc, 0x5); // *
 618         if (disp_reloc != relocInfo::none) {
 619           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 620         } else {
 621           emit_d32(cbuf, disp);
 622         }
 623       } else {
 624         // Normal base + offset
 625         emit_rm(cbuf, 0x2, regenc, baseenc); // *
 626         if (disp_reloc != relocInfo::none) {
 627           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 628         } else {
 629           emit_d32(cbuf, disp);
 630         }
 631       }
 632     }
 633   } else {
 634     // Else, encode with the SIB byte
 635     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 636     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 637       // If no displacement
 638       emit_rm(cbuf, 0x0, regenc, 0x4); // *
 639       emit_rm(cbuf, scale, indexenc, baseenc);
 640     } else {
 641       if (-0x80 <= disp && disp < 0x80 && disp_reloc == relocInfo::none) {
 642         // If 8-bit displacement, mode 0x1
 643         emit_rm(cbuf, 0x1, regenc, 0x4); // *
 644         emit_rm(cbuf, scale, indexenc, baseenc);
 645         emit_d8(cbuf, disp);
 646       } else {
 647         // If 32-bit displacement
 648         if (base == 0x04 ) {
 649           emit_rm(cbuf, 0x2, regenc, 0x4);
 650           emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
 651         } else {
 652           emit_rm(cbuf, 0x2, regenc, 0x4);
 653           emit_rm(cbuf, scale, indexenc, baseenc); // *
 654         }
 655         if (disp_reloc != relocInfo::none) {
 656           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 657         } else {
 658           emit_d32(cbuf, disp);
 659         }
 660       }
 661     }
 662   }
 663 }
 664 
 665 // This could be in MacroAssembler but it's fairly C2 specific
 666 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 667   Label exit;
 668   __ jccb(Assembler::noParity, exit);
 669   __ pushf();
 670   //
 671   // comiss/ucomiss instructions set ZF,PF,CF flags and
 672   // zero OF,AF,SF for NaN values.
 673   // Fixup flags by zeroing ZF,PF so that compare of NaN
 674   // values returns 'less than' result (CF is set).
 675   // Leave the rest of flags unchanged.
 676   //
 677   //    7 6 5 4 3 2 1 0
 678   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 679   //    0 0 1 0 1 0 1 1   (0x2B)
 680   //
 681   __ andq(Address(rsp, 0), 0xffffff2b);
 682   __ popf();
 683   __ bind(exit);
 684 }
 685 
 686 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 687   Label done;
 688   __ movl(dst, -1);
 689   __ jcc(Assembler::parity, done);
 690   __ jcc(Assembler::below, done);
 691   __ setb(Assembler::notEqual, dst);
 692   __ movzbl(dst, dst);
 693   __ bind(done);
 694 }
 695 
 696 // Math.min()    # Math.max()
 697 // --------------------------
 698 // ucomis[s/d]   #
 699 // ja   -> b     # a
 700 // jp   -> NaN   # NaN
 701 // jb   -> a     # b
 702 // je            #
 703 // |-jz -> a | b # a & b
 704 // |    -> a     #
 705 void emit_fp_min_max(MacroAssembler& _masm, XMMRegister dst,
 706                      XMMRegister a, XMMRegister b,
 707                      XMMRegister xmmt, Register rt,
 708                      bool min, bool single) {
 709 
 710   Label nan, zero, below, above, done;
 711 
 712   if (single)
 713     __ ucomiss(a, b);
 714   else
 715     __ ucomisd(a, b);
 716 
 717   if (dst->encoding() != (min ? b : a)->encoding())
 718     __ jccb(Assembler::above, above); // CF=0 & ZF=0
 719   else
 720     __ jccb(Assembler::above, done);
 721 
 722   __ jccb(Assembler::parity, nan);  // PF=1
 723   __ jccb(Assembler::below, below); // CF=1
 724 
 725   // equal
 726   __ vpxor(xmmt, xmmt, xmmt, Assembler::AVX_128bit);
 727   if (single) {
 728     __ ucomiss(a, xmmt);
 729     __ jccb(Assembler::equal, zero);
 730 
 731     __ movflt(dst, a);
 732     __ jmp(done);
 733   }
 734   else {
 735     __ ucomisd(a, xmmt);
 736     __ jccb(Assembler::equal, zero);
 737 
 738     __ movdbl(dst, a);
 739     __ jmp(done);
 740   }
 741 
 742   __ bind(zero);
 743   if (min)
 744     __ vpor(dst, a, b, Assembler::AVX_128bit);
 745   else
 746     __ vpand(dst, a, b, Assembler::AVX_128bit);
 747 
 748   __ jmp(done);
 749 
 750   __ bind(above);
 751   if (single)
 752     __ movflt(dst, min ? b : a);
 753   else
 754     __ movdbl(dst, min ? b : a);
 755 
 756   __ jmp(done);
 757 
 758   __ bind(nan);
 759   if (single) {
 760     __ movl(rt, 0x7fc00000); // Float.NaN
 761     __ movdl(dst, rt);
 762   }
 763   else {
 764     __ mov64(rt, 0x7ff8000000000000L); // Double.NaN
 765     __ movdq(dst, rt);
 766   }
 767   __ jmp(done);
 768 
 769   __ bind(below);
 770   if (single)
 771     __ movflt(dst, min ? a : b);
 772   else
 773     __ movdbl(dst, min ? a : b);
 774 
 775   __ bind(done);
 776 }
 777 
 778 //=============================================================================
 779 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 780 
 781 int ConstantTable::calculate_table_base_offset() const {
 782   return 0;  // absolute addressing, no offset
 783 }
 784 
 785 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
 786 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
 787   ShouldNotReachHere();
 788 }
 789 
 790 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 791   // Empty encoding
 792 }
 793 
 794 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 795   return 0;
 796 }
 797 
 798 #ifndef PRODUCT
 799 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 800   st->print("# MachConstantBaseNode (empty encoding)");
 801 }
 802 #endif
 803 
 804 
 805 //=============================================================================
 806 #ifndef PRODUCT
 807 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 808   Compile* C = ra_->C;
 809 
 810   int framesize = C->output()->frame_size_in_bytes();
 811   int bangsize = C->output()->bang_size_in_bytes();
 812   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 813   // Remove wordSize for return addr which is already pushed.
 814   framesize -= wordSize;
 815 
 816   if (C->output()->need_stack_bang(bangsize)) {
 817     framesize -= wordSize;
 818     st->print("# stack bang (%d bytes)", bangsize);
 819     st->print("\n\t");
 820     st->print("pushq   rbp\t# Save rbp");
 821     if (PreserveFramePointer) {
 822         st->print("\n\t");
 823         st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
 824     }
 825     if (framesize) {
 826       st->print("\n\t");
 827       st->print("subq    rsp, #%d\t# Create frame",framesize);
 828     }
 829   } else {
 830     st->print("subq    rsp, #%d\t# Create frame",framesize);
 831     st->print("\n\t");
 832     framesize -= wordSize;
 833     st->print("movq    [rsp + #%d], rbp\t# Save rbp",framesize);
 834     if (PreserveFramePointer) {
 835       st->print("\n\t");
 836       st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
 837       if (framesize > 0) {
 838         st->print("\n\t");
 839         st->print("addq    rbp, #%d", framesize);
 840       }
 841     }
 842   }
 843 
 844   if (VerifyStackAtCalls) {
 845     st->print("\n\t");
 846     framesize -= wordSize;
 847     st->print("movq    [rsp + #%d], 0xbadb100d\t# Majik cookie for stack depth check",framesize);
 848 #ifdef ASSERT
 849     st->print("\n\t");
 850     st->print("# stack alignment check");
 851 #endif
 852   }
 853   if (C->stub_function() != NULL && BarrierSet::barrier_set()->barrier_set_nmethod() != NULL) {
 854     st->print("\n\t");
 855     st->print("cmpl    [r15_thread + #disarmed_offset], #disarmed_value\t");
 856     st->print("\n\t");
 857     st->print("je      fast_entry\t");
 858     st->print("\n\t");
 859     st->print("call    #nmethod_entry_barrier_stub\t");
 860     st->print("\n\tfast_entry:");
 861   }
 862   st->cr();
 863 }
 864 #endif
 865 
 866 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 867   Compile* C = ra_->C;
 868   MacroAssembler _masm(&cbuf);
 869 
 870   int framesize = C->output()->frame_size_in_bytes();
 871   int bangsize = C->output()->bang_size_in_bytes();
 872 
 873   if (C->clinit_barrier_on_entry()) {
 874     assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 875     assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
 876 
 877     Label L_skip_barrier;
 878     Register klass = rscratch1;
 879 
 880     __ mov_metadata(klass, C->method()->holder()->constant_encoding());
 881     __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/);
 882 
 883     __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
 884 
 885     __ bind(L_skip_barrier);
 886   }
 887 
 888   __ verified_entry(framesize, C->output()->need_stack_bang(bangsize)?bangsize:0, false, C->stub_function() != NULL);
 889 
 890   C->output()->set_frame_complete(cbuf.insts_size());
 891 
 892   if (C->has_mach_constant_base_node()) {
 893     // NOTE: We set the table base offset here because users might be
 894     // emitted before MachConstantBaseNode.
 895     ConstantTable& constant_table = C->output()->constant_table();
 896     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 897   }
 898 }
 899 
 900 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
 901 {
 902   return MachNode::size(ra_); // too many variables; just compute it
 903                               // the hard way
 904 }
 905 
 906 int MachPrologNode::reloc() const
 907 {
 908   return 0; // a large enough number
 909 }
 910 
 911 //=============================================================================
 912 #ifndef PRODUCT
 913 void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 914 {
 915   Compile* C = ra_->C;
 916   if (generate_vzeroupper(C)) {
 917     st->print("vzeroupper");
 918     st->cr(); st->print("\t");
 919   }
 920 
 921   int framesize = C->output()->frame_size_in_bytes();
 922   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 923   // Remove word for return adr already pushed
 924   // and RBP
 925   framesize -= 2*wordSize;
 926 
 927   if (framesize) {
 928     st->print_cr("addq    rsp, %d\t# Destroy frame", framesize);
 929     st->print("\t");
 930   }
 931 
 932   st->print_cr("popq    rbp");
 933   if (do_polling() && C->is_method_compilation()) {
 934     st->print("\t");
 935     st->print_cr("movq    rscratch1, poll_offset[r15_thread] #polling_page_address\n\t"
 936                  "testl   rax, [rscratch1]\t"
 937                  "# Safepoint: poll for GC");
 938   }
 939 }
 940 #endif
 941 
 942 void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
 943 {
 944   Compile* C = ra_->C;
 945   MacroAssembler _masm(&cbuf);
 946 
 947   if (generate_vzeroupper(C)) {
 948     // Clear upper bits of YMM registers when current compiled code uses
 949     // wide vectors to avoid AVX <-> SSE transition penalty during call.
 950     __ vzeroupper();
 951   }
 952 
 953   int framesize = C->output()->frame_size_in_bytes();
 954   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 955   // Remove word for return adr already pushed
 956   // and RBP
 957   framesize -= 2*wordSize;
 958 
 959   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 960 
 961   if (framesize) {
 962     emit_opcode(cbuf, Assembler::REX_W);
 963     if (framesize < 0x80) {
 964       emit_opcode(cbuf, 0x83); // addq rsp, #framesize
 965       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 966       emit_d8(cbuf, framesize);
 967     } else {
 968       emit_opcode(cbuf, 0x81); // addq rsp, #framesize
 969       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 970       emit_d32(cbuf, framesize);
 971     }
 972   }
 973 
 974   // popq rbp
 975   emit_opcode(cbuf, 0x58 | RBP_enc);
 976 
 977   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
 978     __ reserved_stack_check();
 979   }
 980 
 981   if (do_polling() && C->is_method_compilation()) {
 982     MacroAssembler _masm(&cbuf);
 983     __ movq(rscratch1, Address(r15_thread, Thread::polling_page_offset()));
 984     __ relocate(relocInfo::poll_return_type);
 985     __ testl(rax, Address(rscratch1, 0));
 986   }
 987 }
 988 
 989 uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
 990 {
 991   return MachNode::size(ra_); // too many variables; just compute it
 992                               // the hard way
 993 }
 994 
 995 int MachEpilogNode::reloc() const
 996 {
 997   return 2; // a large enough number
 998 }
 999 
1000 const Pipeline* MachEpilogNode::pipeline() const
1001 {
1002   return MachNode::pipeline_class();
1003 }
1004 
1005 //=============================================================================
1006 
1007 enum RC {
1008   rc_bad,
1009   rc_int,
1010   rc_float,
1011   rc_stack
1012 };
1013 
1014 static enum RC rc_class(OptoReg::Name reg)
1015 {
1016   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1017 
1018   if (OptoReg::is_stack(reg)) return rc_stack;
1019 
1020   VMReg r = OptoReg::as_VMReg(reg);
1021 
1022   if (r->is_Register()) return rc_int;
1023 
1024   assert(r->is_XMMRegister(), "must be");
1025   return rc_float;
1026 }
1027 
1028 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
1029 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
1030                           int src_hi, int dst_hi, uint ireg, outputStream* st);
1031 
1032 int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
1033                      int stack_offset, int reg, uint ireg, outputStream* st);
1034 
1035 static void vec_stack_to_stack_helper(CodeBuffer *cbuf, int src_offset,
1036                                       int dst_offset, uint ireg, outputStream* st) {
1037   if (cbuf) {
1038     MacroAssembler _masm(cbuf);
1039     switch (ireg) {
1040     case Op_VecS:
1041       __ movq(Address(rsp, -8), rax);
1042       __ movl(rax, Address(rsp, src_offset));
1043       __ movl(Address(rsp, dst_offset), rax);
1044       __ movq(rax, Address(rsp, -8));
1045       break;
1046     case Op_VecD:
1047       __ pushq(Address(rsp, src_offset));
1048       __ popq (Address(rsp, dst_offset));
1049       break;
1050     case Op_VecX:
1051       __ pushq(Address(rsp, src_offset));
1052       __ popq (Address(rsp, dst_offset));
1053       __ pushq(Address(rsp, src_offset+8));
1054       __ popq (Address(rsp, dst_offset+8));
1055       break;
1056     case Op_VecY:
1057       __ vmovdqu(Address(rsp, -32), xmm0);
1058       __ vmovdqu(xmm0, Address(rsp, src_offset));
1059       __ vmovdqu(Address(rsp, dst_offset), xmm0);
1060       __ vmovdqu(xmm0, Address(rsp, -32));
1061       break;
1062     case Op_VecZ:
1063       __ evmovdquq(Address(rsp, -64), xmm0, 2);
1064       __ evmovdquq(xmm0, Address(rsp, src_offset), 2);
1065       __ evmovdquq(Address(rsp, dst_offset), xmm0, 2);
1066       __ evmovdquq(xmm0, Address(rsp, -64), 2);
1067       break;
1068     default:
1069       ShouldNotReachHere();
1070     }
1071 #ifndef PRODUCT
1072   } else {
1073     switch (ireg) {
1074     case Op_VecS:
1075       st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1076                 "movl    rax, [rsp + #%d]\n\t"
1077                 "movl    [rsp + #%d], rax\n\t"
1078                 "movq    rax, [rsp - #8]",
1079                 src_offset, dst_offset);
1080       break;
1081     case Op_VecD:
1082       st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1083                 "popq    [rsp + #%d]",
1084                 src_offset, dst_offset);
1085       break;
1086      case Op_VecX:
1087       st->print("pushq   [rsp + #%d]\t# 128-bit mem-mem spill\n\t"
1088                 "popq    [rsp + #%d]\n\t"
1089                 "pushq   [rsp + #%d]\n\t"
1090                 "popq    [rsp + #%d]",
1091                 src_offset, dst_offset, src_offset+8, dst_offset+8);
1092       break;
1093     case Op_VecY:
1094       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
1095                 "vmovdqu xmm0, [rsp + #%d]\n\t"
1096                 "vmovdqu [rsp + #%d], xmm0\n\t"
1097                 "vmovdqu xmm0, [rsp - #32]",
1098                 src_offset, dst_offset);
1099       break;
1100     case Op_VecZ:
1101       st->print("vmovdqu [rsp - #64], xmm0\t# 512-bit mem-mem spill\n\t"
1102                 "vmovdqu xmm0, [rsp + #%d]\n\t"
1103                 "vmovdqu [rsp + #%d], xmm0\n\t"
1104                 "vmovdqu xmm0, [rsp - #64]",
1105                 src_offset, dst_offset);
1106       break;
1107     default:
1108       ShouldNotReachHere();
1109     }
1110 #endif
1111   }
1112 }
1113 
1114 uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
1115                                        PhaseRegAlloc* ra_,
1116                                        bool do_size,
1117                                        outputStream* st) const {
1118   assert(cbuf != NULL || st  != NULL, "sanity");
1119   // Get registers to move
1120   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1121   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1122   OptoReg::Name dst_second = ra_->get_reg_second(this);
1123   OptoReg::Name dst_first = ra_->get_reg_first(this);
1124 
1125   enum RC src_second_rc = rc_class(src_second);
1126   enum RC src_first_rc = rc_class(src_first);
1127   enum RC dst_second_rc = rc_class(dst_second);
1128   enum RC dst_first_rc = rc_class(dst_first);
1129 
1130   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
1131          "must move at least 1 register" );
1132 
1133   if (src_first == dst_first && src_second == dst_second) {
1134     // Self copy, no move
1135     return 0;
1136   }
1137   if (bottom_type()->isa_vect() != NULL) {
1138     uint ireg = ideal_reg();
1139     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
1140     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY || ireg == Op_VecZ ), "sanity");
1141     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1142       // mem -> mem
1143       int src_offset = ra_->reg2offset(src_first);
1144       int dst_offset = ra_->reg2offset(dst_first);
1145       vec_stack_to_stack_helper(cbuf, src_offset, dst_offset, ireg, st);
1146     } else if (src_first_rc == rc_float && dst_first_rc == rc_float ) {
1147       vec_mov_helper(cbuf, false, src_first, dst_first, src_second, dst_second, ireg, st);
1148     } else if (src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1149       int stack_offset = ra_->reg2offset(dst_first);
1150       vec_spill_helper(cbuf, false, false, stack_offset, src_first, ireg, st);
1151     } else if (src_first_rc == rc_stack && dst_first_rc == rc_float ) {
1152       int stack_offset = ra_->reg2offset(src_first);
1153       vec_spill_helper(cbuf, false, true,  stack_offset, dst_first, ireg, st);
1154     } else {
1155       ShouldNotReachHere();
1156     }
1157     return 0;
1158   }
1159   if (src_first_rc == rc_stack) {
1160     // mem ->
1161     if (dst_first_rc == rc_stack) {
1162       // mem -> mem
1163       assert(src_second != dst_first, "overlap");
1164       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1165           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1166         // 64-bit
1167         int src_offset = ra_->reg2offset(src_first);
1168         int dst_offset = ra_->reg2offset(dst_first);
1169         if (cbuf) {
1170           MacroAssembler _masm(cbuf);
1171           __ pushq(Address(rsp, src_offset));
1172           __ popq (Address(rsp, dst_offset));
1173 #ifndef PRODUCT
1174         } else {
1175           st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1176                     "popq    [rsp + #%d]",
1177                      src_offset, dst_offset);
1178 #endif
1179         }
1180       } else {
1181         // 32-bit
1182         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1183         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1184         // No pushl/popl, so:
1185         int src_offset = ra_->reg2offset(src_first);
1186         int dst_offset = ra_->reg2offset(dst_first);
1187         if (cbuf) {
1188           MacroAssembler _masm(cbuf);
1189           __ movq(Address(rsp, -8), rax);
1190           __ movl(rax, Address(rsp, src_offset));
1191           __ movl(Address(rsp, dst_offset), rax);
1192           __ movq(rax, Address(rsp, -8));
1193 #ifndef PRODUCT
1194         } else {
1195           st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1196                     "movl    rax, [rsp + #%d]\n\t"
1197                     "movl    [rsp + #%d], rax\n\t"
1198                     "movq    rax, [rsp - #8]",
1199                      src_offset, dst_offset);
1200 #endif
1201         }
1202       }
1203       return 0;
1204     } else if (dst_first_rc == rc_int) {
1205       // mem -> gpr
1206       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1207           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1208         // 64-bit
1209         int offset = ra_->reg2offset(src_first);
1210         if (cbuf) {
1211           MacroAssembler _masm(cbuf);
1212           __ movq(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1213 #ifndef PRODUCT
1214         } else {
1215           st->print("movq    %s, [rsp + #%d]\t# spill",
1216                      Matcher::regName[dst_first],
1217                      offset);
1218 #endif
1219         }
1220       } else {
1221         // 32-bit
1222         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1223         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1224         int offset = ra_->reg2offset(src_first);
1225         if (cbuf) {
1226           MacroAssembler _masm(cbuf);
1227           __ movl(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1228 #ifndef PRODUCT
1229         } else {
1230           st->print("movl    %s, [rsp + #%d]\t# spill",
1231                      Matcher::regName[dst_first],
1232                      offset);
1233 #endif
1234         }
1235       }
1236       return 0;
1237     } else if (dst_first_rc == rc_float) {
1238       // mem-> xmm
1239       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1240           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1241         // 64-bit
1242         int offset = ra_->reg2offset(src_first);
1243         if (cbuf) {
1244           MacroAssembler _masm(cbuf);
1245           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1246 #ifndef PRODUCT
1247         } else {
1248           st->print("%s  %s, [rsp + #%d]\t# spill",
1249                      UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
1250                      Matcher::regName[dst_first],
1251                      offset);
1252 #endif
1253         }
1254       } else {
1255         // 32-bit
1256         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1257         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1258         int offset = ra_->reg2offset(src_first);
1259         if (cbuf) {
1260           MacroAssembler _masm(cbuf);
1261           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1262 #ifndef PRODUCT
1263         } else {
1264           st->print("movss   %s, [rsp + #%d]\t# spill",
1265                      Matcher::regName[dst_first],
1266                      offset);
1267 #endif
1268         }
1269       }
1270       return 0;
1271     }
1272   } else if (src_first_rc == rc_int) {
1273     // gpr ->
1274     if (dst_first_rc == rc_stack) {
1275       // gpr -> mem
1276       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1277           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1278         // 64-bit
1279         int offset = ra_->reg2offset(dst_first);
1280         if (cbuf) {
1281           MacroAssembler _masm(cbuf);
1282           __ movq(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1283 #ifndef PRODUCT
1284         } else {
1285           st->print("movq    [rsp + #%d], %s\t# spill",
1286                      offset,
1287                      Matcher::regName[src_first]);
1288 #endif
1289         }
1290       } else {
1291         // 32-bit
1292         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1293         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1294         int offset = ra_->reg2offset(dst_first);
1295         if (cbuf) {
1296           MacroAssembler _masm(cbuf);
1297           __ movl(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1298 #ifndef PRODUCT
1299         } else {
1300           st->print("movl    [rsp + #%d], %s\t# spill",
1301                      offset,
1302                      Matcher::regName[src_first]);
1303 #endif
1304         }
1305       }
1306       return 0;
1307     } else if (dst_first_rc == rc_int) {
1308       // gpr -> gpr
1309       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1310           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1311         // 64-bit
1312         if (cbuf) {
1313           MacroAssembler _masm(cbuf);
1314           __ movq(as_Register(Matcher::_regEncode[dst_first]),
1315                   as_Register(Matcher::_regEncode[src_first]));
1316 #ifndef PRODUCT
1317         } else {
1318           st->print("movq    %s, %s\t# spill",
1319                      Matcher::regName[dst_first],
1320                      Matcher::regName[src_first]);
1321 #endif
1322         }
1323         return 0;
1324       } else {
1325         // 32-bit
1326         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1327         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1328         if (cbuf) {
1329           MacroAssembler _masm(cbuf);
1330           __ movl(as_Register(Matcher::_regEncode[dst_first]),
1331                   as_Register(Matcher::_regEncode[src_first]));
1332 #ifndef PRODUCT
1333         } else {
1334           st->print("movl    %s, %s\t# spill",
1335                      Matcher::regName[dst_first],
1336                      Matcher::regName[src_first]);
1337 #endif
1338         }
1339         return 0;
1340       }
1341     } else if (dst_first_rc == rc_float) {
1342       // gpr -> xmm
1343       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1344           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1345         // 64-bit
1346         if (cbuf) {
1347           MacroAssembler _masm(cbuf);
1348           __ movdq( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1349 #ifndef PRODUCT
1350         } else {
1351           st->print("movdq   %s, %s\t# spill",
1352                      Matcher::regName[dst_first],
1353                      Matcher::regName[src_first]);
1354 #endif
1355         }
1356       } else {
1357         // 32-bit
1358         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1359         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1360         if (cbuf) {
1361           MacroAssembler _masm(cbuf);
1362           __ movdl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1363 #ifndef PRODUCT
1364         } else {
1365           st->print("movdl   %s, %s\t# spill",
1366                      Matcher::regName[dst_first],
1367                      Matcher::regName[src_first]);
1368 #endif
1369         }
1370       }
1371       return 0;
1372     }
1373   } else if (src_first_rc == rc_float) {
1374     // xmm ->
1375     if (dst_first_rc == rc_stack) {
1376       // xmm -> mem
1377       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1378           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1379         // 64-bit
1380         int offset = ra_->reg2offset(dst_first);
1381         if (cbuf) {
1382           MacroAssembler _masm(cbuf);
1383           __ movdbl( Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1384 #ifndef PRODUCT
1385         } else {
1386           st->print("movsd   [rsp + #%d], %s\t# spill",
1387                      offset,
1388                      Matcher::regName[src_first]);
1389 #endif
1390         }
1391       } else {
1392         // 32-bit
1393         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1394         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1395         int offset = ra_->reg2offset(dst_first);
1396         if (cbuf) {
1397           MacroAssembler _masm(cbuf);
1398           __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1399 #ifndef PRODUCT
1400         } else {
1401           st->print("movss   [rsp + #%d], %s\t# spill",
1402                      offset,
1403                      Matcher::regName[src_first]);
1404 #endif
1405         }
1406       }
1407       return 0;
1408     } else if (dst_first_rc == rc_int) {
1409       // xmm -> gpr
1410       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1411           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1412         // 64-bit
1413         if (cbuf) {
1414           MacroAssembler _masm(cbuf);
1415           __ movdq( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1416 #ifndef PRODUCT
1417         } else {
1418           st->print("movdq   %s, %s\t# spill",
1419                      Matcher::regName[dst_first],
1420                      Matcher::regName[src_first]);
1421 #endif
1422         }
1423       } else {
1424         // 32-bit
1425         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1426         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1427         if (cbuf) {
1428           MacroAssembler _masm(cbuf);
1429           __ movdl( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1430 #ifndef PRODUCT
1431         } else {
1432           st->print("movdl   %s, %s\t# spill",
1433                      Matcher::regName[dst_first],
1434                      Matcher::regName[src_first]);
1435 #endif
1436         }
1437       }
1438       return 0;
1439     } else if (dst_first_rc == rc_float) {
1440       // xmm -> xmm
1441       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1442           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1443         // 64-bit
1444         if (cbuf) {
1445           MacroAssembler _masm(cbuf);
1446           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1447 #ifndef PRODUCT
1448         } else {
1449           st->print("%s  %s, %s\t# spill",
1450                      UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
1451                      Matcher::regName[dst_first],
1452                      Matcher::regName[src_first]);
1453 #endif
1454         }
1455       } else {
1456         // 32-bit
1457         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1458         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1459         if (cbuf) {
1460           MacroAssembler _masm(cbuf);
1461           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1462 #ifndef PRODUCT
1463         } else {
1464           st->print("%s  %s, %s\t# spill",
1465                      UseXmmRegToRegMoveAll ? "movaps" : "movss ",
1466                      Matcher::regName[dst_first],
1467                      Matcher::regName[src_first]);
1468 #endif
1469         }
1470       }
1471       return 0;
1472     }
1473   }
1474 
1475   assert(0," foo ");
1476   Unimplemented();
1477   return 0;
1478 }
1479 
1480 #ifndef PRODUCT
1481 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1482   implementation(NULL, ra_, false, st);
1483 }
1484 #endif
1485 
1486 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1487   implementation(&cbuf, ra_, false, NULL);
1488 }
1489 
1490 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1491   return MachNode::size(ra_);
1492 }
1493 
1494 //=============================================================================
1495 #ifndef PRODUCT
1496 void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1497 {
1498   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1499   int reg = ra_->get_reg_first(this);
1500   st->print("leaq    %s, [rsp + #%d]\t# box lock",
1501             Matcher::regName[reg], offset);
1502 }
1503 #endif
1504 
1505 void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1506 {
1507   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1508   int reg = ra_->get_encode(this);
1509   if (offset >= 0x80) {
1510     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1511     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1512     emit_rm(cbuf, 0x2, reg & 7, 0x04);
1513     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1514     emit_d32(cbuf, offset);
1515   } else {
1516     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1517     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1518     emit_rm(cbuf, 0x1, reg & 7, 0x04);
1519     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1520     emit_d8(cbuf, offset);
1521   }
1522 }
1523 
1524 uint BoxLockNode::size(PhaseRegAlloc *ra_) const
1525 {
1526   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1527   return (offset < 0x80) ? 5 : 8; // REX
1528 }
1529 
1530 //=============================================================================
1531 #ifndef PRODUCT
1532 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1533 {
1534   if (UseCompressedClassPointers) {
1535     st->print_cr("movl    rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
1536     st->print_cr("\tdecode_klass_not_null rscratch1, rscratch1");
1537     st->print_cr("\tcmpq    rax, rscratch1\t # Inline cache check");
1538   } else {
1539     st->print_cr("\tcmpq    rax, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t"
1540                  "# Inline cache check");
1541   }
1542   st->print_cr("\tjne     SharedRuntime::_ic_miss_stub");
1543   st->print_cr("\tnop\t# nops to align entry point");
1544 }
1545 #endif
1546 
1547 void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1548 {
1549   MacroAssembler masm(&cbuf);
1550   uint insts_size = cbuf.insts_size();
1551   if (UseCompressedClassPointers) {
1552     masm.load_klass(rscratch1, j_rarg0, rscratch2);
1553     masm.cmpptr(rax, rscratch1);
1554   } else {
1555     masm.cmpptr(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
1556   }
1557 
1558   masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1559 
1560   /* WARNING these NOPs are critical so that verified entry point is properly
1561      4 bytes aligned for patching by NativeJump::patch_verified_entry() */
1562   int nops_cnt = 4 - ((cbuf.insts_size() - insts_size) & 0x3);
1563   if (OptoBreakpoint) {
1564     // Leave space for int3
1565     nops_cnt -= 1;
1566   }
1567   nops_cnt &= 0x3; // Do not add nops if code is aligned.
1568   if (nops_cnt > 0)
1569     masm.nop(nops_cnt);
1570 }
1571 
1572 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
1573 {
1574   return MachNode::size(ra_); // too many variables; just compute it
1575                               // the hard way
1576 }
1577 
1578 
1579 //=============================================================================
1580 
1581 int Matcher::regnum_to_fpu_offset(int regnum)
1582 {
1583   return regnum - 32; // The FP registers are in the second chunk
1584 }
1585 
1586 // This is UltraSparc specific, true just means we have fast l2f conversion
1587 const bool Matcher::convL2FSupported(void) {
1588   return true;
1589 }
1590 
1591 // Is this branch offset short enough that a short branch can be used?
1592 //
1593 // NOTE: If the platform does not provide any short branch variants, then
1594 //       this method should return false for offset 0.
1595 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1596   // The passed offset is relative to address of the branch.
1597   // On 86 a branch displacement is calculated relative to address
1598   // of a next instruction.
1599   offset -= br_size;
1600 
1601   // the short version of jmpConUCF2 contains multiple branches,
1602   // making the reach slightly less
1603   if (rule == jmpConUCF2_rule)
1604     return (-126 <= offset && offset <= 125);
1605   return (-128 <= offset && offset <= 127);
1606 }
1607 
1608 const bool Matcher::isSimpleConstant64(jlong value) {
1609   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1610   //return value == (int) value;  // Cf. storeImmL and immL32.
1611 
1612   // Probably always true, even if a temp register is required.
1613   return true;
1614 }
1615 
1616 // The ecx parameter to rep stosq for the ClearArray node is in words.
1617 const bool Matcher::init_array_count_is_in_bytes = false;
1618 
1619 // No additional cost for CMOVL.
1620 const int Matcher::long_cmove_cost() { return 0; }
1621 
1622 // No CMOVF/CMOVD with SSE2
1623 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
1624 
1625 // Does the CPU require late expand (see block.cpp for description of late expand)?
1626 const bool Matcher::require_postalloc_expand = false;
1627 
1628 // Do we need to mask the count passed to shift instructions or does
1629 // the cpu only look at the lower 5/6 bits anyway?
1630 const bool Matcher::need_masked_shift_count = false;
1631 
1632 bool Matcher::narrow_oop_use_complex_address() {
1633   assert(UseCompressedOops, "only for compressed oops code");
1634   return (LogMinObjAlignmentInBytes <= 3);
1635 }
1636 
1637 bool Matcher::narrow_klass_use_complex_address() {
1638   assert(UseCompressedClassPointers, "only for compressed klass code");
1639   return (LogKlassAlignmentInBytes <= 3);
1640 }
1641 
1642 bool Matcher::const_oop_prefer_decode() {
1643   // Prefer ConN+DecodeN over ConP.
1644   return true;
1645 }
1646 
1647 bool Matcher::const_klass_prefer_decode() {
1648   // Prefer ConP over ConNKlass+DecodeNKlass.
1649   return false;
1650 }
1651 
1652 // Is it better to copy float constants, or load them directly from
1653 // memory?  Intel can load a float constant from a direct address,
1654 // requiring no extra registers.  Most RISCs will have to materialize
1655 // an address into a register first, so they would do better to copy
1656 // the constant from stack.
1657 const bool Matcher::rematerialize_float_constants = true; // XXX
1658 
1659 // If CPU can load and store mis-aligned doubles directly then no
1660 // fixup is needed.  Else we split the double into 2 integer pieces
1661 // and move it piece-by-piece.  Only happens when passing doubles into
1662 // C code as the Java calling convention forces doubles to be aligned.
1663 const bool Matcher::misaligned_doubles_ok = true;
1664 
1665 // No-op on amd64
1666 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
1667 
1668 // Advertise here if the CPU requires explicit rounding operations to implement strictfp mode.
1669 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1670 
1671 // Are floats conerted to double when stored to stack during deoptimization?
1672 // On x64 it is stored without convertion so we can use normal access.
1673 bool Matcher::float_in_double() { return false; }
1674 
1675 // Do ints take an entire long register or just half?
1676 const bool Matcher::int_in_long = true;
1677 
1678 // Return whether or not this register is ever used as an argument.
1679 // This function is used on startup to build the trampoline stubs in
1680 // generateOptoStub.  Registers not mentioned will be killed by the VM
1681 // call in the trampoline, and arguments in those registers not be
1682 // available to the callee.
1683 bool Matcher::can_be_java_arg(int reg)
1684 {
1685   return
1686     reg ==  RDI_num || reg == RDI_H_num ||
1687     reg ==  RSI_num || reg == RSI_H_num ||
1688     reg ==  RDX_num || reg == RDX_H_num ||
1689     reg ==  RCX_num || reg == RCX_H_num ||
1690     reg ==   R8_num || reg ==  R8_H_num ||
1691     reg ==   R9_num || reg ==  R9_H_num ||
1692     reg ==  R12_num || reg == R12_H_num ||
1693     reg == XMM0_num || reg == XMM0b_num ||
1694     reg == XMM1_num || reg == XMM1b_num ||
1695     reg == XMM2_num || reg == XMM2b_num ||
1696     reg == XMM3_num || reg == XMM3b_num ||
1697     reg == XMM4_num || reg == XMM4b_num ||
1698     reg == XMM5_num || reg == XMM5b_num ||
1699     reg == XMM6_num || reg == XMM6b_num ||
1700     reg == XMM7_num || reg == XMM7b_num;
1701 }
1702 
1703 bool Matcher::is_spillable_arg(int reg)
1704 {
1705   return can_be_java_arg(reg);
1706 }
1707 
1708 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1709   // In 64 bit mode a code which use multiply when
1710   // devisor is constant is faster than hardware
1711   // DIV instruction (it uses MulHiL).
1712   return false;
1713 }
1714 
1715 // Register for DIVI projection of divmodI
1716 RegMask Matcher::divI_proj_mask() {
1717   return INT_RAX_REG_mask();
1718 }
1719 
1720 // Register for MODI projection of divmodI
1721 RegMask Matcher::modI_proj_mask() {
1722   return INT_RDX_REG_mask();
1723 }
1724 
1725 // Register for DIVL projection of divmodL
1726 RegMask Matcher::divL_proj_mask() {
1727   return LONG_RAX_REG_mask();
1728 }
1729 
1730 // Register for MODL projection of divmodL
1731 RegMask Matcher::modL_proj_mask() {
1732   return LONG_RDX_REG_mask();
1733 }
1734 
1735 // Register for saving SP into on method handle invokes. Not used on x86_64.
1736 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1737     return NO_REG_mask();
1738 }
1739 
1740 %}
1741 
1742 //----------ENCODING BLOCK-----------------------------------------------------
1743 // This block specifies the encoding classes used by the compiler to
1744 // output byte streams.  Encoding classes are parameterized macros
1745 // used by Machine Instruction Nodes in order to generate the bit
1746 // encoding of the instruction.  Operands specify their base encoding
1747 // interface with the interface keyword.  There are currently
1748 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
1749 // COND_INTER.  REG_INTER causes an operand to generate a function
1750 // which returns its register number when queried.  CONST_INTER causes
1751 // an operand to generate a function which returns the value of the
1752 // constant when queried.  MEMORY_INTER causes an operand to generate
1753 // four functions which return the Base Register, the Index Register,
1754 // the Scale Value, and the Offset Value of the operand when queried.
1755 // COND_INTER causes an operand to generate six functions which return
1756 // the encoding code (ie - encoding bits for the instruction)
1757 // associated with each basic boolean condition for a conditional
1758 // instruction.
1759 //
1760 // Instructions specify two basic values for encoding.  Again, a
1761 // function is available to check if the constant displacement is an
1762 // oop. They use the ins_encode keyword to specify their encoding
1763 // classes (which must be a sequence of enc_class names, and their
1764 // parameters, specified in the encoding block), and they use the
1765 // opcode keyword to specify, in order, their primary, secondary, and
1766 // tertiary opcode.  Only the opcode sections which a particular
1767 // instruction needs for encoding need to be specified.
1768 encode %{
1769   // Build emit functions for each basic byte or larger field in the
1770   // intel encoding scheme (opcode, rm, sib, immediate), and call them
1771   // from C++ code in the enc_class source block.  Emit functions will
1772   // live in the main source block for now.  In future, we can
1773   // generalize this by adding a syntax that specifies the sizes of
1774   // fields in an order, so that the adlc can build the emit functions
1775   // automagically
1776 
1777   // Emit primary opcode
1778   enc_class OpcP
1779   %{
1780     emit_opcode(cbuf, $primary);
1781   %}
1782 
1783   // Emit secondary opcode
1784   enc_class OpcS
1785   %{
1786     emit_opcode(cbuf, $secondary);
1787   %}
1788 
1789   // Emit tertiary opcode
1790   enc_class OpcT
1791   %{
1792     emit_opcode(cbuf, $tertiary);
1793   %}
1794 
1795   // Emit opcode directly
1796   enc_class Opcode(immI d8)
1797   %{
1798     emit_opcode(cbuf, $d8$$constant);
1799   %}
1800 
1801   // Emit size prefix
1802   enc_class SizePrefix
1803   %{
1804     emit_opcode(cbuf, 0x66);
1805   %}
1806 
1807   enc_class reg(rRegI reg)
1808   %{
1809     emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
1810   %}
1811 
1812   enc_class reg_reg(rRegI dst, rRegI src)
1813   %{
1814     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1815   %}
1816 
1817   enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
1818   %{
1819     emit_opcode(cbuf, $opcode$$constant);
1820     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1821   %}
1822 
1823   enc_class cdql_enc(no_rax_rdx_RegI div)
1824   %{
1825     // Full implementation of Java idiv and irem; checks for
1826     // special case as described in JVM spec., p.243 & p.271.
1827     //
1828     //         normal case                           special case
1829     //
1830     // input : rax: dividend                         min_int
1831     //         reg: divisor                          -1
1832     //
1833     // output: rax: quotient  (= rax idiv reg)       min_int
1834     //         rdx: remainder (= rax irem reg)       0
1835     //
1836     //  Code sequnce:
1837     //
1838     //    0:   3d 00 00 00 80          cmp    $0x80000000,%eax
1839     //    5:   75 07/08                jne    e <normal>
1840     //    7:   33 d2                   xor    %edx,%edx
1841     //  [div >= 8 -> offset + 1]
1842     //  [REX_B]
1843     //    9:   83 f9 ff                cmp    $0xffffffffffffffff,$div
1844     //    c:   74 03/04                je     11 <done>
1845     // 000000000000000e <normal>:
1846     //    e:   99                      cltd
1847     //  [div >= 8 -> offset + 1]
1848     //  [REX_B]
1849     //    f:   f7 f9                   idiv   $div
1850     // 0000000000000011 <done>:
1851 
1852     // cmp    $0x80000000,%eax
1853     emit_opcode(cbuf, 0x3d);
1854     emit_d8(cbuf, 0x00);
1855     emit_d8(cbuf, 0x00);
1856     emit_d8(cbuf, 0x00);
1857     emit_d8(cbuf, 0x80);
1858 
1859     // jne    e <normal>
1860     emit_opcode(cbuf, 0x75);
1861     emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
1862 
1863     // xor    %edx,%edx
1864     emit_opcode(cbuf, 0x33);
1865     emit_d8(cbuf, 0xD2);
1866 
1867     // cmp    $0xffffffffffffffff,%ecx
1868     if ($div$$reg >= 8) {
1869       emit_opcode(cbuf, Assembler::REX_B);
1870     }
1871     emit_opcode(cbuf, 0x83);
1872     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1873     emit_d8(cbuf, 0xFF);
1874 
1875     // je     11 <done>
1876     emit_opcode(cbuf, 0x74);
1877     emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
1878 
1879     // <normal>
1880     // cltd
1881     emit_opcode(cbuf, 0x99);
1882 
1883     // idivl (note: must be emitted by the user of this rule)
1884     // <done>
1885   %}
1886 
1887   enc_class cdqq_enc(no_rax_rdx_RegL div)
1888   %{
1889     // Full implementation of Java ldiv and lrem; checks for
1890     // special case as described in JVM spec., p.243 & p.271.
1891     //
1892     //         normal case                           special case
1893     //
1894     // input : rax: dividend                         min_long
1895     //         reg: divisor                          -1
1896     //
1897     // output: rax: quotient  (= rax idiv reg)       min_long
1898     //         rdx: remainder (= rax irem reg)       0
1899     //
1900     //  Code sequnce:
1901     //
1902     //    0:   48 ba 00 00 00 00 00    mov    $0x8000000000000000,%rdx
1903     //    7:   00 00 80
1904     //    a:   48 39 d0                cmp    %rdx,%rax
1905     //    d:   75 08                   jne    17 <normal>
1906     //    f:   33 d2                   xor    %edx,%edx
1907     //   11:   48 83 f9 ff             cmp    $0xffffffffffffffff,$div
1908     //   15:   74 05                   je     1c <done>
1909     // 0000000000000017 <normal>:
1910     //   17:   48 99                   cqto
1911     //   19:   48 f7 f9                idiv   $div
1912     // 000000000000001c <done>:
1913 
1914     // mov    $0x8000000000000000,%rdx
1915     emit_opcode(cbuf, Assembler::REX_W);
1916     emit_opcode(cbuf, 0xBA);
1917     emit_d8(cbuf, 0x00);
1918     emit_d8(cbuf, 0x00);
1919     emit_d8(cbuf, 0x00);
1920     emit_d8(cbuf, 0x00);
1921     emit_d8(cbuf, 0x00);
1922     emit_d8(cbuf, 0x00);
1923     emit_d8(cbuf, 0x00);
1924     emit_d8(cbuf, 0x80);
1925 
1926     // cmp    %rdx,%rax
1927     emit_opcode(cbuf, Assembler::REX_W);
1928     emit_opcode(cbuf, 0x39);
1929     emit_d8(cbuf, 0xD0);
1930 
1931     // jne    17 <normal>
1932     emit_opcode(cbuf, 0x75);
1933     emit_d8(cbuf, 0x08);
1934 
1935     // xor    %edx,%edx
1936     emit_opcode(cbuf, 0x33);
1937     emit_d8(cbuf, 0xD2);
1938 
1939     // cmp    $0xffffffffffffffff,$div
1940     emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
1941     emit_opcode(cbuf, 0x83);
1942     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1943     emit_d8(cbuf, 0xFF);
1944 
1945     // je     1e <done>
1946     emit_opcode(cbuf, 0x74);
1947     emit_d8(cbuf, 0x05);
1948 
1949     // <normal>
1950     // cqto
1951     emit_opcode(cbuf, Assembler::REX_W);
1952     emit_opcode(cbuf, 0x99);
1953 
1954     // idivq (note: must be emitted by the user of this rule)
1955     // <done>
1956   %}
1957 
1958   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1959   enc_class OpcSE(immI imm)
1960   %{
1961     // Emit primary opcode and set sign-extend bit
1962     // Check for 8-bit immediate, and set sign extend bit in opcode
1963     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
1964       emit_opcode(cbuf, $primary | 0x02);
1965     } else {
1966       // 32-bit immediate
1967       emit_opcode(cbuf, $primary);
1968     }
1969   %}
1970 
1971   enc_class OpcSErm(rRegI dst, immI imm)
1972   %{
1973     // OpcSEr/m
1974     int dstenc = $dst$$reg;
1975     if (dstenc >= 8) {
1976       emit_opcode(cbuf, Assembler::REX_B);
1977       dstenc -= 8;
1978     }
1979     // Emit primary opcode and set sign-extend bit
1980     // Check for 8-bit immediate, and set sign extend bit in opcode
1981     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
1982       emit_opcode(cbuf, $primary | 0x02);
1983     } else {
1984       // 32-bit immediate
1985       emit_opcode(cbuf, $primary);
1986     }
1987     // Emit r/m byte with secondary opcode, after primary opcode.
1988     emit_rm(cbuf, 0x3, $secondary, dstenc);
1989   %}
1990 
1991   enc_class OpcSErm_wide(rRegL dst, immI imm)
1992   %{
1993     // OpcSEr/m
1994     int dstenc = $dst$$reg;
1995     if (dstenc < 8) {
1996       emit_opcode(cbuf, Assembler::REX_W);
1997     } else {
1998       emit_opcode(cbuf, Assembler::REX_WB);
1999       dstenc -= 8;
2000     }
2001     // Emit primary opcode and set sign-extend bit
2002     // Check for 8-bit immediate, and set sign extend bit in opcode
2003     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2004       emit_opcode(cbuf, $primary | 0x02);
2005     } else {
2006       // 32-bit immediate
2007       emit_opcode(cbuf, $primary);
2008     }
2009     // Emit r/m byte with secondary opcode, after primary opcode.
2010     emit_rm(cbuf, 0x3, $secondary, dstenc);
2011   %}
2012 
2013   enc_class Con8or32(immI imm)
2014   %{
2015     // Check for 8-bit immediate, and set sign extend bit in opcode
2016     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2017       $$$emit8$imm$$constant;
2018     } else {
2019       // 32-bit immediate
2020       $$$emit32$imm$$constant;
2021     }
2022   %}
2023 
2024   enc_class opc2_reg(rRegI dst)
2025   %{
2026     // BSWAP
2027     emit_cc(cbuf, $secondary, $dst$$reg);
2028   %}
2029 
2030   enc_class opc3_reg(rRegI dst)
2031   %{
2032     // BSWAP
2033     emit_cc(cbuf, $tertiary, $dst$$reg);
2034   %}
2035 
2036   enc_class reg_opc(rRegI div)
2037   %{
2038     // INC, DEC, IDIV, IMOD, JMP indirect, ...
2039     emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
2040   %}
2041 
2042   enc_class enc_cmov(cmpOp cop)
2043   %{
2044     // CMOV
2045     $$$emit8$primary;
2046     emit_cc(cbuf, $secondary, $cop$$cmpcode);
2047   %}
2048 
2049   enc_class enc_PartialSubtypeCheck()
2050   %{
2051     Register Rrdi = as_Register(RDI_enc); // result register
2052     Register Rrax = as_Register(RAX_enc); // super class
2053     Register Rrcx = as_Register(RCX_enc); // killed
2054     Register Rrsi = as_Register(RSI_enc); // sub class
2055     Label miss;
2056     const bool set_cond_codes = true;
2057 
2058     MacroAssembler _masm(&cbuf);
2059     __ check_klass_subtype_slow_path(Rrsi, Rrax, Rrcx, Rrdi,
2060                                      NULL, &miss,
2061                                      /*set_cond_codes:*/ true);
2062     if ($primary) {
2063       __ xorptr(Rrdi, Rrdi);
2064     }
2065     __ bind(miss);
2066   %}
2067 
2068   enc_class clear_avx %{
2069     debug_only(int off0 = cbuf.insts_size());
2070     if (generate_vzeroupper(Compile::current())) {
2071       // Clear upper bits of YMM registers to avoid AVX <-> SSE transition penalty
2072       // Clear upper bits of YMM registers when current compiled code uses
2073       // wide vectors to avoid AVX <-> SSE transition penalty during call.
2074       MacroAssembler _masm(&cbuf);
2075       __ vzeroupper();
2076     }
2077     debug_only(int off1 = cbuf.insts_size());
2078     assert(off1 - off0 == clear_avx_size(), "correct size prediction");
2079   %}
2080 
2081   enc_class Java_To_Runtime(method meth) %{
2082     // No relocation needed
2083     MacroAssembler _masm(&cbuf);
2084     __ mov64(r10, (int64_t) $meth$$method);
2085     __ call(r10);
2086   %}
2087 
2088   enc_class Java_To_Interpreter(method meth)
2089   %{
2090     // CALL Java_To_Interpreter
2091     // This is the instruction starting address for relocation info.
2092     cbuf.set_insts_mark();
2093     $$$emit8$primary;
2094     // CALL directly to the runtime
2095     emit_d32_reloc(cbuf,
2096                    (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2097                    runtime_call_Relocation::spec(),
2098                    RELOC_DISP32);
2099   %}
2100 
2101   enc_class Java_Static_Call(method meth)
2102   %{
2103     // JAVA STATIC CALL
2104     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to
2105     // determine who we intended to call.
2106     cbuf.set_insts_mark();
2107     $$$emit8$primary;
2108 
2109     if (!_method) {
2110       emit_d32_reloc(cbuf, (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2111                      runtime_call_Relocation::spec(),
2112                      RELOC_DISP32);
2113     } else {
2114       int method_index = resolved_method_index(cbuf);
2115       RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
2116                                                   : static_call_Relocation::spec(method_index);
2117       emit_d32_reloc(cbuf, (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2118                      rspec, RELOC_DISP32);
2119       // Emit stubs for static call.
2120       address mark = cbuf.insts_mark();
2121       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf, mark);
2122       if (stub == NULL) {
2123         ciEnv::current()->record_failure("CodeCache is full");
2124         return;
2125       }
2126 #if INCLUDE_AOT
2127       CompiledStaticCall::emit_to_aot_stub(cbuf, mark);
2128 #endif
2129     }
2130   %}
2131 
2132   enc_class Java_Dynamic_Call(method meth) %{
2133     MacroAssembler _masm(&cbuf);
2134     __ ic_call((address)$meth$$method, resolved_method_index(cbuf));
2135   %}
2136 
2137   enc_class Java_Compiled_Call(method meth)
2138   %{
2139     // JAVA COMPILED CALL
2140     int disp = in_bytes(Method:: from_compiled_offset());
2141 
2142     // XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
2143     // assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
2144 
2145     // callq *disp(%rax)
2146     cbuf.set_insts_mark();
2147     $$$emit8$primary;
2148     if (disp < 0x80) {
2149       emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
2150       emit_d8(cbuf, disp); // Displacement
2151     } else {
2152       emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
2153       emit_d32(cbuf, disp); // Displacement
2154     }
2155   %}
2156 
2157   enc_class reg_opc_imm(rRegI dst, immI8 shift)
2158   %{
2159     // SAL, SAR, SHR
2160     int dstenc = $dst$$reg;
2161     if (dstenc >= 8) {
2162       emit_opcode(cbuf, Assembler::REX_B);
2163       dstenc -= 8;
2164     }
2165     $$$emit8$primary;
2166     emit_rm(cbuf, 0x3, $secondary, dstenc);
2167     $$$emit8$shift$$constant;
2168   %}
2169 
2170   enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
2171   %{
2172     // SAL, SAR, SHR
2173     int dstenc = $dst$$reg;
2174     if (dstenc < 8) {
2175       emit_opcode(cbuf, Assembler::REX_W);
2176     } else {
2177       emit_opcode(cbuf, Assembler::REX_WB);
2178       dstenc -= 8;
2179     }
2180     $$$emit8$primary;
2181     emit_rm(cbuf, 0x3, $secondary, dstenc);
2182     $$$emit8$shift$$constant;
2183   %}
2184 
2185   enc_class load_immI(rRegI dst, immI src)
2186   %{
2187     int dstenc = $dst$$reg;
2188     if (dstenc >= 8) {
2189       emit_opcode(cbuf, Assembler::REX_B);
2190       dstenc -= 8;
2191     }
2192     emit_opcode(cbuf, 0xB8 | dstenc);
2193     $$$emit32$src$$constant;
2194   %}
2195 
2196   enc_class load_immL(rRegL dst, immL src)
2197   %{
2198     int dstenc = $dst$$reg;
2199     if (dstenc < 8) {
2200       emit_opcode(cbuf, Assembler::REX_W);
2201     } else {
2202       emit_opcode(cbuf, Assembler::REX_WB);
2203       dstenc -= 8;
2204     }
2205     emit_opcode(cbuf, 0xB8 | dstenc);
2206     emit_d64(cbuf, $src$$constant);
2207   %}
2208 
2209   enc_class load_immUL32(rRegL dst, immUL32 src)
2210   %{
2211     // same as load_immI, but this time we care about zeroes in the high word
2212     int dstenc = $dst$$reg;
2213     if (dstenc >= 8) {
2214       emit_opcode(cbuf, Assembler::REX_B);
2215       dstenc -= 8;
2216     }
2217     emit_opcode(cbuf, 0xB8 | dstenc);
2218     $$$emit32$src$$constant;
2219   %}
2220 
2221   enc_class load_immL32(rRegL dst, immL32 src)
2222   %{
2223     int dstenc = $dst$$reg;
2224     if (dstenc < 8) {
2225       emit_opcode(cbuf, Assembler::REX_W);
2226     } else {
2227       emit_opcode(cbuf, Assembler::REX_WB);
2228       dstenc -= 8;
2229     }
2230     emit_opcode(cbuf, 0xC7);
2231     emit_rm(cbuf, 0x03, 0x00, dstenc);
2232     $$$emit32$src$$constant;
2233   %}
2234 
2235   enc_class load_immP31(rRegP dst, immP32 src)
2236   %{
2237     // same as load_immI, but this time we care about zeroes in the high word
2238     int dstenc = $dst$$reg;
2239     if (dstenc >= 8) {
2240       emit_opcode(cbuf, Assembler::REX_B);
2241       dstenc -= 8;
2242     }
2243     emit_opcode(cbuf, 0xB8 | dstenc);
2244     $$$emit32$src$$constant;
2245   %}
2246 
2247   enc_class load_immP(rRegP dst, immP src)
2248   %{
2249     int dstenc = $dst$$reg;
2250     if (dstenc < 8) {
2251       emit_opcode(cbuf, Assembler::REX_W);
2252     } else {
2253       emit_opcode(cbuf, Assembler::REX_WB);
2254       dstenc -= 8;
2255     }
2256     emit_opcode(cbuf, 0xB8 | dstenc);
2257     // This next line should be generated from ADLC
2258     if ($src->constant_reloc() != relocInfo::none) {
2259       emit_d64_reloc(cbuf, $src$$constant, $src->constant_reloc(), RELOC_IMM64);
2260     } else {
2261       emit_d64(cbuf, $src$$constant);
2262     }
2263   %}
2264 
2265   enc_class Con32(immI src)
2266   %{
2267     // Output immediate
2268     $$$emit32$src$$constant;
2269   %}
2270 
2271   enc_class Con32F_as_bits(immF src)
2272   %{
2273     // Output Float immediate bits
2274     jfloat jf = $src$$constant;
2275     jint jf_as_bits = jint_cast(jf);
2276     emit_d32(cbuf, jf_as_bits);
2277   %}
2278 
2279   enc_class Con16(immI src)
2280   %{
2281     // Output immediate
2282     $$$emit16$src$$constant;
2283   %}
2284 
2285   // How is this different from Con32??? XXX
2286   enc_class Con_d32(immI src)
2287   %{
2288     emit_d32(cbuf,$src$$constant);
2289   %}
2290 
2291   enc_class conmemref (rRegP t1) %{    // Con32(storeImmI)
2292     // Output immediate memory reference
2293     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2294     emit_d32(cbuf, 0x00);
2295   %}
2296 
2297   enc_class lock_prefix()
2298   %{
2299     emit_opcode(cbuf, 0xF0); // lock
2300   %}
2301 
2302   enc_class REX_mem(memory mem)
2303   %{
2304     if ($mem$$base >= 8) {
2305       if ($mem$$index < 8) {
2306         emit_opcode(cbuf, Assembler::REX_B);
2307       } else {
2308         emit_opcode(cbuf, Assembler::REX_XB);
2309       }
2310     } else {
2311       if ($mem$$index >= 8) {
2312         emit_opcode(cbuf, Assembler::REX_X);
2313       }
2314     }
2315   %}
2316 
2317   enc_class REX_mem_wide(memory mem)
2318   %{
2319     if ($mem$$base >= 8) {
2320       if ($mem$$index < 8) {
2321         emit_opcode(cbuf, Assembler::REX_WB);
2322       } else {
2323         emit_opcode(cbuf, Assembler::REX_WXB);
2324       }
2325     } else {
2326       if ($mem$$index < 8) {
2327         emit_opcode(cbuf, Assembler::REX_W);
2328       } else {
2329         emit_opcode(cbuf, Assembler::REX_WX);
2330       }
2331     }
2332   %}
2333 
2334   // for byte regs
2335   enc_class REX_breg(rRegI reg)
2336   %{
2337     if ($reg$$reg >= 4) {
2338       emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2339     }
2340   %}
2341 
2342   // for byte regs
2343   enc_class REX_reg_breg(rRegI dst, rRegI src)
2344   %{
2345     if ($dst$$reg < 8) {
2346       if ($src$$reg >= 4) {
2347         emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2348       }
2349     } else {
2350       if ($src$$reg < 8) {
2351         emit_opcode(cbuf, Assembler::REX_R);
2352       } else {
2353         emit_opcode(cbuf, Assembler::REX_RB);
2354       }
2355     }
2356   %}
2357 
2358   // for byte regs
2359   enc_class REX_breg_mem(rRegI reg, memory mem)
2360   %{
2361     if ($reg$$reg < 8) {
2362       if ($mem$$base < 8) {
2363         if ($mem$$index >= 8) {
2364           emit_opcode(cbuf, Assembler::REX_X);
2365         } else if ($reg$$reg >= 4) {
2366           emit_opcode(cbuf, Assembler::REX);
2367         }
2368       } else {
2369         if ($mem$$index < 8) {
2370           emit_opcode(cbuf, Assembler::REX_B);
2371         } else {
2372           emit_opcode(cbuf, Assembler::REX_XB);
2373         }
2374       }
2375     } else {
2376       if ($mem$$base < 8) {
2377         if ($mem$$index < 8) {
2378           emit_opcode(cbuf, Assembler::REX_R);
2379         } else {
2380           emit_opcode(cbuf, Assembler::REX_RX);
2381         }
2382       } else {
2383         if ($mem$$index < 8) {
2384           emit_opcode(cbuf, Assembler::REX_RB);
2385         } else {
2386           emit_opcode(cbuf, Assembler::REX_RXB);
2387         }
2388       }
2389     }
2390   %}
2391 
2392   enc_class REX_reg(rRegI reg)
2393   %{
2394     if ($reg$$reg >= 8) {
2395       emit_opcode(cbuf, Assembler::REX_B);
2396     }
2397   %}
2398 
2399   enc_class REX_reg_wide(rRegI reg)
2400   %{
2401     if ($reg$$reg < 8) {
2402       emit_opcode(cbuf, Assembler::REX_W);
2403     } else {
2404       emit_opcode(cbuf, Assembler::REX_WB);
2405     }
2406   %}
2407 
2408   enc_class REX_reg_reg(rRegI dst, rRegI src)
2409   %{
2410     if ($dst$$reg < 8) {
2411       if ($src$$reg >= 8) {
2412         emit_opcode(cbuf, Assembler::REX_B);
2413       }
2414     } else {
2415       if ($src$$reg < 8) {
2416         emit_opcode(cbuf, Assembler::REX_R);
2417       } else {
2418         emit_opcode(cbuf, Assembler::REX_RB);
2419       }
2420     }
2421   %}
2422 
2423   enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
2424   %{
2425     if ($dst$$reg < 8) {
2426       if ($src$$reg < 8) {
2427         emit_opcode(cbuf, Assembler::REX_W);
2428       } else {
2429         emit_opcode(cbuf, Assembler::REX_WB);
2430       }
2431     } else {
2432       if ($src$$reg < 8) {
2433         emit_opcode(cbuf, Assembler::REX_WR);
2434       } else {
2435         emit_opcode(cbuf, Assembler::REX_WRB);
2436       }
2437     }
2438   %}
2439 
2440   enc_class REX_reg_mem(rRegI reg, memory mem)
2441   %{
2442     if ($reg$$reg < 8) {
2443       if ($mem$$base < 8) {
2444         if ($mem$$index >= 8) {
2445           emit_opcode(cbuf, Assembler::REX_X);
2446         }
2447       } else {
2448         if ($mem$$index < 8) {
2449           emit_opcode(cbuf, Assembler::REX_B);
2450         } else {
2451           emit_opcode(cbuf, Assembler::REX_XB);
2452         }
2453       }
2454     } else {
2455       if ($mem$$base < 8) {
2456         if ($mem$$index < 8) {
2457           emit_opcode(cbuf, Assembler::REX_R);
2458         } else {
2459           emit_opcode(cbuf, Assembler::REX_RX);
2460         }
2461       } else {
2462         if ($mem$$index < 8) {
2463           emit_opcode(cbuf, Assembler::REX_RB);
2464         } else {
2465           emit_opcode(cbuf, Assembler::REX_RXB);
2466         }
2467       }
2468     }
2469   %}
2470 
2471   enc_class REX_reg_mem_wide(rRegL reg, memory mem)
2472   %{
2473     if ($reg$$reg < 8) {
2474       if ($mem$$base < 8) {
2475         if ($mem$$index < 8) {
2476           emit_opcode(cbuf, Assembler::REX_W);
2477         } else {
2478           emit_opcode(cbuf, Assembler::REX_WX);
2479         }
2480       } else {
2481         if ($mem$$index < 8) {
2482           emit_opcode(cbuf, Assembler::REX_WB);
2483         } else {
2484           emit_opcode(cbuf, Assembler::REX_WXB);
2485         }
2486       }
2487     } else {
2488       if ($mem$$base < 8) {
2489         if ($mem$$index < 8) {
2490           emit_opcode(cbuf, Assembler::REX_WR);
2491         } else {
2492           emit_opcode(cbuf, Assembler::REX_WRX);
2493         }
2494       } else {
2495         if ($mem$$index < 8) {
2496           emit_opcode(cbuf, Assembler::REX_WRB);
2497         } else {
2498           emit_opcode(cbuf, Assembler::REX_WRXB);
2499         }
2500       }
2501     }
2502   %}
2503 
2504   enc_class reg_mem(rRegI ereg, memory mem)
2505   %{
2506     // High registers handle in encode_RegMem
2507     int reg = $ereg$$reg;
2508     int base = $mem$$base;
2509     int index = $mem$$index;
2510     int scale = $mem$$scale;
2511     int disp = $mem$$disp;
2512     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2513 
2514     encode_RegMem(cbuf, reg, base, index, scale, disp, disp_reloc);
2515   %}
2516 
2517   enc_class RM_opc_mem(immI rm_opcode, memory mem)
2518   %{
2519     int rm_byte_opcode = $rm_opcode$$constant;
2520 
2521     // High registers handle in encode_RegMem
2522     int base = $mem$$base;
2523     int index = $mem$$index;
2524     int scale = $mem$$scale;
2525     int displace = $mem$$disp;
2526 
2527     relocInfo::relocType disp_reloc = $mem->disp_reloc();       // disp-as-oop when
2528                                             // working with static
2529                                             // globals
2530     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
2531                   disp_reloc);
2532   %}
2533 
2534   enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
2535   %{
2536     int reg_encoding = $dst$$reg;
2537     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2538     int index        = 0x04;            // 0x04 indicates no index
2539     int scale        = 0x00;            // 0x00 indicates no scale
2540     int displace     = $src1$$constant; // 0x00 indicates no displacement
2541     relocInfo::relocType disp_reloc = relocInfo::none;
2542     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
2543                   disp_reloc);
2544   %}
2545 
2546   enc_class neg_reg(rRegI dst)
2547   %{
2548     int dstenc = $dst$$reg;
2549     if (dstenc >= 8) {
2550       emit_opcode(cbuf, Assembler::REX_B);
2551       dstenc -= 8;
2552     }
2553     // NEG $dst
2554     emit_opcode(cbuf, 0xF7);
2555     emit_rm(cbuf, 0x3, 0x03, dstenc);
2556   %}
2557 
2558   enc_class neg_reg_wide(rRegI dst)
2559   %{
2560     int dstenc = $dst$$reg;
2561     if (dstenc < 8) {
2562       emit_opcode(cbuf, Assembler::REX_W);
2563     } else {
2564       emit_opcode(cbuf, Assembler::REX_WB);
2565       dstenc -= 8;
2566     }
2567     // NEG $dst
2568     emit_opcode(cbuf, 0xF7);
2569     emit_rm(cbuf, 0x3, 0x03, dstenc);
2570   %}
2571 
2572   enc_class setLT_reg(rRegI dst)
2573   %{
2574     int dstenc = $dst$$reg;
2575     if (dstenc >= 8) {
2576       emit_opcode(cbuf, Assembler::REX_B);
2577       dstenc -= 8;
2578     } else if (dstenc >= 4) {
2579       emit_opcode(cbuf, Assembler::REX);
2580     }
2581     // SETLT $dst
2582     emit_opcode(cbuf, 0x0F);
2583     emit_opcode(cbuf, 0x9C);
2584     emit_rm(cbuf, 0x3, 0x0, dstenc);
2585   %}
2586 
2587   enc_class setNZ_reg(rRegI dst)
2588   %{
2589     int dstenc = $dst$$reg;
2590     if (dstenc >= 8) {
2591       emit_opcode(cbuf, Assembler::REX_B);
2592       dstenc -= 8;
2593     } else if (dstenc >= 4) {
2594       emit_opcode(cbuf, Assembler::REX);
2595     }
2596     // SETNZ $dst
2597     emit_opcode(cbuf, 0x0F);
2598     emit_opcode(cbuf, 0x95);
2599     emit_rm(cbuf, 0x3, 0x0, dstenc);
2600   %}
2601 
2602 
2603   // Compare the lonogs and set -1, 0, or 1 into dst
2604   enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
2605   %{
2606     int src1enc = $src1$$reg;
2607     int src2enc = $src2$$reg;
2608     int dstenc = $dst$$reg;
2609 
2610     // cmpq $src1, $src2
2611     if (src1enc < 8) {
2612       if (src2enc < 8) {
2613         emit_opcode(cbuf, Assembler::REX_W);
2614       } else {
2615         emit_opcode(cbuf, Assembler::REX_WB);
2616       }
2617     } else {
2618       if (src2enc < 8) {
2619         emit_opcode(cbuf, Assembler::REX_WR);
2620       } else {
2621         emit_opcode(cbuf, Assembler::REX_WRB);
2622       }
2623     }
2624     emit_opcode(cbuf, 0x3B);
2625     emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
2626 
2627     // movl $dst, -1
2628     if (dstenc >= 8) {
2629       emit_opcode(cbuf, Assembler::REX_B);
2630     }
2631     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
2632     emit_d32(cbuf, -1);
2633 
2634     // jl,s done
2635     emit_opcode(cbuf, 0x7C);
2636     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
2637 
2638     // setne $dst
2639     if (dstenc >= 4) {
2640       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
2641     }
2642     emit_opcode(cbuf, 0x0F);
2643     emit_opcode(cbuf, 0x95);
2644     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
2645 
2646     // movzbl $dst, $dst
2647     if (dstenc >= 4) {
2648       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
2649     }
2650     emit_opcode(cbuf, 0x0F);
2651     emit_opcode(cbuf, 0xB6);
2652     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
2653   %}
2654 
2655   enc_class Push_ResultXD(regD dst) %{
2656     MacroAssembler _masm(&cbuf);
2657     __ fstp_d(Address(rsp, 0));
2658     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2659     __ addptr(rsp, 8);
2660   %}
2661 
2662   enc_class Push_SrcXD(regD src) %{
2663     MacroAssembler _masm(&cbuf);
2664     __ subptr(rsp, 8);
2665     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2666     __ fld_d(Address(rsp, 0));
2667   %}
2668 
2669 
2670   enc_class enc_rethrow()
2671   %{
2672     cbuf.set_insts_mark();
2673     emit_opcode(cbuf, 0xE9); // jmp entry
2674     emit_d32_reloc(cbuf,
2675                    (int) (OptoRuntime::rethrow_stub() - cbuf.insts_end() - 4),
2676                    runtime_call_Relocation::spec(),
2677                    RELOC_DISP32);
2678   %}
2679 
2680 %}
2681 
2682 
2683 
2684 //----------FRAME--------------------------------------------------------------
2685 // Definition of frame structure and management information.
2686 //
2687 //  S T A C K   L A Y O U T    Allocators stack-slot number
2688 //                             |   (to get allocators register number
2689 //  G  Owned by    |        |  v    add OptoReg::stack0())
2690 //  r   CALLER     |        |
2691 //  o     |        +--------+      pad to even-align allocators stack-slot
2692 //  w     V        |  pad0  |        numbers; owned by CALLER
2693 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
2694 //  h     ^        |   in   |  5
2695 //        |        |  args  |  4   Holes in incoming args owned by SELF
2696 //  |     |        |        |  3
2697 //  |     |        +--------+
2698 //  V     |        | old out|      Empty on Intel, window on Sparc
2699 //        |    old |preserve|      Must be even aligned.
2700 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
2701 //        |        |   in   |  3   area for Intel ret address
2702 //     Owned by    |preserve|      Empty on Sparc.
2703 //       SELF      +--------+
2704 //        |        |  pad2  |  2   pad to align old SP
2705 //        |        +--------+  1
2706 //        |        | locks  |  0
2707 //        |        +--------+----> OptoReg::stack0(), even aligned
2708 //        |        |  pad1  | 11   pad to align new SP
2709 //        |        +--------+
2710 //        |        |        | 10
2711 //        |        | spills |  9   spills
2712 //        V        |        |  8   (pad0 slot for callee)
2713 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
2714 //        ^        |  out   |  7
2715 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
2716 //     Owned by    +--------+
2717 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
2718 //        |    new |preserve|      Must be even-aligned.
2719 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
2720 //        |        |        |
2721 //
2722 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
2723 //         known from SELF's arguments and the Java calling convention.
2724 //         Region 6-7 is determined per call site.
2725 // Note 2: If the calling convention leaves holes in the incoming argument
2726 //         area, those holes are owned by SELF.  Holes in the outgoing area
2727 //         are owned by the CALLEE.  Holes should not be nessecary in the
2728 //         incoming area, as the Java calling convention is completely under
2729 //         the control of the AD file.  Doubles can be sorted and packed to
2730 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
2731 //         varargs C calling conventions.
2732 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
2733 //         even aligned with pad0 as needed.
2734 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
2735 //         region 6-11 is even aligned; it may be padded out more so that
2736 //         the region from SP to FP meets the minimum stack alignment.
2737 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
2738 //         alignment.  Region 11, pad1, may be dynamically extended so that
2739 //         SP meets the minimum alignment.
2740 
2741 frame
2742 %{
2743   // What direction does stack grow in (assumed to be same for C & Java)
2744   stack_direction(TOWARDS_LOW);
2745 
2746   // These three registers define part of the calling convention
2747   // between compiled code and the interpreter.
2748   inline_cache_reg(RAX);                // Inline Cache Register
2749   interpreter_method_oop_reg(RBX);      // Method Oop Register when
2750                                         // calling interpreter
2751 
2752   // Optional: name the operand used by cisc-spilling to access
2753   // [stack_pointer + offset]
2754   cisc_spilling_operand_name(indOffset32);
2755 
2756   // Number of stack slots consumed by locking an object
2757   sync_stack_slots(2);
2758 
2759   // Compiled code's Frame Pointer
2760   frame_pointer(RSP);
2761 
2762   // Interpreter stores its frame pointer in a register which is
2763   // stored to the stack by I2CAdaptors.
2764   // I2CAdaptors convert from interpreted java to compiled java.
2765   interpreter_frame_pointer(RBP);
2766 
2767   // Stack alignment requirement
2768   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
2769 
2770   // Number of stack slots between incoming argument block and the start of
2771   // a new frame.  The PROLOG must add this many slots to the stack.  The
2772   // EPILOG must remove this many slots.  amd64 needs two slots for
2773   // return address.
2774   in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
2775 
2776   // Number of outgoing stack slots killed above the out_preserve_stack_slots
2777   // for calls to C.  Supports the var-args backing area for register parms.
2778   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
2779 
2780   // The after-PROLOG location of the return address.  Location of
2781   // return address specifies a type (REG or STACK) and a number
2782   // representing the register number (i.e. - use a register name) or
2783   // stack slot.
2784   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
2785   // Otherwise, it is above the locks and verification slot and alignment word
2786   return_addr(STACK - 2 +
2787               align_up((Compile::current()->in_preserve_stack_slots() +
2788                         Compile::current()->fixed_slots()),
2789                        stack_alignment_in_slots()));
2790 
2791   // Body of function which returns an integer array locating
2792   // arguments either in registers or in stack slots.  Passed an array
2793   // of ideal registers called "sig" and a "length" count.  Stack-slot
2794   // offsets are based on outgoing arguments, i.e. a CALLER setting up
2795   // arguments for a CALLEE.  Incoming stack arguments are
2796   // automatically biased by the preserve_stack_slots field above.
2797 
2798   calling_convention
2799   %{
2800     // No difference between ingoing/outgoing just pass false
2801     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
2802   %}
2803 
2804   c_calling_convention
2805   %{
2806     // This is obviously always outgoing
2807     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
2808   %}
2809 
2810   // Location of compiled Java return values.  Same as C for now.
2811   return_value
2812   %{
2813     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
2814            "only return normal values");
2815 
2816     static const int lo[Op_RegL + 1] = {
2817       0,
2818       0,
2819       RAX_num,  // Op_RegN
2820       RAX_num,  // Op_RegI
2821       RAX_num,  // Op_RegP
2822       XMM0_num, // Op_RegF
2823       XMM0_num, // Op_RegD
2824       RAX_num   // Op_RegL
2825     };
2826     static const int hi[Op_RegL + 1] = {
2827       0,
2828       0,
2829       OptoReg::Bad, // Op_RegN
2830       OptoReg::Bad, // Op_RegI
2831       RAX_H_num,    // Op_RegP
2832       OptoReg::Bad, // Op_RegF
2833       XMM0b_num,    // Op_RegD
2834       RAX_H_num     // Op_RegL
2835     };
2836     // Excluded flags and vector registers.
2837     assert(ARRAY_SIZE(hi) == _last_machine_leaf - 6, "missing type");
2838     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
2839   %}
2840 %}
2841 
2842 //----------ATTRIBUTES---------------------------------------------------------
2843 //----------Operand Attributes-------------------------------------------------
2844 op_attrib op_cost(0);        // Required cost attribute
2845 
2846 //----------Instruction Attributes---------------------------------------------
2847 ins_attrib ins_cost(100);       // Required cost attribute
2848 ins_attrib ins_size(8);         // Required size attribute (in bits)
2849 ins_attrib ins_short_branch(0); // Required flag: is this instruction
2850                                 // a non-matching short branch variant
2851                                 // of some long branch?
2852 ins_attrib ins_alignment(1);    // Required alignment attribute (must
2853                                 // be a power of 2) specifies the
2854                                 // alignment that some part of the
2855                                 // instruction (not necessarily the
2856                                 // start) requires.  If > 1, a
2857                                 // compute_padding() function must be
2858                                 // provided for the instruction
2859 
2860 //----------OPERANDS-----------------------------------------------------------
2861 // Operand definitions must precede instruction definitions for correct parsing
2862 // in the ADLC because operands constitute user defined types which are used in
2863 // instruction definitions.
2864 
2865 //----------Simple Operands----------------------------------------------------
2866 // Immediate Operands
2867 // Integer Immediate
2868 operand immI()
2869 %{
2870   match(ConI);
2871 
2872   op_cost(10);
2873   format %{ %}
2874   interface(CONST_INTER);
2875 %}
2876 
2877 // Constant for test vs zero
2878 operand immI0()
2879 %{
2880   predicate(n->get_int() == 0);
2881   match(ConI);
2882 
2883   op_cost(0);
2884   format %{ %}
2885   interface(CONST_INTER);
2886 %}
2887 
2888 // Constant for increment
2889 operand immI1()
2890 %{
2891   predicate(n->get_int() == 1);
2892   match(ConI);
2893 
2894   op_cost(0);
2895   format %{ %}
2896   interface(CONST_INTER);
2897 %}
2898 
2899 // Constant for decrement
2900 operand immI_M1()
2901 %{
2902   predicate(n->get_int() == -1);
2903   match(ConI);
2904 
2905   op_cost(0);
2906   format %{ %}
2907   interface(CONST_INTER);
2908 %}
2909 
2910 // Valid scale values for addressing modes
2911 operand immI2()
2912 %{
2913   predicate(0 <= n->get_int() && (n->get_int() <= 3));
2914   match(ConI);
2915 
2916   format %{ %}
2917   interface(CONST_INTER);
2918 %}
2919 
2920 operand immI8()
2921 %{
2922   predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
2923   match(ConI);
2924 
2925   op_cost(5);
2926   format %{ %}
2927   interface(CONST_INTER);
2928 %}
2929 
2930 operand immU8()
2931 %{
2932   predicate((0 <= n->get_int()) && (n->get_int() <= 255));
2933   match(ConI);
2934 
2935   op_cost(5);
2936   format %{ %}
2937   interface(CONST_INTER);
2938 %}
2939 
2940 operand immI16()
2941 %{
2942   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
2943   match(ConI);
2944 
2945   op_cost(10);
2946   format %{ %}
2947   interface(CONST_INTER);
2948 %}
2949 
2950 // Int Immediate non-negative
2951 operand immU31()
2952 %{
2953   predicate(n->get_int() >= 0);
2954   match(ConI);
2955 
2956   op_cost(0);
2957   format %{ %}
2958   interface(CONST_INTER);
2959 %}
2960 
2961 // Constant for long shifts
2962 operand immI_32()
2963 %{
2964   predicate( n->get_int() == 32 );
2965   match(ConI);
2966 
2967   op_cost(0);
2968   format %{ %}
2969   interface(CONST_INTER);
2970 %}
2971 
2972 // Constant for long shifts
2973 operand immI_64()
2974 %{
2975   predicate( n->get_int() == 64 );
2976   match(ConI);
2977 
2978   op_cost(0);
2979   format %{ %}
2980   interface(CONST_INTER);
2981 %}
2982 
2983 // Pointer Immediate
2984 operand immP()
2985 %{
2986   match(ConP);
2987 
2988   op_cost(10);
2989   format %{ %}
2990   interface(CONST_INTER);
2991 %}
2992 
2993 // NULL Pointer Immediate
2994 operand immP0()
2995 %{
2996   predicate(n->get_ptr() == 0);
2997   match(ConP);
2998 
2999   op_cost(5);
3000   format %{ %}
3001   interface(CONST_INTER);
3002 %}
3003 
3004 // Pointer Immediate
3005 operand immN() %{
3006   match(ConN);
3007 
3008   op_cost(10);
3009   format %{ %}
3010   interface(CONST_INTER);
3011 %}
3012 
3013 operand immNKlass() %{
3014   match(ConNKlass);
3015 
3016   op_cost(10);
3017   format %{ %}
3018   interface(CONST_INTER);
3019 %}
3020 
3021 // NULL Pointer Immediate
3022 operand immN0() %{
3023   predicate(n->get_narrowcon() == 0);
3024   match(ConN);
3025 
3026   op_cost(5);
3027   format %{ %}
3028   interface(CONST_INTER);
3029 %}
3030 
3031 operand immP31()
3032 %{
3033   predicate(n->as_Type()->type()->reloc() == relocInfo::none
3034             && (n->get_ptr() >> 31) == 0);
3035   match(ConP);
3036 
3037   op_cost(5);
3038   format %{ %}
3039   interface(CONST_INTER);
3040 %}
3041 
3042 
3043 // Long Immediate
3044 operand immL()
3045 %{
3046   match(ConL);
3047 
3048   op_cost(20);
3049   format %{ %}
3050   interface(CONST_INTER);
3051 %}
3052 
3053 // Long Immediate 8-bit
3054 operand immL8()
3055 %{
3056   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
3057   match(ConL);
3058 
3059   op_cost(5);
3060   format %{ %}
3061   interface(CONST_INTER);
3062 %}
3063 
3064 // Long Immediate 32-bit unsigned
3065 operand immUL32()
3066 %{
3067   predicate(n->get_long() == (unsigned int) (n->get_long()));
3068   match(ConL);
3069 
3070   op_cost(10);
3071   format %{ %}
3072   interface(CONST_INTER);
3073 %}
3074 
3075 // Long Immediate 32-bit signed
3076 operand immL32()
3077 %{
3078   predicate(n->get_long() == (int) (n->get_long()));
3079   match(ConL);
3080 
3081   op_cost(15);
3082   format %{ %}
3083   interface(CONST_INTER);
3084 %}
3085 
3086 operand immL_Pow2()
3087 %{
3088   predicate(is_power_of_2((julong)n->get_long()));
3089   match(ConL);
3090 
3091   op_cost(15);
3092   format %{ %}
3093   interface(CONST_INTER);
3094 %}
3095 
3096 operand immL_NotPow2()
3097 %{
3098   predicate(is_power_of_2((julong)~n->get_long()));
3099   match(ConL);
3100 
3101   op_cost(15);
3102   format %{ %}
3103   interface(CONST_INTER);
3104 %}
3105 
3106 // Long Immediate zero
3107 operand immL0()
3108 %{
3109   predicate(n->get_long() == 0L);
3110   match(ConL);
3111 
3112   op_cost(10);
3113   format %{ %}
3114   interface(CONST_INTER);
3115 %}
3116 
3117 // Constant for increment
3118 operand immL1()
3119 %{
3120   predicate(n->get_long() == 1);
3121   match(ConL);
3122 
3123   format %{ %}
3124   interface(CONST_INTER);
3125 %}
3126 
3127 // Constant for decrement
3128 operand immL_M1()
3129 %{
3130   predicate(n->get_long() == -1);
3131   match(ConL);
3132 
3133   format %{ %}
3134   interface(CONST_INTER);
3135 %}
3136 
3137 // Long Immediate: the value 10
3138 operand immL10()
3139 %{
3140   predicate(n->get_long() == 10);
3141   match(ConL);
3142 
3143   format %{ %}
3144   interface(CONST_INTER);
3145 %}
3146 
3147 // Long immediate from 0 to 127.
3148 // Used for a shorter form of long mul by 10.
3149 operand immL_127()
3150 %{
3151   predicate(0 <= n->get_long() && n->get_long() < 0x80);
3152   match(ConL);
3153 
3154   op_cost(10);
3155   format %{ %}
3156   interface(CONST_INTER);
3157 %}
3158 
3159 // Long Immediate: low 32-bit mask
3160 operand immL_32bits()
3161 %{
3162   predicate(n->get_long() == 0xFFFFFFFFL);
3163   match(ConL);
3164   op_cost(20);
3165 
3166   format %{ %}
3167   interface(CONST_INTER);
3168 %}
3169 
3170 // Float Immediate zero
3171 operand immF0()
3172 %{
3173   predicate(jint_cast(n->getf()) == 0);
3174   match(ConF);
3175 
3176   op_cost(5);
3177   format %{ %}
3178   interface(CONST_INTER);
3179 %}
3180 
3181 // Float Immediate
3182 operand immF()
3183 %{
3184   match(ConF);
3185 
3186   op_cost(15);
3187   format %{ %}
3188   interface(CONST_INTER);
3189 %}
3190 
3191 // Double Immediate zero
3192 operand immD0()
3193 %{
3194   predicate(jlong_cast(n->getd()) == 0);
3195   match(ConD);
3196 
3197   op_cost(5);
3198   format %{ %}
3199   interface(CONST_INTER);
3200 %}
3201 
3202 // Double Immediate
3203 operand immD()
3204 %{
3205   match(ConD);
3206 
3207   op_cost(15);
3208   format %{ %}
3209   interface(CONST_INTER);
3210 %}
3211 
3212 // Immediates for special shifts (sign extend)
3213 
3214 // Constants for increment
3215 operand immI_16()
3216 %{
3217   predicate(n->get_int() == 16);
3218   match(ConI);
3219 
3220   format %{ %}
3221   interface(CONST_INTER);
3222 %}
3223 
3224 operand immI_24()
3225 %{
3226   predicate(n->get_int() == 24);
3227   match(ConI);
3228 
3229   format %{ %}
3230   interface(CONST_INTER);
3231 %}
3232 
3233 // Constant for byte-wide masking
3234 operand immI_255()
3235 %{
3236   predicate(n->get_int() == 255);
3237   match(ConI);
3238 
3239   format %{ %}
3240   interface(CONST_INTER);
3241 %}
3242 
3243 // Constant for short-wide masking
3244 operand immI_65535()
3245 %{
3246   predicate(n->get_int() == 65535);
3247   match(ConI);
3248 
3249   format %{ %}
3250   interface(CONST_INTER);
3251 %}
3252 
3253 // Constant for byte-wide masking
3254 operand immL_255()
3255 %{
3256   predicate(n->get_long() == 255);
3257   match(ConL);
3258 
3259   format %{ %}
3260   interface(CONST_INTER);
3261 %}
3262 
3263 // Constant for short-wide masking
3264 operand immL_65535()
3265 %{
3266   predicate(n->get_long() == 65535);
3267   match(ConL);
3268 
3269   format %{ %}
3270   interface(CONST_INTER);
3271 %}
3272 
3273 // Register Operands
3274 // Integer Register
3275 operand rRegI()
3276 %{
3277   constraint(ALLOC_IN_RC(int_reg));
3278   match(RegI);
3279 
3280   match(rax_RegI);
3281   match(rbx_RegI);
3282   match(rcx_RegI);
3283   match(rdx_RegI);
3284   match(rdi_RegI);
3285 
3286   format %{ %}
3287   interface(REG_INTER);
3288 %}
3289 
3290 // Special Registers
3291 operand rax_RegI()
3292 %{
3293   constraint(ALLOC_IN_RC(int_rax_reg));
3294   match(RegI);
3295   match(rRegI);
3296 
3297   format %{ "RAX" %}
3298   interface(REG_INTER);
3299 %}
3300 
3301 // Special Registers
3302 operand rbx_RegI()
3303 %{
3304   constraint(ALLOC_IN_RC(int_rbx_reg));
3305   match(RegI);
3306   match(rRegI);
3307 
3308   format %{ "RBX" %}
3309   interface(REG_INTER);
3310 %}
3311 
3312 operand rcx_RegI()
3313 %{
3314   constraint(ALLOC_IN_RC(int_rcx_reg));
3315   match(RegI);
3316   match(rRegI);
3317 
3318   format %{ "RCX" %}
3319   interface(REG_INTER);
3320 %}
3321 
3322 operand rdx_RegI()
3323 %{
3324   constraint(ALLOC_IN_RC(int_rdx_reg));
3325   match(RegI);
3326   match(rRegI);
3327 
3328   format %{ "RDX" %}
3329   interface(REG_INTER);
3330 %}
3331 
3332 operand rdi_RegI()
3333 %{
3334   constraint(ALLOC_IN_RC(int_rdi_reg));
3335   match(RegI);
3336   match(rRegI);
3337 
3338   format %{ "RDI" %}
3339   interface(REG_INTER);
3340 %}
3341 
3342 operand no_rcx_RegI()
3343 %{
3344   constraint(ALLOC_IN_RC(int_no_rcx_reg));
3345   match(RegI);
3346   match(rax_RegI);
3347   match(rbx_RegI);
3348   match(rdx_RegI);
3349   match(rdi_RegI);
3350 
3351   format %{ %}
3352   interface(REG_INTER);
3353 %}
3354 
3355 operand no_rax_rdx_RegI()
3356 %{
3357   constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
3358   match(RegI);
3359   match(rbx_RegI);
3360   match(rcx_RegI);
3361   match(rdi_RegI);
3362 
3363   format %{ %}
3364   interface(REG_INTER);
3365 %}
3366 
3367 // Pointer Register
3368 operand any_RegP()
3369 %{
3370   constraint(ALLOC_IN_RC(any_reg));
3371   match(RegP);
3372   match(rax_RegP);
3373   match(rbx_RegP);
3374   match(rdi_RegP);
3375   match(rsi_RegP);
3376   match(rbp_RegP);
3377   match(r15_RegP);
3378   match(rRegP);
3379 
3380   format %{ %}
3381   interface(REG_INTER);
3382 %}
3383 
3384 operand rRegP()
3385 %{
3386   constraint(ALLOC_IN_RC(ptr_reg));
3387   match(RegP);
3388   match(rax_RegP);
3389   match(rbx_RegP);
3390   match(rdi_RegP);
3391   match(rsi_RegP);
3392   match(rbp_RegP);  // See Q&A below about
3393   match(r15_RegP);  // r15_RegP and rbp_RegP.
3394 
3395   format %{ %}
3396   interface(REG_INTER);
3397 %}
3398 
3399 operand rRegN() %{
3400   constraint(ALLOC_IN_RC(int_reg));
3401   match(RegN);
3402 
3403   format %{ %}
3404   interface(REG_INTER);
3405 %}
3406 
3407 // Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
3408 // Answer: Operand match rules govern the DFA as it processes instruction inputs.
3409 // It's fine for an instruction input that expects rRegP to match a r15_RegP.
3410 // The output of an instruction is controlled by the allocator, which respects
3411 // register class masks, not match rules.  Unless an instruction mentions
3412 // r15_RegP or any_RegP explicitly as its output, r15 will not be considered
3413 // by the allocator as an input.
3414 // The same logic applies to rbp_RegP being a match for rRegP: If PreserveFramePointer==true,
3415 // the RBP is used as a proper frame pointer and is not included in ptr_reg. As a
3416 // result, RBP is not included in the output of the instruction either.
3417 
3418 operand no_rax_RegP()
3419 %{
3420   constraint(ALLOC_IN_RC(ptr_no_rax_reg));
3421   match(RegP);
3422   match(rbx_RegP);
3423   match(rsi_RegP);
3424   match(rdi_RegP);
3425 
3426   format %{ %}
3427   interface(REG_INTER);
3428 %}
3429 
3430 // This operand is not allowed to use RBP even if
3431 // RBP is not used to hold the frame pointer.
3432 operand no_rbp_RegP()
3433 %{
3434   constraint(ALLOC_IN_RC(ptr_reg_no_rbp));
3435   match(RegP);
3436   match(rbx_RegP);
3437   match(rsi_RegP);
3438   match(rdi_RegP);
3439 
3440   format %{ %}
3441   interface(REG_INTER);
3442 %}
3443 
3444 operand no_rax_rbx_RegP()
3445 %{
3446   constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
3447   match(RegP);
3448   match(rsi_RegP);
3449   match(rdi_RegP);
3450 
3451   format %{ %}
3452   interface(REG_INTER);
3453 %}
3454 
3455 // Special Registers
3456 // Return a pointer value
3457 operand rax_RegP()
3458 %{
3459   constraint(ALLOC_IN_RC(ptr_rax_reg));
3460   match(RegP);
3461   match(rRegP);
3462 
3463   format %{ %}
3464   interface(REG_INTER);
3465 %}
3466 
3467 // Special Registers
3468 // Return a compressed pointer value
3469 operand rax_RegN()
3470 %{
3471   constraint(ALLOC_IN_RC(int_rax_reg));
3472   match(RegN);
3473   match(rRegN);
3474 
3475   format %{ %}
3476   interface(REG_INTER);
3477 %}
3478 
3479 // Used in AtomicAdd
3480 operand rbx_RegP()
3481 %{
3482   constraint(ALLOC_IN_RC(ptr_rbx_reg));
3483   match(RegP);
3484   match(rRegP);
3485 
3486   format %{ %}
3487   interface(REG_INTER);
3488 %}
3489 
3490 operand rsi_RegP()
3491 %{
3492   constraint(ALLOC_IN_RC(ptr_rsi_reg));
3493   match(RegP);
3494   match(rRegP);
3495 
3496   format %{ %}
3497   interface(REG_INTER);
3498 %}
3499 
3500 operand rbp_RegP()
3501 %{
3502   constraint(ALLOC_IN_RC(ptr_rbp_reg));
3503   match(RegP);
3504   match(rRegP);
3505 
3506   format %{ %}
3507   interface(REG_INTER);
3508 %}
3509 
3510 // Used in rep stosq
3511 operand rdi_RegP()
3512 %{
3513   constraint(ALLOC_IN_RC(ptr_rdi_reg));
3514   match(RegP);
3515   match(rRegP);
3516 
3517   format %{ %}
3518   interface(REG_INTER);
3519 %}
3520 
3521 operand r15_RegP()
3522 %{
3523   constraint(ALLOC_IN_RC(ptr_r15_reg));
3524   match(RegP);
3525   match(rRegP);
3526 
3527   format %{ %}
3528   interface(REG_INTER);
3529 %}
3530 
3531 operand rRegL()
3532 %{
3533   constraint(ALLOC_IN_RC(long_reg));
3534   match(RegL);
3535   match(rax_RegL);
3536   match(rdx_RegL);
3537 
3538   format %{ %}
3539   interface(REG_INTER);
3540 %}
3541 
3542 // Special Registers
3543 operand no_rax_rdx_RegL()
3544 %{
3545   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3546   match(RegL);
3547   match(rRegL);
3548 
3549   format %{ %}
3550   interface(REG_INTER);
3551 %}
3552 
3553 operand no_rax_RegL()
3554 %{
3555   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3556   match(RegL);
3557   match(rRegL);
3558   match(rdx_RegL);
3559 
3560   format %{ %}
3561   interface(REG_INTER);
3562 %}
3563 
3564 operand no_rcx_RegL()
3565 %{
3566   constraint(ALLOC_IN_RC(long_no_rcx_reg));
3567   match(RegL);
3568   match(rRegL);
3569 
3570   format %{ %}
3571   interface(REG_INTER);
3572 %}
3573 
3574 operand rax_RegL()
3575 %{
3576   constraint(ALLOC_IN_RC(long_rax_reg));
3577   match(RegL);
3578   match(rRegL);
3579 
3580   format %{ "RAX" %}
3581   interface(REG_INTER);
3582 %}
3583 
3584 operand rcx_RegL()
3585 %{
3586   constraint(ALLOC_IN_RC(long_rcx_reg));
3587   match(RegL);
3588   match(rRegL);
3589 
3590   format %{ %}
3591   interface(REG_INTER);
3592 %}
3593 
3594 operand rdx_RegL()
3595 %{
3596   constraint(ALLOC_IN_RC(long_rdx_reg));
3597   match(RegL);
3598   match(rRegL);
3599 
3600   format %{ %}
3601   interface(REG_INTER);
3602 %}
3603 
3604 // Flags register, used as output of compare instructions
3605 operand rFlagsReg()
3606 %{
3607   constraint(ALLOC_IN_RC(int_flags));
3608   match(RegFlags);
3609 
3610   format %{ "RFLAGS" %}
3611   interface(REG_INTER);
3612 %}
3613 
3614 // Flags register, used as output of FLOATING POINT compare instructions
3615 operand rFlagsRegU()
3616 %{
3617   constraint(ALLOC_IN_RC(int_flags));
3618   match(RegFlags);
3619 
3620   format %{ "RFLAGS_U" %}
3621   interface(REG_INTER);
3622 %}
3623 
3624 operand rFlagsRegUCF() %{
3625   constraint(ALLOC_IN_RC(int_flags));
3626   match(RegFlags);
3627   predicate(false);
3628 
3629   format %{ "RFLAGS_U_CF" %}
3630   interface(REG_INTER);
3631 %}
3632 
3633 // Float register operands
3634 operand regF() %{
3635    constraint(ALLOC_IN_RC(float_reg));
3636    match(RegF);
3637 
3638    format %{ %}
3639    interface(REG_INTER);
3640 %}
3641 
3642 // Float register operands
3643 operand legRegF() %{
3644    constraint(ALLOC_IN_RC(float_reg_legacy));
3645    match(RegF);
3646 
3647    format %{ %}
3648    interface(REG_INTER);
3649 %}
3650 
3651 // Float register operands
3652 operand vlRegF() %{
3653    constraint(ALLOC_IN_RC(float_reg_vl));
3654    match(RegF);
3655 
3656    format %{ %}
3657    interface(REG_INTER);
3658 %}
3659 
3660 // Double register operands
3661 operand regD() %{
3662    constraint(ALLOC_IN_RC(double_reg));
3663    match(RegD);
3664 
3665    format %{ %}
3666    interface(REG_INTER);
3667 %}
3668 
3669 // Double register operands
3670 operand legRegD() %{
3671    constraint(ALLOC_IN_RC(double_reg_legacy));
3672    match(RegD);
3673 
3674    format %{ %}
3675    interface(REG_INTER);
3676 %}
3677 
3678 // Double register operands
3679 operand vlRegD() %{
3680    constraint(ALLOC_IN_RC(double_reg_vl));
3681    match(RegD);
3682 
3683    format %{ %}
3684    interface(REG_INTER);
3685 %}
3686 
3687 //----------Memory Operands----------------------------------------------------
3688 // Direct Memory Operand
3689 // operand direct(immP addr)
3690 // %{
3691 //   match(addr);
3692 
3693 //   format %{ "[$addr]" %}
3694 //   interface(MEMORY_INTER) %{
3695 //     base(0xFFFFFFFF);
3696 //     index(0x4);
3697 //     scale(0x0);
3698 //     disp($addr);
3699 //   %}
3700 // %}
3701 
3702 // Indirect Memory Operand
3703 operand indirect(any_RegP reg)
3704 %{
3705   constraint(ALLOC_IN_RC(ptr_reg));
3706   match(reg);
3707 
3708   format %{ "[$reg]" %}
3709   interface(MEMORY_INTER) %{
3710     base($reg);
3711     index(0x4);
3712     scale(0x0);
3713     disp(0x0);
3714   %}
3715 %}
3716 
3717 // Indirect Memory Plus Short Offset Operand
3718 operand indOffset8(any_RegP reg, immL8 off)
3719 %{
3720   constraint(ALLOC_IN_RC(ptr_reg));
3721   match(AddP reg off);
3722 
3723   format %{ "[$reg + $off (8-bit)]" %}
3724   interface(MEMORY_INTER) %{
3725     base($reg);
3726     index(0x4);
3727     scale(0x0);
3728     disp($off);
3729   %}
3730 %}
3731 
3732 // Indirect Memory Plus Long Offset Operand
3733 operand indOffset32(any_RegP reg, immL32 off)
3734 %{
3735   constraint(ALLOC_IN_RC(ptr_reg));
3736   match(AddP reg off);
3737 
3738   format %{ "[$reg + $off (32-bit)]" %}
3739   interface(MEMORY_INTER) %{
3740     base($reg);
3741     index(0x4);
3742     scale(0x0);
3743     disp($off);
3744   %}
3745 %}
3746 
3747 // Indirect Memory Plus Index Register Plus Offset Operand
3748 operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
3749 %{
3750   constraint(ALLOC_IN_RC(ptr_reg));
3751   match(AddP (AddP reg lreg) off);
3752 
3753   op_cost(10);
3754   format %{"[$reg + $off + $lreg]" %}
3755   interface(MEMORY_INTER) %{
3756     base($reg);
3757     index($lreg);
3758     scale(0x0);
3759     disp($off);
3760   %}
3761 %}
3762 
3763 // Indirect Memory Plus Index Register Plus Offset Operand
3764 operand indIndex(any_RegP reg, rRegL lreg)
3765 %{
3766   constraint(ALLOC_IN_RC(ptr_reg));
3767   match(AddP reg lreg);
3768 
3769   op_cost(10);
3770   format %{"[$reg + $lreg]" %}
3771   interface(MEMORY_INTER) %{
3772     base($reg);
3773     index($lreg);
3774     scale(0x0);
3775     disp(0x0);
3776   %}
3777 %}
3778 
3779 // Indirect Memory Times Scale Plus Index Register
3780 operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
3781 %{
3782   constraint(ALLOC_IN_RC(ptr_reg));
3783   match(AddP reg (LShiftL lreg scale));
3784 
3785   op_cost(10);
3786   format %{"[$reg + $lreg << $scale]" %}
3787   interface(MEMORY_INTER) %{
3788     base($reg);
3789     index($lreg);
3790     scale($scale);
3791     disp(0x0);
3792   %}
3793 %}
3794 
3795 operand indPosIndexScale(any_RegP reg, rRegI idx, immI2 scale)
3796 %{
3797   constraint(ALLOC_IN_RC(ptr_reg));
3798   predicate(n->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3799   match(AddP reg (LShiftL (ConvI2L idx) scale));
3800 
3801   op_cost(10);
3802   format %{"[$reg + pos $idx << $scale]" %}
3803   interface(MEMORY_INTER) %{
3804     base($reg);
3805     index($idx);
3806     scale($scale);
3807     disp(0x0);
3808   %}
3809 %}
3810 
3811 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
3812 operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
3813 %{
3814   constraint(ALLOC_IN_RC(ptr_reg));
3815   match(AddP (AddP reg (LShiftL lreg scale)) off);
3816 
3817   op_cost(10);
3818   format %{"[$reg + $off + $lreg << $scale]" %}
3819   interface(MEMORY_INTER) %{
3820     base($reg);
3821     index($lreg);
3822     scale($scale);
3823     disp($off);
3824   %}
3825 %}
3826 
3827 // Indirect Memory Plus Positive Index Register Plus Offset Operand
3828 operand indPosIndexOffset(any_RegP reg, immL32 off, rRegI idx)
3829 %{
3830   constraint(ALLOC_IN_RC(ptr_reg));
3831   predicate(n->in(2)->in(3)->as_Type()->type()->is_long()->_lo >= 0);
3832   match(AddP (AddP reg (ConvI2L idx)) off);
3833 
3834   op_cost(10);
3835   format %{"[$reg + $off + $idx]" %}
3836   interface(MEMORY_INTER) %{
3837     base($reg);
3838     index($idx);
3839     scale(0x0);
3840     disp($off);
3841   %}
3842 %}
3843 
3844 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
3845 operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
3846 %{
3847   constraint(ALLOC_IN_RC(ptr_reg));
3848   predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3849   match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
3850 
3851   op_cost(10);
3852   format %{"[$reg + $off + $idx << $scale]" %}
3853   interface(MEMORY_INTER) %{
3854     base($reg);
3855     index($idx);
3856     scale($scale);
3857     disp($off);
3858   %}
3859 %}
3860 
3861 // Indirect Narrow Oop Plus Offset Operand
3862 // Note: x86 architecture doesn't support "scale * index + offset" without a base
3863 // we can't free r12 even with CompressedOops::base() == NULL.
3864 operand indCompressedOopOffset(rRegN reg, immL32 off) %{
3865   predicate(UseCompressedOops && (CompressedOops::shift() == Address::times_8));
3866   constraint(ALLOC_IN_RC(ptr_reg));
3867   match(AddP (DecodeN reg) off);
3868 
3869   op_cost(10);
3870   format %{"[R12 + $reg << 3 + $off] (compressed oop addressing)" %}
3871   interface(MEMORY_INTER) %{
3872     base(0xc); // R12
3873     index($reg);
3874     scale(0x3);
3875     disp($off);
3876   %}
3877 %}
3878 
3879 // Indirect Memory Operand
3880 operand indirectNarrow(rRegN reg)
3881 %{
3882   predicate(CompressedOops::shift() == 0);
3883   constraint(ALLOC_IN_RC(ptr_reg));
3884   match(DecodeN reg);
3885 
3886   format %{ "[$reg]" %}
3887   interface(MEMORY_INTER) %{
3888     base($reg);
3889     index(0x4);
3890     scale(0x0);
3891     disp(0x0);
3892   %}
3893 %}
3894 
3895 // Indirect Memory Plus Short Offset Operand
3896 operand indOffset8Narrow(rRegN reg, immL8 off)
3897 %{
3898   predicate(CompressedOops::shift() == 0);
3899   constraint(ALLOC_IN_RC(ptr_reg));
3900   match(AddP (DecodeN reg) off);
3901 
3902   format %{ "[$reg + $off (8-bit)]" %}
3903   interface(MEMORY_INTER) %{
3904     base($reg);
3905     index(0x4);
3906     scale(0x0);
3907     disp($off);
3908   %}
3909 %}
3910 
3911 // Indirect Memory Plus Long Offset Operand
3912 operand indOffset32Narrow(rRegN reg, immL32 off)
3913 %{
3914   predicate(CompressedOops::shift() == 0);
3915   constraint(ALLOC_IN_RC(ptr_reg));
3916   match(AddP (DecodeN reg) off);
3917 
3918   format %{ "[$reg + $off (32-bit)]" %}
3919   interface(MEMORY_INTER) %{
3920     base($reg);
3921     index(0x4);
3922     scale(0x0);
3923     disp($off);
3924   %}
3925 %}
3926 
3927 // Indirect Memory Plus Index Register Plus Offset Operand
3928 operand indIndexOffsetNarrow(rRegN reg, rRegL lreg, immL32 off)
3929 %{
3930   predicate(CompressedOops::shift() == 0);
3931   constraint(ALLOC_IN_RC(ptr_reg));
3932   match(AddP (AddP (DecodeN reg) lreg) off);
3933 
3934   op_cost(10);
3935   format %{"[$reg + $off + $lreg]" %}
3936   interface(MEMORY_INTER) %{
3937     base($reg);
3938     index($lreg);
3939     scale(0x0);
3940     disp($off);
3941   %}
3942 %}
3943 
3944 // Indirect Memory Plus Index Register Plus Offset Operand
3945 operand indIndexNarrow(rRegN reg, rRegL lreg)
3946 %{
3947   predicate(CompressedOops::shift() == 0);
3948   constraint(ALLOC_IN_RC(ptr_reg));
3949   match(AddP (DecodeN reg) lreg);
3950 
3951   op_cost(10);
3952   format %{"[$reg + $lreg]" %}
3953   interface(MEMORY_INTER) %{
3954     base($reg);
3955     index($lreg);
3956     scale(0x0);
3957     disp(0x0);
3958   %}
3959 %}
3960 
3961 // Indirect Memory Times Scale Plus Index Register
3962 operand indIndexScaleNarrow(rRegN reg, rRegL lreg, immI2 scale)
3963 %{
3964   predicate(CompressedOops::shift() == 0);
3965   constraint(ALLOC_IN_RC(ptr_reg));
3966   match(AddP (DecodeN reg) (LShiftL lreg scale));
3967 
3968   op_cost(10);
3969   format %{"[$reg + $lreg << $scale]" %}
3970   interface(MEMORY_INTER) %{
3971     base($reg);
3972     index($lreg);
3973     scale($scale);
3974     disp(0x0);
3975   %}
3976 %}
3977 
3978 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
3979 operand indIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegL lreg, immI2 scale)
3980 %{
3981   predicate(CompressedOops::shift() == 0);
3982   constraint(ALLOC_IN_RC(ptr_reg));
3983   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
3984 
3985   op_cost(10);
3986   format %{"[$reg + $off + $lreg << $scale]" %}
3987   interface(MEMORY_INTER) %{
3988     base($reg);
3989     index($lreg);
3990     scale($scale);
3991     disp($off);
3992   %}
3993 %}
3994 
3995 // Indirect Memory Times Plus Positive Index Register Plus Offset Operand
3996 operand indPosIndexOffsetNarrow(rRegN reg, immL32 off, rRegI idx)
3997 %{
3998   constraint(ALLOC_IN_RC(ptr_reg));
3999   predicate(CompressedOops::shift() == 0 && n->in(2)->in(3)->as_Type()->type()->is_long()->_lo >= 0);
4000   match(AddP (AddP (DecodeN reg) (ConvI2L idx)) off);
4001 
4002   op_cost(10);
4003   format %{"[$reg + $off + $idx]" %}
4004   interface(MEMORY_INTER) %{
4005     base($reg);
4006     index($idx);
4007     scale(0x0);
4008     disp($off);
4009   %}
4010 %}
4011 
4012 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
4013 operand indPosIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegI idx, immI2 scale)
4014 %{
4015   constraint(ALLOC_IN_RC(ptr_reg));
4016   predicate(CompressedOops::shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
4017   match(AddP (AddP (DecodeN reg) (LShiftL (ConvI2L idx) scale)) off);
4018 
4019   op_cost(10);
4020   format %{"[$reg + $off + $idx << $scale]" %}
4021   interface(MEMORY_INTER) %{
4022     base($reg);
4023     index($idx);
4024     scale($scale);
4025     disp($off);
4026   %}
4027 %}
4028 
4029 //----------Special Memory Operands--------------------------------------------
4030 // Stack Slot Operand - This operand is used for loading and storing temporary
4031 //                      values on the stack where a match requires a value to
4032 //                      flow through memory.
4033 operand stackSlotP(sRegP reg)
4034 %{
4035   constraint(ALLOC_IN_RC(stack_slots));
4036   // No match rule because this operand is only generated in matching
4037 
4038   format %{ "[$reg]" %}
4039   interface(MEMORY_INTER) %{
4040     base(0x4);   // RSP
4041     index(0x4);  // No Index
4042     scale(0x0);  // No Scale
4043     disp($reg);  // Stack Offset
4044   %}
4045 %}
4046 
4047 operand stackSlotI(sRegI reg)
4048 %{
4049   constraint(ALLOC_IN_RC(stack_slots));
4050   // No match rule because this operand is only generated in matching
4051 
4052   format %{ "[$reg]" %}
4053   interface(MEMORY_INTER) %{
4054     base(0x4);   // RSP
4055     index(0x4);  // No Index
4056     scale(0x0);  // No Scale
4057     disp($reg);  // Stack Offset
4058   %}
4059 %}
4060 
4061 operand stackSlotF(sRegF reg)
4062 %{
4063   constraint(ALLOC_IN_RC(stack_slots));
4064   // No match rule because this operand is only generated in matching
4065 
4066   format %{ "[$reg]" %}
4067   interface(MEMORY_INTER) %{
4068     base(0x4);   // RSP
4069     index(0x4);  // No Index
4070     scale(0x0);  // No Scale
4071     disp($reg);  // Stack Offset
4072   %}
4073 %}
4074 
4075 operand stackSlotD(sRegD reg)
4076 %{
4077   constraint(ALLOC_IN_RC(stack_slots));
4078   // No match rule because this operand is only generated in matching
4079 
4080   format %{ "[$reg]" %}
4081   interface(MEMORY_INTER) %{
4082     base(0x4);   // RSP
4083     index(0x4);  // No Index
4084     scale(0x0);  // No Scale
4085     disp($reg);  // Stack Offset
4086   %}
4087 %}
4088 operand stackSlotL(sRegL reg)
4089 %{
4090   constraint(ALLOC_IN_RC(stack_slots));
4091   // No match rule because this operand is only generated in matching
4092 
4093   format %{ "[$reg]" %}
4094   interface(MEMORY_INTER) %{
4095     base(0x4);   // RSP
4096     index(0x4);  // No Index
4097     scale(0x0);  // No Scale
4098     disp($reg);  // Stack Offset
4099   %}
4100 %}
4101 
4102 //----------Conditional Branch Operands----------------------------------------
4103 // Comparison Op  - This is the operation of the comparison, and is limited to
4104 //                  the following set of codes:
4105 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4106 //
4107 // Other attributes of the comparison, such as unsignedness, are specified
4108 // by the comparison instruction that sets a condition code flags register.
4109 // That result is represented by a flags operand whose subtype is appropriate
4110 // to the unsignedness (etc.) of the comparison.
4111 //
4112 // Later, the instruction which matches both the Comparison Op (a Bool) and
4113 // the flags (produced by the Cmp) specifies the coding of the comparison op
4114 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4115 
4116 // Comparision Code
4117 operand cmpOp()
4118 %{
4119   match(Bool);
4120 
4121   format %{ "" %}
4122   interface(COND_INTER) %{
4123     equal(0x4, "e");
4124     not_equal(0x5, "ne");
4125     less(0xC, "l");
4126     greater_equal(0xD, "ge");
4127     less_equal(0xE, "le");
4128     greater(0xF, "g");
4129     overflow(0x0, "o");
4130     no_overflow(0x1, "no");
4131   %}
4132 %}
4133 
4134 // Comparison Code, unsigned compare.  Used by FP also, with
4135 // C2 (unordered) turned into GT or LT already.  The other bits
4136 // C0 and C3 are turned into Carry & Zero flags.
4137 operand cmpOpU()
4138 %{
4139   match(Bool);
4140 
4141   format %{ "" %}
4142   interface(COND_INTER) %{
4143     equal(0x4, "e");
4144     not_equal(0x5, "ne");
4145     less(0x2, "b");
4146     greater_equal(0x3, "nb");
4147     less_equal(0x6, "be");
4148     greater(0x7, "nbe");
4149     overflow(0x0, "o");
4150     no_overflow(0x1, "no");
4151   %}
4152 %}
4153 
4154 
4155 // Floating comparisons that don't require any fixup for the unordered case
4156 operand cmpOpUCF() %{
4157   match(Bool);
4158   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4159             n->as_Bool()->_test._test == BoolTest::ge ||
4160             n->as_Bool()->_test._test == BoolTest::le ||
4161             n->as_Bool()->_test._test == BoolTest::gt);
4162   format %{ "" %}
4163   interface(COND_INTER) %{
4164     equal(0x4, "e");
4165     not_equal(0x5, "ne");
4166     less(0x2, "b");
4167     greater_equal(0x3, "nb");
4168     less_equal(0x6, "be");
4169     greater(0x7, "nbe");
4170     overflow(0x0, "o");
4171     no_overflow(0x1, "no");
4172   %}
4173 %}
4174 
4175 
4176 // Floating comparisons that can be fixed up with extra conditional jumps
4177 operand cmpOpUCF2() %{
4178   match(Bool);
4179   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
4180             n->as_Bool()->_test._test == BoolTest::eq);
4181   format %{ "" %}
4182   interface(COND_INTER) %{
4183     equal(0x4, "e");
4184     not_equal(0x5, "ne");
4185     less(0x2, "b");
4186     greater_equal(0x3, "nb");
4187     less_equal(0x6, "be");
4188     greater(0x7, "nbe");
4189     overflow(0x0, "o");
4190     no_overflow(0x1, "no");
4191   %}
4192 %}
4193 
4194 //----------OPERAND CLASSES----------------------------------------------------
4195 // Operand Classes are groups of operands that are used as to simplify
4196 // instruction definitions by not requiring the AD writer to specify separate
4197 // instructions for every form of operand when the instruction accepts
4198 // multiple operand types with the same basic encoding and format.  The classic
4199 // case of this is memory operands.
4200 
4201 opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
4202                indIndexScale, indPosIndexScale, indIndexScaleOffset, indPosIndexOffset, indPosIndexScaleOffset,
4203                indCompressedOopOffset,
4204                indirectNarrow, indOffset8Narrow, indOffset32Narrow,
4205                indIndexOffsetNarrow, indIndexNarrow, indIndexScaleNarrow,
4206                indIndexScaleOffsetNarrow, indPosIndexOffsetNarrow, indPosIndexScaleOffsetNarrow);
4207 
4208 //----------PIPELINE-----------------------------------------------------------
4209 // Rules which define the behavior of the target architectures pipeline.
4210 pipeline %{
4211 
4212 //----------ATTRIBUTES---------------------------------------------------------
4213 attributes %{
4214   variable_size_instructions;        // Fixed size instructions
4215   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
4216   instruction_unit_size = 1;         // An instruction is 1 bytes long
4217   instruction_fetch_unit_size = 16;  // The processor fetches one line
4218   instruction_fetch_units = 1;       // of 16 bytes
4219 
4220   // List of nop instructions
4221   nops( MachNop );
4222 %}
4223 
4224 //----------RESOURCES----------------------------------------------------------
4225 // Resources are the functional units available to the machine
4226 
4227 // Generic P2/P3 pipeline
4228 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
4229 // 3 instructions decoded per cycle.
4230 // 2 load/store ops per cycle, 1 branch, 1 FPU,
4231 // 3 ALU op, only ALU0 handles mul instructions.
4232 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
4233            MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
4234            BR, FPU,
4235            ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
4236 
4237 //----------PIPELINE DESCRIPTION-----------------------------------------------
4238 // Pipeline Description specifies the stages in the machine's pipeline
4239 
4240 // Generic P2/P3 pipeline
4241 pipe_desc(S0, S1, S2, S3, S4, S5);
4242 
4243 //----------PIPELINE CLASSES---------------------------------------------------
4244 // Pipeline Classes describe the stages in which input and output are
4245 // referenced by the hardware pipeline.
4246 
4247 // Naming convention: ialu or fpu
4248 // Then: _reg
4249 // Then: _reg if there is a 2nd register
4250 // Then: _long if it's a pair of instructions implementing a long
4251 // Then: _fat if it requires the big decoder
4252 //   Or: _mem if it requires the big decoder and a memory unit.
4253 
4254 // Integer ALU reg operation
4255 pipe_class ialu_reg(rRegI dst)
4256 %{
4257     single_instruction;
4258     dst    : S4(write);
4259     dst    : S3(read);
4260     DECODE : S0;        // any decoder
4261     ALU    : S3;        // any alu
4262 %}
4263 
4264 // Long ALU reg operation
4265 pipe_class ialu_reg_long(rRegL dst)
4266 %{
4267     instruction_count(2);
4268     dst    : S4(write);
4269     dst    : S3(read);
4270     DECODE : S0(2);     // any 2 decoders
4271     ALU    : S3(2);     // both alus
4272 %}
4273 
4274 // Integer ALU reg operation using big decoder
4275 pipe_class ialu_reg_fat(rRegI dst)
4276 %{
4277     single_instruction;
4278     dst    : S4(write);
4279     dst    : S3(read);
4280     D0     : S0;        // big decoder only
4281     ALU    : S3;        // any alu
4282 %}
4283 
4284 // Long ALU reg operation using big decoder
4285 pipe_class ialu_reg_long_fat(rRegL dst)
4286 %{
4287     instruction_count(2);
4288     dst    : S4(write);
4289     dst    : S3(read);
4290     D0     : S0(2);     // big decoder only; twice
4291     ALU    : S3(2);     // any 2 alus
4292 %}
4293 
4294 // Integer ALU reg-reg operation
4295 pipe_class ialu_reg_reg(rRegI dst, rRegI src)
4296 %{
4297     single_instruction;
4298     dst    : S4(write);
4299     src    : S3(read);
4300     DECODE : S0;        // any decoder
4301     ALU    : S3;        // any alu
4302 %}
4303 
4304 // Long ALU reg-reg operation
4305 pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
4306 %{
4307     instruction_count(2);
4308     dst    : S4(write);
4309     src    : S3(read);
4310     DECODE : S0(2);     // any 2 decoders
4311     ALU    : S3(2);     // both alus
4312 %}
4313 
4314 // Integer ALU reg-reg operation
4315 pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
4316 %{
4317     single_instruction;
4318     dst    : S4(write);
4319     src    : S3(read);
4320     D0     : S0;        // big decoder only
4321     ALU    : S3;        // any alu
4322 %}
4323 
4324 // Long ALU reg-reg operation
4325 pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
4326 %{
4327     instruction_count(2);
4328     dst    : S4(write);
4329     src    : S3(read);
4330     D0     : S0(2);     // big decoder only; twice
4331     ALU    : S3(2);     // both alus
4332 %}
4333 
4334 // Integer ALU reg-mem operation
4335 pipe_class ialu_reg_mem(rRegI dst, memory mem)
4336 %{
4337     single_instruction;
4338     dst    : S5(write);
4339     mem    : S3(read);
4340     D0     : S0;        // big decoder only
4341     ALU    : S4;        // any alu
4342     MEM    : S3;        // any mem
4343 %}
4344 
4345 // Integer mem operation (prefetch)
4346 pipe_class ialu_mem(memory mem)
4347 %{
4348     single_instruction;
4349     mem    : S3(read);
4350     D0     : S0;        // big decoder only
4351     MEM    : S3;        // any mem
4352 %}
4353 
4354 // Integer Store to Memory
4355 pipe_class ialu_mem_reg(memory mem, rRegI src)
4356 %{
4357     single_instruction;
4358     mem    : S3(read);
4359     src    : S5(read);
4360     D0     : S0;        // big decoder only
4361     ALU    : S4;        // any alu
4362     MEM    : S3;
4363 %}
4364 
4365 // // Long Store to Memory
4366 // pipe_class ialu_mem_long_reg(memory mem, rRegL src)
4367 // %{
4368 //     instruction_count(2);
4369 //     mem    : S3(read);
4370 //     src    : S5(read);
4371 //     D0     : S0(2);          // big decoder only; twice
4372 //     ALU    : S4(2);     // any 2 alus
4373 //     MEM    : S3(2);  // Both mems
4374 // %}
4375 
4376 // Integer Store to Memory
4377 pipe_class ialu_mem_imm(memory mem)
4378 %{
4379     single_instruction;
4380     mem    : S3(read);
4381     D0     : S0;        // big decoder only
4382     ALU    : S4;        // any alu
4383     MEM    : S3;
4384 %}
4385 
4386 // Integer ALU0 reg-reg operation
4387 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
4388 %{
4389     single_instruction;
4390     dst    : S4(write);
4391     src    : S3(read);
4392     D0     : S0;        // Big decoder only
4393     ALU0   : S3;        // only alu0
4394 %}
4395 
4396 // Integer ALU0 reg-mem operation
4397 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
4398 %{
4399     single_instruction;
4400     dst    : S5(write);
4401     mem    : S3(read);
4402     D0     : S0;        // big decoder only
4403     ALU0   : S4;        // ALU0 only
4404     MEM    : S3;        // any mem
4405 %}
4406 
4407 // Integer ALU reg-reg operation
4408 pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
4409 %{
4410     single_instruction;
4411     cr     : S4(write);
4412     src1   : S3(read);
4413     src2   : S3(read);
4414     DECODE : S0;        // any decoder
4415     ALU    : S3;        // any alu
4416 %}
4417 
4418 // Integer ALU reg-imm operation
4419 pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
4420 %{
4421     single_instruction;
4422     cr     : S4(write);
4423     src1   : S3(read);
4424     DECODE : S0;        // any decoder
4425     ALU    : S3;        // any alu
4426 %}
4427 
4428 // Integer ALU reg-mem operation
4429 pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
4430 %{
4431     single_instruction;
4432     cr     : S4(write);
4433     src1   : S3(read);
4434     src2   : S3(read);
4435     D0     : S0;        // big decoder only
4436     ALU    : S4;        // any alu
4437     MEM    : S3;
4438 %}
4439 
4440 // Conditional move reg-reg
4441 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
4442 %{
4443     instruction_count(4);
4444     y      : S4(read);
4445     q      : S3(read);
4446     p      : S3(read);
4447     DECODE : S0(4);     // any decoder
4448 %}
4449 
4450 // Conditional move reg-reg
4451 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
4452 %{
4453     single_instruction;
4454     dst    : S4(write);
4455     src    : S3(read);
4456     cr     : S3(read);
4457     DECODE : S0;        // any decoder
4458 %}
4459 
4460 // Conditional move reg-mem
4461 pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
4462 %{
4463     single_instruction;
4464     dst    : S4(write);
4465     src    : S3(read);
4466     cr     : S3(read);
4467     DECODE : S0;        // any decoder
4468     MEM    : S3;
4469 %}
4470 
4471 // Conditional move reg-reg long
4472 pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
4473 %{
4474     single_instruction;
4475     dst    : S4(write);
4476     src    : S3(read);
4477     cr     : S3(read);
4478     DECODE : S0(2);     // any 2 decoders
4479 %}
4480 
4481 // XXX
4482 // // Conditional move double reg-reg
4483 // pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
4484 // %{
4485 //     single_instruction;
4486 //     dst    : S4(write);
4487 //     src    : S3(read);
4488 //     cr     : S3(read);
4489 //     DECODE : S0;     // any decoder
4490 // %}
4491 
4492 // Float reg-reg operation
4493 pipe_class fpu_reg(regD dst)
4494 %{
4495     instruction_count(2);
4496     dst    : S3(read);
4497     DECODE : S0(2);     // any 2 decoders
4498     FPU    : S3;
4499 %}
4500 
4501 // Float reg-reg operation
4502 pipe_class fpu_reg_reg(regD dst, regD src)
4503 %{
4504     instruction_count(2);
4505     dst    : S4(write);
4506     src    : S3(read);
4507     DECODE : S0(2);     // any 2 decoders
4508     FPU    : S3;
4509 %}
4510 
4511 // Float reg-reg operation
4512 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
4513 %{
4514     instruction_count(3);
4515     dst    : S4(write);
4516     src1   : S3(read);
4517     src2   : S3(read);
4518     DECODE : S0(3);     // any 3 decoders
4519     FPU    : S3(2);
4520 %}
4521 
4522 // Float reg-reg operation
4523 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
4524 %{
4525     instruction_count(4);
4526     dst    : S4(write);
4527     src1   : S3(read);
4528     src2   : S3(read);
4529     src3   : S3(read);
4530     DECODE : S0(4);     // any 3 decoders
4531     FPU    : S3(2);
4532 %}
4533 
4534 // Float reg-reg operation
4535 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
4536 %{
4537     instruction_count(4);
4538     dst    : S4(write);
4539     src1   : S3(read);
4540     src2   : S3(read);
4541     src3   : S3(read);
4542     DECODE : S1(3);     // any 3 decoders
4543     D0     : S0;        // Big decoder only
4544     FPU    : S3(2);
4545     MEM    : S3;
4546 %}
4547 
4548 // Float reg-mem operation
4549 pipe_class fpu_reg_mem(regD dst, memory mem)
4550 %{
4551     instruction_count(2);
4552     dst    : S5(write);
4553     mem    : S3(read);
4554     D0     : S0;        // big decoder only
4555     DECODE : S1;        // any decoder for FPU POP
4556     FPU    : S4;
4557     MEM    : S3;        // any mem
4558 %}
4559 
4560 // Float reg-mem operation
4561 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
4562 %{
4563     instruction_count(3);
4564     dst    : S5(write);
4565     src1   : S3(read);
4566     mem    : S3(read);
4567     D0     : S0;        // big decoder only
4568     DECODE : S1(2);     // any decoder for FPU POP
4569     FPU    : S4;
4570     MEM    : S3;        // any mem
4571 %}
4572 
4573 // Float mem-reg operation
4574 pipe_class fpu_mem_reg(memory mem, regD src)
4575 %{
4576     instruction_count(2);
4577     src    : S5(read);
4578     mem    : S3(read);
4579     DECODE : S0;        // any decoder for FPU PUSH
4580     D0     : S1;        // big decoder only
4581     FPU    : S4;
4582     MEM    : S3;        // any mem
4583 %}
4584 
4585 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
4586 %{
4587     instruction_count(3);
4588     src1   : S3(read);
4589     src2   : S3(read);
4590     mem    : S3(read);
4591     DECODE : S0(2);     // any decoder for FPU PUSH
4592     D0     : S1;        // big decoder only
4593     FPU    : S4;
4594     MEM    : S3;        // any mem
4595 %}
4596 
4597 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
4598 %{
4599     instruction_count(3);
4600     src1   : S3(read);
4601     src2   : S3(read);
4602     mem    : S4(read);
4603     DECODE : S0;        // any decoder for FPU PUSH
4604     D0     : S0(2);     // big decoder only
4605     FPU    : S4;
4606     MEM    : S3(2);     // any mem
4607 %}
4608 
4609 pipe_class fpu_mem_mem(memory dst, memory src1)
4610 %{
4611     instruction_count(2);
4612     src1   : S3(read);
4613     dst    : S4(read);
4614     D0     : S0(2);     // big decoder only
4615     MEM    : S3(2);     // any mem
4616 %}
4617 
4618 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
4619 %{
4620     instruction_count(3);
4621     src1   : S3(read);
4622     src2   : S3(read);
4623     dst    : S4(read);
4624     D0     : S0(3);     // big decoder only
4625     FPU    : S4;
4626     MEM    : S3(3);     // any mem
4627 %}
4628 
4629 pipe_class fpu_mem_reg_con(memory mem, regD src1)
4630 %{
4631     instruction_count(3);
4632     src1   : S4(read);
4633     mem    : S4(read);
4634     DECODE : S0;        // any decoder for FPU PUSH
4635     D0     : S0(2);     // big decoder only
4636     FPU    : S4;
4637     MEM    : S3(2);     // any mem
4638 %}
4639 
4640 // Float load constant
4641 pipe_class fpu_reg_con(regD dst)
4642 %{
4643     instruction_count(2);
4644     dst    : S5(write);
4645     D0     : S0;        // big decoder only for the load
4646     DECODE : S1;        // any decoder for FPU POP
4647     FPU    : S4;
4648     MEM    : S3;        // any mem
4649 %}
4650 
4651 // Float load constant
4652 pipe_class fpu_reg_reg_con(regD dst, regD src)
4653 %{
4654     instruction_count(3);
4655     dst    : S5(write);
4656     src    : S3(read);
4657     D0     : S0;        // big decoder only for the load
4658     DECODE : S1(2);     // any decoder for FPU POP
4659     FPU    : S4;
4660     MEM    : S3;        // any mem
4661 %}
4662 
4663 // UnConditional branch
4664 pipe_class pipe_jmp(label labl)
4665 %{
4666     single_instruction;
4667     BR   : S3;
4668 %}
4669 
4670 // Conditional branch
4671 pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
4672 %{
4673     single_instruction;
4674     cr    : S1(read);
4675     BR    : S3;
4676 %}
4677 
4678 // Allocation idiom
4679 pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
4680 %{
4681     instruction_count(1); force_serialization;
4682     fixed_latency(6);
4683     heap_ptr : S3(read);
4684     DECODE   : S0(3);
4685     D0       : S2;
4686     MEM      : S3;
4687     ALU      : S3(2);
4688     dst      : S5(write);
4689     BR       : S5;
4690 %}
4691 
4692 // Generic big/slow expanded idiom
4693 pipe_class pipe_slow()
4694 %{
4695     instruction_count(10); multiple_bundles; force_serialization;
4696     fixed_latency(100);
4697     D0  : S0(2);
4698     MEM : S3(2);
4699 %}
4700 
4701 // The real do-nothing guy
4702 pipe_class empty()
4703 %{
4704     instruction_count(0);
4705 %}
4706 
4707 // Define the class for the Nop node
4708 define
4709 %{
4710    MachNop = empty;
4711 %}
4712 
4713 %}
4714 
4715 //----------INSTRUCTIONS-------------------------------------------------------
4716 //
4717 // match      -- States which machine-independent subtree may be replaced
4718 //               by this instruction.
4719 // ins_cost   -- The estimated cost of this instruction is used by instruction
4720 //               selection to identify a minimum cost tree of machine
4721 //               instructions that matches a tree of machine-independent
4722 //               instructions.
4723 // format     -- A string providing the disassembly for this instruction.
4724 //               The value of an instruction's operand may be inserted
4725 //               by referring to it with a '$' prefix.
4726 // opcode     -- Three instruction opcodes may be provided.  These are referred
4727 //               to within an encode class as $primary, $secondary, and $tertiary
4728 //               rrspectively.  The primary opcode is commonly used to
4729 //               indicate the type of machine instruction, while secondary
4730 //               and tertiary are often used for prefix options or addressing
4731 //               modes.
4732 // ins_encode -- A list of encode classes with parameters. The encode class
4733 //               name must have been defined in an 'enc_class' specification
4734 //               in the encode section of the architecture description.
4735 
4736 
4737 //----------Load/Store/Move Instructions---------------------------------------
4738 //----------Load Instructions--------------------------------------------------
4739 
4740 // Load Byte (8 bit signed)
4741 instruct loadB(rRegI dst, memory mem)
4742 %{
4743   match(Set dst (LoadB mem));
4744 
4745   ins_cost(125);
4746   format %{ "movsbl  $dst, $mem\t# byte" %}
4747 
4748   ins_encode %{
4749     __ movsbl($dst$$Register, $mem$$Address);
4750   %}
4751 
4752   ins_pipe(ialu_reg_mem);
4753 %}
4754 
4755 // Load Byte (8 bit signed) into Long Register
4756 instruct loadB2L(rRegL dst, memory mem)
4757 %{
4758   match(Set dst (ConvI2L (LoadB mem)));
4759 
4760   ins_cost(125);
4761   format %{ "movsbq  $dst, $mem\t# byte -> long" %}
4762 
4763   ins_encode %{
4764     __ movsbq($dst$$Register, $mem$$Address);
4765   %}
4766 
4767   ins_pipe(ialu_reg_mem);
4768 %}
4769 
4770 // Load Unsigned Byte (8 bit UNsigned)
4771 instruct loadUB(rRegI dst, memory mem)
4772 %{
4773   match(Set dst (LoadUB mem));
4774 
4775   ins_cost(125);
4776   format %{ "movzbl  $dst, $mem\t# ubyte" %}
4777 
4778   ins_encode %{
4779     __ movzbl($dst$$Register, $mem$$Address);
4780   %}
4781 
4782   ins_pipe(ialu_reg_mem);
4783 %}
4784 
4785 // Load Unsigned Byte (8 bit UNsigned) into Long Register
4786 instruct loadUB2L(rRegL dst, memory mem)
4787 %{
4788   match(Set dst (ConvI2L (LoadUB mem)));
4789 
4790   ins_cost(125);
4791   format %{ "movzbq  $dst, $mem\t# ubyte -> long" %}
4792 
4793   ins_encode %{
4794     __ movzbq($dst$$Register, $mem$$Address);
4795   %}
4796 
4797   ins_pipe(ialu_reg_mem);
4798 %}
4799 
4800 // Load Unsigned Byte (8 bit UNsigned) with 32-bit mask into Long Register
4801 instruct loadUB2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
4802   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
4803   effect(KILL cr);
4804 
4805   format %{ "movzbq  $dst, $mem\t# ubyte & 32-bit mask -> long\n\t"
4806             "andl    $dst, right_n_bits($mask, 8)" %}
4807   ins_encode %{
4808     Register Rdst = $dst$$Register;
4809     __ movzbq(Rdst, $mem$$Address);
4810     __ andl(Rdst, $mask$$constant & right_n_bits(8));
4811   %}
4812   ins_pipe(ialu_reg_mem);
4813 %}
4814 
4815 // Load Short (16 bit signed)
4816 instruct loadS(rRegI dst, memory mem)
4817 %{
4818   match(Set dst (LoadS mem));
4819 
4820   ins_cost(125);
4821   format %{ "movswl $dst, $mem\t# short" %}
4822 
4823   ins_encode %{
4824     __ movswl($dst$$Register, $mem$$Address);
4825   %}
4826 
4827   ins_pipe(ialu_reg_mem);
4828 %}
4829 
4830 // Load Short (16 bit signed) to Byte (8 bit signed)
4831 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4832   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
4833 
4834   ins_cost(125);
4835   format %{ "movsbl $dst, $mem\t# short -> byte" %}
4836   ins_encode %{
4837     __ movsbl($dst$$Register, $mem$$Address);
4838   %}
4839   ins_pipe(ialu_reg_mem);
4840 %}
4841 
4842 // Load Short (16 bit signed) into Long Register
4843 instruct loadS2L(rRegL dst, memory mem)
4844 %{
4845   match(Set dst (ConvI2L (LoadS mem)));
4846 
4847   ins_cost(125);
4848   format %{ "movswq $dst, $mem\t# short -> long" %}
4849 
4850   ins_encode %{
4851     __ movswq($dst$$Register, $mem$$Address);
4852   %}
4853 
4854   ins_pipe(ialu_reg_mem);
4855 %}
4856 
4857 // Load Unsigned Short/Char (16 bit UNsigned)
4858 instruct loadUS(rRegI dst, memory mem)
4859 %{
4860   match(Set dst (LoadUS mem));
4861 
4862   ins_cost(125);
4863   format %{ "movzwl  $dst, $mem\t# ushort/char" %}
4864 
4865   ins_encode %{
4866     __ movzwl($dst$$Register, $mem$$Address);
4867   %}
4868 
4869   ins_pipe(ialu_reg_mem);
4870 %}
4871 
4872 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
4873 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4874   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
4875 
4876   ins_cost(125);
4877   format %{ "movsbl $dst, $mem\t# ushort -> byte" %}
4878   ins_encode %{
4879     __ movsbl($dst$$Register, $mem$$Address);
4880   %}
4881   ins_pipe(ialu_reg_mem);
4882 %}
4883 
4884 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
4885 instruct loadUS2L(rRegL dst, memory mem)
4886 %{
4887   match(Set dst (ConvI2L (LoadUS mem)));
4888 
4889   ins_cost(125);
4890   format %{ "movzwq  $dst, $mem\t# ushort/char -> long" %}
4891 
4892   ins_encode %{
4893     __ movzwq($dst$$Register, $mem$$Address);
4894   %}
4895 
4896   ins_pipe(ialu_reg_mem);
4897 %}
4898 
4899 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
4900 instruct loadUS2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
4901   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
4902 
4903   format %{ "movzbq  $dst, $mem\t# ushort/char & 0xFF -> long" %}
4904   ins_encode %{
4905     __ movzbq($dst$$Register, $mem$$Address);
4906   %}
4907   ins_pipe(ialu_reg_mem);
4908 %}
4909 
4910 // Load Unsigned Short/Char (16 bit UNsigned) with 32-bit mask into Long Register
4911 instruct loadUS2L_immI(rRegL dst, memory mem, immI mask, rFlagsReg cr) %{
4912   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
4913   effect(KILL cr);
4914 
4915   format %{ "movzwq  $dst, $mem\t# ushort/char & 32-bit mask -> long\n\t"
4916             "andl    $dst, right_n_bits($mask, 16)" %}
4917   ins_encode %{
4918     Register Rdst = $dst$$Register;
4919     __ movzwq(Rdst, $mem$$Address);
4920     __ andl(Rdst, $mask$$constant & right_n_bits(16));
4921   %}
4922   ins_pipe(ialu_reg_mem);
4923 %}
4924 
4925 // Load Integer
4926 instruct loadI(rRegI dst, memory mem)
4927 %{
4928   match(Set dst (LoadI mem));
4929 
4930   ins_cost(125);
4931   format %{ "movl    $dst, $mem\t# int" %}
4932 
4933   ins_encode %{
4934     __ movl($dst$$Register, $mem$$Address);
4935   %}
4936 
4937   ins_pipe(ialu_reg_mem);
4938 %}
4939 
4940 // Load Integer (32 bit signed) to Byte (8 bit signed)
4941 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4942   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
4943 
4944   ins_cost(125);
4945   format %{ "movsbl  $dst, $mem\t# int -> byte" %}
4946   ins_encode %{
4947     __ movsbl($dst$$Register, $mem$$Address);
4948   %}
4949   ins_pipe(ialu_reg_mem);
4950 %}
4951 
4952 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
4953 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
4954   match(Set dst (AndI (LoadI mem) mask));
4955 
4956   ins_cost(125);
4957   format %{ "movzbl  $dst, $mem\t# int -> ubyte" %}
4958   ins_encode %{
4959     __ movzbl($dst$$Register, $mem$$Address);
4960   %}
4961   ins_pipe(ialu_reg_mem);
4962 %}
4963 
4964 // Load Integer (32 bit signed) to Short (16 bit signed)
4965 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
4966   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
4967 
4968   ins_cost(125);
4969   format %{ "movswl  $dst, $mem\t# int -> short" %}
4970   ins_encode %{
4971     __ movswl($dst$$Register, $mem$$Address);
4972   %}
4973   ins_pipe(ialu_reg_mem);
4974 %}
4975 
4976 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
4977 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
4978   match(Set dst (AndI (LoadI mem) mask));
4979 
4980   ins_cost(125);
4981   format %{ "movzwl  $dst, $mem\t# int -> ushort/char" %}
4982   ins_encode %{
4983     __ movzwl($dst$$Register, $mem$$Address);
4984   %}
4985   ins_pipe(ialu_reg_mem);
4986 %}
4987 
4988 // Load Integer into Long Register
4989 instruct loadI2L(rRegL dst, memory mem)
4990 %{
4991   match(Set dst (ConvI2L (LoadI mem)));
4992 
4993   ins_cost(125);
4994   format %{ "movslq  $dst, $mem\t# int -> long" %}
4995 
4996   ins_encode %{
4997     __ movslq($dst$$Register, $mem$$Address);
4998   %}
4999 
5000   ins_pipe(ialu_reg_mem);
5001 %}
5002 
5003 // Load Integer with mask 0xFF into Long Register
5004 instruct loadI2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
5005   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5006 
5007   format %{ "movzbq  $dst, $mem\t# int & 0xFF -> long" %}
5008   ins_encode %{
5009     __ movzbq($dst$$Register, $mem$$Address);
5010   %}
5011   ins_pipe(ialu_reg_mem);
5012 %}
5013 
5014 // Load Integer with mask 0xFFFF into Long Register
5015 instruct loadI2L_immI_65535(rRegL dst, memory mem, immI_65535 mask) %{
5016   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5017 
5018   format %{ "movzwq  $dst, $mem\t# int & 0xFFFF -> long" %}
5019   ins_encode %{
5020     __ movzwq($dst$$Register, $mem$$Address);
5021   %}
5022   ins_pipe(ialu_reg_mem);
5023 %}
5024 
5025 // Load Integer with a 31-bit mask into Long Register
5026 instruct loadI2L_immU31(rRegL dst, memory mem, immU31 mask, rFlagsReg cr) %{
5027   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5028   effect(KILL cr);
5029 
5030   format %{ "movl    $dst, $mem\t# int & 31-bit mask -> long\n\t"
5031             "andl    $dst, $mask" %}
5032   ins_encode %{
5033     Register Rdst = $dst$$Register;
5034     __ movl(Rdst, $mem$$Address);
5035     __ andl(Rdst, $mask$$constant);
5036   %}
5037   ins_pipe(ialu_reg_mem);
5038 %}
5039 
5040 // Load Unsigned Integer into Long Register
5041 instruct loadUI2L(rRegL dst, memory mem, immL_32bits mask)
5042 %{
5043   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5044 
5045   ins_cost(125);
5046   format %{ "movl    $dst, $mem\t# uint -> long" %}
5047 
5048   ins_encode %{
5049     __ movl($dst$$Register, $mem$$Address);
5050   %}
5051 
5052   ins_pipe(ialu_reg_mem);
5053 %}
5054 
5055 // Load Long
5056 instruct loadL(rRegL dst, memory mem)
5057 %{
5058   match(Set dst (LoadL mem));
5059 
5060   ins_cost(125);
5061   format %{ "movq    $dst, $mem\t# long" %}
5062 
5063   ins_encode %{
5064     __ movq($dst$$Register, $mem$$Address);
5065   %}
5066 
5067   ins_pipe(ialu_reg_mem); // XXX
5068 %}
5069 
5070 // Load Range
5071 instruct loadRange(rRegI dst, memory mem)
5072 %{
5073   match(Set dst (LoadRange mem));
5074 
5075   ins_cost(125); // XXX
5076   format %{ "movl    $dst, $mem\t# range" %}
5077   opcode(0x8B);
5078   ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
5079   ins_pipe(ialu_reg_mem);
5080 %}
5081 
5082 // Load Pointer
5083 instruct loadP(rRegP dst, memory mem)
5084 %{
5085   match(Set dst (LoadP mem));
5086   predicate(n->as_Load()->barrier_data() == 0);
5087 
5088   ins_cost(125); // XXX
5089   format %{ "movq    $dst, $mem\t# ptr" %}
5090   opcode(0x8B);
5091   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5092   ins_pipe(ialu_reg_mem); // XXX
5093 %}
5094 
5095 // Load Compressed Pointer
5096 instruct loadN(rRegN dst, memory mem)
5097 %{
5098    match(Set dst (LoadN mem));
5099 
5100    ins_cost(125); // XXX
5101    format %{ "movl    $dst, $mem\t# compressed ptr" %}
5102    ins_encode %{
5103      __ movl($dst$$Register, $mem$$Address);
5104    %}
5105    ins_pipe(ialu_reg_mem); // XXX
5106 %}
5107 
5108 
5109 // Load Klass Pointer
5110 instruct loadKlass(rRegP dst, memory mem)
5111 %{
5112   match(Set dst (LoadKlass mem));
5113 
5114   ins_cost(125); // XXX
5115   format %{ "movq    $dst, $mem\t# class" %}
5116   opcode(0x8B);
5117   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5118   ins_pipe(ialu_reg_mem); // XXX
5119 %}
5120 
5121 // Load narrow Klass Pointer
5122 instruct loadNKlass(rRegN dst, memory mem)
5123 %{
5124   match(Set dst (LoadNKlass mem));
5125 
5126   ins_cost(125); // XXX
5127   format %{ "movl    $dst, $mem\t# compressed klass ptr" %}
5128   ins_encode %{
5129     __ movl($dst$$Register, $mem$$Address);
5130   %}
5131   ins_pipe(ialu_reg_mem); // XXX
5132 %}
5133 
5134 // Load Float
5135 instruct loadF(regF dst, memory mem)
5136 %{
5137   match(Set dst (LoadF mem));
5138 
5139   ins_cost(145); // XXX
5140   format %{ "movss   $dst, $mem\t# float" %}
5141   ins_encode %{
5142     __ movflt($dst$$XMMRegister, $mem$$Address);
5143   %}
5144   ins_pipe(pipe_slow); // XXX
5145 %}
5146 
5147 // Load Float
5148 instruct MoveF2VL(vlRegF dst, regF src) %{
5149   match(Set dst src);
5150   format %{ "movss $dst,$src\t! load float (4 bytes)" %}
5151   ins_encode %{
5152     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5153   %}
5154   ins_pipe( fpu_reg_reg );
5155 %}
5156 
5157 // Load Float
5158 instruct MoveF2LEG(legRegF dst, regF src) %{
5159   match(Set dst src);
5160   format %{ "movss $dst,$src\t# if src != dst load float (4 bytes)" %}
5161   ins_encode %{
5162     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5163   %}
5164   ins_pipe( fpu_reg_reg );
5165 %}
5166 
5167 // Load Float
5168 instruct MoveVL2F(regF dst, vlRegF src) %{
5169   match(Set dst src);
5170   format %{ "movss $dst,$src\t! load float (4 bytes)" %}
5171   ins_encode %{
5172     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5173   %}
5174   ins_pipe( fpu_reg_reg );
5175 %}
5176 
5177 // Load Float
5178 instruct MoveLEG2F(regF dst, legRegF src) %{
5179   match(Set dst src);
5180   format %{ "movss $dst,$src\t# if src != dst load float (4 bytes)" %}
5181   ins_encode %{
5182     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
5183   %}
5184   ins_pipe( fpu_reg_reg );
5185 %}
5186 
5187 // Load Double
5188 instruct loadD_partial(regD dst, memory mem)
5189 %{
5190   predicate(!UseXmmLoadAndClearUpper);
5191   match(Set dst (LoadD mem));
5192 
5193   ins_cost(145); // XXX
5194   format %{ "movlpd  $dst, $mem\t# double" %}
5195   ins_encode %{
5196     __ movdbl($dst$$XMMRegister, $mem$$Address);
5197   %}
5198   ins_pipe(pipe_slow); // XXX
5199 %}
5200 
5201 instruct loadD(regD dst, memory mem)
5202 %{
5203   predicate(UseXmmLoadAndClearUpper);
5204   match(Set dst (LoadD mem));
5205 
5206   ins_cost(145); // XXX
5207   format %{ "movsd   $dst, $mem\t# double" %}
5208   ins_encode %{
5209     __ movdbl($dst$$XMMRegister, $mem$$Address);
5210   %}
5211   ins_pipe(pipe_slow); // XXX
5212 %}
5213 
5214 // Load Double
5215 instruct MoveD2VL(vlRegD dst, regD src) %{
5216   match(Set dst src);
5217   format %{ "movsd $dst,$src\t! load double (8 bytes)" %}
5218   ins_encode %{
5219     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5220   %}
5221   ins_pipe( fpu_reg_reg );
5222 %}
5223 
5224 // Load Double
5225 instruct MoveD2LEG(legRegD dst, regD src) %{
5226   match(Set dst src);
5227   format %{ "movsd $dst,$src\t# if src != dst load double (8 bytes)" %}
5228   ins_encode %{
5229     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5230   %}
5231   ins_pipe( fpu_reg_reg );
5232 %}
5233 
5234 // Load Double
5235 instruct MoveVL2D(regD dst, vlRegD src) %{
5236   match(Set dst src);
5237   format %{ "movsd $dst,$src\t! load double (8 bytes)" %}
5238   ins_encode %{
5239     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5240   %}
5241   ins_pipe( fpu_reg_reg );
5242 %}
5243 
5244 // Load Double
5245 instruct MoveLEG2D(regD dst, legRegD src) %{
5246   match(Set dst src);
5247   format %{ "movsd $dst,$src\t# if src != dst load double (8 bytes)" %}
5248   ins_encode %{
5249     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
5250   %}
5251   ins_pipe( fpu_reg_reg );
5252 %}
5253 
5254 // Following pseudo code describes the algorithm for max[FD]:
5255 // Min algorithm is on similar lines
5256 //  btmp = (b < +0.0) ? a : b
5257 //  atmp = (b < +0.0) ? b : a
5258 //  Tmp  = Max_Float(atmp , btmp)
5259 //  Res  = (atmp == NaN) ? atmp : Tmp
5260 
5261 // max = java.lang.Math.max(float a, float b)
5262 instruct maxF_reg(legRegF dst, legRegF a, legRegF b, legRegF tmp, legRegF atmp, legRegF btmp) %{
5263   predicate(UseAVX > 0 && !n->is_reduction());
5264   match(Set dst (MaxF a b));
5265   effect(USE a, USE b, TEMP tmp, TEMP atmp, TEMP btmp);
5266   format %{
5267      "blendvps         $btmp,$b,$a,$b           \n\t"
5268      "blendvps         $atmp,$a,$b,$b           \n\t"
5269      "vmaxss           $tmp,$atmp,$btmp         \n\t"
5270      "cmpps.unordered  $btmp,$atmp,$atmp        \n\t"
5271      "blendvps         $dst,$tmp,$atmp,$btmp    \n\t"
5272   %}
5273   ins_encode %{
5274     int vector_len = Assembler::AVX_128bit;
5275     __ blendvps($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, vector_len);
5276     __ blendvps($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $b$$XMMRegister, vector_len);
5277     __ vmaxss($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5278     __ cmpps($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5279     __ blendvps($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5280  %}
5281   ins_pipe( pipe_slow );
5282 %}
5283 
5284 instruct maxF_reduction_reg(legRegF dst, legRegF a, legRegF b, legRegF xmmt, rRegI tmp, rFlagsReg cr) %{
5285   predicate(UseAVX > 0 && n->is_reduction());
5286   match(Set dst (MaxF a b));
5287   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5288 
5289   format %{ "$dst = max($a, $b)\t# intrinsic (float)" %}
5290   ins_encode %{
5291     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5292                     false /*min*/, true /*single*/);
5293   %}
5294   ins_pipe( pipe_slow );
5295 %}
5296 
5297 // max = java.lang.Math.max(double a, double b)
5298 instruct maxD_reg(legRegD dst, legRegD a, legRegD b, legRegD tmp, legRegD atmp, legRegD btmp) %{
5299   predicate(UseAVX > 0 && !n->is_reduction());
5300   match(Set dst (MaxD a b));
5301   effect(USE a, USE b, TEMP atmp, TEMP btmp, TEMP tmp);
5302   format %{
5303      "blendvpd         $btmp,$b,$a,$b            \n\t"
5304      "blendvpd         $atmp,$a,$b,$b            \n\t"
5305      "vmaxsd           $tmp,$atmp,$btmp          \n\t"
5306      "cmppd.unordered  $btmp,$atmp,$atmp         \n\t"
5307      "blendvpd         $dst,$tmp,$atmp,$btmp     \n\t"
5308   %}
5309   ins_encode %{
5310     int vector_len = Assembler::AVX_128bit;
5311     __ blendvpd($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, vector_len);
5312     __ blendvpd($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $b$$XMMRegister, vector_len);
5313     __ vmaxsd($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5314     __ cmppd($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5315     __ blendvpd($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5316   %}
5317   ins_pipe( pipe_slow );
5318 %}
5319 
5320 instruct maxD_reduction_reg(legRegD dst, legRegD a, legRegD b, legRegD xmmt, rRegL tmp, rFlagsReg cr) %{
5321   predicate(UseAVX > 0 && n->is_reduction());
5322   match(Set dst (MaxD a b));
5323   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5324 
5325   format %{ "$dst = max($a, $b)\t# intrinsic (double)" %}
5326   ins_encode %{
5327     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5328                     false /*min*/, false /*single*/);
5329   %}
5330   ins_pipe( pipe_slow );
5331 %}
5332 
5333 // min = java.lang.Math.min(float a, float b)
5334 instruct minF_reg(legRegF dst, legRegF a, legRegF b, legRegF tmp, legRegF atmp, legRegF btmp) %{
5335   predicate(UseAVX > 0 && !n->is_reduction());
5336   match(Set dst (MinF a b));
5337   effect(USE a, USE b, TEMP tmp, TEMP atmp, TEMP btmp);
5338   format %{
5339      "blendvps         $atmp,$a,$b,$a             \n\t"
5340      "blendvps         $btmp,$b,$a,$a             \n\t"
5341      "vminss           $tmp,$atmp,$btmp           \n\t"
5342      "cmpps.unordered  $btmp,$atmp,$atmp          \n\t"
5343      "blendvps         $dst,$tmp,$atmp,$btmp      \n\t"
5344   %}
5345   ins_encode %{
5346     int vector_len = Assembler::AVX_128bit;
5347     __ blendvps($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, vector_len);
5348     __ blendvps($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $a$$XMMRegister, vector_len);
5349     __ vminss($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5350     __ cmpps($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5351     __ blendvps($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5352   %}
5353   ins_pipe( pipe_slow );
5354 %}
5355 
5356 instruct minF_reduction_reg(legRegF dst, legRegF a, legRegF b, legRegF xmmt, rRegI tmp, rFlagsReg cr) %{
5357   predicate(UseAVX > 0 && n->is_reduction());
5358   match(Set dst (MinF a b));
5359   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5360 
5361   format %{ "$dst = min($a, $b)\t# intrinsic (float)" %}
5362   ins_encode %{
5363     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5364                     true /*min*/, true /*single*/);
5365   %}
5366   ins_pipe( pipe_slow );
5367 %}
5368 
5369 // min = java.lang.Math.min(double a, double b)
5370 instruct minD_reg(legRegD dst, legRegD a, legRegD b, legRegD tmp, legRegD atmp, legRegD btmp) %{
5371   predicate(UseAVX > 0 && !n->is_reduction());
5372   match(Set dst (MinD a b));
5373   effect(USE a, USE b, TEMP tmp, TEMP atmp, TEMP btmp);
5374   format %{
5375      "blendvpd         $atmp,$a,$b,$a           \n\t"
5376      "blendvpd         $btmp,$b,$a,$a           \n\t"
5377      "vminsd           $tmp,$atmp,$btmp         \n\t"
5378      "cmppd.unordered  $btmp,$atmp,$atmp        \n\t"
5379      "blendvpd         $dst,$tmp,$atmp,$btmp    \n\t"
5380   %}
5381   ins_encode %{
5382     int vector_len = Assembler::AVX_128bit;
5383     __ blendvpd($atmp$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, vector_len);
5384     __ blendvpd($btmp$$XMMRegister, $b$$XMMRegister, $a$$XMMRegister, $a$$XMMRegister, vector_len);
5385     __ vminsd($tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister);
5386     __ cmppd($btmp$$XMMRegister, $atmp$$XMMRegister, $atmp$$XMMRegister, Assembler::_false, vector_len);
5387     __ blendvpd($dst$$XMMRegister, $tmp$$XMMRegister, $atmp$$XMMRegister, $btmp$$XMMRegister, vector_len);
5388   %}
5389   ins_pipe( pipe_slow );
5390 %}
5391 
5392 instruct minD_reduction_reg(legRegD dst, legRegD a, legRegD b, legRegD xmmt, rRegL tmp, rFlagsReg cr) %{
5393   predicate(UseAVX > 0 && n->is_reduction());
5394   match(Set dst (MinD a b));
5395   effect(USE a, USE b, TEMP xmmt, TEMP tmp, KILL cr);
5396 
5397   format %{ "$dst = min($a, $b)\t# intrinsic (double)" %}
5398   ins_encode %{
5399     emit_fp_min_max(_masm, $dst$$XMMRegister, $a$$XMMRegister, $b$$XMMRegister, $xmmt$$XMMRegister, $tmp$$Register,
5400                     true /*min*/, false /*single*/);
5401   %}
5402   ins_pipe( pipe_slow );
5403 %}
5404 
5405 // Load Effective Address
5406 instruct leaP8(rRegP dst, indOffset8 mem)
5407 %{
5408   match(Set dst mem);
5409 
5410   ins_cost(110); // XXX
5411   format %{ "leaq    $dst, $mem\t# ptr 8" %}
5412   opcode(0x8D);
5413   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5414   ins_pipe(ialu_reg_reg_fat);
5415 %}
5416 
5417 instruct leaP32(rRegP dst, indOffset32 mem)
5418 %{
5419   match(Set dst mem);
5420 
5421   ins_cost(110);
5422   format %{ "leaq    $dst, $mem\t# ptr 32" %}
5423   opcode(0x8D);
5424   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5425   ins_pipe(ialu_reg_reg_fat);
5426 %}
5427 
5428 // instruct leaPIdx(rRegP dst, indIndex mem)
5429 // %{
5430 //   match(Set dst mem);
5431 
5432 //   ins_cost(110);
5433 //   format %{ "leaq    $dst, $mem\t# ptr idx" %}
5434 //   opcode(0x8D);
5435 //   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5436 //   ins_pipe(ialu_reg_reg_fat);
5437 // %}
5438 
5439 instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
5440 %{
5441   match(Set dst mem);
5442 
5443   ins_cost(110);
5444   format %{ "leaq    $dst, $mem\t# ptr idxoff" %}
5445   opcode(0x8D);
5446   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5447   ins_pipe(ialu_reg_reg_fat);
5448 %}
5449 
5450 instruct leaPIdxScale(rRegP dst, indIndexScale mem)
5451 %{
5452   match(Set dst mem);
5453 
5454   ins_cost(110);
5455   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
5456   opcode(0x8D);
5457   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5458   ins_pipe(ialu_reg_reg_fat);
5459 %}
5460 
5461 instruct leaPPosIdxScale(rRegP dst, indPosIndexScale mem)
5462 %{
5463   match(Set dst mem);
5464 
5465   ins_cost(110);
5466   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
5467   opcode(0x8D);
5468   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5469   ins_pipe(ialu_reg_reg_fat);
5470 %}
5471 
5472 instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
5473 %{
5474   match(Set dst mem);
5475 
5476   ins_cost(110);
5477   format %{ "leaq    $dst, $mem\t# ptr idxscaleoff" %}
5478   opcode(0x8D);
5479   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5480   ins_pipe(ialu_reg_reg_fat);
5481 %}
5482 
5483 instruct leaPPosIdxOff(rRegP dst, indPosIndexOffset mem)
5484 %{
5485   match(Set dst mem);
5486 
5487   ins_cost(110);
5488   format %{ "leaq    $dst, $mem\t# ptr posidxoff" %}
5489   opcode(0x8D);
5490   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5491   ins_pipe(ialu_reg_reg_fat);
5492 %}
5493 
5494 instruct leaPPosIdxScaleOff(rRegP dst, indPosIndexScaleOffset mem)
5495 %{
5496   match(Set dst mem);
5497 
5498   ins_cost(110);
5499   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoff" %}
5500   opcode(0x8D);
5501   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5502   ins_pipe(ialu_reg_reg_fat);
5503 %}
5504 
5505 // Load Effective Address which uses Narrow (32-bits) oop
5506 instruct leaPCompressedOopOffset(rRegP dst, indCompressedOopOffset mem)
5507 %{
5508   predicate(UseCompressedOops && (CompressedOops::shift() != 0));
5509   match(Set dst mem);
5510 
5511   ins_cost(110);
5512   format %{ "leaq    $dst, $mem\t# ptr compressedoopoff32" %}
5513   opcode(0x8D);
5514   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5515   ins_pipe(ialu_reg_reg_fat);
5516 %}
5517 
5518 instruct leaP8Narrow(rRegP dst, indOffset8Narrow mem)
5519 %{
5520   predicate(CompressedOops::shift() == 0);
5521   match(Set dst mem);
5522 
5523   ins_cost(110); // XXX
5524   format %{ "leaq    $dst, $mem\t# ptr off8narrow" %}
5525   opcode(0x8D);
5526   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5527   ins_pipe(ialu_reg_reg_fat);
5528 %}
5529 
5530 instruct leaP32Narrow(rRegP dst, indOffset32Narrow mem)
5531 %{
5532   predicate(CompressedOops::shift() == 0);
5533   match(Set dst mem);
5534 
5535   ins_cost(110);
5536   format %{ "leaq    $dst, $mem\t# ptr off32narrow" %}
5537   opcode(0x8D);
5538   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5539   ins_pipe(ialu_reg_reg_fat);
5540 %}
5541 
5542 instruct leaPIdxOffNarrow(rRegP dst, indIndexOffsetNarrow mem)
5543 %{
5544   predicate(CompressedOops::shift() == 0);
5545   match(Set dst mem);
5546 
5547   ins_cost(110);
5548   format %{ "leaq    $dst, $mem\t# ptr idxoffnarrow" %}
5549   opcode(0x8D);
5550   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5551   ins_pipe(ialu_reg_reg_fat);
5552 %}
5553 
5554 instruct leaPIdxScaleNarrow(rRegP dst, indIndexScaleNarrow mem)
5555 %{
5556   predicate(CompressedOops::shift() == 0);
5557   match(Set dst mem);
5558 
5559   ins_cost(110);
5560   format %{ "leaq    $dst, $mem\t# ptr idxscalenarrow" %}
5561   opcode(0x8D);
5562   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5563   ins_pipe(ialu_reg_reg_fat);
5564 %}
5565 
5566 instruct leaPIdxScaleOffNarrow(rRegP dst, indIndexScaleOffsetNarrow mem)
5567 %{
5568   predicate(CompressedOops::shift() == 0);
5569   match(Set dst mem);
5570 
5571   ins_cost(110);
5572   format %{ "leaq    $dst, $mem\t# ptr idxscaleoffnarrow" %}
5573   opcode(0x8D);
5574   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5575   ins_pipe(ialu_reg_reg_fat);
5576 %}
5577 
5578 instruct leaPPosIdxOffNarrow(rRegP dst, indPosIndexOffsetNarrow mem)
5579 %{
5580   predicate(CompressedOops::shift() == 0);
5581   match(Set dst mem);
5582 
5583   ins_cost(110);
5584   format %{ "leaq    $dst, $mem\t# ptr posidxoffnarrow" %}
5585   opcode(0x8D);
5586   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5587   ins_pipe(ialu_reg_reg_fat);
5588 %}
5589 
5590 instruct leaPPosIdxScaleOffNarrow(rRegP dst, indPosIndexScaleOffsetNarrow mem)
5591 %{
5592   predicate(CompressedOops::shift() == 0);
5593   match(Set dst mem);
5594 
5595   ins_cost(110);
5596   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoffnarrow" %}
5597   opcode(0x8D);
5598   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5599   ins_pipe(ialu_reg_reg_fat);
5600 %}
5601 
5602 instruct loadConI(rRegI dst, immI src)
5603 %{
5604   match(Set dst src);
5605 
5606   format %{ "movl    $dst, $src\t# int" %}
5607   ins_encode(load_immI(dst, src));
5608   ins_pipe(ialu_reg_fat); // XXX
5609 %}
5610 
5611 instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
5612 %{
5613   match(Set dst src);
5614   effect(KILL cr);
5615 
5616   ins_cost(50);
5617   format %{ "xorl    $dst, $dst\t# int" %}
5618   opcode(0x33); /* + rd */
5619   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5620   ins_pipe(ialu_reg);
5621 %}
5622 
5623 instruct loadConL(rRegL dst, immL src)
5624 %{
5625   match(Set dst src);
5626 
5627   ins_cost(150);
5628   format %{ "movq    $dst, $src\t# long" %}
5629   ins_encode(load_immL(dst, src));
5630   ins_pipe(ialu_reg);
5631 %}
5632 
5633 instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
5634 %{
5635   match(Set dst src);
5636   effect(KILL cr);
5637 
5638   ins_cost(50);
5639   format %{ "xorl    $dst, $dst\t# long" %}
5640   opcode(0x33); /* + rd */
5641   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5642   ins_pipe(ialu_reg); // XXX
5643 %}
5644 
5645 instruct loadConUL32(rRegL dst, immUL32 src)
5646 %{
5647   match(Set dst src);
5648 
5649   ins_cost(60);
5650   format %{ "movl    $dst, $src\t# long (unsigned 32-bit)" %}
5651   ins_encode(load_immUL32(dst, src));
5652   ins_pipe(ialu_reg);
5653 %}
5654 
5655 instruct loadConL32(rRegL dst, immL32 src)
5656 %{
5657   match(Set dst src);
5658 
5659   ins_cost(70);
5660   format %{ "movq    $dst, $src\t# long (32-bit)" %}
5661   ins_encode(load_immL32(dst, src));
5662   ins_pipe(ialu_reg);
5663 %}
5664 
5665 instruct loadConP(rRegP dst, immP con) %{
5666   match(Set dst con);
5667 
5668   format %{ "movq    $dst, $con\t# ptr" %}
5669   ins_encode(load_immP(dst, con));
5670   ins_pipe(ialu_reg_fat); // XXX
5671 %}
5672 
5673 instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
5674 %{
5675   match(Set dst src);
5676   effect(KILL cr);
5677 
5678   ins_cost(50);
5679   format %{ "xorl    $dst, $dst\t# ptr" %}
5680   opcode(0x33); /* + rd */
5681   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5682   ins_pipe(ialu_reg);
5683 %}
5684 
5685 instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
5686 %{
5687   match(Set dst src);
5688   effect(KILL cr);
5689 
5690   ins_cost(60);
5691   format %{ "movl    $dst, $src\t# ptr (positive 32-bit)" %}
5692   ins_encode(load_immP31(dst, src));
5693   ins_pipe(ialu_reg);
5694 %}
5695 
5696 instruct loadConF(regF dst, immF con) %{
5697   match(Set dst con);
5698   ins_cost(125);
5699   format %{ "movss   $dst, [$constantaddress]\t# load from constant table: float=$con" %}
5700   ins_encode %{
5701     __ movflt($dst$$XMMRegister, $constantaddress($con));
5702   %}
5703   ins_pipe(pipe_slow);
5704 %}
5705 
5706 instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
5707   match(Set dst src);
5708   effect(KILL cr);
5709   format %{ "xorq    $dst, $src\t# compressed NULL ptr" %}
5710   ins_encode %{
5711     __ xorq($dst$$Register, $dst$$Register);
5712   %}
5713   ins_pipe(ialu_reg);
5714 %}
5715 
5716 instruct loadConN(rRegN dst, immN src) %{
5717   match(Set dst src);
5718 
5719   ins_cost(125);
5720   format %{ "movl    $dst, $src\t# compressed ptr" %}
5721   ins_encode %{
5722     address con = (address)$src$$constant;
5723     if (con == NULL) {
5724       ShouldNotReachHere();
5725     } else {
5726       __ set_narrow_oop($dst$$Register, (jobject)$src$$constant);
5727     }
5728   %}
5729   ins_pipe(ialu_reg_fat); // XXX
5730 %}
5731 
5732 instruct loadConNKlass(rRegN dst, immNKlass src) %{
5733   match(Set dst src);
5734 
5735   ins_cost(125);
5736   format %{ "movl    $dst, $src\t# compressed klass ptr" %}
5737   ins_encode %{
5738     address con = (address)$src$$constant;
5739     if (con == NULL) {
5740       ShouldNotReachHere();
5741     } else {
5742       __ set_narrow_klass($dst$$Register, (Klass*)$src$$constant);
5743     }
5744   %}
5745   ins_pipe(ialu_reg_fat); // XXX
5746 %}
5747 
5748 instruct loadConF0(regF dst, immF0 src)
5749 %{
5750   match(Set dst src);
5751   ins_cost(100);
5752 
5753   format %{ "xorps   $dst, $dst\t# float 0.0" %}
5754   ins_encode %{
5755     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
5756   %}
5757   ins_pipe(pipe_slow);
5758 %}
5759 
5760 // Use the same format since predicate() can not be used here.
5761 instruct loadConD(regD dst, immD con) %{
5762   match(Set dst con);
5763   ins_cost(125);
5764   format %{ "movsd   $dst, [$constantaddress]\t# load from constant table: double=$con" %}
5765   ins_encode %{
5766     __ movdbl($dst$$XMMRegister, $constantaddress($con));
5767   %}
5768   ins_pipe(pipe_slow);
5769 %}
5770 
5771 instruct loadConD0(regD dst, immD0 src)
5772 %{
5773   match(Set dst src);
5774   ins_cost(100);
5775 
5776   format %{ "xorpd   $dst, $dst\t# double 0.0" %}
5777   ins_encode %{
5778     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
5779   %}
5780   ins_pipe(pipe_slow);
5781 %}
5782 
5783 instruct loadSSI(rRegI dst, stackSlotI src)
5784 %{
5785   match(Set dst src);
5786 
5787   ins_cost(125);
5788   format %{ "movl    $dst, $src\t# int stk" %}
5789   opcode(0x8B);
5790   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
5791   ins_pipe(ialu_reg_mem);
5792 %}
5793 
5794 instruct loadSSL(rRegL dst, stackSlotL src)
5795 %{
5796   match(Set dst src);
5797 
5798   ins_cost(125);
5799   format %{ "movq    $dst, $src\t# long stk" %}
5800   opcode(0x8B);
5801   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5802   ins_pipe(ialu_reg_mem);
5803 %}
5804 
5805 instruct loadSSP(rRegP dst, stackSlotP src)
5806 %{
5807   match(Set dst src);
5808 
5809   ins_cost(125);
5810   format %{ "movq    $dst, $src\t# ptr stk" %}
5811   opcode(0x8B);
5812   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5813   ins_pipe(ialu_reg_mem);
5814 %}
5815 
5816 instruct loadSSF(regF dst, stackSlotF src)
5817 %{
5818   match(Set dst src);
5819 
5820   ins_cost(125);
5821   format %{ "movss   $dst, $src\t# float stk" %}
5822   ins_encode %{
5823     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
5824   %}
5825   ins_pipe(pipe_slow); // XXX
5826 %}
5827 
5828 // Use the same format since predicate() can not be used here.
5829 instruct loadSSD(regD dst, stackSlotD src)
5830 %{
5831   match(Set dst src);
5832 
5833   ins_cost(125);
5834   format %{ "movsd   $dst, $src\t# double stk" %}
5835   ins_encode  %{
5836     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
5837   %}
5838   ins_pipe(pipe_slow); // XXX
5839 %}
5840 
5841 // Prefetch instructions for allocation.
5842 // Must be safe to execute with invalid address (cannot fault).
5843 
5844 instruct prefetchAlloc( memory mem ) %{
5845   predicate(AllocatePrefetchInstr==3);
5846   match(PrefetchAllocation mem);
5847   ins_cost(125);
5848 
5849   format %{ "PREFETCHW $mem\t# Prefetch allocation into level 1 cache and mark modified" %}
5850   ins_encode %{
5851     __ prefetchw($mem$$Address);
5852   %}
5853   ins_pipe(ialu_mem);
5854 %}
5855 
5856 instruct prefetchAllocNTA( memory mem ) %{
5857   predicate(AllocatePrefetchInstr==0);
5858   match(PrefetchAllocation mem);
5859   ins_cost(125);
5860 
5861   format %{ "PREFETCHNTA $mem\t# Prefetch allocation to non-temporal cache for write" %}
5862   ins_encode %{
5863     __ prefetchnta($mem$$Address);
5864   %}
5865   ins_pipe(ialu_mem);
5866 %}
5867 
5868 instruct prefetchAllocT0( memory mem ) %{
5869   predicate(AllocatePrefetchInstr==1);
5870   match(PrefetchAllocation mem);
5871   ins_cost(125);
5872 
5873   format %{ "PREFETCHT0 $mem\t# Prefetch allocation to level 1 and 2 caches for write" %}
5874   ins_encode %{
5875     __ prefetcht0($mem$$Address);
5876   %}
5877   ins_pipe(ialu_mem);
5878 %}
5879 
5880 instruct prefetchAllocT2( memory mem ) %{
5881   predicate(AllocatePrefetchInstr==2);
5882   match(PrefetchAllocation mem);
5883   ins_cost(125);
5884 
5885   format %{ "PREFETCHT2 $mem\t# Prefetch allocation to level 2 cache for write" %}
5886   ins_encode %{
5887     __ prefetcht2($mem$$Address);
5888   %}
5889   ins_pipe(ialu_mem);
5890 %}
5891 
5892 //----------Store Instructions-------------------------------------------------
5893 
5894 // Store Byte
5895 instruct storeB(memory mem, rRegI src)
5896 %{
5897   match(Set mem (StoreB mem src));
5898 
5899   ins_cost(125); // XXX
5900   format %{ "movb    $mem, $src\t# byte" %}
5901   opcode(0x88);
5902   ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
5903   ins_pipe(ialu_mem_reg);
5904 %}
5905 
5906 // Store Char/Short
5907 instruct storeC(memory mem, rRegI src)
5908 %{
5909   match(Set mem (StoreC mem src));
5910 
5911   ins_cost(125); // XXX
5912   format %{ "movw    $mem, $src\t# char/short" %}
5913   opcode(0x89);
5914   ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5915   ins_pipe(ialu_mem_reg);
5916 %}
5917 
5918 // Store Integer
5919 instruct storeI(memory mem, rRegI src)
5920 %{
5921   match(Set mem (StoreI mem src));
5922 
5923   ins_cost(125); // XXX
5924   format %{ "movl    $mem, $src\t# int" %}
5925   opcode(0x89);
5926   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5927   ins_pipe(ialu_mem_reg);
5928 %}
5929 
5930 // Store Long
5931 instruct storeL(memory mem, rRegL src)
5932 %{
5933   match(Set mem (StoreL mem src));
5934 
5935   ins_cost(125); // XXX
5936   format %{ "movq    $mem, $src\t# long" %}
5937   opcode(0x89);
5938   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
5939   ins_pipe(ialu_mem_reg); // XXX
5940 %}
5941 
5942 // Store Pointer
5943 instruct storeP(memory mem, any_RegP src)
5944 %{
5945   match(Set mem (StoreP mem src));
5946 
5947   ins_cost(125); // XXX
5948   format %{ "movq    $mem, $src\t# ptr" %}
5949   opcode(0x89);
5950   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
5951   ins_pipe(ialu_mem_reg);
5952 %}
5953 
5954 instruct storeImmP0(memory mem, immP0 zero)
5955 %{
5956   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
5957   match(Set mem (StoreP mem zero));
5958 
5959   ins_cost(125); // XXX
5960   format %{ "movq    $mem, R12\t# ptr (R12_heapbase==0)" %}
5961   ins_encode %{
5962     __ movq($mem$$Address, r12);
5963   %}
5964   ins_pipe(ialu_mem_reg);
5965 %}
5966 
5967 // Store NULL Pointer, mark word, or other simple pointer constant.
5968 instruct storeImmP(memory mem, immP31 src)
5969 %{
5970   match(Set mem (StoreP mem src));
5971 
5972   ins_cost(150); // XXX
5973   format %{ "movq    $mem, $src\t# ptr" %}
5974   opcode(0xC7); /* C7 /0 */
5975   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
5976   ins_pipe(ialu_mem_imm);
5977 %}
5978 
5979 // Store Compressed Pointer
5980 instruct storeN(memory mem, rRegN src)
5981 %{
5982   match(Set mem (StoreN mem src));
5983 
5984   ins_cost(125); // XXX
5985   format %{ "movl    $mem, $src\t# compressed ptr" %}
5986   ins_encode %{
5987     __ movl($mem$$Address, $src$$Register);
5988   %}
5989   ins_pipe(ialu_mem_reg);
5990 %}
5991 
5992 instruct storeNKlass(memory mem, rRegN src)
5993 %{
5994   match(Set mem (StoreNKlass mem src));
5995 
5996   ins_cost(125); // XXX
5997   format %{ "movl    $mem, $src\t# compressed klass ptr" %}
5998   ins_encode %{
5999     __ movl($mem$$Address, $src$$Register);
6000   %}
6001   ins_pipe(ialu_mem_reg);
6002 %}
6003 
6004 instruct storeImmN0(memory mem, immN0 zero)
6005 %{
6006   predicate(CompressedOops::base() == NULL);
6007   match(Set mem (StoreN mem zero));
6008 
6009   ins_cost(125); // XXX
6010   format %{ "movl    $mem, R12\t# compressed ptr (R12_heapbase==0)" %}
6011   ins_encode %{
6012     __ movl($mem$$Address, r12);
6013   %}
6014   ins_pipe(ialu_mem_reg);
6015 %}
6016 
6017 instruct storeImmN(memory mem, immN src)
6018 %{
6019   match(Set mem (StoreN mem src));
6020 
6021   ins_cost(150); // XXX
6022   format %{ "movl    $mem, $src\t# compressed ptr" %}
6023   ins_encode %{
6024     address con = (address)$src$$constant;
6025     if (con == NULL) {
6026       __ movl($mem$$Address, (int32_t)0);
6027     } else {
6028       __ set_narrow_oop($mem$$Address, (jobject)$src$$constant);
6029     }
6030   %}
6031   ins_pipe(ialu_mem_imm);
6032 %}
6033 
6034 instruct storeImmNKlass(memory mem, immNKlass src)
6035 %{
6036   match(Set mem (StoreNKlass mem src));
6037 
6038   ins_cost(150); // XXX
6039   format %{ "movl    $mem, $src\t# compressed klass ptr" %}
6040   ins_encode %{
6041     __ set_narrow_klass($mem$$Address, (Klass*)$src$$constant);
6042   %}
6043   ins_pipe(ialu_mem_imm);
6044 %}
6045 
6046 // Store Integer Immediate
6047 instruct storeImmI0(memory mem, immI0 zero)
6048 %{
6049   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
6050   match(Set mem (StoreI mem zero));
6051 
6052   ins_cost(125); // XXX
6053   format %{ "movl    $mem, R12\t# int (R12_heapbase==0)" %}
6054   ins_encode %{
6055     __ movl($mem$$Address, r12);
6056   %}
6057   ins_pipe(ialu_mem_reg);
6058 %}
6059 
6060 instruct storeImmI(memory mem, immI src)
6061 %{
6062   match(Set mem (StoreI mem src));
6063 
6064   ins_cost(150);
6065   format %{ "movl    $mem, $src\t# int" %}
6066   opcode(0xC7); /* C7 /0 */
6067   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6068   ins_pipe(ialu_mem_imm);
6069 %}
6070 
6071 // Store Long Immediate
6072 instruct storeImmL0(memory mem, immL0 zero)
6073 %{
6074   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
6075   match(Set mem (StoreL mem zero));
6076 
6077   ins_cost(125); // XXX
6078   format %{ "movq    $mem, R12\t# long (R12_heapbase==0)" %}
6079   ins_encode %{
6080     __ movq($mem$$Address, r12);
6081   %}
6082   ins_pipe(ialu_mem_reg);
6083 %}
6084 
6085 instruct storeImmL(memory mem, immL32 src)
6086 %{
6087   match(Set mem (StoreL mem src));
6088 
6089   ins_cost(150);
6090   format %{ "movq    $mem, $src\t# long" %}
6091   opcode(0xC7); /* C7 /0 */
6092   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
6093   ins_pipe(ialu_mem_imm);
6094 %}
6095 
6096 // Store Short/Char Immediate
6097 instruct storeImmC0(memory mem, immI0 zero)
6098 %{
6099   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
6100   match(Set mem (StoreC mem zero));
6101 
6102   ins_cost(125); // XXX
6103   format %{ "movw    $mem, R12\t# short/char (R12_heapbase==0)" %}
6104   ins_encode %{
6105     __ movw($mem$$Address, r12);
6106   %}
6107   ins_pipe(ialu_mem_reg);
6108 %}
6109 
6110 instruct storeImmI16(memory mem, immI16 src)
6111 %{
6112   predicate(UseStoreImmI16);
6113   match(Set mem (StoreC mem src));
6114 
6115   ins_cost(150);
6116   format %{ "movw    $mem, $src\t# short/char" %}
6117   opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
6118   ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
6119   ins_pipe(ialu_mem_imm);
6120 %}
6121 
6122 // Store Byte Immediate
6123 instruct storeImmB0(memory mem, immI0 zero)
6124 %{
6125   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
6126   match(Set mem (StoreB mem zero));
6127 
6128   ins_cost(125); // XXX
6129   format %{ "movb    $mem, R12\t# short/char (R12_heapbase==0)" %}
6130   ins_encode %{
6131     __ movb($mem$$Address, r12);
6132   %}
6133   ins_pipe(ialu_mem_reg);
6134 %}
6135 
6136 instruct storeImmB(memory mem, immI8 src)
6137 %{
6138   match(Set mem (StoreB mem src));
6139 
6140   ins_cost(150); // XXX
6141   format %{ "movb    $mem, $src\t# byte" %}
6142   opcode(0xC6); /* C6 /0 */
6143   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6144   ins_pipe(ialu_mem_imm);
6145 %}
6146 
6147 // Store CMS card-mark Immediate
6148 instruct storeImmCM0_reg(memory mem, immI0 zero)
6149 %{
6150   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
6151   match(Set mem (StoreCM mem zero));
6152 
6153   ins_cost(125); // XXX
6154   format %{ "movb    $mem, R12\t# CMS card-mark byte 0 (R12_heapbase==0)" %}
6155   ins_encode %{
6156     __ movb($mem$$Address, r12);
6157   %}
6158   ins_pipe(ialu_mem_reg);
6159 %}
6160 
6161 instruct storeImmCM0(memory mem, immI0 src)
6162 %{
6163   match(Set mem (StoreCM mem src));
6164 
6165   ins_cost(150); // XXX
6166   format %{ "movb    $mem, $src\t# CMS card-mark byte 0" %}
6167   opcode(0xC6); /* C6 /0 */
6168   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
6169   ins_pipe(ialu_mem_imm);
6170 %}
6171 
6172 // Store Float
6173 instruct storeF(memory mem, regF src)
6174 %{
6175   match(Set mem (StoreF mem src));
6176 
6177   ins_cost(95); // XXX
6178   format %{ "movss   $mem, $src\t# float" %}
6179   ins_encode %{
6180     __ movflt($mem$$Address, $src$$XMMRegister);
6181   %}
6182   ins_pipe(pipe_slow); // XXX
6183 %}
6184 
6185 // Store immediate Float value (it is faster than store from XMM register)
6186 instruct storeF0(memory mem, immF0 zero)
6187 %{
6188   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
6189   match(Set mem (StoreF mem zero));
6190 
6191   ins_cost(25); // XXX
6192   format %{ "movl    $mem, R12\t# float 0. (R12_heapbase==0)" %}
6193   ins_encode %{
6194     __ movl($mem$$Address, r12);
6195   %}
6196   ins_pipe(ialu_mem_reg);
6197 %}
6198 
6199 instruct storeF_imm(memory mem, immF src)
6200 %{
6201   match(Set mem (StoreF mem src));
6202 
6203   ins_cost(50);
6204   format %{ "movl    $mem, $src\t# float" %}
6205   opcode(0xC7); /* C7 /0 */
6206   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6207   ins_pipe(ialu_mem_imm);
6208 %}
6209 
6210 // Store Double
6211 instruct storeD(memory mem, regD src)
6212 %{
6213   match(Set mem (StoreD mem src));
6214 
6215   ins_cost(95); // XXX
6216   format %{ "movsd   $mem, $src\t# double" %}
6217   ins_encode %{
6218     __ movdbl($mem$$Address, $src$$XMMRegister);
6219   %}
6220   ins_pipe(pipe_slow); // XXX
6221 %}
6222 
6223 // Store immediate double 0.0 (it is faster than store from XMM register)
6224 instruct storeD0_imm(memory mem, immD0 src)
6225 %{
6226   predicate(!UseCompressedOops || (CompressedOops::base() != NULL));
6227   match(Set mem (StoreD mem src));
6228 
6229   ins_cost(50);
6230   format %{ "movq    $mem, $src\t# double 0." %}
6231   opcode(0xC7); /* C7 /0 */
6232   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
6233   ins_pipe(ialu_mem_imm);
6234 %}
6235 
6236 instruct storeD0(memory mem, immD0 zero)
6237 %{
6238   predicate(UseCompressedOops && (CompressedOops::base() == NULL));
6239   match(Set mem (StoreD mem zero));
6240 
6241   ins_cost(25); // XXX
6242   format %{ "movq    $mem, R12\t# double 0. (R12_heapbase==0)" %}
6243   ins_encode %{
6244     __ movq($mem$$Address, r12);
6245   %}
6246   ins_pipe(ialu_mem_reg);
6247 %}
6248 
6249 instruct storeSSI(stackSlotI dst, rRegI src)
6250 %{
6251   match(Set dst src);
6252 
6253   ins_cost(100);
6254   format %{ "movl    $dst, $src\t# int stk" %}
6255   opcode(0x89);
6256   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
6257   ins_pipe( ialu_mem_reg );
6258 %}
6259 
6260 instruct storeSSL(stackSlotL dst, rRegL src)
6261 %{
6262   match(Set dst src);
6263 
6264   ins_cost(100);
6265   format %{ "movq    $dst, $src\t# long stk" %}
6266   opcode(0x89);
6267   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6268   ins_pipe(ialu_mem_reg);
6269 %}
6270 
6271 instruct storeSSP(stackSlotP dst, rRegP src)
6272 %{
6273   match(Set dst src);
6274 
6275   ins_cost(100);
6276   format %{ "movq    $dst, $src\t# ptr stk" %}
6277   opcode(0x89);
6278   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6279   ins_pipe(ialu_mem_reg);
6280 %}
6281 
6282 instruct storeSSF(stackSlotF dst, regF src)
6283 %{
6284   match(Set dst src);
6285 
6286   ins_cost(95); // XXX
6287   format %{ "movss   $dst, $src\t# float stk" %}
6288   ins_encode %{
6289     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
6290   %}
6291   ins_pipe(pipe_slow); // XXX
6292 %}
6293 
6294 instruct storeSSD(stackSlotD dst, regD src)
6295 %{
6296   match(Set dst src);
6297 
6298   ins_cost(95); // XXX
6299   format %{ "movsd   $dst, $src\t# double stk" %}
6300   ins_encode %{
6301     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
6302   %}
6303   ins_pipe(pipe_slow); // XXX
6304 %}
6305 
6306 instruct cacheWB(indirect addr)
6307 %{
6308   predicate(VM_Version::supports_data_cache_line_flush());
6309   match(CacheWB addr);
6310 
6311   ins_cost(100);
6312   format %{"cache wb $addr" %}
6313   ins_encode %{
6314     assert($addr->index_position() < 0, "should be");
6315     assert($addr$$disp == 0, "should be");
6316     __ cache_wb(Address($addr$$base$$Register, 0));
6317   %}
6318   ins_pipe(pipe_slow); // XXX
6319 %}
6320 
6321 instruct cacheWBPreSync()
6322 %{
6323   predicate(VM_Version::supports_data_cache_line_flush());
6324   match(CacheWBPreSync);
6325 
6326   ins_cost(100);
6327   format %{"cache wb presync" %}
6328   ins_encode %{
6329     __ cache_wbsync(true);
6330   %}
6331   ins_pipe(pipe_slow); // XXX
6332 %}
6333 
6334 instruct cacheWBPostSync()
6335 %{
6336   predicate(VM_Version::supports_data_cache_line_flush());
6337   match(CacheWBPostSync);
6338 
6339   ins_cost(100);
6340   format %{"cache wb postsync" %}
6341   ins_encode %{
6342     __ cache_wbsync(false);
6343   %}
6344   ins_pipe(pipe_slow); // XXX
6345 %}
6346 
6347 //----------BSWAP Instructions-------------------------------------------------
6348 instruct bytes_reverse_int(rRegI dst) %{
6349   match(Set dst (ReverseBytesI dst));
6350 
6351   format %{ "bswapl  $dst" %}
6352   opcode(0x0F, 0xC8);  /*Opcode 0F /C8 */
6353   ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
6354   ins_pipe( ialu_reg );
6355 %}
6356 
6357 instruct bytes_reverse_long(rRegL dst) %{
6358   match(Set dst (ReverseBytesL dst));
6359 
6360   format %{ "bswapq  $dst" %}
6361   opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
6362   ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
6363   ins_pipe( ialu_reg);
6364 %}
6365 
6366 instruct bytes_reverse_unsigned_short(rRegI dst, rFlagsReg cr) %{
6367   match(Set dst (ReverseBytesUS dst));
6368   effect(KILL cr);
6369 
6370   format %{ "bswapl  $dst\n\t"
6371             "shrl    $dst,16\n\t" %}
6372   ins_encode %{
6373     __ bswapl($dst$$Register);
6374     __ shrl($dst$$Register, 16);
6375   %}
6376   ins_pipe( ialu_reg );
6377 %}
6378 
6379 instruct bytes_reverse_short(rRegI dst, rFlagsReg cr) %{
6380   match(Set dst (ReverseBytesS dst));
6381   effect(KILL cr);
6382 
6383   format %{ "bswapl  $dst\n\t"
6384             "sar     $dst,16\n\t" %}
6385   ins_encode %{
6386     __ bswapl($dst$$Register);
6387     __ sarl($dst$$Register, 16);
6388   %}
6389   ins_pipe( ialu_reg );
6390 %}
6391 
6392 //---------- Zeros Count Instructions ------------------------------------------
6393 
6394 instruct countLeadingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6395   predicate(UseCountLeadingZerosInstruction);
6396   match(Set dst (CountLeadingZerosI src));
6397   effect(KILL cr);
6398 
6399   format %{ "lzcntl  $dst, $src\t# count leading zeros (int)" %}
6400   ins_encode %{
6401     __ lzcntl($dst$$Register, $src$$Register);
6402   %}
6403   ins_pipe(ialu_reg);
6404 %}
6405 
6406 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, rFlagsReg cr) %{
6407   predicate(!UseCountLeadingZerosInstruction);
6408   match(Set dst (CountLeadingZerosI src));
6409   effect(KILL cr);
6410 
6411   format %{ "bsrl    $dst, $src\t# count leading zeros (int)\n\t"
6412             "jnz     skip\n\t"
6413             "movl    $dst, -1\n"
6414       "skip:\n\t"
6415             "negl    $dst\n\t"
6416             "addl    $dst, 31" %}
6417   ins_encode %{
6418     Register Rdst = $dst$$Register;
6419     Register Rsrc = $src$$Register;
6420     Label skip;
6421     __ bsrl(Rdst, Rsrc);
6422     __ jccb(Assembler::notZero, skip);
6423     __ movl(Rdst, -1);
6424     __ bind(skip);
6425     __ negl(Rdst);
6426     __ addl(Rdst, BitsPerInt - 1);
6427   %}
6428   ins_pipe(ialu_reg);
6429 %}
6430 
6431 instruct countLeadingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6432   predicate(UseCountLeadingZerosInstruction);
6433   match(Set dst (CountLeadingZerosL src));
6434   effect(KILL cr);
6435 
6436   format %{ "lzcntq  $dst, $src\t# count leading zeros (long)" %}
6437   ins_encode %{
6438     __ lzcntq($dst$$Register, $src$$Register);
6439   %}
6440   ins_pipe(ialu_reg);
6441 %}
6442 
6443 instruct countLeadingZerosL_bsr(rRegI dst, rRegL src, rFlagsReg cr) %{
6444   predicate(!UseCountLeadingZerosInstruction);
6445   match(Set dst (CountLeadingZerosL src));
6446   effect(KILL cr);
6447 
6448   format %{ "bsrq    $dst, $src\t# count leading zeros (long)\n\t"
6449             "jnz     skip\n\t"
6450             "movl    $dst, -1\n"
6451       "skip:\n\t"
6452             "negl    $dst\n\t"
6453             "addl    $dst, 63" %}
6454   ins_encode %{
6455     Register Rdst = $dst$$Register;
6456     Register Rsrc = $src$$Register;
6457     Label skip;
6458     __ bsrq(Rdst, Rsrc);
6459     __ jccb(Assembler::notZero, skip);
6460     __ movl(Rdst, -1);
6461     __ bind(skip);
6462     __ negl(Rdst);
6463     __ addl(Rdst, BitsPerLong - 1);
6464   %}
6465   ins_pipe(ialu_reg);
6466 %}
6467 
6468 instruct countTrailingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6469   predicate(UseCountTrailingZerosInstruction);
6470   match(Set dst (CountTrailingZerosI src));
6471   effect(KILL cr);
6472 
6473   format %{ "tzcntl    $dst, $src\t# count trailing zeros (int)" %}
6474   ins_encode %{
6475     __ tzcntl($dst$$Register, $src$$Register);
6476   %}
6477   ins_pipe(ialu_reg);
6478 %}
6479 
6480 instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, rFlagsReg cr) %{
6481   predicate(!UseCountTrailingZerosInstruction);
6482   match(Set dst (CountTrailingZerosI src));
6483   effect(KILL cr);
6484 
6485   format %{ "bsfl    $dst, $src\t# count trailing zeros (int)\n\t"
6486             "jnz     done\n\t"
6487             "movl    $dst, 32\n"
6488       "done:" %}
6489   ins_encode %{
6490     Register Rdst = $dst$$Register;
6491     Label done;
6492     __ bsfl(Rdst, $src$$Register);
6493     __ jccb(Assembler::notZero, done);
6494     __ movl(Rdst, BitsPerInt);
6495     __ bind(done);
6496   %}
6497   ins_pipe(ialu_reg);
6498 %}
6499 
6500 instruct countTrailingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6501   predicate(UseCountTrailingZerosInstruction);
6502   match(Set dst (CountTrailingZerosL src));
6503   effect(KILL cr);
6504 
6505   format %{ "tzcntq    $dst, $src\t# count trailing zeros (long)" %}
6506   ins_encode %{
6507     __ tzcntq($dst$$Register, $src$$Register);
6508   %}
6509   ins_pipe(ialu_reg);
6510 %}
6511 
6512 instruct countTrailingZerosL_bsf(rRegI dst, rRegL src, rFlagsReg cr) %{
6513   predicate(!UseCountTrailingZerosInstruction);
6514   match(Set dst (CountTrailingZerosL src));
6515   effect(KILL cr);
6516 
6517   format %{ "bsfq    $dst, $src\t# count trailing zeros (long)\n\t"
6518             "jnz     done\n\t"
6519             "movl    $dst, 64\n"
6520       "done:" %}
6521   ins_encode %{
6522     Register Rdst = $dst$$Register;
6523     Label done;
6524     __ bsfq(Rdst, $src$$Register);
6525     __ jccb(Assembler::notZero, done);
6526     __ movl(Rdst, BitsPerLong);
6527     __ bind(done);
6528   %}
6529   ins_pipe(ialu_reg);
6530 %}
6531 
6532 
6533 //---------- Population Count Instructions -------------------------------------
6534 
6535 instruct popCountI(rRegI dst, rRegI src, rFlagsReg cr) %{
6536   predicate(UsePopCountInstruction);
6537   match(Set dst (PopCountI src));
6538   effect(KILL cr);
6539 
6540   format %{ "popcnt  $dst, $src" %}
6541   ins_encode %{
6542     __ popcntl($dst$$Register, $src$$Register);
6543   %}
6544   ins_pipe(ialu_reg);
6545 %}
6546 
6547 instruct popCountI_mem(rRegI dst, memory mem, rFlagsReg cr) %{
6548   predicate(UsePopCountInstruction);
6549   match(Set dst (PopCountI (LoadI mem)));
6550   effect(KILL cr);
6551 
6552   format %{ "popcnt  $dst, $mem" %}
6553   ins_encode %{
6554     __ popcntl($dst$$Register, $mem$$Address);
6555   %}
6556   ins_pipe(ialu_reg);
6557 %}
6558 
6559 // Note: Long.bitCount(long) returns an int.
6560 instruct popCountL(rRegI dst, rRegL src, rFlagsReg cr) %{
6561   predicate(UsePopCountInstruction);
6562   match(Set dst (PopCountL src));
6563   effect(KILL cr);
6564 
6565   format %{ "popcnt  $dst, $src" %}
6566   ins_encode %{
6567     __ popcntq($dst$$Register, $src$$Register);
6568   %}
6569   ins_pipe(ialu_reg);
6570 %}
6571 
6572 // Note: Long.bitCount(long) returns an int.
6573 instruct popCountL_mem(rRegI dst, memory mem, rFlagsReg cr) %{
6574   predicate(UsePopCountInstruction);
6575   match(Set dst (PopCountL (LoadL mem)));
6576   effect(KILL cr);
6577 
6578   format %{ "popcnt  $dst, $mem" %}
6579   ins_encode %{
6580     __ popcntq($dst$$Register, $mem$$Address);
6581   %}
6582   ins_pipe(ialu_reg);
6583 %}
6584 
6585 
6586 //----------MemBar Instructions-----------------------------------------------
6587 // Memory barrier flavors
6588 
6589 instruct membar_acquire()
6590 %{
6591   match(MemBarAcquire);
6592   match(LoadFence);
6593   ins_cost(0);
6594 
6595   size(0);
6596   format %{ "MEMBAR-acquire ! (empty encoding)" %}
6597   ins_encode();
6598   ins_pipe(empty);
6599 %}
6600 
6601 instruct membar_acquire_lock()
6602 %{
6603   match(MemBarAcquireLock);
6604   ins_cost(0);
6605 
6606   size(0);
6607   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
6608   ins_encode();
6609   ins_pipe(empty);
6610 %}
6611 
6612 instruct membar_release()
6613 %{
6614   match(MemBarRelease);
6615   match(StoreFence);
6616   ins_cost(0);
6617 
6618   size(0);
6619   format %{ "MEMBAR-release ! (empty encoding)" %}
6620   ins_encode();
6621   ins_pipe(empty);
6622 %}
6623 
6624 instruct membar_release_lock()
6625 %{
6626   match(MemBarReleaseLock);
6627   ins_cost(0);
6628 
6629   size(0);
6630   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
6631   ins_encode();
6632   ins_pipe(empty);
6633 %}
6634 
6635 instruct membar_volatile(rFlagsReg cr) %{
6636   match(MemBarVolatile);
6637   effect(KILL cr);
6638   ins_cost(400);
6639 
6640   format %{
6641     $$template
6642     $$emit$$"lock addl [rsp + #0], 0\t! membar_volatile"
6643   %}
6644   ins_encode %{
6645     __ membar(Assembler::StoreLoad);
6646   %}
6647   ins_pipe(pipe_slow);
6648 %}
6649 
6650 instruct unnecessary_membar_volatile()
6651 %{
6652   match(MemBarVolatile);
6653   predicate(Matcher::post_store_load_barrier(n));
6654   ins_cost(0);
6655 
6656   size(0);
6657   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
6658   ins_encode();
6659   ins_pipe(empty);
6660 %}
6661 
6662 instruct membar_storestore() %{
6663   match(MemBarStoreStore);
6664   ins_cost(0);
6665 
6666   size(0);
6667   format %{ "MEMBAR-storestore (empty encoding)" %}
6668   ins_encode( );
6669   ins_pipe(empty);
6670 %}
6671 
6672 //----------Move Instructions--------------------------------------------------
6673 
6674 instruct castX2P(rRegP dst, rRegL src)
6675 %{
6676   match(Set dst (CastX2P src));
6677 
6678   format %{ "movq    $dst, $src\t# long->ptr" %}
6679   ins_encode %{
6680     if ($dst$$reg != $src$$reg) {
6681       __ movptr($dst$$Register, $src$$Register);
6682     }
6683   %}
6684   ins_pipe(ialu_reg_reg); // XXX
6685 %}
6686 
6687 instruct castP2X(rRegL dst, rRegP src)
6688 %{
6689   match(Set dst (CastP2X src));
6690 
6691   format %{ "movq    $dst, $src\t# ptr -> long" %}
6692   ins_encode %{
6693     if ($dst$$reg != $src$$reg) {
6694       __ movptr($dst$$Register, $src$$Register);
6695     }
6696   %}
6697   ins_pipe(ialu_reg_reg); // XXX
6698 %}
6699 
6700 // Convert oop into int for vectors alignment masking
6701 instruct convP2I(rRegI dst, rRegP src)
6702 %{
6703   match(Set dst (ConvL2I (CastP2X src)));
6704 
6705   format %{ "movl    $dst, $src\t# ptr -> int" %}
6706   ins_encode %{
6707     __ movl($dst$$Register, $src$$Register);
6708   %}
6709   ins_pipe(ialu_reg_reg); // XXX
6710 %}
6711 
6712 // Convert compressed oop into int for vectors alignment masking
6713 // in case of 32bit oops (heap < 4Gb).
6714 instruct convN2I(rRegI dst, rRegN src)
6715 %{
6716   predicate(CompressedOops::shift() == 0);
6717   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
6718 
6719   format %{ "movl    $dst, $src\t# compressed ptr -> int" %}
6720   ins_encode %{
6721     __ movl($dst$$Register, $src$$Register);
6722   %}
6723   ins_pipe(ialu_reg_reg); // XXX
6724 %}
6725 
6726 // Convert oop pointer into compressed form
6727 instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
6728   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6729   match(Set dst (EncodeP src));
6730   effect(KILL cr);
6731   format %{ "encode_heap_oop $dst,$src" %}
6732   ins_encode %{
6733     Register s = $src$$Register;
6734     Register d = $dst$$Register;
6735     if (s != d) {
6736       __ movq(d, s);
6737     }
6738     __ encode_heap_oop(d);
6739   %}
6740   ins_pipe(ialu_reg_long);
6741 %}
6742 
6743 instruct encodeHeapOop_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6744   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6745   match(Set dst (EncodeP src));
6746   effect(KILL cr);
6747   format %{ "encode_heap_oop_not_null $dst,$src" %}
6748   ins_encode %{
6749     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
6750   %}
6751   ins_pipe(ialu_reg_long);
6752 %}
6753 
6754 instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
6755   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
6756             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
6757   match(Set dst (DecodeN src));
6758   effect(KILL cr);
6759   format %{ "decode_heap_oop $dst,$src" %}
6760   ins_encode %{
6761     Register s = $src$$Register;
6762     Register d = $dst$$Register;
6763     if (s != d) {
6764       __ movq(d, s);
6765     }
6766     __ decode_heap_oop(d);
6767   %}
6768   ins_pipe(ialu_reg_long);
6769 %}
6770 
6771 instruct decodeHeapOop_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6772   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
6773             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
6774   match(Set dst (DecodeN src));
6775   effect(KILL cr);
6776   format %{ "decode_heap_oop_not_null $dst,$src" %}
6777   ins_encode %{
6778     Register s = $src$$Register;
6779     Register d = $dst$$Register;
6780     if (s != d) {
6781       __ decode_heap_oop_not_null(d, s);
6782     } else {
6783       __ decode_heap_oop_not_null(d);
6784     }
6785   %}
6786   ins_pipe(ialu_reg_long);
6787 %}
6788 
6789 instruct encodeKlass_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6790   match(Set dst (EncodePKlass src));
6791   effect(TEMP dst, KILL cr);
6792   format %{ "encode_and_move_klass_not_null $dst,$src" %}
6793   ins_encode %{
6794     __ encode_and_move_klass_not_null($dst$$Register, $src$$Register);
6795   %}
6796   ins_pipe(ialu_reg_long);
6797 %}
6798 
6799 instruct decodeKlass_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6800   match(Set dst (DecodeNKlass src));
6801   effect(TEMP dst, KILL cr);
6802   format %{ "decode_and_move_klass_not_null $dst,$src" %}
6803   ins_encode %{
6804     __ decode_and_move_klass_not_null($dst$$Register, $src$$Register);
6805   %}
6806   ins_pipe(ialu_reg_long);
6807 %}
6808 
6809 //----------Conditional Move---------------------------------------------------
6810 // Jump
6811 // dummy instruction for generating temp registers
6812 instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
6813   match(Jump (LShiftL switch_val shift));
6814   ins_cost(350);
6815   predicate(false);
6816   effect(TEMP dest);
6817 
6818   format %{ "leaq    $dest, [$constantaddress]\n\t"
6819             "jmp     [$dest + $switch_val << $shift]\n\t" %}
6820   ins_encode %{
6821     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6822     // to do that and the compiler is using that register as one it can allocate.
6823     // So we build it all by hand.
6824     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
6825     // ArrayAddress dispatch(table, index);
6826     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant);
6827     __ lea($dest$$Register, $constantaddress);
6828     __ jmp(dispatch);
6829   %}
6830   ins_pipe(pipe_jmp);
6831 %}
6832 
6833 instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
6834   match(Jump (AddL (LShiftL switch_val shift) offset));
6835   ins_cost(350);
6836   effect(TEMP dest);
6837 
6838   format %{ "leaq    $dest, [$constantaddress]\n\t"
6839             "jmp     [$dest + $switch_val << $shift + $offset]\n\t" %}
6840   ins_encode %{
6841     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6842     // to do that and the compiler is using that register as one it can allocate.
6843     // So we build it all by hand.
6844     // Address index(noreg, switch_reg, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6845     // ArrayAddress dispatch(table, index);
6846     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6847     __ lea($dest$$Register, $constantaddress);
6848     __ jmp(dispatch);
6849   %}
6850   ins_pipe(pipe_jmp);
6851 %}
6852 
6853 instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
6854   match(Jump switch_val);
6855   ins_cost(350);
6856   effect(TEMP dest);
6857 
6858   format %{ "leaq    $dest, [$constantaddress]\n\t"
6859             "jmp     [$dest + $switch_val]\n\t" %}
6860   ins_encode %{
6861     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6862     // to do that and the compiler is using that register as one it can allocate.
6863     // So we build it all by hand.
6864     // Address index(noreg, switch_reg, Address::times_1);
6865     // ArrayAddress dispatch(table, index);
6866     Address dispatch($dest$$Register, $switch_val$$Register, Address::times_1);
6867     __ lea($dest$$Register, $constantaddress);
6868     __ jmp(dispatch);
6869   %}
6870   ins_pipe(pipe_jmp);
6871 %}
6872 
6873 // Conditional move
6874 instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
6875 %{
6876   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6877 
6878   ins_cost(200); // XXX
6879   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6880   opcode(0x0F, 0x40);
6881   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6882   ins_pipe(pipe_cmov_reg);
6883 %}
6884 
6885 instruct cmovI_regU(cmpOpU cop, rFlagsRegU cr, rRegI dst, rRegI src) %{
6886   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6887 
6888   ins_cost(200); // XXX
6889   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6890   opcode(0x0F, 0x40);
6891   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6892   ins_pipe(pipe_cmov_reg);
6893 %}
6894 
6895 instruct cmovI_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
6896   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6897   ins_cost(200);
6898   expand %{
6899     cmovI_regU(cop, cr, dst, src);
6900   %}
6901 %}
6902 
6903 // Conditional move
6904 instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src) %{
6905   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6906 
6907   ins_cost(250); // XXX
6908   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6909   opcode(0x0F, 0x40);
6910   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6911   ins_pipe(pipe_cmov_mem);
6912 %}
6913 
6914 // Conditional move
6915 instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
6916 %{
6917   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6918 
6919   ins_cost(250); // XXX
6920   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6921   opcode(0x0F, 0x40);
6922   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6923   ins_pipe(pipe_cmov_mem);
6924 %}
6925 
6926 instruct cmovI_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, memory src) %{
6927   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6928   ins_cost(250);
6929   expand %{
6930     cmovI_memU(cop, cr, dst, src);
6931   %}
6932 %}
6933 
6934 // Conditional move
6935 instruct cmovN_reg(rRegN dst, rRegN src, rFlagsReg cr, cmpOp cop)
6936 %{
6937   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6938 
6939   ins_cost(200); // XXX
6940   format %{ "cmovl$cop $dst, $src\t# signed, compressed ptr" %}
6941   opcode(0x0F, 0x40);
6942   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6943   ins_pipe(pipe_cmov_reg);
6944 %}
6945 
6946 // Conditional move
6947 instruct cmovN_regU(cmpOpU cop, rFlagsRegU cr, rRegN dst, rRegN src)
6948 %{
6949   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6950 
6951   ins_cost(200); // XXX
6952   format %{ "cmovl$cop $dst, $src\t# unsigned, compressed ptr" %}
6953   opcode(0x0F, 0x40);
6954   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6955   ins_pipe(pipe_cmov_reg);
6956 %}
6957 
6958 instruct cmovN_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
6959   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6960   ins_cost(200);
6961   expand %{
6962     cmovN_regU(cop, cr, dst, src);
6963   %}
6964 %}
6965 
6966 // Conditional move
6967 instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
6968 %{
6969   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6970 
6971   ins_cost(200); // XXX
6972   format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
6973   opcode(0x0F, 0x40);
6974   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6975   ins_pipe(pipe_cmov_reg);  // XXX
6976 %}
6977 
6978 // Conditional move
6979 instruct cmovP_regU(cmpOpU cop, rFlagsRegU cr, rRegP dst, rRegP src)
6980 %{
6981   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6982 
6983   ins_cost(200); // XXX
6984   format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
6985   opcode(0x0F, 0x40);
6986   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6987   ins_pipe(pipe_cmov_reg); // XXX
6988 %}
6989 
6990 instruct cmovP_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
6991   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6992   ins_cost(200);
6993   expand %{
6994     cmovP_regU(cop, cr, dst, src);
6995   %}
6996 %}
6997 
6998 // DISABLED: Requires the ADLC to emit a bottom_type call that
6999 // correctly meets the two pointer arguments; one is an incoming
7000 // register but the other is a memory operand.  ALSO appears to
7001 // be buggy with implicit null checks.
7002 //
7003 //// Conditional move
7004 //instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
7005 //%{
7006 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7007 //  ins_cost(250);
7008 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7009 //  opcode(0x0F,0x40);
7010 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
7011 //  ins_pipe( pipe_cmov_mem );
7012 //%}
7013 //
7014 //// Conditional move
7015 //instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
7016 //%{
7017 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7018 //  ins_cost(250);
7019 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7020 //  opcode(0x0F,0x40);
7021 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
7022 //  ins_pipe( pipe_cmov_mem );
7023 //%}
7024 
7025 instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
7026 %{
7027   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7028 
7029   ins_cost(200); // XXX
7030   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
7031   opcode(0x0F, 0x40);
7032   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7033   ins_pipe(pipe_cmov_reg);  // XXX
7034 %}
7035 
7036 instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
7037 %{
7038   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7039 
7040   ins_cost(200); // XXX
7041   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
7042   opcode(0x0F, 0x40);
7043   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
7044   ins_pipe(pipe_cmov_mem);  // XXX
7045 %}
7046 
7047 instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
7048 %{
7049   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7050 
7051   ins_cost(200); // XXX
7052   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
7053   opcode(0x0F, 0x40);
7054   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
7055   ins_pipe(pipe_cmov_reg); // XXX
7056 %}
7057 
7058 instruct cmovL_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
7059   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7060   ins_cost(200);
7061   expand %{
7062     cmovL_regU(cop, cr, dst, src);
7063   %}
7064 %}
7065 
7066 instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
7067 %{
7068   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7069 
7070   ins_cost(200); // XXX
7071   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
7072   opcode(0x0F, 0x40);
7073   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
7074   ins_pipe(pipe_cmov_mem); // XXX
7075 %}
7076 
7077 instruct cmovL_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, memory src) %{
7078   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
7079   ins_cost(200);
7080   expand %{
7081     cmovL_memU(cop, cr, dst, src);
7082   %}
7083 %}
7084 
7085 instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
7086 %{
7087   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7088 
7089   ins_cost(200); // XXX
7090   format %{ "jn$cop    skip\t# signed cmove float\n\t"
7091             "movss     $dst, $src\n"
7092     "skip:" %}
7093   ins_encode %{
7094     Label Lskip;
7095     // Invert sense of branch from sense of CMOV
7096     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7097     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7098     __ bind(Lskip);
7099   %}
7100   ins_pipe(pipe_slow);
7101 %}
7102 
7103 // instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
7104 // %{
7105 //   match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
7106 
7107 //   ins_cost(200); // XXX
7108 //   format %{ "jn$cop    skip\t# signed cmove float\n\t"
7109 //             "movss     $dst, $src\n"
7110 //     "skip:" %}
7111 //   ins_encode(enc_cmovf_mem_branch(cop, dst, src));
7112 //   ins_pipe(pipe_slow);
7113 // %}
7114 
7115 instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
7116 %{
7117   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7118 
7119   ins_cost(200); // XXX
7120   format %{ "jn$cop    skip\t# unsigned cmove float\n\t"
7121             "movss     $dst, $src\n"
7122     "skip:" %}
7123   ins_encode %{
7124     Label Lskip;
7125     // Invert sense of branch from sense of CMOV
7126     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7127     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7128     __ bind(Lskip);
7129   %}
7130   ins_pipe(pipe_slow);
7131 %}
7132 
7133 instruct cmovF_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regF dst, regF src) %{
7134   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7135   ins_cost(200);
7136   expand %{
7137     cmovF_regU(cop, cr, dst, src);
7138   %}
7139 %}
7140 
7141 instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
7142 %{
7143   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7144 
7145   ins_cost(200); // XXX
7146   format %{ "jn$cop    skip\t# signed cmove double\n\t"
7147             "movsd     $dst, $src\n"
7148     "skip:" %}
7149   ins_encode %{
7150     Label Lskip;
7151     // Invert sense of branch from sense of CMOV
7152     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7153     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7154     __ bind(Lskip);
7155   %}
7156   ins_pipe(pipe_slow);
7157 %}
7158 
7159 instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
7160 %{
7161   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7162 
7163   ins_cost(200); // XXX
7164   format %{ "jn$cop    skip\t# unsigned cmove double\n\t"
7165             "movsd     $dst, $src\n"
7166     "skip:" %}
7167   ins_encode %{
7168     Label Lskip;
7169     // Invert sense of branch from sense of CMOV
7170     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7171     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7172     __ bind(Lskip);
7173   %}
7174   ins_pipe(pipe_slow);
7175 %}
7176 
7177 instruct cmovD_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regD dst, regD src) %{
7178   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7179   ins_cost(200);
7180   expand %{
7181     cmovD_regU(cop, cr, dst, src);
7182   %}
7183 %}
7184 
7185 //----------Arithmetic Instructions--------------------------------------------
7186 //----------Addition Instructions----------------------------------------------
7187 
7188 instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7189 %{
7190   match(Set dst (AddI dst src));
7191   effect(KILL cr);
7192 
7193   format %{ "addl    $dst, $src\t# int" %}
7194   opcode(0x03);
7195   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
7196   ins_pipe(ialu_reg_reg);
7197 %}
7198 
7199 instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
7200 %{
7201   match(Set dst (AddI dst src));
7202   effect(KILL cr);
7203 
7204   format %{ "addl    $dst, $src\t# int" %}
7205   opcode(0x81, 0x00); /* /0 id */
7206   ins_encode(OpcSErm(dst, src), Con8or32(src));
7207   ins_pipe( ialu_reg );
7208 %}
7209 
7210 instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
7211 %{
7212   match(Set dst (AddI dst (LoadI src)));
7213   effect(KILL cr);
7214 
7215   ins_cost(125); // XXX
7216   format %{ "addl    $dst, $src\t# int" %}
7217   opcode(0x03);
7218   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
7219   ins_pipe(ialu_reg_mem);
7220 %}
7221 
7222 instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
7223 %{
7224   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7225   effect(KILL cr);
7226 
7227   ins_cost(150); // XXX
7228   format %{ "addl    $dst, $src\t# int" %}
7229   opcode(0x01); /* Opcode 01 /r */
7230   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
7231   ins_pipe(ialu_mem_reg);
7232 %}
7233 
7234 instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
7235 %{
7236   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7237   effect(KILL cr);
7238 
7239   ins_cost(125); // XXX
7240   format %{ "addl    $dst, $src\t# int" %}
7241   opcode(0x81); /* Opcode 81 /0 id */
7242   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7243   ins_pipe(ialu_mem_imm);
7244 %}
7245 
7246 instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
7247 %{
7248   predicate(UseIncDec);
7249   match(Set dst (AddI dst src));
7250   effect(KILL cr);
7251 
7252   format %{ "incl    $dst\t# int" %}
7253   opcode(0xFF, 0x00); // FF /0
7254   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7255   ins_pipe(ialu_reg);
7256 %}
7257 
7258 instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
7259 %{
7260   predicate(UseIncDec);
7261   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7262   effect(KILL cr);
7263 
7264   ins_cost(125); // XXX
7265   format %{ "incl    $dst\t# int" %}
7266   opcode(0xFF); /* Opcode FF /0 */
7267   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
7268   ins_pipe(ialu_mem_imm);
7269 %}
7270 
7271 // XXX why does that use AddI
7272 instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
7273 %{
7274   predicate(UseIncDec);
7275   match(Set dst (AddI dst src));
7276   effect(KILL cr);
7277 
7278   format %{ "decl    $dst\t# int" %}
7279   opcode(0xFF, 0x01); // FF /1
7280   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7281   ins_pipe(ialu_reg);
7282 %}
7283 
7284 // XXX why does that use AddI
7285 instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
7286 %{
7287   predicate(UseIncDec);
7288   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7289   effect(KILL cr);
7290 
7291   ins_cost(125); // XXX
7292   format %{ "decl    $dst\t# int" %}
7293   opcode(0xFF); /* Opcode FF /1 */
7294   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
7295   ins_pipe(ialu_mem_imm);
7296 %}
7297 
7298 instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
7299 %{
7300   match(Set dst (AddI src0 src1));
7301 
7302   ins_cost(110);
7303   format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
7304   opcode(0x8D); /* 0x8D /r */
7305   ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7306   ins_pipe(ialu_reg_reg);
7307 %}
7308 
7309 instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7310 %{
7311   match(Set dst (AddL dst src));
7312   effect(KILL cr);
7313 
7314   format %{ "addq    $dst, $src\t# long" %}
7315   opcode(0x03);
7316   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7317   ins_pipe(ialu_reg_reg);
7318 %}
7319 
7320 instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
7321 %{
7322   match(Set dst (AddL dst src));
7323   effect(KILL cr);
7324 
7325   format %{ "addq    $dst, $src\t# long" %}
7326   opcode(0x81, 0x00); /* /0 id */
7327   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7328   ins_pipe( ialu_reg );
7329 %}
7330 
7331 instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
7332 %{
7333   match(Set dst (AddL dst (LoadL src)));
7334   effect(KILL cr);
7335 
7336   ins_cost(125); // XXX
7337   format %{ "addq    $dst, $src\t# long" %}
7338   opcode(0x03);
7339   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
7340   ins_pipe(ialu_reg_mem);
7341 %}
7342 
7343 instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
7344 %{
7345   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7346   effect(KILL cr);
7347 
7348   ins_cost(150); // XXX
7349   format %{ "addq    $dst, $src\t# long" %}
7350   opcode(0x01); /* Opcode 01 /r */
7351   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
7352   ins_pipe(ialu_mem_reg);
7353 %}
7354 
7355 instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
7356 %{
7357   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7358   effect(KILL cr);
7359 
7360   ins_cost(125); // XXX
7361   format %{ "addq    $dst, $src\t# long" %}
7362   opcode(0x81); /* Opcode 81 /0 id */
7363   ins_encode(REX_mem_wide(dst),
7364              OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7365   ins_pipe(ialu_mem_imm);
7366 %}
7367 
7368 instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
7369 %{
7370   predicate(UseIncDec);
7371   match(Set dst (AddL dst src));
7372   effect(KILL cr);
7373 
7374   format %{ "incq    $dst\t# long" %}
7375   opcode(0xFF, 0x00); // FF /0
7376   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7377   ins_pipe(ialu_reg);
7378 %}
7379 
7380 instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
7381 %{
7382   predicate(UseIncDec);
7383   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7384   effect(KILL cr);
7385 
7386   ins_cost(125); // XXX
7387   format %{ "incq    $dst\t# long" %}
7388   opcode(0xFF); /* Opcode FF /0 */
7389   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
7390   ins_pipe(ialu_mem_imm);
7391 %}
7392 
7393 // XXX why does that use AddL
7394 instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
7395 %{
7396   predicate(UseIncDec);
7397   match(Set dst (AddL dst src));
7398   effect(KILL cr);
7399 
7400   format %{ "decq    $dst\t# long" %}
7401   opcode(0xFF, 0x01); // FF /1
7402   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7403   ins_pipe(ialu_reg);
7404 %}
7405 
7406 // XXX why does that use AddL
7407 instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
7408 %{
7409   predicate(UseIncDec);
7410   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7411   effect(KILL cr);
7412 
7413   ins_cost(125); // XXX
7414   format %{ "decq    $dst\t# long" %}
7415   opcode(0xFF); /* Opcode FF /1 */
7416   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
7417   ins_pipe(ialu_mem_imm);
7418 %}
7419 
7420 instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
7421 %{
7422   match(Set dst (AddL src0 src1));
7423 
7424   ins_cost(110);
7425   format %{ "leaq    $dst, [$src0 + $src1]\t# long" %}
7426   opcode(0x8D); /* 0x8D /r */
7427   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7428   ins_pipe(ialu_reg_reg);
7429 %}
7430 
7431 instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
7432 %{
7433   match(Set dst (AddP dst src));
7434   effect(KILL cr);
7435 
7436   format %{ "addq    $dst, $src\t# ptr" %}
7437   opcode(0x03);
7438   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7439   ins_pipe(ialu_reg_reg);
7440 %}
7441 
7442 instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
7443 %{
7444   match(Set dst (AddP dst src));
7445   effect(KILL cr);
7446 
7447   format %{ "addq    $dst, $src\t# ptr" %}
7448   opcode(0x81, 0x00); /* /0 id */
7449   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7450   ins_pipe( ialu_reg );
7451 %}
7452 
7453 // XXX addP mem ops ????
7454 
7455 instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
7456 %{
7457   match(Set dst (AddP src0 src1));
7458 
7459   ins_cost(110);
7460   format %{ "leaq    $dst, [$src0 + $src1]\t# ptr" %}
7461   opcode(0x8D); /* 0x8D /r */
7462   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
7463   ins_pipe(ialu_reg_reg);
7464 %}
7465 
7466 instruct checkCastPP(rRegP dst)
7467 %{
7468   match(Set dst (CheckCastPP dst));
7469 
7470   size(0);
7471   format %{ "# checkcastPP of $dst" %}
7472   ins_encode(/* empty encoding */);
7473   ins_pipe(empty);
7474 %}
7475 
7476 instruct castPP(rRegP dst)
7477 %{
7478   match(Set dst (CastPP dst));
7479 
7480   size(0);
7481   format %{ "# castPP of $dst" %}
7482   ins_encode(/* empty encoding */);
7483   ins_pipe(empty);
7484 %}
7485 
7486 instruct castII(rRegI dst)
7487 %{
7488   match(Set dst (CastII dst));
7489 
7490   size(0);
7491   format %{ "# castII of $dst" %}
7492   ins_encode(/* empty encoding */);
7493   ins_cost(0);
7494   ins_pipe(empty);
7495 %}
7496 
7497 // LoadP-locked same as a regular LoadP when used with compare-swap
7498 instruct loadPLocked(rRegP dst, memory mem)
7499 %{
7500   match(Set dst (LoadPLocked mem));
7501 
7502   ins_cost(125); // XXX
7503   format %{ "movq    $dst, $mem\t# ptr locked" %}
7504   opcode(0x8B);
7505   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
7506   ins_pipe(ialu_reg_mem); // XXX
7507 %}
7508 
7509 // Conditional-store of the updated heap-top.
7510 // Used during allocation of the shared heap.
7511 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7512 
7513 instruct storePConditional(memory heap_top_ptr,
7514                            rax_RegP oldval, rRegP newval,
7515                            rFlagsReg cr)
7516 %{
7517   predicate(n->as_LoadStore()->barrier_data() == 0);
7518   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7519 
7520   format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
7521             "If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
7522   opcode(0x0F, 0xB1);
7523   ins_encode(lock_prefix,
7524              REX_reg_mem_wide(newval, heap_top_ptr),
7525              OpcP, OpcS,
7526              reg_mem(newval, heap_top_ptr));
7527   ins_pipe(pipe_cmpxchg);
7528 %}
7529 
7530 // Conditional-store of an int value.
7531 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7532 instruct storeIConditional(memory mem, rax_RegI oldval, rRegI newval, rFlagsReg cr)
7533 %{
7534   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7535   effect(KILL oldval);
7536 
7537   format %{ "cmpxchgl $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7538   opcode(0x0F, 0xB1);
7539   ins_encode(lock_prefix,
7540              REX_reg_mem(newval, mem),
7541              OpcP, OpcS,
7542              reg_mem(newval, mem));
7543   ins_pipe(pipe_cmpxchg);
7544 %}
7545 
7546 // Conditional-store of a long value.
7547 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7548 instruct storeLConditional(memory mem, rax_RegL oldval, rRegL newval, rFlagsReg cr)
7549 %{
7550   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7551   effect(KILL oldval);
7552 
7553   format %{ "cmpxchgq $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7554   opcode(0x0F, 0xB1);
7555   ins_encode(lock_prefix,
7556              REX_reg_mem_wide(newval, mem),
7557              OpcP, OpcS,
7558              reg_mem(newval, mem));
7559   ins_pipe(pipe_cmpxchg);
7560 %}
7561 
7562 
7563 // XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7564 instruct compareAndSwapP(rRegI res,
7565                          memory mem_ptr,
7566                          rax_RegP oldval, rRegP newval,
7567                          rFlagsReg cr)
7568 %{
7569   predicate(VM_Version::supports_cx8() && n->as_LoadStore()->barrier_data() == 0);
7570   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7571   match(Set res (WeakCompareAndSwapP mem_ptr (Binary oldval newval)));
7572   effect(KILL cr, KILL oldval);
7573 
7574   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7575             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7576             "sete    $res\n\t"
7577             "movzbl  $res, $res" %}
7578   opcode(0x0F, 0xB1);
7579   ins_encode(lock_prefix,
7580              REX_reg_mem_wide(newval, mem_ptr),
7581              OpcP, OpcS,
7582              reg_mem(newval, mem_ptr),
7583              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7584              REX_reg_breg(res, res), // movzbl
7585              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7586   ins_pipe( pipe_cmpxchg );
7587 %}
7588 
7589 instruct compareAndSwapL(rRegI res,
7590                          memory mem_ptr,
7591                          rax_RegL oldval, rRegL newval,
7592                          rFlagsReg cr)
7593 %{
7594   predicate(VM_Version::supports_cx8());
7595   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7596   match(Set res (WeakCompareAndSwapL mem_ptr (Binary oldval newval)));
7597   effect(KILL cr, KILL oldval);
7598 
7599   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7600             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7601             "sete    $res\n\t"
7602             "movzbl  $res, $res" %}
7603   opcode(0x0F, 0xB1);
7604   ins_encode(lock_prefix,
7605              REX_reg_mem_wide(newval, mem_ptr),
7606              OpcP, OpcS,
7607              reg_mem(newval, mem_ptr),
7608              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7609              REX_reg_breg(res, res), // movzbl
7610              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7611   ins_pipe( pipe_cmpxchg );
7612 %}
7613 
7614 instruct compareAndSwapI(rRegI res,
7615                          memory mem_ptr,
7616                          rax_RegI oldval, rRegI newval,
7617                          rFlagsReg cr)
7618 %{
7619   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7620   match(Set res (WeakCompareAndSwapI mem_ptr (Binary oldval newval)));
7621   effect(KILL cr, KILL oldval);
7622 
7623   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7624             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7625             "sete    $res\n\t"
7626             "movzbl  $res, $res" %}
7627   opcode(0x0F, 0xB1);
7628   ins_encode(lock_prefix,
7629              REX_reg_mem(newval, mem_ptr),
7630              OpcP, OpcS,
7631              reg_mem(newval, mem_ptr),
7632              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7633              REX_reg_breg(res, res), // movzbl
7634              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7635   ins_pipe( pipe_cmpxchg );
7636 %}
7637 
7638 instruct compareAndSwapB(rRegI res,
7639                          memory mem_ptr,
7640                          rax_RegI oldval, rRegI newval,
7641                          rFlagsReg cr)
7642 %{
7643   match(Set res (CompareAndSwapB mem_ptr (Binary oldval newval)));
7644   match(Set res (WeakCompareAndSwapB mem_ptr (Binary oldval newval)));
7645   effect(KILL cr, KILL oldval);
7646 
7647   format %{ "cmpxchgb $mem_ptr,$newval\t# "
7648             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7649             "sete    $res\n\t"
7650             "movzbl  $res, $res" %}
7651   opcode(0x0F, 0xB0);
7652   ins_encode(lock_prefix,
7653              REX_breg_mem(newval, mem_ptr),
7654              OpcP, OpcS,
7655              reg_mem(newval, mem_ptr),
7656              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7657              REX_reg_breg(res, res), // movzbl
7658              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7659   ins_pipe( pipe_cmpxchg );
7660 %}
7661 
7662 instruct compareAndSwapS(rRegI res,
7663                          memory mem_ptr,
7664                          rax_RegI oldval, rRegI newval,
7665                          rFlagsReg cr)
7666 %{
7667   match(Set res (CompareAndSwapS mem_ptr (Binary oldval newval)));
7668   match(Set res (WeakCompareAndSwapS mem_ptr (Binary oldval newval)));
7669   effect(KILL cr, KILL oldval);
7670 
7671   format %{ "cmpxchgw $mem_ptr,$newval\t# "
7672             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7673             "sete    $res\n\t"
7674             "movzbl  $res, $res" %}
7675   opcode(0x0F, 0xB1);
7676   ins_encode(lock_prefix,
7677              SizePrefix,
7678              REX_reg_mem(newval, mem_ptr),
7679              OpcP, OpcS,
7680              reg_mem(newval, mem_ptr),
7681              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7682              REX_reg_breg(res, res), // movzbl
7683              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7684   ins_pipe( pipe_cmpxchg );
7685 %}
7686 
7687 instruct compareAndSwapN(rRegI res,
7688                           memory mem_ptr,
7689                           rax_RegN oldval, rRegN newval,
7690                           rFlagsReg cr) %{
7691   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7692   match(Set res (WeakCompareAndSwapN mem_ptr (Binary oldval newval)));
7693   effect(KILL cr, KILL oldval);
7694 
7695   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7696             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7697             "sete    $res\n\t"
7698             "movzbl  $res, $res" %}
7699   opcode(0x0F, 0xB1);
7700   ins_encode(lock_prefix,
7701              REX_reg_mem(newval, mem_ptr),
7702              OpcP, OpcS,
7703              reg_mem(newval, mem_ptr),
7704              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7705              REX_reg_breg(res, res), // movzbl
7706              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7707   ins_pipe( pipe_cmpxchg );
7708 %}
7709 
7710 instruct compareAndExchangeB(
7711                          memory mem_ptr,
7712                          rax_RegI oldval, rRegI newval,
7713                          rFlagsReg cr)
7714 %{
7715   match(Set oldval (CompareAndExchangeB mem_ptr (Binary oldval newval)));
7716   effect(KILL cr);
7717 
7718   format %{ "cmpxchgb $mem_ptr,$newval\t# "
7719             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7720   opcode(0x0F, 0xB0);
7721   ins_encode(lock_prefix,
7722              REX_breg_mem(newval, mem_ptr),
7723              OpcP, OpcS,
7724              reg_mem(newval, mem_ptr) // lock cmpxchg
7725              );
7726   ins_pipe( pipe_cmpxchg );
7727 %}
7728 
7729 instruct compareAndExchangeS(
7730                          memory mem_ptr,
7731                          rax_RegI oldval, rRegI newval,
7732                          rFlagsReg cr)
7733 %{
7734   match(Set oldval (CompareAndExchangeS mem_ptr (Binary oldval newval)));
7735   effect(KILL cr);
7736 
7737   format %{ "cmpxchgw $mem_ptr,$newval\t# "
7738             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7739   opcode(0x0F, 0xB1);
7740   ins_encode(lock_prefix,
7741              SizePrefix,
7742              REX_reg_mem(newval, mem_ptr),
7743              OpcP, OpcS,
7744              reg_mem(newval, mem_ptr) // lock cmpxchg
7745              );
7746   ins_pipe( pipe_cmpxchg );
7747 %}
7748 
7749 instruct compareAndExchangeI(
7750                          memory mem_ptr,
7751                          rax_RegI oldval, rRegI newval,
7752                          rFlagsReg cr)
7753 %{
7754   match(Set oldval (CompareAndExchangeI mem_ptr (Binary oldval newval)));
7755   effect(KILL cr);
7756 
7757   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7758             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7759   opcode(0x0F, 0xB1);
7760   ins_encode(lock_prefix,
7761              REX_reg_mem(newval, mem_ptr),
7762              OpcP, OpcS,
7763              reg_mem(newval, mem_ptr) // lock cmpxchg
7764              );
7765   ins_pipe( pipe_cmpxchg );
7766 %}
7767 
7768 instruct compareAndExchangeL(
7769                          memory mem_ptr,
7770                          rax_RegL oldval, rRegL newval,
7771                          rFlagsReg cr)
7772 %{
7773   predicate(VM_Version::supports_cx8());
7774   match(Set oldval (CompareAndExchangeL mem_ptr (Binary oldval newval)));
7775   effect(KILL cr);
7776 
7777   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7778             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"  %}
7779   opcode(0x0F, 0xB1);
7780   ins_encode(lock_prefix,
7781              REX_reg_mem_wide(newval, mem_ptr),
7782              OpcP, OpcS,
7783              reg_mem(newval, mem_ptr)  // lock cmpxchg
7784             );
7785   ins_pipe( pipe_cmpxchg );
7786 %}
7787 
7788 instruct compareAndExchangeN(
7789                           memory mem_ptr,
7790                           rax_RegN oldval, rRegN newval,
7791                           rFlagsReg cr) %{
7792   match(Set oldval (CompareAndExchangeN mem_ptr (Binary oldval newval)));
7793   effect(KILL cr);
7794 
7795   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7796             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
7797   opcode(0x0F, 0xB1);
7798   ins_encode(lock_prefix,
7799              REX_reg_mem(newval, mem_ptr),
7800              OpcP, OpcS,
7801              reg_mem(newval, mem_ptr)  // lock cmpxchg
7802           );
7803   ins_pipe( pipe_cmpxchg );
7804 %}
7805 
7806 instruct compareAndExchangeP(
7807                          memory mem_ptr,
7808                          rax_RegP oldval, rRegP newval,
7809                          rFlagsReg cr)
7810 %{
7811   predicate(VM_Version::supports_cx8() && n->as_LoadStore()->barrier_data() == 0);
7812   match(Set oldval (CompareAndExchangeP mem_ptr (Binary oldval newval)));
7813   effect(KILL cr);
7814 
7815   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7816             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t" %}
7817   opcode(0x0F, 0xB1);
7818   ins_encode(lock_prefix,
7819              REX_reg_mem_wide(newval, mem_ptr),
7820              OpcP, OpcS,
7821              reg_mem(newval, mem_ptr)  // lock cmpxchg
7822           );
7823   ins_pipe( pipe_cmpxchg );
7824 %}
7825 
7826 instruct xaddB_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7827   predicate(n->as_LoadStore()->result_not_used());
7828   match(Set dummy (GetAndAddB mem add));
7829   effect(KILL cr);
7830   format %{ "ADDB  [$mem],$add" %}
7831   ins_encode %{
7832     __ lock();
7833     __ addb($mem$$Address, $add$$constant);
7834   %}
7835   ins_pipe( pipe_cmpxchg );
7836 %}
7837 
7838 instruct xaddB( memory mem, rRegI newval, rFlagsReg cr) %{
7839   match(Set newval (GetAndAddB mem newval));
7840   effect(KILL cr);
7841   format %{ "XADDB  [$mem],$newval" %}
7842   ins_encode %{
7843     __ lock();
7844     __ xaddb($mem$$Address, $newval$$Register);
7845   %}
7846   ins_pipe( pipe_cmpxchg );
7847 %}
7848 
7849 instruct xaddS_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7850   predicate(n->as_LoadStore()->result_not_used());
7851   match(Set dummy (GetAndAddS mem add));
7852   effect(KILL cr);
7853   format %{ "ADDW  [$mem],$add" %}
7854   ins_encode %{
7855     __ lock();
7856     __ addw($mem$$Address, $add$$constant);
7857   %}
7858   ins_pipe( pipe_cmpxchg );
7859 %}
7860 
7861 instruct xaddS( memory mem, rRegI newval, rFlagsReg cr) %{
7862   match(Set newval (GetAndAddS mem newval));
7863   effect(KILL cr);
7864   format %{ "XADDW  [$mem],$newval" %}
7865   ins_encode %{
7866     __ lock();
7867     __ xaddw($mem$$Address, $newval$$Register);
7868   %}
7869   ins_pipe( pipe_cmpxchg );
7870 %}
7871 
7872 instruct xaddI_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7873   predicate(n->as_LoadStore()->result_not_used());
7874   match(Set dummy (GetAndAddI mem add));
7875   effect(KILL cr);
7876   format %{ "ADDL  [$mem],$add" %}
7877   ins_encode %{
7878     __ lock();
7879     __ addl($mem$$Address, $add$$constant);
7880   %}
7881   ins_pipe( pipe_cmpxchg );
7882 %}
7883 
7884 instruct xaddI( memory mem, rRegI newval, rFlagsReg cr) %{
7885   match(Set newval (GetAndAddI mem newval));
7886   effect(KILL cr);
7887   format %{ "XADDL  [$mem],$newval" %}
7888   ins_encode %{
7889     __ lock();
7890     __ xaddl($mem$$Address, $newval$$Register);
7891   %}
7892   ins_pipe( pipe_cmpxchg );
7893 %}
7894 
7895 instruct xaddL_no_res( memory mem, Universe dummy, immL32 add, rFlagsReg cr) %{
7896   predicate(n->as_LoadStore()->result_not_used());
7897   match(Set dummy (GetAndAddL mem add));
7898   effect(KILL cr);
7899   format %{ "ADDQ  [$mem],$add" %}
7900   ins_encode %{
7901     __ lock();
7902     __ addq($mem$$Address, $add$$constant);
7903   %}
7904   ins_pipe( pipe_cmpxchg );
7905 %}
7906 
7907 instruct xaddL( memory mem, rRegL newval, rFlagsReg cr) %{
7908   match(Set newval (GetAndAddL mem newval));
7909   effect(KILL cr);
7910   format %{ "XADDQ  [$mem],$newval" %}
7911   ins_encode %{
7912     __ lock();
7913     __ xaddq($mem$$Address, $newval$$Register);
7914   %}
7915   ins_pipe( pipe_cmpxchg );
7916 %}
7917 
7918 instruct xchgB( memory mem, rRegI newval) %{
7919   match(Set newval (GetAndSetB mem newval));
7920   format %{ "XCHGB  $newval,[$mem]" %}
7921   ins_encode %{
7922     __ xchgb($newval$$Register, $mem$$Address);
7923   %}
7924   ins_pipe( pipe_cmpxchg );
7925 %}
7926 
7927 instruct xchgS( memory mem, rRegI newval) %{
7928   match(Set newval (GetAndSetS mem newval));
7929   format %{ "XCHGW  $newval,[$mem]" %}
7930   ins_encode %{
7931     __ xchgw($newval$$Register, $mem$$Address);
7932   %}
7933   ins_pipe( pipe_cmpxchg );
7934 %}
7935 
7936 instruct xchgI( memory mem, rRegI newval) %{
7937   match(Set newval (GetAndSetI mem newval));
7938   format %{ "XCHGL  $newval,[$mem]" %}
7939   ins_encode %{
7940     __ xchgl($newval$$Register, $mem$$Address);
7941   %}
7942   ins_pipe( pipe_cmpxchg );
7943 %}
7944 
7945 instruct xchgL( memory mem, rRegL newval) %{
7946   match(Set newval (GetAndSetL mem newval));
7947   format %{ "XCHGL  $newval,[$mem]" %}
7948   ins_encode %{
7949     __ xchgq($newval$$Register, $mem$$Address);
7950   %}
7951   ins_pipe( pipe_cmpxchg );
7952 %}
7953 
7954 instruct xchgP( memory mem, rRegP newval) %{
7955   match(Set newval (GetAndSetP mem newval));
7956   predicate(n->as_LoadStore()->barrier_data() == 0);
7957   format %{ "XCHGQ  $newval,[$mem]" %}
7958   ins_encode %{
7959     __ xchgq($newval$$Register, $mem$$Address);
7960   %}
7961   ins_pipe( pipe_cmpxchg );
7962 %}
7963 
7964 instruct xchgN( memory mem, rRegN newval) %{
7965   match(Set newval (GetAndSetN mem newval));
7966   format %{ "XCHGL  $newval,$mem]" %}
7967   ins_encode %{
7968     __ xchgl($newval$$Register, $mem$$Address);
7969   %}
7970   ins_pipe( pipe_cmpxchg );
7971 %}
7972 
7973 //----------Abs Instructions-------------------------------------------
7974 
7975 // Integer Absolute Instructions
7976 instruct absI_rReg(rRegI dst, rRegI src, rRegI tmp, rFlagsReg cr)
7977 %{
7978   match(Set dst (AbsI src));
7979   effect(TEMP dst, TEMP tmp, KILL cr);
7980   format %{ "movl $tmp, $src\n\t"
7981             "sarl $tmp, 31\n\t"
7982             "movl $dst, $src\n\t"
7983             "xorl $dst, $tmp\n\t"
7984             "subl $dst, $tmp\n"
7985           %}
7986   ins_encode %{
7987     __ movl($tmp$$Register, $src$$Register);
7988     __ sarl($tmp$$Register, 31);
7989     __ movl($dst$$Register, $src$$Register);
7990     __ xorl($dst$$Register, $tmp$$Register);
7991     __ subl($dst$$Register, $tmp$$Register);
7992   %}
7993 
7994   ins_pipe(ialu_reg_reg);
7995 %}
7996 
7997 // Long Absolute Instructions
7998 instruct absL_rReg(rRegL dst, rRegL src, rRegL tmp, rFlagsReg cr)
7999 %{
8000   match(Set dst (AbsL src));
8001   effect(TEMP dst, TEMP tmp, KILL cr);
8002   format %{ "movq $tmp, $src\n\t"
8003             "sarq $tmp, 63\n\t"
8004             "movq $dst, $src\n\t"
8005             "xorq $dst, $tmp\n\t"
8006             "subq $dst, $tmp\n"
8007           %}
8008   ins_encode %{
8009     __ movq($tmp$$Register, $src$$Register);
8010     __ sarq($tmp$$Register, 63);
8011     __ movq($dst$$Register, $src$$Register);
8012     __ xorq($dst$$Register, $tmp$$Register);
8013     __ subq($dst$$Register, $tmp$$Register);
8014   %}
8015 
8016   ins_pipe(ialu_reg_reg);
8017 %}
8018 
8019 //----------Subtraction Instructions-------------------------------------------
8020 
8021 // Integer Subtraction Instructions
8022 instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8023 %{
8024   match(Set dst (SubI dst src));
8025   effect(KILL cr);
8026 
8027   format %{ "subl    $dst, $src\t# int" %}
8028   opcode(0x2B);
8029   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
8030   ins_pipe(ialu_reg_reg);
8031 %}
8032 
8033 instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
8034 %{
8035   match(Set dst (SubI dst src));
8036   effect(KILL cr);
8037 
8038   format %{ "subl    $dst, $src\t# int" %}
8039   opcode(0x81, 0x05);  /* Opcode 81 /5 */
8040   ins_encode(OpcSErm(dst, src), Con8or32(src));
8041   ins_pipe(ialu_reg);
8042 %}
8043 
8044 instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
8045 %{
8046   match(Set dst (SubI dst (LoadI src)));
8047   effect(KILL cr);
8048 
8049   ins_cost(125);
8050   format %{ "subl    $dst, $src\t# int" %}
8051   opcode(0x2B);
8052   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
8053   ins_pipe(ialu_reg_mem);
8054 %}
8055 
8056 instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
8057 %{
8058   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8059   effect(KILL cr);
8060 
8061   ins_cost(150);
8062   format %{ "subl    $dst, $src\t# int" %}
8063   opcode(0x29); /* Opcode 29 /r */
8064   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
8065   ins_pipe(ialu_mem_reg);
8066 %}
8067 
8068 instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
8069 %{
8070   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8071   effect(KILL cr);
8072 
8073   ins_cost(125); // XXX
8074   format %{ "subl    $dst, $src\t# int" %}
8075   opcode(0x81); /* Opcode 81 /5 id */
8076   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
8077   ins_pipe(ialu_mem_imm);
8078 %}
8079 
8080 instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
8081 %{
8082   match(Set dst (SubL dst src));
8083   effect(KILL cr);
8084 
8085   format %{ "subq    $dst, $src\t# long" %}
8086   opcode(0x2B);
8087   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
8088   ins_pipe(ialu_reg_reg);
8089 %}
8090 
8091 instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
8092 %{
8093   match(Set dst (SubL dst src));
8094   effect(KILL cr);
8095 
8096   format %{ "subq    $dst, $src\t# long" %}
8097   opcode(0x81, 0x05);  /* Opcode 81 /5 */
8098   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
8099   ins_pipe(ialu_reg);
8100 %}
8101 
8102 instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
8103 %{
8104   match(Set dst (SubL dst (LoadL src)));
8105   effect(KILL cr);
8106 
8107   ins_cost(125);
8108   format %{ "subq    $dst, $src\t# long" %}
8109   opcode(0x2B);
8110   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
8111   ins_pipe(ialu_reg_mem);
8112 %}
8113 
8114 instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
8115 %{
8116   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
8117   effect(KILL cr);
8118 
8119   ins_cost(150);
8120   format %{ "subq    $dst, $src\t# long" %}
8121   opcode(0x29); /* Opcode 29 /r */
8122   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
8123   ins_pipe(ialu_mem_reg);
8124 %}
8125 
8126 instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
8127 %{
8128   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
8129   effect(KILL cr);
8130 
8131   ins_cost(125); // XXX
8132   format %{ "subq    $dst, $src\t# long" %}
8133   opcode(0x81); /* Opcode 81 /5 id */
8134   ins_encode(REX_mem_wide(dst),
8135              OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
8136   ins_pipe(ialu_mem_imm);
8137 %}
8138 
8139 // Subtract from a pointer
8140 // XXX hmpf???
8141 instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
8142 %{
8143   match(Set dst (AddP dst (SubI zero src)));
8144   effect(KILL cr);
8145 
8146   format %{ "subq    $dst, $src\t# ptr - int" %}
8147   opcode(0x2B);
8148   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
8149   ins_pipe(ialu_reg_reg);
8150 %}
8151 
8152 instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
8153 %{
8154   match(Set dst (SubI zero dst));
8155   effect(KILL cr);
8156 
8157   format %{ "negl    $dst\t# int" %}
8158   opcode(0xF7, 0x03);  // Opcode F7 /3
8159   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8160   ins_pipe(ialu_reg);
8161 %}
8162 
8163 instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
8164 %{
8165   match(Set dst (StoreI dst (SubI zero (LoadI dst))));
8166   effect(KILL cr);
8167 
8168   format %{ "negl    $dst\t# int" %}
8169   opcode(0xF7, 0x03);  // Opcode F7 /3
8170   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8171   ins_pipe(ialu_reg);
8172 %}
8173 
8174 instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
8175 %{
8176   match(Set dst (SubL zero dst));
8177   effect(KILL cr);
8178 
8179   format %{ "negq    $dst\t# long" %}
8180   opcode(0xF7, 0x03);  // Opcode F7 /3
8181   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8182   ins_pipe(ialu_reg);
8183 %}
8184 
8185 instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
8186 %{
8187   match(Set dst (StoreL dst (SubL zero (LoadL dst))));
8188   effect(KILL cr);
8189 
8190   format %{ "negq    $dst\t# long" %}
8191   opcode(0xF7, 0x03);  // Opcode F7 /3
8192   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8193   ins_pipe(ialu_reg);
8194 %}
8195 
8196 //----------Multiplication/Division Instructions-------------------------------
8197 // Integer Multiplication Instructions
8198 // Multiply Register
8199 
8200 instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8201 %{
8202   match(Set dst (MulI dst src));
8203   effect(KILL cr);
8204 
8205   ins_cost(300);
8206   format %{ "imull   $dst, $src\t# int" %}
8207   opcode(0x0F, 0xAF);
8208   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8209   ins_pipe(ialu_reg_reg_alu0);
8210 %}
8211 
8212 instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
8213 %{
8214   match(Set dst (MulI src imm));
8215   effect(KILL cr);
8216 
8217   ins_cost(300);
8218   format %{ "imull   $dst, $src, $imm\t# int" %}
8219   opcode(0x69); /* 69 /r id */
8220   ins_encode(REX_reg_reg(dst, src),
8221              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
8222   ins_pipe(ialu_reg_reg_alu0);
8223 %}
8224 
8225 instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
8226 %{
8227   match(Set dst (MulI dst (LoadI src)));
8228   effect(KILL cr);
8229 
8230   ins_cost(350);
8231   format %{ "imull   $dst, $src\t# int" %}
8232   opcode(0x0F, 0xAF);
8233   ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
8234   ins_pipe(ialu_reg_mem_alu0);
8235 %}
8236 
8237 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
8238 %{
8239   match(Set dst (MulI (LoadI src) imm));
8240   effect(KILL cr);
8241 
8242   ins_cost(300);
8243   format %{ "imull   $dst, $src, $imm\t# int" %}
8244   opcode(0x69); /* 69 /r id */
8245   ins_encode(REX_reg_mem(dst, src),
8246              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
8247   ins_pipe(ialu_reg_mem_alu0);
8248 %}
8249 
8250 instruct mulAddS2I_rReg(rRegI dst, rRegI src1, rRegI src2, rRegI src3, rFlagsReg cr)
8251 %{
8252   match(Set dst (MulAddS2I (Binary dst src1) (Binary src2 src3)));
8253   effect(KILL cr, KILL src2);
8254 
8255   expand %{ mulI_rReg(dst, src1, cr);
8256            mulI_rReg(src2, src3, cr);
8257            addI_rReg(dst, src2, cr); %}
8258 %}
8259 
8260 instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
8261 %{
8262   match(Set dst (MulL dst src));
8263   effect(KILL cr);
8264 
8265   ins_cost(300);
8266   format %{ "imulq   $dst, $src\t# long" %}
8267   opcode(0x0F, 0xAF);
8268   ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
8269   ins_pipe(ialu_reg_reg_alu0);
8270 %}
8271 
8272 instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
8273 %{
8274   match(Set dst (MulL src imm));
8275   effect(KILL cr);
8276 
8277   ins_cost(300);
8278   format %{ "imulq   $dst, $src, $imm\t# long" %}
8279   opcode(0x69); /* 69 /r id */
8280   ins_encode(REX_reg_reg_wide(dst, src),
8281              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
8282   ins_pipe(ialu_reg_reg_alu0);
8283 %}
8284 
8285 instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
8286 %{
8287   match(Set dst (MulL dst (LoadL src)));
8288   effect(KILL cr);
8289 
8290   ins_cost(350);
8291   format %{ "imulq   $dst, $src\t# long" %}
8292   opcode(0x0F, 0xAF);
8293   ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
8294   ins_pipe(ialu_reg_mem_alu0);
8295 %}
8296 
8297 instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
8298 %{
8299   match(Set dst (MulL (LoadL src) imm));
8300   effect(KILL cr);
8301 
8302   ins_cost(300);
8303   format %{ "imulq   $dst, $src, $imm\t# long" %}
8304   opcode(0x69); /* 69 /r id */
8305   ins_encode(REX_reg_mem_wide(dst, src),
8306              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
8307   ins_pipe(ialu_reg_mem_alu0);
8308 %}
8309 
8310 instruct mulHiL_rReg(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
8311 %{
8312   match(Set dst (MulHiL src rax));
8313   effect(USE_KILL rax, KILL cr);
8314 
8315   ins_cost(300);
8316   format %{ "imulq   RDX:RAX, RAX, $src\t# mulhi" %}
8317   opcode(0xF7, 0x5); /* Opcode F7 /5 */
8318   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
8319   ins_pipe(ialu_reg_reg_alu0);
8320 %}
8321 
8322 instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
8323                    rFlagsReg cr)
8324 %{
8325   match(Set rax (DivI rax div));
8326   effect(KILL rdx, KILL cr);
8327 
8328   ins_cost(30*100+10*100); // XXX
8329   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
8330             "jne,s   normal\n\t"
8331             "xorl    rdx, rdx\n\t"
8332             "cmpl    $div, -1\n\t"
8333             "je,s    done\n"
8334     "normal: cdql\n\t"
8335             "idivl   $div\n"
8336     "done:"        %}
8337   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8338   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8339   ins_pipe(ialu_reg_reg_alu0);
8340 %}
8341 
8342 instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
8343                    rFlagsReg cr)
8344 %{
8345   match(Set rax (DivL rax div));
8346   effect(KILL rdx, KILL cr);
8347 
8348   ins_cost(30*100+10*100); // XXX
8349   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
8350             "cmpq    rax, rdx\n\t"
8351             "jne,s   normal\n\t"
8352             "xorl    rdx, rdx\n\t"
8353             "cmpq    $div, -1\n\t"
8354             "je,s    done\n"
8355     "normal: cdqq\n\t"
8356             "idivq   $div\n"
8357     "done:"        %}
8358   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8359   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8360   ins_pipe(ialu_reg_reg_alu0);
8361 %}
8362 
8363 // Integer DIVMOD with Register, both quotient and mod results
8364 instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
8365                              rFlagsReg cr)
8366 %{
8367   match(DivModI rax div);
8368   effect(KILL cr);
8369 
8370   ins_cost(30*100+10*100); // XXX
8371   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
8372             "jne,s   normal\n\t"
8373             "xorl    rdx, rdx\n\t"
8374             "cmpl    $div, -1\n\t"
8375             "je,s    done\n"
8376     "normal: cdql\n\t"
8377             "idivl   $div\n"
8378     "done:"        %}
8379   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8380   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8381   ins_pipe(pipe_slow);
8382 %}
8383 
8384 // Long DIVMOD with Register, both quotient and mod results
8385 instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
8386                              rFlagsReg cr)
8387 %{
8388   match(DivModL rax div);
8389   effect(KILL cr);
8390 
8391   ins_cost(30*100+10*100); // XXX
8392   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
8393             "cmpq    rax, rdx\n\t"
8394             "jne,s   normal\n\t"
8395             "xorl    rdx, rdx\n\t"
8396             "cmpq    $div, -1\n\t"
8397             "je,s    done\n"
8398     "normal: cdqq\n\t"
8399             "idivq   $div\n"
8400     "done:"        %}
8401   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8402   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8403   ins_pipe(pipe_slow);
8404 %}
8405 
8406 //----------- DivL-By-Constant-Expansions--------------------------------------
8407 // DivI cases are handled by the compiler
8408 
8409 // Magic constant, reciprocal of 10
8410 instruct loadConL_0x6666666666666667(rRegL dst)
8411 %{
8412   effect(DEF dst);
8413 
8414   format %{ "movq    $dst, #0x666666666666667\t# Used in div-by-10" %}
8415   ins_encode(load_immL(dst, 0x6666666666666667));
8416   ins_pipe(ialu_reg);
8417 %}
8418 
8419 instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
8420 %{
8421   effect(DEF dst, USE src, USE_KILL rax, KILL cr);
8422 
8423   format %{ "imulq   rdx:rax, rax, $src\t# Used in div-by-10" %}
8424   opcode(0xF7, 0x5); /* Opcode F7 /5 */
8425   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
8426   ins_pipe(ialu_reg_reg_alu0);
8427 %}
8428 
8429 instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
8430 %{
8431   effect(USE_DEF dst, KILL cr);
8432 
8433   format %{ "sarq    $dst, #63\t# Used in div-by-10" %}
8434   opcode(0xC1, 0x7); /* C1 /7 ib */
8435   ins_encode(reg_opc_imm_wide(dst, 0x3F));
8436   ins_pipe(ialu_reg);
8437 %}
8438 
8439 instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
8440 %{
8441   effect(USE_DEF dst, KILL cr);
8442 
8443   format %{ "sarq    $dst, #2\t# Used in div-by-10" %}
8444   opcode(0xC1, 0x7); /* C1 /7 ib */
8445   ins_encode(reg_opc_imm_wide(dst, 0x2));
8446   ins_pipe(ialu_reg);
8447 %}
8448 
8449 instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
8450 %{
8451   match(Set dst (DivL src div));
8452 
8453   ins_cost((5+8)*100);
8454   expand %{
8455     rax_RegL rax;                     // Killed temp
8456     rFlagsReg cr;                     // Killed
8457     loadConL_0x6666666666666667(rax); // movq  rax, 0x6666666666666667
8458     mul_hi(dst, src, rax, cr);        // mulq  rdx:rax <= rax * $src
8459     sarL_rReg_63(src, cr);            // sarq  src, 63
8460     sarL_rReg_2(dst, cr);             // sarq  rdx, 2
8461     subL_rReg(dst, src, cr);          // subl  rdx, src
8462   %}
8463 %}
8464 
8465 //-----------------------------------------------------------------------------
8466 
8467 instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
8468                    rFlagsReg cr)
8469 %{
8470   match(Set rdx (ModI rax div));
8471   effect(KILL rax, KILL cr);
8472 
8473   ins_cost(300); // XXX
8474   format %{ "cmpl    rax, 0x80000000\t# irem\n\t"
8475             "jne,s   normal\n\t"
8476             "xorl    rdx, rdx\n\t"
8477             "cmpl    $div, -1\n\t"
8478             "je,s    done\n"
8479     "normal: cdql\n\t"
8480             "idivl   $div\n"
8481     "done:"        %}
8482   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8483   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
8484   ins_pipe(ialu_reg_reg_alu0);
8485 %}
8486 
8487 instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
8488                    rFlagsReg cr)
8489 %{
8490   match(Set rdx (ModL rax div));
8491   effect(KILL rax, KILL cr);
8492 
8493   ins_cost(300); // XXX
8494   format %{ "movq    rdx, 0x8000000000000000\t# lrem\n\t"
8495             "cmpq    rax, rdx\n\t"
8496             "jne,s   normal\n\t"
8497             "xorl    rdx, rdx\n\t"
8498             "cmpq    $div, -1\n\t"
8499             "je,s    done\n"
8500     "normal: cdqq\n\t"
8501             "idivq   $div\n"
8502     "done:"        %}
8503   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8504   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
8505   ins_pipe(ialu_reg_reg_alu0);
8506 %}
8507 
8508 // Integer Shift Instructions
8509 // Shift Left by one
8510 instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8511 %{
8512   match(Set dst (LShiftI dst shift));
8513   effect(KILL cr);
8514 
8515   format %{ "sall    $dst, $shift" %}
8516   opcode(0xD1, 0x4); /* D1 /4 */
8517   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8518   ins_pipe(ialu_reg);
8519 %}
8520 
8521 // Shift Left by one
8522 instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8523 %{
8524   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8525   effect(KILL cr);
8526 
8527   format %{ "sall    $dst, $shift\t" %}
8528   opcode(0xD1, 0x4); /* D1 /4 */
8529   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8530   ins_pipe(ialu_mem_imm);
8531 %}
8532 
8533 // Shift Left by 8-bit immediate
8534 instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8535 %{
8536   match(Set dst (LShiftI dst shift));
8537   effect(KILL cr);
8538 
8539   format %{ "sall    $dst, $shift" %}
8540   opcode(0xC1, 0x4); /* C1 /4 ib */
8541   ins_encode(reg_opc_imm(dst, shift));
8542   ins_pipe(ialu_reg);
8543 %}
8544 
8545 // Shift Left by 8-bit immediate
8546 instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8547 %{
8548   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8549   effect(KILL cr);
8550 
8551   format %{ "sall    $dst, $shift" %}
8552   opcode(0xC1, 0x4); /* C1 /4 ib */
8553   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8554   ins_pipe(ialu_mem_imm);
8555 %}
8556 
8557 // Shift Left by variable
8558 instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8559 %{
8560   match(Set dst (LShiftI dst shift));
8561   effect(KILL cr);
8562 
8563   format %{ "sall    $dst, $shift" %}
8564   opcode(0xD3, 0x4); /* D3 /4 */
8565   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8566   ins_pipe(ialu_reg_reg);
8567 %}
8568 
8569 // Shift Left by variable
8570 instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8571 %{
8572   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
8573   effect(KILL cr);
8574 
8575   format %{ "sall    $dst, $shift" %}
8576   opcode(0xD3, 0x4); /* D3 /4 */
8577   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8578   ins_pipe(ialu_mem_reg);
8579 %}
8580 
8581 // Arithmetic shift right by one
8582 instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8583 %{
8584   match(Set dst (RShiftI dst shift));
8585   effect(KILL cr);
8586 
8587   format %{ "sarl    $dst, $shift" %}
8588   opcode(0xD1, 0x7); /* D1 /7 */
8589   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8590   ins_pipe(ialu_reg);
8591 %}
8592 
8593 // Arithmetic shift right by one
8594 instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8595 %{
8596   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8597   effect(KILL cr);
8598 
8599   format %{ "sarl    $dst, $shift" %}
8600   opcode(0xD1, 0x7); /* D1 /7 */
8601   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8602   ins_pipe(ialu_mem_imm);
8603 %}
8604 
8605 // Arithmetic Shift Right by 8-bit immediate
8606 instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8607 %{
8608   match(Set dst (RShiftI dst shift));
8609   effect(KILL cr);
8610 
8611   format %{ "sarl    $dst, $shift" %}
8612   opcode(0xC1, 0x7); /* C1 /7 ib */
8613   ins_encode(reg_opc_imm(dst, shift));
8614   ins_pipe(ialu_mem_imm);
8615 %}
8616 
8617 // Arithmetic Shift Right by 8-bit immediate
8618 instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8619 %{
8620   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8621   effect(KILL cr);
8622 
8623   format %{ "sarl    $dst, $shift" %}
8624   opcode(0xC1, 0x7); /* C1 /7 ib */
8625   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8626   ins_pipe(ialu_mem_imm);
8627 %}
8628 
8629 // Arithmetic Shift Right by variable
8630 instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8631 %{
8632   match(Set dst (RShiftI dst shift));
8633   effect(KILL cr);
8634 
8635   format %{ "sarl    $dst, $shift" %}
8636   opcode(0xD3, 0x7); /* D3 /7 */
8637   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8638   ins_pipe(ialu_reg_reg);
8639 %}
8640 
8641 // Arithmetic Shift Right by variable
8642 instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8643 %{
8644   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8645   effect(KILL cr);
8646 
8647   format %{ "sarl    $dst, $shift" %}
8648   opcode(0xD3, 0x7); /* D3 /7 */
8649   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8650   ins_pipe(ialu_mem_reg);
8651 %}
8652 
8653 // Logical shift right by one
8654 instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8655 %{
8656   match(Set dst (URShiftI dst shift));
8657   effect(KILL cr);
8658 
8659   format %{ "shrl    $dst, $shift" %}
8660   opcode(0xD1, 0x5); /* D1 /5 */
8661   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8662   ins_pipe(ialu_reg);
8663 %}
8664 
8665 // Logical shift right by one
8666 instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8667 %{
8668   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8669   effect(KILL cr);
8670 
8671   format %{ "shrl    $dst, $shift" %}
8672   opcode(0xD1, 0x5); /* D1 /5 */
8673   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8674   ins_pipe(ialu_mem_imm);
8675 %}
8676 
8677 // Logical Shift Right by 8-bit immediate
8678 instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8679 %{
8680   match(Set dst (URShiftI dst shift));
8681   effect(KILL cr);
8682 
8683   format %{ "shrl    $dst, $shift" %}
8684   opcode(0xC1, 0x5); /* C1 /5 ib */
8685   ins_encode(reg_opc_imm(dst, shift));
8686   ins_pipe(ialu_reg);
8687 %}
8688 
8689 // Logical Shift Right by 8-bit immediate
8690 instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8691 %{
8692   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8693   effect(KILL cr);
8694 
8695   format %{ "shrl    $dst, $shift" %}
8696   opcode(0xC1, 0x5); /* C1 /5 ib */
8697   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8698   ins_pipe(ialu_mem_imm);
8699 %}
8700 
8701 // Logical Shift Right by variable
8702 instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8703 %{
8704   match(Set dst (URShiftI dst shift));
8705   effect(KILL cr);
8706 
8707   format %{ "shrl    $dst, $shift" %}
8708   opcode(0xD3, 0x5); /* D3 /5 */
8709   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8710   ins_pipe(ialu_reg_reg);
8711 %}
8712 
8713 // Logical Shift Right by variable
8714 instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8715 %{
8716   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8717   effect(KILL cr);
8718 
8719   format %{ "shrl    $dst, $shift" %}
8720   opcode(0xD3, 0x5); /* D3 /5 */
8721   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8722   ins_pipe(ialu_mem_reg);
8723 %}
8724 
8725 // Long Shift Instructions
8726 // Shift Left by one
8727 instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8728 %{
8729   match(Set dst (LShiftL dst shift));
8730   effect(KILL cr);
8731 
8732   format %{ "salq    $dst, $shift" %}
8733   opcode(0xD1, 0x4); /* D1 /4 */
8734   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8735   ins_pipe(ialu_reg);
8736 %}
8737 
8738 // Shift Left by one
8739 instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8740 %{
8741   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8742   effect(KILL cr);
8743 
8744   format %{ "salq    $dst, $shift" %}
8745   opcode(0xD1, 0x4); /* D1 /4 */
8746   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8747   ins_pipe(ialu_mem_imm);
8748 %}
8749 
8750 // Shift Left by 8-bit immediate
8751 instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8752 %{
8753   match(Set dst (LShiftL dst shift));
8754   effect(KILL cr);
8755 
8756   format %{ "salq    $dst, $shift" %}
8757   opcode(0xC1, 0x4); /* C1 /4 ib */
8758   ins_encode(reg_opc_imm_wide(dst, shift));
8759   ins_pipe(ialu_reg);
8760 %}
8761 
8762 // Shift Left by 8-bit immediate
8763 instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8764 %{
8765   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8766   effect(KILL cr);
8767 
8768   format %{ "salq    $dst, $shift" %}
8769   opcode(0xC1, 0x4); /* C1 /4 ib */
8770   ins_encode(REX_mem_wide(dst), OpcP,
8771              RM_opc_mem(secondary, dst), Con8or32(shift));
8772   ins_pipe(ialu_mem_imm);
8773 %}
8774 
8775 // Shift Left by variable
8776 instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8777 %{
8778   match(Set dst (LShiftL dst shift));
8779   effect(KILL cr);
8780 
8781   format %{ "salq    $dst, $shift" %}
8782   opcode(0xD3, 0x4); /* D3 /4 */
8783   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8784   ins_pipe(ialu_reg_reg);
8785 %}
8786 
8787 // Shift Left by variable
8788 instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8789 %{
8790   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8791   effect(KILL cr);
8792 
8793   format %{ "salq    $dst, $shift" %}
8794   opcode(0xD3, 0x4); /* D3 /4 */
8795   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8796   ins_pipe(ialu_mem_reg);
8797 %}
8798 
8799 // Arithmetic shift right by one
8800 instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8801 %{
8802   match(Set dst (RShiftL dst shift));
8803   effect(KILL cr);
8804 
8805   format %{ "sarq    $dst, $shift" %}
8806   opcode(0xD1, 0x7); /* D1 /7 */
8807   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8808   ins_pipe(ialu_reg);
8809 %}
8810 
8811 // Arithmetic shift right by one
8812 instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8813 %{
8814   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8815   effect(KILL cr);
8816 
8817   format %{ "sarq    $dst, $shift" %}
8818   opcode(0xD1, 0x7); /* D1 /7 */
8819   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8820   ins_pipe(ialu_mem_imm);
8821 %}
8822 
8823 // Arithmetic Shift Right by 8-bit immediate
8824 instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8825 %{
8826   match(Set dst (RShiftL dst shift));
8827   effect(KILL cr);
8828 
8829   format %{ "sarq    $dst, $shift" %}
8830   opcode(0xC1, 0x7); /* C1 /7 ib */
8831   ins_encode(reg_opc_imm_wide(dst, shift));
8832   ins_pipe(ialu_mem_imm);
8833 %}
8834 
8835 // Arithmetic Shift Right by 8-bit immediate
8836 instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8837 %{
8838   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8839   effect(KILL cr);
8840 
8841   format %{ "sarq    $dst, $shift" %}
8842   opcode(0xC1, 0x7); /* C1 /7 ib */
8843   ins_encode(REX_mem_wide(dst), OpcP,
8844              RM_opc_mem(secondary, dst), Con8or32(shift));
8845   ins_pipe(ialu_mem_imm);
8846 %}
8847 
8848 // Arithmetic Shift Right by variable
8849 instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8850 %{
8851   match(Set dst (RShiftL dst shift));
8852   effect(KILL cr);
8853 
8854   format %{ "sarq    $dst, $shift" %}
8855   opcode(0xD3, 0x7); /* D3 /7 */
8856   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8857   ins_pipe(ialu_reg_reg);
8858 %}
8859 
8860 // Arithmetic Shift Right by variable
8861 instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8862 %{
8863   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8864   effect(KILL cr);
8865 
8866   format %{ "sarq    $dst, $shift" %}
8867   opcode(0xD3, 0x7); /* D3 /7 */
8868   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8869   ins_pipe(ialu_mem_reg);
8870 %}
8871 
8872 // Logical shift right by one
8873 instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8874 %{
8875   match(Set dst (URShiftL dst shift));
8876   effect(KILL cr);
8877 
8878   format %{ "shrq    $dst, $shift" %}
8879   opcode(0xD1, 0x5); /* D1 /5 */
8880   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
8881   ins_pipe(ialu_reg);
8882 %}
8883 
8884 // Logical shift right by one
8885 instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8886 %{
8887   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8888   effect(KILL cr);
8889 
8890   format %{ "shrq    $dst, $shift" %}
8891   opcode(0xD1, 0x5); /* D1 /5 */
8892   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8893   ins_pipe(ialu_mem_imm);
8894 %}
8895 
8896 // Logical Shift Right by 8-bit immediate
8897 instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8898 %{
8899   match(Set dst (URShiftL dst shift));
8900   effect(KILL cr);
8901 
8902   format %{ "shrq    $dst, $shift" %}
8903   opcode(0xC1, 0x5); /* C1 /5 ib */
8904   ins_encode(reg_opc_imm_wide(dst, shift));
8905   ins_pipe(ialu_reg);
8906 %}
8907 
8908 
8909 // Logical Shift Right by 8-bit immediate
8910 instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8911 %{
8912   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8913   effect(KILL cr);
8914 
8915   format %{ "shrq    $dst, $shift" %}
8916   opcode(0xC1, 0x5); /* C1 /5 ib */
8917   ins_encode(REX_mem_wide(dst), OpcP,
8918              RM_opc_mem(secondary, dst), Con8or32(shift));
8919   ins_pipe(ialu_mem_imm);
8920 %}
8921 
8922 // Logical Shift Right by variable
8923 instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8924 %{
8925   match(Set dst (URShiftL dst shift));
8926   effect(KILL cr);
8927 
8928   format %{ "shrq    $dst, $shift" %}
8929   opcode(0xD3, 0x5); /* D3 /5 */
8930   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8931   ins_pipe(ialu_reg_reg);
8932 %}
8933 
8934 // Logical Shift Right by variable
8935 instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8936 %{
8937   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8938   effect(KILL cr);
8939 
8940   format %{ "shrq    $dst, $shift" %}
8941   opcode(0xD3, 0x5); /* D3 /5 */
8942   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8943   ins_pipe(ialu_mem_reg);
8944 %}
8945 
8946 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8947 // This idiom is used by the compiler for the i2b bytecode.
8948 instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
8949 %{
8950   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8951 
8952   format %{ "movsbl  $dst, $src\t# i2b" %}
8953   opcode(0x0F, 0xBE);
8954   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8955   ins_pipe(ialu_reg_reg);
8956 %}
8957 
8958 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8959 // This idiom is used by the compiler the i2s bytecode.
8960 instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
8961 %{
8962   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8963 
8964   format %{ "movswl  $dst, $src\t# i2s" %}
8965   opcode(0x0F, 0xBF);
8966   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8967   ins_pipe(ialu_reg_reg);
8968 %}
8969 
8970 // ROL/ROR instructions
8971 
8972 // ROL expand
8973 instruct rolI_rReg_imm1(rRegI dst, rFlagsReg cr) %{
8974   effect(KILL cr, USE_DEF dst);
8975 
8976   format %{ "roll    $dst" %}
8977   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
8978   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8979   ins_pipe(ialu_reg);
8980 %}
8981 
8982 instruct rolI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr) %{
8983   effect(USE_DEF dst, USE shift, KILL cr);
8984 
8985   format %{ "roll    $dst, $shift" %}
8986   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
8987   ins_encode( reg_opc_imm(dst, shift) );
8988   ins_pipe(ialu_reg);
8989 %}
8990 
8991 instruct rolI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
8992 %{
8993   effect(USE_DEF dst, USE shift, KILL cr);
8994 
8995   format %{ "roll    $dst, $shift" %}
8996   opcode(0xD3, 0x0); /* Opcode D3 /0 */
8997   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8998   ins_pipe(ialu_reg_reg);
8999 %}
9000 // end of ROL expand
9001 
9002 // Rotate Left by one
9003 instruct rolI_rReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
9004 %{
9005   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9006 
9007   expand %{
9008     rolI_rReg_imm1(dst, cr);
9009   %}
9010 %}
9011 
9012 // Rotate Left by 8-bit immediate
9013 instruct rolI_rReg_i8(rRegI dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
9014 %{
9015   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9016   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9017 
9018   expand %{
9019     rolI_rReg_imm8(dst, lshift, cr);
9020   %}
9021 %}
9022 
9023 // Rotate Left by variable
9024 instruct rolI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9025 %{
9026   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
9027 
9028   expand %{
9029     rolI_rReg_CL(dst, shift, cr);
9030   %}
9031 %}
9032 
9033 // Rotate Left by variable
9034 instruct rolI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
9035 %{
9036   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
9037 
9038   expand %{
9039     rolI_rReg_CL(dst, shift, cr);
9040   %}
9041 %}
9042 
9043 // ROR expand
9044 instruct rorI_rReg_imm1(rRegI dst, rFlagsReg cr)
9045 %{
9046   effect(USE_DEF dst, KILL cr);
9047 
9048   format %{ "rorl    $dst" %}
9049   opcode(0xD1, 0x1); /* D1 /1 */
9050   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
9051   ins_pipe(ialu_reg);
9052 %}
9053 
9054 instruct rorI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr)
9055 %{
9056   effect(USE_DEF dst, USE shift, KILL cr);
9057 
9058   format %{ "rorl    $dst, $shift" %}
9059   opcode(0xC1, 0x1); /* C1 /1 ib */
9060   ins_encode(reg_opc_imm(dst, shift));
9061   ins_pipe(ialu_reg);
9062 %}
9063 
9064 instruct rorI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
9065 %{
9066   effect(USE_DEF dst, USE shift, KILL cr);
9067 
9068   format %{ "rorl    $dst, $shift" %}
9069   opcode(0xD3, 0x1); /* D3 /1 */
9070   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
9071   ins_pipe(ialu_reg_reg);
9072 %}
9073 // end of ROR expand
9074 
9075 // Rotate Right by one
9076 instruct rorI_rReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
9077 %{
9078   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9079 
9080   expand %{
9081     rorI_rReg_imm1(dst, cr);
9082   %}
9083 %}
9084 
9085 // Rotate Right by 8-bit immediate
9086 instruct rorI_rReg_i8(rRegI dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
9087 %{
9088   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9089   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9090 
9091   expand %{
9092     rorI_rReg_imm8(dst, rshift, cr);
9093   %}
9094 %}
9095 
9096 // Rotate Right by variable
9097 instruct rorI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9098 %{
9099   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
9100 
9101   expand %{
9102     rorI_rReg_CL(dst, shift, cr);
9103   %}
9104 %}
9105 
9106 // Rotate Right by variable
9107 instruct rorI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
9108 %{
9109   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
9110 
9111   expand %{
9112     rorI_rReg_CL(dst, shift, cr);
9113   %}
9114 %}
9115 
9116 // for long rotate
9117 // ROL expand
9118 instruct rolL_rReg_imm1(rRegL dst, rFlagsReg cr) %{
9119   effect(USE_DEF dst, KILL cr);
9120 
9121   format %{ "rolq    $dst" %}
9122   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
9123   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9124   ins_pipe(ialu_reg);
9125 %}
9126 
9127 instruct rolL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr) %{
9128   effect(USE_DEF dst, USE shift, KILL cr);
9129 
9130   format %{ "rolq    $dst, $shift" %}
9131   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
9132   ins_encode( reg_opc_imm_wide(dst, shift) );
9133   ins_pipe(ialu_reg);
9134 %}
9135 
9136 instruct rolL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
9137 %{
9138   effect(USE_DEF dst, USE shift, KILL cr);
9139 
9140   format %{ "rolq    $dst, $shift" %}
9141   opcode(0xD3, 0x0); /* Opcode D3 /0 */
9142   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9143   ins_pipe(ialu_reg_reg);
9144 %}
9145 // end of ROL expand
9146 
9147 // Rotate Left by one
9148 instruct rolL_rReg_i1(rRegL dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
9149 %{
9150   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
9151 
9152   expand %{
9153     rolL_rReg_imm1(dst, cr);
9154   %}
9155 %}
9156 
9157 // Rotate Left by 8-bit immediate
9158 instruct rolL_rReg_i8(rRegL dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
9159 %{
9160   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
9161   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
9162 
9163   expand %{
9164     rolL_rReg_imm8(dst, lshift, cr);
9165   %}
9166 %}
9167 
9168 // Rotate Left by variable
9169 instruct rolL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9170 %{
9171   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI zero shift))));
9172 
9173   expand %{
9174     rolL_rReg_CL(dst, shift, cr);
9175   %}
9176 %}
9177 
9178 // Rotate Left by variable
9179 instruct rolL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
9180 %{
9181   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI c64 shift))));
9182 
9183   expand %{
9184     rolL_rReg_CL(dst, shift, cr);
9185   %}
9186 %}
9187 
9188 // ROR expand
9189 instruct rorL_rReg_imm1(rRegL dst, rFlagsReg cr)
9190 %{
9191   effect(USE_DEF dst, KILL cr);
9192 
9193   format %{ "rorq    $dst" %}
9194   opcode(0xD1, 0x1); /* D1 /1 */
9195   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9196   ins_pipe(ialu_reg);
9197 %}
9198 
9199 instruct rorL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr)
9200 %{
9201   effect(USE_DEF dst, USE shift, KILL cr);
9202 
9203   format %{ "rorq    $dst, $shift" %}
9204   opcode(0xC1, 0x1); /* C1 /1 ib */
9205   ins_encode(reg_opc_imm_wide(dst, shift));
9206   ins_pipe(ialu_reg);
9207 %}
9208 
9209 instruct rorL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
9210 %{
9211   effect(USE_DEF dst, USE shift, KILL cr);
9212 
9213   format %{ "rorq    $dst, $shift" %}
9214   opcode(0xD3, 0x1); /* D3 /1 */
9215   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
9216   ins_pipe(ialu_reg_reg);
9217 %}
9218 // end of ROR expand
9219 
9220 // Rotate Right by one
9221 instruct rorL_rReg_i1(rRegL dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
9222 %{
9223   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
9224 
9225   expand %{
9226     rorL_rReg_imm1(dst, cr);
9227   %}
9228 %}
9229 
9230 // Rotate Right by 8-bit immediate
9231 instruct rorL_rReg_i8(rRegL dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
9232 %{
9233   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
9234   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
9235 
9236   expand %{
9237     rorL_rReg_imm8(dst, rshift, cr);
9238   %}
9239 %}
9240 
9241 // Rotate Right by variable
9242 instruct rorL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
9243 %{
9244   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI zero shift))));
9245 
9246   expand %{
9247     rorL_rReg_CL(dst, shift, cr);
9248   %}
9249 %}
9250 
9251 // Rotate Right by variable
9252 instruct rorL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
9253 %{
9254   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI c64 shift))));
9255 
9256   expand %{
9257     rorL_rReg_CL(dst, shift, cr);
9258   %}
9259 %}
9260 
9261 // Logical Instructions
9262 
9263 // Integer Logical Instructions
9264 
9265 // And Instructions
9266 // And Register with Register
9267 instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9268 %{
9269   match(Set dst (AndI dst src));
9270   effect(KILL cr);
9271 
9272   format %{ "andl    $dst, $src\t# int" %}
9273   opcode(0x23);
9274   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9275   ins_pipe(ialu_reg_reg);
9276 %}
9277 
9278 // And Register with Immediate 255
9279 instruct andI_rReg_imm255(rRegI dst, immI_255 src)
9280 %{
9281   match(Set dst (AndI dst src));
9282 
9283   format %{ "movzbl  $dst, $dst\t# int & 0xFF" %}
9284   opcode(0x0F, 0xB6);
9285   ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9286   ins_pipe(ialu_reg);
9287 %}
9288 
9289 // And Register with Immediate 255 and promote to long
9290 instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
9291 %{
9292   match(Set dst (ConvI2L (AndI src mask)));
9293 
9294   format %{ "movzbl  $dst, $src\t# int & 0xFF -> long" %}
9295   opcode(0x0F, 0xB6);
9296   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
9297   ins_pipe(ialu_reg);
9298 %}
9299 
9300 // And Register with Immediate 65535
9301 instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
9302 %{
9303   match(Set dst (AndI dst src));
9304 
9305   format %{ "movzwl  $dst, $dst\t# int & 0xFFFF" %}
9306   opcode(0x0F, 0xB7);
9307   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9308   ins_pipe(ialu_reg);
9309 %}
9310 
9311 // And Register with Immediate 65535 and promote to long
9312 instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
9313 %{
9314   match(Set dst (ConvI2L (AndI src mask)));
9315 
9316   format %{ "movzwl  $dst, $src\t# int & 0xFFFF -> long" %}
9317   opcode(0x0F, 0xB7);
9318   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
9319   ins_pipe(ialu_reg);
9320 %}
9321 
9322 // And Register with Immediate
9323 instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9324 %{
9325   match(Set dst (AndI dst src));
9326   effect(KILL cr);
9327 
9328   format %{ "andl    $dst, $src\t# int" %}
9329   opcode(0x81, 0x04); /* Opcode 81 /4 */
9330   ins_encode(OpcSErm(dst, src), Con8or32(src));
9331   ins_pipe(ialu_reg);
9332 %}
9333 
9334 // And Register with Memory
9335 instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9336 %{
9337   match(Set dst (AndI dst (LoadI src)));
9338   effect(KILL cr);
9339 
9340   ins_cost(125);
9341   format %{ "andl    $dst, $src\t# int" %}
9342   opcode(0x23);
9343   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9344   ins_pipe(ialu_reg_mem);
9345 %}
9346 
9347 // And Memory with Register
9348 instruct andB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9349 %{
9350   match(Set dst (StoreB dst (AndI (LoadB dst) src)));
9351   effect(KILL cr);
9352 
9353   ins_cost(150);
9354   format %{ "andb    $dst, $src\t# byte" %}
9355   opcode(0x20);
9356   ins_encode(REX_breg_mem(src, dst), OpcP, reg_mem(src, dst));
9357   ins_pipe(ialu_mem_reg);
9358 %}
9359 
9360 instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9361 %{
9362   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9363   effect(KILL cr);
9364 
9365   ins_cost(150);
9366   format %{ "andl    $dst, $src\t# int" %}
9367   opcode(0x21); /* Opcode 21 /r */
9368   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9369   ins_pipe(ialu_mem_reg);
9370 %}
9371 
9372 // And Memory with Immediate
9373 instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
9374 %{
9375   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9376   effect(KILL cr);
9377 
9378   ins_cost(125);
9379   format %{ "andl    $dst, $src\t# int" %}
9380   opcode(0x81, 0x4); /* Opcode 81 /4 id */
9381   ins_encode(REX_mem(dst), OpcSE(src),
9382              RM_opc_mem(secondary, dst), Con8or32(src));
9383   ins_pipe(ialu_mem_imm);
9384 %}
9385 
9386 // BMI1 instructions
9387 instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, rFlagsReg cr) %{
9388   match(Set dst (AndI (XorI src1 minus_1) (LoadI src2)));
9389   predicate(UseBMI1Instructions);
9390   effect(KILL cr);
9391 
9392   ins_cost(125);
9393   format %{ "andnl  $dst, $src1, $src2" %}
9394 
9395   ins_encode %{
9396     __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
9397   %}
9398   ins_pipe(ialu_reg_mem);
9399 %}
9400 
9401 instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, rFlagsReg cr) %{
9402   match(Set dst (AndI (XorI src1 minus_1) src2));
9403   predicate(UseBMI1Instructions);
9404   effect(KILL cr);
9405 
9406   format %{ "andnl  $dst, $src1, $src2" %}
9407 
9408   ins_encode %{
9409     __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
9410   %}
9411   ins_pipe(ialu_reg);
9412 %}
9413 
9414 instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI0 imm_zero, rFlagsReg cr) %{
9415   match(Set dst (AndI (SubI imm_zero src) src));
9416   predicate(UseBMI1Instructions);
9417   effect(KILL cr);
9418 
9419   format %{ "blsil  $dst, $src" %}
9420 
9421   ins_encode %{
9422     __ blsil($dst$$Register, $src$$Register);
9423   %}
9424   ins_pipe(ialu_reg);
9425 %}
9426 
9427 instruct blsiI_rReg_mem(rRegI dst, memory src, immI0 imm_zero, rFlagsReg cr) %{
9428   match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
9429   predicate(UseBMI1Instructions);
9430   effect(KILL cr);
9431 
9432   ins_cost(125);
9433   format %{ "blsil  $dst, $src" %}
9434 
9435   ins_encode %{
9436     __ blsil($dst$$Register, $src$$Address);
9437   %}
9438   ins_pipe(ialu_reg_mem);
9439 %}
9440 
9441 instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
9442 %{
9443   match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ) );
9444   predicate(UseBMI1Instructions);
9445   effect(KILL cr);
9446 
9447   ins_cost(125);
9448   format %{ "blsmskl $dst, $src" %}
9449 
9450   ins_encode %{
9451     __ blsmskl($dst$$Register, $src$$Address);
9452   %}
9453   ins_pipe(ialu_reg_mem);
9454 %}
9455 
9456 instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
9457 %{
9458   match(Set dst (XorI (AddI src minus_1) src));
9459   predicate(UseBMI1Instructions);
9460   effect(KILL cr);
9461 
9462   format %{ "blsmskl $dst, $src" %}
9463 
9464   ins_encode %{
9465     __ blsmskl($dst$$Register, $src$$Register);
9466   %}
9467 
9468   ins_pipe(ialu_reg);
9469 %}
9470 
9471 instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
9472 %{
9473   match(Set dst (AndI (AddI src minus_1) src) );
9474   predicate(UseBMI1Instructions);
9475   effect(KILL cr);
9476 
9477   format %{ "blsrl  $dst, $src" %}
9478 
9479   ins_encode %{
9480     __ blsrl($dst$$Register, $src$$Register);
9481   %}
9482 
9483   ins_pipe(ialu_reg_mem);
9484 %}
9485 
9486 instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
9487 %{
9488   match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ) );
9489   predicate(UseBMI1Instructions);
9490   effect(KILL cr);
9491 
9492   ins_cost(125);
9493   format %{ "blsrl  $dst, $src" %}
9494 
9495   ins_encode %{
9496     __ blsrl($dst$$Register, $src$$Address);
9497   %}
9498 
9499   ins_pipe(ialu_reg);
9500 %}
9501 
9502 // Or Instructions
9503 // Or Register with Register
9504 instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9505 %{
9506   match(Set dst (OrI dst src));
9507   effect(KILL cr);
9508 
9509   format %{ "orl     $dst, $src\t# int" %}
9510   opcode(0x0B);
9511   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9512   ins_pipe(ialu_reg_reg);
9513 %}
9514 
9515 // Or Register with Immediate
9516 instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9517 %{
9518   match(Set dst (OrI dst src));
9519   effect(KILL cr);
9520 
9521   format %{ "orl     $dst, $src\t# int" %}
9522   opcode(0x81, 0x01); /* Opcode 81 /1 id */
9523   ins_encode(OpcSErm(dst, src), Con8or32(src));
9524   ins_pipe(ialu_reg);
9525 %}
9526 
9527 // Or Register with Memory
9528 instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9529 %{
9530   match(Set dst (OrI dst (LoadI src)));
9531   effect(KILL cr);
9532 
9533   ins_cost(125);
9534   format %{ "orl     $dst, $src\t# int" %}
9535   opcode(0x0B);
9536   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9537   ins_pipe(ialu_reg_mem);
9538 %}
9539 
9540 // Or Memory with Register
9541 instruct orB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9542 %{
9543   match(Set dst (StoreB dst (OrI (LoadB dst) src)));
9544   effect(KILL cr);
9545 
9546   ins_cost(150);
9547   format %{ "orb    $dst, $src\t# byte" %}
9548   opcode(0x08);
9549   ins_encode(REX_breg_mem(src, dst), OpcP, reg_mem(src, dst));
9550   ins_pipe(ialu_mem_reg);
9551 %}
9552 
9553 instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9554 %{
9555   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9556   effect(KILL cr);
9557 
9558   ins_cost(150);
9559   format %{ "orl     $dst, $src\t# int" %}
9560   opcode(0x09); /* Opcode 09 /r */
9561   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9562   ins_pipe(ialu_mem_reg);
9563 %}
9564 
9565 // Or Memory with Immediate
9566 instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
9567 %{
9568   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9569   effect(KILL cr);
9570 
9571   ins_cost(125);
9572   format %{ "orl     $dst, $src\t# int" %}
9573   opcode(0x81, 0x1); /* Opcode 81 /1 id */
9574   ins_encode(REX_mem(dst), OpcSE(src),
9575              RM_opc_mem(secondary, dst), Con8or32(src));
9576   ins_pipe(ialu_mem_imm);
9577 %}
9578 
9579 // Xor Instructions
9580 // Xor Register with Register
9581 instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
9582 %{
9583   match(Set dst (XorI dst src));
9584   effect(KILL cr);
9585 
9586   format %{ "xorl    $dst, $src\t# int" %}
9587   opcode(0x33);
9588   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
9589   ins_pipe(ialu_reg_reg);
9590 %}
9591 
9592 // Xor Register with Immediate -1
9593 instruct xorI_rReg_im1(rRegI dst, immI_M1 imm) %{
9594   match(Set dst (XorI dst imm));
9595 
9596   format %{ "not    $dst" %}
9597   ins_encode %{
9598      __ notl($dst$$Register);
9599   %}
9600   ins_pipe(ialu_reg);
9601 %}
9602 
9603 // Xor Register with Immediate
9604 instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
9605 %{
9606   match(Set dst (XorI dst src));
9607   effect(KILL cr);
9608 
9609   format %{ "xorl    $dst, $src\t# int" %}
9610   opcode(0x81, 0x06); /* Opcode 81 /6 id */
9611   ins_encode(OpcSErm(dst, src), Con8or32(src));
9612   ins_pipe(ialu_reg);
9613 %}
9614 
9615 // Xor Register with Memory
9616 instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
9617 %{
9618   match(Set dst (XorI dst (LoadI src)));
9619   effect(KILL cr);
9620 
9621   ins_cost(125);
9622   format %{ "xorl    $dst, $src\t# int" %}
9623   opcode(0x33);
9624   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
9625   ins_pipe(ialu_reg_mem);
9626 %}
9627 
9628 // Xor Memory with Register
9629 instruct xorB_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9630 %{
9631   match(Set dst (StoreB dst (XorI (LoadB dst) src)));
9632   effect(KILL cr);
9633 
9634   ins_cost(150);
9635   format %{ "xorb    $dst, $src\t# byte" %}
9636   opcode(0x30);
9637   ins_encode(REX_breg_mem(src, dst), OpcP, reg_mem(src, dst));
9638   ins_pipe(ialu_mem_reg);
9639 %}
9640 
9641 instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
9642 %{
9643   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9644   effect(KILL cr);
9645 
9646   ins_cost(150);
9647   format %{ "xorl    $dst, $src\t# int" %}
9648   opcode(0x31); /* Opcode 31 /r */
9649   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
9650   ins_pipe(ialu_mem_reg);
9651 %}
9652 
9653 // Xor Memory with Immediate
9654 instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
9655 %{
9656   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9657   effect(KILL cr);
9658 
9659   ins_cost(125);
9660   format %{ "xorl    $dst, $src\t# int" %}
9661   opcode(0x81, 0x6); /* Opcode 81 /6 id */
9662   ins_encode(REX_mem(dst), OpcSE(src),
9663              RM_opc_mem(secondary, dst), Con8or32(src));
9664   ins_pipe(ialu_mem_imm);
9665 %}
9666 
9667 
9668 // Long Logical Instructions
9669 
9670 // And Instructions
9671 // And Register with Register
9672 instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9673 %{
9674   match(Set dst (AndL dst src));
9675   effect(KILL cr);
9676 
9677   format %{ "andq    $dst, $src\t# long" %}
9678   opcode(0x23);
9679   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9680   ins_pipe(ialu_reg_reg);
9681 %}
9682 
9683 // And Register with Immediate 255
9684 instruct andL_rReg_imm255(rRegL dst, immL_255 src)
9685 %{
9686   match(Set dst (AndL dst src));
9687 
9688   format %{ "movzbq  $dst, $dst\t# long & 0xFF" %}
9689   opcode(0x0F, 0xB6);
9690   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9691   ins_pipe(ialu_reg);
9692 %}
9693 
9694 // And Register with Immediate 65535
9695 instruct andL_rReg_imm65535(rRegL dst, immL_65535 src)
9696 %{
9697   match(Set dst (AndL dst src));
9698 
9699   format %{ "movzwq  $dst, $dst\t# long & 0xFFFF" %}
9700   opcode(0x0F, 0xB7);
9701   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9702   ins_pipe(ialu_reg);
9703 %}
9704 
9705 // And Register with Immediate
9706 instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9707 %{
9708   match(Set dst (AndL dst src));
9709   effect(KILL cr);
9710 
9711   format %{ "andq    $dst, $src\t# long" %}
9712   opcode(0x81, 0x04); /* Opcode 81 /4 */
9713   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9714   ins_pipe(ialu_reg);
9715 %}
9716 
9717 // And Register with Memory
9718 instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9719 %{
9720   match(Set dst (AndL dst (LoadL src)));
9721   effect(KILL cr);
9722 
9723   ins_cost(125);
9724   format %{ "andq    $dst, $src\t# long" %}
9725   opcode(0x23);
9726   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9727   ins_pipe(ialu_reg_mem);
9728 %}
9729 
9730 // And Memory with Register
9731 instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9732 %{
9733   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9734   effect(KILL cr);
9735 
9736   ins_cost(150);
9737   format %{ "andq    $dst, $src\t# long" %}
9738   opcode(0x21); /* Opcode 21 /r */
9739   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9740   ins_pipe(ialu_mem_reg);
9741 %}
9742 
9743 // And Memory with Immediate
9744 instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9745 %{
9746   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9747   effect(KILL cr);
9748 
9749   ins_cost(125);
9750   format %{ "andq    $dst, $src\t# long" %}
9751   opcode(0x81, 0x4); /* Opcode 81 /4 id */
9752   ins_encode(REX_mem_wide(dst), OpcSE(src),
9753              RM_opc_mem(secondary, dst), Con8or32(src));
9754   ins_pipe(ialu_mem_imm);
9755 %}
9756 
9757 instruct btrL_mem_imm(memory dst, immL_NotPow2 con, rFlagsReg cr)
9758 %{
9759   // con should be a pure 64-bit immediate given that not(con) is a power of 2
9760   // because AND/OR works well enough for 8/32-bit values.
9761   predicate(log2_long(~n->in(3)->in(2)->get_long()) > 30);
9762 
9763   match(Set dst (StoreL dst (AndL (LoadL dst) con)));
9764   effect(KILL cr);
9765 
9766   ins_cost(125);
9767   format %{ "btrq    $dst, log2(not($con))\t# long" %}
9768   ins_encode %{
9769     __ btrq($dst$$Address, log2_long(~$con$$constant));
9770   %}
9771   ins_pipe(ialu_mem_imm);
9772 %}
9773 
9774 // BMI1 instructions
9775 instruct andnL_rReg_rReg_mem(rRegL dst, rRegL src1, memory src2, immL_M1 minus_1, rFlagsReg cr) %{
9776   match(Set dst (AndL (XorL src1 minus_1) (LoadL src2)));
9777   predicate(UseBMI1Instructions);
9778   effect(KILL cr);
9779 
9780   ins_cost(125);
9781   format %{ "andnq  $dst, $src1, $src2" %}
9782 
9783   ins_encode %{
9784     __ andnq($dst$$Register, $src1$$Register, $src2$$Address);
9785   %}
9786   ins_pipe(ialu_reg_mem);
9787 %}
9788 
9789 instruct andnL_rReg_rReg_rReg(rRegL dst, rRegL src1, rRegL src2, immL_M1 minus_1, rFlagsReg cr) %{
9790   match(Set dst (AndL (XorL src1 minus_1) src2));
9791   predicate(UseBMI1Instructions);
9792   effect(KILL cr);
9793 
9794   format %{ "andnq  $dst, $src1, $src2" %}
9795 
9796   ins_encode %{
9797   __ andnq($dst$$Register, $src1$$Register, $src2$$Register);
9798   %}
9799   ins_pipe(ialu_reg_mem);
9800 %}
9801 
9802 instruct blsiL_rReg_rReg(rRegL dst, rRegL src, immL0 imm_zero, rFlagsReg cr) %{
9803   match(Set dst (AndL (SubL imm_zero src) src));
9804   predicate(UseBMI1Instructions);
9805   effect(KILL cr);
9806 
9807   format %{ "blsiq  $dst, $src" %}
9808 
9809   ins_encode %{
9810     __ blsiq($dst$$Register, $src$$Register);
9811   %}
9812   ins_pipe(ialu_reg);
9813 %}
9814 
9815 instruct blsiL_rReg_mem(rRegL dst, memory src, immL0 imm_zero, rFlagsReg cr) %{
9816   match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
9817   predicate(UseBMI1Instructions);
9818   effect(KILL cr);
9819 
9820   ins_cost(125);
9821   format %{ "blsiq  $dst, $src" %}
9822 
9823   ins_encode %{
9824     __ blsiq($dst$$Register, $src$$Address);
9825   %}
9826   ins_pipe(ialu_reg_mem);
9827 %}
9828 
9829 instruct blsmskL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
9830 %{
9831   match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ) );
9832   predicate(UseBMI1Instructions);
9833   effect(KILL cr);
9834 
9835   ins_cost(125);
9836   format %{ "blsmskq $dst, $src" %}
9837 
9838   ins_encode %{
9839     __ blsmskq($dst$$Register, $src$$Address);
9840   %}
9841   ins_pipe(ialu_reg_mem);
9842 %}
9843 
9844 instruct blsmskL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
9845 %{
9846   match(Set dst (XorL (AddL src minus_1) src));
9847   predicate(UseBMI1Instructions);
9848   effect(KILL cr);
9849 
9850   format %{ "blsmskq $dst, $src" %}
9851 
9852   ins_encode %{
9853     __ blsmskq($dst$$Register, $src$$Register);
9854   %}
9855 
9856   ins_pipe(ialu_reg);
9857 %}
9858 
9859 instruct blsrL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
9860 %{
9861   match(Set dst (AndL (AddL src minus_1) src) );
9862   predicate(UseBMI1Instructions);
9863   effect(KILL cr);
9864 
9865   format %{ "blsrq  $dst, $src" %}
9866 
9867   ins_encode %{
9868     __ blsrq($dst$$Register, $src$$Register);
9869   %}
9870 
9871   ins_pipe(ialu_reg);
9872 %}
9873 
9874 instruct blsrL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
9875 %{
9876   match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src)) );
9877   predicate(UseBMI1Instructions);
9878   effect(KILL cr);
9879 
9880   ins_cost(125);
9881   format %{ "blsrq  $dst, $src" %}
9882 
9883   ins_encode %{
9884     __ blsrq($dst$$Register, $src$$Address);
9885   %}
9886 
9887   ins_pipe(ialu_reg);
9888 %}
9889 
9890 // Or Instructions
9891 // Or Register with Register
9892 instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9893 %{
9894   match(Set dst (OrL dst src));
9895   effect(KILL cr);
9896 
9897   format %{ "orq     $dst, $src\t# long" %}
9898   opcode(0x0B);
9899   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9900   ins_pipe(ialu_reg_reg);
9901 %}
9902 
9903 // Use any_RegP to match R15 (TLS register) without spilling.
9904 instruct orL_rReg_castP2X(rRegL dst, any_RegP src, rFlagsReg cr) %{
9905   match(Set dst (OrL dst (CastP2X src)));
9906   effect(KILL cr);
9907 
9908   format %{ "orq     $dst, $src\t# long" %}
9909   opcode(0x0B);
9910   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9911   ins_pipe(ialu_reg_reg);
9912 %}
9913 
9914 
9915 // Or Register with Immediate
9916 instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9917 %{
9918   match(Set dst (OrL dst src));
9919   effect(KILL cr);
9920 
9921   format %{ "orq     $dst, $src\t# long" %}
9922   opcode(0x81, 0x01); /* Opcode 81 /1 id */
9923   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9924   ins_pipe(ialu_reg);
9925 %}
9926 
9927 // Or Register with Memory
9928 instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9929 %{
9930   match(Set dst (OrL dst (LoadL src)));
9931   effect(KILL cr);
9932 
9933   ins_cost(125);
9934   format %{ "orq     $dst, $src\t# long" %}
9935   opcode(0x0B);
9936   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9937   ins_pipe(ialu_reg_mem);
9938 %}
9939 
9940 // Or Memory with Register
9941 instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9942 %{
9943   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9944   effect(KILL cr);
9945 
9946   ins_cost(150);
9947   format %{ "orq     $dst, $src\t# long" %}
9948   opcode(0x09); /* Opcode 09 /r */
9949   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9950   ins_pipe(ialu_mem_reg);
9951 %}
9952 
9953 // Or Memory with Immediate
9954 instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9955 %{
9956   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9957   effect(KILL cr);
9958 
9959   ins_cost(125);
9960   format %{ "orq     $dst, $src\t# long" %}
9961   opcode(0x81, 0x1); /* Opcode 81 /1 id */
9962   ins_encode(REX_mem_wide(dst), OpcSE(src),
9963              RM_opc_mem(secondary, dst), Con8or32(src));
9964   ins_pipe(ialu_mem_imm);
9965 %}
9966 
9967 instruct btsL_mem_imm(memory dst, immL_Pow2 con, rFlagsReg cr)
9968 %{
9969   // con should be a pure 64-bit power of 2 immediate
9970   // because AND/OR works well enough for 8/32-bit values.
9971   predicate(log2_long(n->in(3)->in(2)->get_long()) > 31);
9972 
9973   match(Set dst (StoreL dst (OrL (LoadL dst) con)));
9974   effect(KILL cr);
9975 
9976   ins_cost(125);
9977   format %{ "btsq    $dst, log2($con)\t# long" %}
9978   ins_encode %{
9979     __ btsq($dst$$Address, log2_long((julong)$con$$constant));
9980   %}
9981   ins_pipe(ialu_mem_imm);
9982 %}
9983 
9984 // Xor Instructions
9985 // Xor Register with Register
9986 instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9987 %{
9988   match(Set dst (XorL dst src));
9989   effect(KILL cr);
9990 
9991   format %{ "xorq    $dst, $src\t# long" %}
9992   opcode(0x33);
9993   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9994   ins_pipe(ialu_reg_reg);
9995 %}
9996 
9997 // Xor Register with Immediate -1
9998 instruct xorL_rReg_im1(rRegL dst, immL_M1 imm) %{
9999   match(Set dst (XorL dst imm));
10000 
10001   format %{ "notq   $dst" %}
10002   ins_encode %{
10003      __ notq($dst$$Register);
10004   %}
10005   ins_pipe(ialu_reg);
10006 %}
10007 
10008 // Xor Register with Immediate
10009 instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
10010 %{
10011   match(Set dst (XorL dst src));
10012   effect(KILL cr);
10013 
10014   format %{ "xorq    $dst, $src\t# long" %}
10015   opcode(0x81, 0x06); /* Opcode 81 /6 id */
10016   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
10017   ins_pipe(ialu_reg);
10018 %}
10019 
10020 // Xor Register with Memory
10021 instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
10022 %{
10023   match(Set dst (XorL dst (LoadL src)));
10024   effect(KILL cr);
10025 
10026   ins_cost(125);
10027   format %{ "xorq    $dst, $src\t# long" %}
10028   opcode(0x33);
10029   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
10030   ins_pipe(ialu_reg_mem);
10031 %}
10032 
10033 // Xor Memory with Register
10034 instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
10035 %{
10036   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
10037   effect(KILL cr);
10038 
10039   ins_cost(150);
10040   format %{ "xorq    $dst, $src\t# long" %}
10041   opcode(0x31); /* Opcode 31 /r */
10042   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
10043   ins_pipe(ialu_mem_reg);
10044 %}
10045 
10046 // Xor Memory with Immediate
10047 instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
10048 %{
10049   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
10050   effect(KILL cr);
10051 
10052   ins_cost(125);
10053   format %{ "xorq    $dst, $src\t# long" %}
10054   opcode(0x81, 0x6); /* Opcode 81 /6 id */
10055   ins_encode(REX_mem_wide(dst), OpcSE(src),
10056              RM_opc_mem(secondary, dst), Con8or32(src));
10057   ins_pipe(ialu_mem_imm);
10058 %}
10059 
10060 // Convert Int to Boolean
10061 instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
10062 %{
10063   match(Set dst (Conv2B src));
10064   effect(KILL cr);
10065 
10066   format %{ "testl   $src, $src\t# ci2b\n\t"
10067             "setnz   $dst\n\t"
10068             "movzbl  $dst, $dst" %}
10069   ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
10070              setNZ_reg(dst),
10071              REX_reg_breg(dst, dst), // movzbl
10072              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
10073   ins_pipe(pipe_slow); // XXX
10074 %}
10075 
10076 // Convert Pointer to Boolean
10077 instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
10078 %{
10079   match(Set dst (Conv2B src));
10080   effect(KILL cr);
10081 
10082   format %{ "testq   $src, $src\t# cp2b\n\t"
10083             "setnz   $dst\n\t"
10084             "movzbl  $dst, $dst" %}
10085   ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
10086              setNZ_reg(dst),
10087              REX_reg_breg(dst, dst), // movzbl
10088              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
10089   ins_pipe(pipe_slow); // XXX
10090 %}
10091 
10092 instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
10093 %{
10094   match(Set dst (CmpLTMask p q));
10095   effect(KILL cr);
10096 
10097   ins_cost(400);
10098   format %{ "cmpl    $p, $q\t# cmpLTMask\n\t"
10099             "setlt   $dst\n\t"
10100             "movzbl  $dst, $dst\n\t"
10101             "negl    $dst" %}
10102   ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
10103              setLT_reg(dst),
10104              REX_reg_breg(dst, dst), // movzbl
10105              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
10106              neg_reg(dst));
10107   ins_pipe(pipe_slow);
10108 %}
10109 
10110 instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
10111 %{
10112   match(Set dst (CmpLTMask dst zero));
10113   effect(KILL cr);
10114 
10115   ins_cost(100);
10116   format %{ "sarl    $dst, #31\t# cmpLTMask0" %}
10117   ins_encode %{
10118   __ sarl($dst$$Register, 31);
10119   %}
10120   ins_pipe(ialu_reg);
10121 %}
10122 
10123 /* Better to save a register than avoid a branch */
10124 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
10125 %{
10126   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
10127   effect(KILL cr);
10128   ins_cost(300);
10129   format %{ "subl    $p,$q\t# cadd_cmpLTMask\n\t"
10130             "jge     done\n\t"
10131             "addl    $p,$y\n"
10132             "done:   " %}
10133   ins_encode %{
10134     Register Rp = $p$$Register;
10135     Register Rq = $q$$Register;
10136     Register Ry = $y$$Register;
10137     Label done;
10138     __ subl(Rp, Rq);
10139     __ jccb(Assembler::greaterEqual, done);
10140     __ addl(Rp, Ry);
10141     __ bind(done);
10142   %}
10143   ins_pipe(pipe_cmplt);
10144 %}
10145 
10146 /* Better to save a register than avoid a branch */
10147 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
10148 %{
10149   match(Set y (AndI (CmpLTMask p q) y));
10150   effect(KILL cr);
10151 
10152   ins_cost(300);
10153 
10154   format %{ "cmpl    $p, $q\t# and_cmpLTMask\n\t"
10155             "jlt     done\n\t"
10156             "xorl    $y, $y\n"
10157             "done:   " %}
10158   ins_encode %{
10159     Register Rp = $p$$Register;
10160     Register Rq = $q$$Register;
10161     Register Ry = $y$$Register;
10162     Label done;
10163     __ cmpl(Rp, Rq);
10164     __ jccb(Assembler::less, done);
10165     __ xorl(Ry, Ry);
10166     __ bind(done);
10167   %}
10168   ins_pipe(pipe_cmplt);
10169 %}
10170 
10171 
10172 //---------- FP Instructions------------------------------------------------
10173 
10174 instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
10175 %{
10176   match(Set cr (CmpF src1 src2));
10177 
10178   ins_cost(145);
10179   format %{ "ucomiss $src1, $src2\n\t"
10180             "jnp,s   exit\n\t"
10181             "pushfq\t# saw NaN, set CF\n\t"
10182             "andq    [rsp], #0xffffff2b\n\t"
10183             "popfq\n"
10184     "exit:" %}
10185   ins_encode %{
10186     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10187     emit_cmpfp_fixup(_masm);
10188   %}
10189   ins_pipe(pipe_slow);
10190 %}
10191 
10192 instruct cmpF_cc_reg_CF(rFlagsRegUCF cr, regF src1, regF src2) %{
10193   match(Set cr (CmpF src1 src2));
10194 
10195   ins_cost(100);
10196   format %{ "ucomiss $src1, $src2" %}
10197   ins_encode %{
10198     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10199   %}
10200   ins_pipe(pipe_slow);
10201 %}
10202 
10203 instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
10204 %{
10205   match(Set cr (CmpF src1 (LoadF src2)));
10206 
10207   ins_cost(145);
10208   format %{ "ucomiss $src1, $src2\n\t"
10209             "jnp,s   exit\n\t"
10210             "pushfq\t# saw NaN, set CF\n\t"
10211             "andq    [rsp], #0xffffff2b\n\t"
10212             "popfq\n"
10213     "exit:" %}
10214   ins_encode %{
10215     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10216     emit_cmpfp_fixup(_masm);
10217   %}
10218   ins_pipe(pipe_slow);
10219 %}
10220 
10221 instruct cmpF_cc_memCF(rFlagsRegUCF cr, regF src1, memory src2) %{
10222   match(Set cr (CmpF src1 (LoadF src2)));
10223 
10224   ins_cost(100);
10225   format %{ "ucomiss $src1, $src2" %}
10226   ins_encode %{
10227     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10228   %}
10229   ins_pipe(pipe_slow);
10230 %}
10231 
10232 instruct cmpF_cc_imm(rFlagsRegU cr, regF src, immF con) %{
10233   match(Set cr (CmpF src con));
10234 
10235   ins_cost(145);
10236   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
10237             "jnp,s   exit\n\t"
10238             "pushfq\t# saw NaN, set CF\n\t"
10239             "andq    [rsp], #0xffffff2b\n\t"
10240             "popfq\n"
10241     "exit:" %}
10242   ins_encode %{
10243     __ ucomiss($src$$XMMRegister, $constantaddress($con));
10244     emit_cmpfp_fixup(_masm);
10245   %}
10246   ins_pipe(pipe_slow);
10247 %}
10248 
10249 instruct cmpF_cc_immCF(rFlagsRegUCF cr, regF src, immF con) %{
10250   match(Set cr (CmpF src con));
10251   ins_cost(100);
10252   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con" %}
10253   ins_encode %{
10254     __ ucomiss($src$$XMMRegister, $constantaddress($con));
10255   %}
10256   ins_pipe(pipe_slow);
10257 %}
10258 
10259 instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
10260 %{
10261   match(Set cr (CmpD src1 src2));
10262 
10263   ins_cost(145);
10264   format %{ "ucomisd $src1, $src2\n\t"
10265             "jnp,s   exit\n\t"
10266             "pushfq\t# saw NaN, set CF\n\t"
10267             "andq    [rsp], #0xffffff2b\n\t"
10268             "popfq\n"
10269     "exit:" %}
10270   ins_encode %{
10271     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10272     emit_cmpfp_fixup(_masm);
10273   %}
10274   ins_pipe(pipe_slow);
10275 %}
10276 
10277 instruct cmpD_cc_reg_CF(rFlagsRegUCF cr, regD src1, regD src2) %{
10278   match(Set cr (CmpD src1 src2));
10279 
10280   ins_cost(100);
10281   format %{ "ucomisd $src1, $src2 test" %}
10282   ins_encode %{
10283     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10284   %}
10285   ins_pipe(pipe_slow);
10286 %}
10287 
10288 instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
10289 %{
10290   match(Set cr (CmpD src1 (LoadD src2)));
10291 
10292   ins_cost(145);
10293   format %{ "ucomisd $src1, $src2\n\t"
10294             "jnp,s   exit\n\t"
10295             "pushfq\t# saw NaN, set CF\n\t"
10296             "andq    [rsp], #0xffffff2b\n\t"
10297             "popfq\n"
10298     "exit:" %}
10299   ins_encode %{
10300     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10301     emit_cmpfp_fixup(_masm);
10302   %}
10303   ins_pipe(pipe_slow);
10304 %}
10305 
10306 instruct cmpD_cc_memCF(rFlagsRegUCF cr, regD src1, memory src2) %{
10307   match(Set cr (CmpD src1 (LoadD src2)));
10308 
10309   ins_cost(100);
10310   format %{ "ucomisd $src1, $src2" %}
10311   ins_encode %{
10312     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10313   %}
10314   ins_pipe(pipe_slow);
10315 %}
10316 
10317 instruct cmpD_cc_imm(rFlagsRegU cr, regD src, immD con) %{
10318   match(Set cr (CmpD src con));
10319 
10320   ins_cost(145);
10321   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
10322             "jnp,s   exit\n\t"
10323             "pushfq\t# saw NaN, set CF\n\t"
10324             "andq    [rsp], #0xffffff2b\n\t"
10325             "popfq\n"
10326     "exit:" %}
10327   ins_encode %{
10328     __ ucomisd($src$$XMMRegister, $constantaddress($con));
10329     emit_cmpfp_fixup(_masm);
10330   %}
10331   ins_pipe(pipe_slow);
10332 %}
10333 
10334 instruct cmpD_cc_immCF(rFlagsRegUCF cr, regD src, immD con) %{
10335   match(Set cr (CmpD src con));
10336   ins_cost(100);
10337   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con" %}
10338   ins_encode %{
10339     __ ucomisd($src$$XMMRegister, $constantaddress($con));
10340   %}
10341   ins_pipe(pipe_slow);
10342 %}
10343 
10344 // Compare into -1,0,1
10345 instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
10346 %{
10347   match(Set dst (CmpF3 src1 src2));
10348   effect(KILL cr);
10349 
10350   ins_cost(275);
10351   format %{ "ucomiss $src1, $src2\n\t"
10352             "movl    $dst, #-1\n\t"
10353             "jp,s    done\n\t"
10354             "jb,s    done\n\t"
10355             "setne   $dst\n\t"
10356             "movzbl  $dst, $dst\n"
10357     "done:" %}
10358   ins_encode %{
10359     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10360     emit_cmpfp3(_masm, $dst$$Register);
10361   %}
10362   ins_pipe(pipe_slow);
10363 %}
10364 
10365 // Compare into -1,0,1
10366 instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
10367 %{
10368   match(Set dst (CmpF3 src1 (LoadF src2)));
10369   effect(KILL cr);
10370 
10371   ins_cost(275);
10372   format %{ "ucomiss $src1, $src2\n\t"
10373             "movl    $dst, #-1\n\t"
10374             "jp,s    done\n\t"
10375             "jb,s    done\n\t"
10376             "setne   $dst\n\t"
10377             "movzbl  $dst, $dst\n"
10378     "done:" %}
10379   ins_encode %{
10380     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10381     emit_cmpfp3(_masm, $dst$$Register);
10382   %}
10383   ins_pipe(pipe_slow);
10384 %}
10385 
10386 // Compare into -1,0,1
10387 instruct cmpF_imm(rRegI dst, regF src, immF con, rFlagsReg cr) %{
10388   match(Set dst (CmpF3 src con));
10389   effect(KILL cr);
10390 
10391   ins_cost(275);
10392   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
10393             "movl    $dst, #-1\n\t"
10394             "jp,s    done\n\t"
10395             "jb,s    done\n\t"
10396             "setne   $dst\n\t"
10397             "movzbl  $dst, $dst\n"
10398     "done:" %}
10399   ins_encode %{
10400     __ ucomiss($src$$XMMRegister, $constantaddress($con));
10401     emit_cmpfp3(_masm, $dst$$Register);
10402   %}
10403   ins_pipe(pipe_slow);
10404 %}
10405 
10406 // Compare into -1,0,1
10407 instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
10408 %{
10409   match(Set dst (CmpD3 src1 src2));
10410   effect(KILL cr);
10411 
10412   ins_cost(275);
10413   format %{ "ucomisd $src1, $src2\n\t"
10414             "movl    $dst, #-1\n\t"
10415             "jp,s    done\n\t"
10416             "jb,s    done\n\t"
10417             "setne   $dst\n\t"
10418             "movzbl  $dst, $dst\n"
10419     "done:" %}
10420   ins_encode %{
10421     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
10422     emit_cmpfp3(_masm, $dst$$Register);
10423   %}
10424   ins_pipe(pipe_slow);
10425 %}
10426 
10427 // Compare into -1,0,1
10428 instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
10429 %{
10430   match(Set dst (CmpD3 src1 (LoadD src2)));
10431   effect(KILL cr);
10432 
10433   ins_cost(275);
10434   format %{ "ucomisd $src1, $src2\n\t"
10435             "movl    $dst, #-1\n\t"
10436             "jp,s    done\n\t"
10437             "jb,s    done\n\t"
10438             "setne   $dst\n\t"
10439             "movzbl  $dst, $dst\n"
10440     "done:" %}
10441   ins_encode %{
10442     __ ucomisd($src1$$XMMRegister, $src2$$Address);
10443     emit_cmpfp3(_masm, $dst$$Register);
10444   %}
10445   ins_pipe(pipe_slow);
10446 %}
10447 
10448 // Compare into -1,0,1
10449 instruct cmpD_imm(rRegI dst, regD src, immD con, rFlagsReg cr) %{
10450   match(Set dst (CmpD3 src con));
10451   effect(KILL cr);
10452 
10453   ins_cost(275);
10454   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
10455             "movl    $dst, #-1\n\t"
10456             "jp,s    done\n\t"
10457             "jb,s    done\n\t"
10458             "setne   $dst\n\t"
10459             "movzbl  $dst, $dst\n"
10460     "done:" %}
10461   ins_encode %{
10462     __ ucomisd($src$$XMMRegister, $constantaddress($con));
10463     emit_cmpfp3(_masm, $dst$$Register);
10464   %}
10465   ins_pipe(pipe_slow);
10466 %}
10467 
10468 //----------Arithmetic Conversion Instructions---------------------------------
10469 
10470 instruct convF2D_reg_reg(regD dst, regF src)
10471 %{
10472   match(Set dst (ConvF2D src));
10473 
10474   format %{ "cvtss2sd $dst, $src" %}
10475   ins_encode %{
10476     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
10477   %}
10478   ins_pipe(pipe_slow); // XXX
10479 %}
10480 
10481 instruct convF2D_reg_mem(regD dst, memory src)
10482 %{
10483   match(Set dst (ConvF2D (LoadF src)));
10484 
10485   format %{ "cvtss2sd $dst, $src" %}
10486   ins_encode %{
10487     __ cvtss2sd ($dst$$XMMRegister, $src$$Address);
10488   %}
10489   ins_pipe(pipe_slow); // XXX
10490 %}
10491 
10492 instruct convD2F_reg_reg(regF dst, regD src)
10493 %{
10494   match(Set dst (ConvD2F src));
10495 
10496   format %{ "cvtsd2ss $dst, $src" %}
10497   ins_encode %{
10498     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10499   %}
10500   ins_pipe(pipe_slow); // XXX
10501 %}
10502 
10503 instruct convD2F_reg_mem(regF dst, memory src)
10504 %{
10505   match(Set dst (ConvD2F (LoadD src)));
10506 
10507   format %{ "cvtsd2ss $dst, $src" %}
10508   ins_encode %{
10509     __ cvtsd2ss ($dst$$XMMRegister, $src$$Address);
10510   %}
10511   ins_pipe(pipe_slow); // XXX
10512 %}
10513 
10514 // XXX do mem variants
10515 instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
10516 %{
10517   match(Set dst (ConvF2I src));
10518   effect(KILL cr);
10519   format %{ "convert_f2i $dst,$src" %}
10520   ins_encode %{
10521     __ convert_f2i($dst$$Register, $src$$XMMRegister);
10522   %}
10523   ins_pipe(pipe_slow);
10524 %}
10525 
10526 instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
10527 %{
10528   match(Set dst (ConvF2L src));
10529   effect(KILL cr);
10530   format %{ "convert_f2l $dst,$src"%}
10531   ins_encode %{
10532     __ convert_f2l($dst$$Register, $src$$XMMRegister);
10533   %}
10534   ins_pipe(pipe_slow);
10535 %}
10536 
10537 instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
10538 %{
10539   match(Set dst (ConvD2I src));
10540   effect(KILL cr);
10541   format %{ "convert_d2i $dst,$src"%}
10542   ins_encode %{
10543     __ convert_d2i($dst$$Register, $src$$XMMRegister);
10544   %}
10545   ins_pipe(pipe_slow);
10546 %}
10547 
10548 instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
10549 %{
10550   match(Set dst (ConvD2L src));
10551   effect(KILL cr);
10552   format %{ "convert_d2l $dst,$src"%}
10553   ins_encode %{
10554     __ convert_d2l($dst$$Register, $src$$XMMRegister);
10555   %}
10556   ins_pipe(pipe_slow);
10557 %}
10558 
10559 instruct convI2F_reg_reg(regF dst, rRegI src)
10560 %{
10561   predicate(!UseXmmI2F);
10562   match(Set dst (ConvI2F src));
10563 
10564   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10565   ins_encode %{
10566     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
10567   %}
10568   ins_pipe(pipe_slow); // XXX
10569 %}
10570 
10571 instruct convI2F_reg_mem(regF dst, memory src)
10572 %{
10573   match(Set dst (ConvI2F (LoadI src)));
10574 
10575   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10576   ins_encode %{
10577     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Address);
10578   %}
10579   ins_pipe(pipe_slow); // XXX
10580 %}
10581 
10582 instruct convI2D_reg_reg(regD dst, rRegI src)
10583 %{
10584   predicate(!UseXmmI2D);
10585   match(Set dst (ConvI2D src));
10586 
10587   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10588   ins_encode %{
10589     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
10590   %}
10591   ins_pipe(pipe_slow); // XXX
10592 %}
10593 
10594 instruct convI2D_reg_mem(regD dst, memory src)
10595 %{
10596   match(Set dst (ConvI2D (LoadI src)));
10597 
10598   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10599   ins_encode %{
10600     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Address);
10601   %}
10602   ins_pipe(pipe_slow); // XXX
10603 %}
10604 
10605 instruct convXI2F_reg(regF dst, rRegI src)
10606 %{
10607   predicate(UseXmmI2F);
10608   match(Set dst (ConvI2F src));
10609 
10610   format %{ "movdl $dst, $src\n\t"
10611             "cvtdq2psl $dst, $dst\t# i2f" %}
10612   ins_encode %{
10613     __ movdl($dst$$XMMRegister, $src$$Register);
10614     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
10615   %}
10616   ins_pipe(pipe_slow); // XXX
10617 %}
10618 
10619 instruct convXI2D_reg(regD dst, rRegI src)
10620 %{
10621   predicate(UseXmmI2D);
10622   match(Set dst (ConvI2D src));
10623 
10624   format %{ "movdl $dst, $src\n\t"
10625             "cvtdq2pdl $dst, $dst\t# i2d" %}
10626   ins_encode %{
10627     __ movdl($dst$$XMMRegister, $src$$Register);
10628     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
10629   %}
10630   ins_pipe(pipe_slow); // XXX
10631 %}
10632 
10633 instruct convL2F_reg_reg(regF dst, rRegL src)
10634 %{
10635   match(Set dst (ConvL2F src));
10636 
10637   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10638   ins_encode %{
10639     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Register);
10640   %}
10641   ins_pipe(pipe_slow); // XXX
10642 %}
10643 
10644 instruct convL2F_reg_mem(regF dst, memory src)
10645 %{
10646   match(Set dst (ConvL2F (LoadL src)));
10647 
10648   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10649   ins_encode %{
10650     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Address);
10651   %}
10652   ins_pipe(pipe_slow); // XXX
10653 %}
10654 
10655 instruct convL2D_reg_reg(regD dst, rRegL src)
10656 %{
10657   match(Set dst (ConvL2D src));
10658 
10659   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10660   ins_encode %{
10661     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Register);
10662   %}
10663   ins_pipe(pipe_slow); // XXX
10664 %}
10665 
10666 instruct convL2D_reg_mem(regD dst, memory src)
10667 %{
10668   match(Set dst (ConvL2D (LoadL src)));
10669 
10670   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10671   ins_encode %{
10672     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Address);
10673   %}
10674   ins_pipe(pipe_slow); // XXX
10675 %}
10676 
10677 instruct convI2L_reg_reg(rRegL dst, rRegI src)
10678 %{
10679   match(Set dst (ConvI2L src));
10680 
10681   ins_cost(125);
10682   format %{ "movslq  $dst, $src\t# i2l" %}
10683   ins_encode %{
10684     __ movslq($dst$$Register, $src$$Register);
10685   %}
10686   ins_pipe(ialu_reg_reg);
10687 %}
10688 
10689 // instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
10690 // %{
10691 //   match(Set dst (ConvI2L src));
10692 // //   predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
10693 // //             _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
10694 //   predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
10695 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
10696 //             ((const TypeNode*) n)->type()->is_long()->_lo ==
10697 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
10698 
10699 //   format %{ "movl    $dst, $src\t# unsigned i2l" %}
10700 //   ins_encode(enc_copy(dst, src));
10701 // //   opcode(0x63); // needs REX.W
10702 // //   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
10703 //   ins_pipe(ialu_reg_reg);
10704 // %}
10705 
10706 // Zero-extend convert int to long
10707 instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
10708 %{
10709   match(Set dst (AndL (ConvI2L src) mask));
10710 
10711   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10712   ins_encode %{
10713     if ($dst$$reg != $src$$reg) {
10714       __ movl($dst$$Register, $src$$Register);
10715     }
10716   %}
10717   ins_pipe(ialu_reg_reg);
10718 %}
10719 
10720 // Zero-extend convert int to long
10721 instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
10722 %{
10723   match(Set dst (AndL (ConvI2L (LoadI src)) mask));
10724 
10725   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10726   ins_encode %{
10727     __ movl($dst$$Register, $src$$Address);
10728   %}
10729   ins_pipe(ialu_reg_mem);
10730 %}
10731 
10732 instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
10733 %{
10734   match(Set dst (AndL src mask));
10735 
10736   format %{ "movl    $dst, $src\t# zero-extend long" %}
10737   ins_encode %{
10738     __ movl($dst$$Register, $src$$Register);
10739   %}
10740   ins_pipe(ialu_reg_reg);
10741 %}
10742 
10743 instruct convL2I_reg_reg(rRegI dst, rRegL src)
10744 %{
10745   match(Set dst (ConvL2I src));
10746 
10747   format %{ "movl    $dst, $src\t# l2i" %}
10748   ins_encode %{
10749     __ movl($dst$$Register, $src$$Register);
10750   %}
10751   ins_pipe(ialu_reg_reg);
10752 %}
10753 
10754 
10755 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
10756   match(Set dst (MoveF2I src));
10757   effect(DEF dst, USE src);
10758 
10759   ins_cost(125);
10760   format %{ "movl    $dst, $src\t# MoveF2I_stack_reg" %}
10761   ins_encode %{
10762     __ movl($dst$$Register, Address(rsp, $src$$disp));
10763   %}
10764   ins_pipe(ialu_reg_mem);
10765 %}
10766 
10767 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
10768   match(Set dst (MoveI2F src));
10769   effect(DEF dst, USE src);
10770 
10771   ins_cost(125);
10772   format %{ "movss   $dst, $src\t# MoveI2F_stack_reg" %}
10773   ins_encode %{
10774     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
10775   %}
10776   ins_pipe(pipe_slow);
10777 %}
10778 
10779 instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
10780   match(Set dst (MoveD2L src));
10781   effect(DEF dst, USE src);
10782 
10783   ins_cost(125);
10784   format %{ "movq    $dst, $src\t# MoveD2L_stack_reg" %}
10785   ins_encode %{
10786     __ movq($dst$$Register, Address(rsp, $src$$disp));
10787   %}
10788   ins_pipe(ialu_reg_mem);
10789 %}
10790 
10791 instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
10792   predicate(!UseXmmLoadAndClearUpper);
10793   match(Set dst (MoveL2D src));
10794   effect(DEF dst, USE src);
10795 
10796   ins_cost(125);
10797   format %{ "movlpd  $dst, $src\t# MoveL2D_stack_reg" %}
10798   ins_encode %{
10799     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10800   %}
10801   ins_pipe(pipe_slow);
10802 %}
10803 
10804 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
10805   predicate(UseXmmLoadAndClearUpper);
10806   match(Set dst (MoveL2D src));
10807   effect(DEF dst, USE src);
10808 
10809   ins_cost(125);
10810   format %{ "movsd   $dst, $src\t# MoveL2D_stack_reg" %}
10811   ins_encode %{
10812     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10813   %}
10814   ins_pipe(pipe_slow);
10815 %}
10816 
10817 
10818 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
10819   match(Set dst (MoveF2I src));
10820   effect(DEF dst, USE src);
10821 
10822   ins_cost(95); // XXX
10823   format %{ "movss   $dst, $src\t# MoveF2I_reg_stack" %}
10824   ins_encode %{
10825     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
10826   %}
10827   ins_pipe(pipe_slow);
10828 %}
10829 
10830 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
10831   match(Set dst (MoveI2F src));
10832   effect(DEF dst, USE src);
10833 
10834   ins_cost(100);
10835   format %{ "movl    $dst, $src\t# MoveI2F_reg_stack" %}
10836   ins_encode %{
10837     __ movl(Address(rsp, $dst$$disp), $src$$Register);
10838   %}
10839   ins_pipe( ialu_mem_reg );
10840 %}
10841 
10842 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
10843   match(Set dst (MoveD2L src));
10844   effect(DEF dst, USE src);
10845 
10846   ins_cost(95); // XXX
10847   format %{ "movsd   $dst, $src\t# MoveL2D_reg_stack" %}
10848   ins_encode %{
10849     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
10850   %}
10851   ins_pipe(pipe_slow);
10852 %}
10853 
10854 instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
10855   match(Set dst (MoveL2D src));
10856   effect(DEF dst, USE src);
10857 
10858   ins_cost(100);
10859   format %{ "movq    $dst, $src\t# MoveL2D_reg_stack" %}
10860   ins_encode %{
10861     __ movq(Address(rsp, $dst$$disp), $src$$Register);
10862   %}
10863   ins_pipe(ialu_mem_reg);
10864 %}
10865 
10866 instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
10867   match(Set dst (MoveF2I src));
10868   effect(DEF dst, USE src);
10869   ins_cost(85);
10870   format %{ "movd    $dst,$src\t# MoveF2I" %}
10871   ins_encode %{
10872     __ movdl($dst$$Register, $src$$XMMRegister);
10873   %}
10874   ins_pipe( pipe_slow );
10875 %}
10876 
10877 instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
10878   match(Set dst (MoveD2L src));
10879   effect(DEF dst, USE src);
10880   ins_cost(85);
10881   format %{ "movd    $dst,$src\t# MoveD2L" %}
10882   ins_encode %{
10883     __ movdq($dst$$Register, $src$$XMMRegister);
10884   %}
10885   ins_pipe( pipe_slow );
10886 %}
10887 
10888 instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
10889   match(Set dst (MoveI2F src));
10890   effect(DEF dst, USE src);
10891   ins_cost(100);
10892   format %{ "movd    $dst,$src\t# MoveI2F" %}
10893   ins_encode %{
10894     __ movdl($dst$$XMMRegister, $src$$Register);
10895   %}
10896   ins_pipe( pipe_slow );
10897 %}
10898 
10899 instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
10900   match(Set dst (MoveL2D src));
10901   effect(DEF dst, USE src);
10902   ins_cost(100);
10903   format %{ "movd    $dst,$src\t# MoveL2D" %}
10904   ins_encode %{
10905      __ movdq($dst$$XMMRegister, $src$$Register);
10906   %}
10907   ins_pipe( pipe_slow );
10908 %}
10909 
10910 
10911 // =======================================================================
10912 // fast clearing of an array
10913 instruct rep_stos(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegI zero,
10914                   Universe dummy, rFlagsReg cr)
10915 %{
10916   predicate(!((ClearArrayNode*)n)->is_large());
10917   match(Set dummy (ClearArray cnt base));
10918   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL zero, KILL cr);
10919 
10920   format %{ $$template
10921     $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
10922     $$emit$$"cmp     InitArrayShortSize,rcx\n\t"
10923     $$emit$$"jg      LARGE\n\t"
10924     $$emit$$"dec     rcx\n\t"
10925     $$emit$$"js      DONE\t# Zero length\n\t"
10926     $$emit$$"mov     rax,(rdi,rcx,8)\t# LOOP\n\t"
10927     $$emit$$"dec     rcx\n\t"
10928     $$emit$$"jge     LOOP\n\t"
10929     $$emit$$"jmp     DONE\n\t"
10930     $$emit$$"# LARGE:\n\t"
10931     if (UseFastStosb) {
10932        $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
10933        $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--\n\t"
10934     } else if (UseXMMForObjInit) {
10935        $$emit$$"mov     rdi,rax\n\t"
10936        $$emit$$"vpxor   ymm0,ymm0,ymm0\n\t"
10937        $$emit$$"jmpq    L_zero_64_bytes\n\t"
10938        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
10939        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10940        $$emit$$"vmovdqu ymm0,0x20(rax)\n\t"
10941        $$emit$$"add     0x40,rax\n\t"
10942        $$emit$$"# L_zero_64_bytes:\n\t"
10943        $$emit$$"sub     0x8,rcx\n\t"
10944        $$emit$$"jge     L_loop\n\t"
10945        $$emit$$"add     0x4,rcx\n\t"
10946        $$emit$$"jl      L_tail\n\t"
10947        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10948        $$emit$$"add     0x20,rax\n\t"
10949        $$emit$$"sub     0x4,rcx\n\t"
10950        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
10951        $$emit$$"add     0x4,rcx\n\t"
10952        $$emit$$"jle     L_end\n\t"
10953        $$emit$$"dec     rcx\n\t"
10954        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
10955        $$emit$$"vmovq   xmm0,(rax)\n\t"
10956        $$emit$$"add     0x8,rax\n\t"
10957        $$emit$$"dec     rcx\n\t"
10958        $$emit$$"jge     L_sloop\n\t"
10959        $$emit$$"# L_end:\n\t"
10960     } else {
10961        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--\n\t"
10962     }
10963     $$emit$$"# DONE"
10964   %}
10965   ins_encode %{
10966     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register,
10967                  $tmp$$XMMRegister, false);
10968   %}
10969   ins_pipe(pipe_slow);
10970 %}
10971 
10972 instruct rep_stos_large(rcx_RegL cnt, rdi_RegP base, regD tmp, rax_RegI zero,
10973                         Universe dummy, rFlagsReg cr)
10974 %{
10975   predicate(((ClearArrayNode*)n)->is_large());
10976   match(Set dummy (ClearArray cnt base));
10977   effect(USE_KILL cnt, USE_KILL base, TEMP tmp, KILL zero, KILL cr);
10978 
10979   format %{ $$template
10980     if (UseFastStosb) {
10981        $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
10982        $$emit$$"shlq    rcx,3\t# Convert doublewords to bytes\n\t"
10983        $$emit$$"rep     stosb\t# Store rax to *rdi++ while rcx--"
10984     } else if (UseXMMForObjInit) {
10985        $$emit$$"mov     rdi,rax\t# ClearArray:\n\t"
10986        $$emit$$"vpxor   ymm0,ymm0,ymm0\n\t"
10987        $$emit$$"jmpq    L_zero_64_bytes\n\t"
10988        $$emit$$"# L_loop:\t# 64-byte LOOP\n\t"
10989        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10990        $$emit$$"vmovdqu ymm0,0x20(rax)\n\t"
10991        $$emit$$"add     0x40,rax\n\t"
10992        $$emit$$"# L_zero_64_bytes:\n\t"
10993        $$emit$$"sub     0x8,rcx\n\t"
10994        $$emit$$"jge     L_loop\n\t"
10995        $$emit$$"add     0x4,rcx\n\t"
10996        $$emit$$"jl      L_tail\n\t"
10997        $$emit$$"vmovdqu ymm0,(rax)\n\t"
10998        $$emit$$"add     0x20,rax\n\t"
10999        $$emit$$"sub     0x4,rcx\n\t"
11000        $$emit$$"# L_tail:\t# Clearing tail bytes\n\t"
11001        $$emit$$"add     0x4,rcx\n\t"
11002        $$emit$$"jle     L_end\n\t"
11003        $$emit$$"dec     rcx\n\t"
11004        $$emit$$"# L_sloop:\t# 8-byte short loop\n\t"
11005        $$emit$$"vmovq   xmm0,(rax)\n\t"
11006        $$emit$$"add     0x8,rax\n\t"
11007        $$emit$$"dec     rcx\n\t"
11008        $$emit$$"jge     L_sloop\n\t"
11009        $$emit$$"# L_end:\n\t"
11010     } else {
11011        $$emit$$"xorq    rax, rax\t# ClearArray:\n\t"
11012        $$emit$$"rep     stosq\t# Store rax to *rdi++ while rcx--"
11013     }
11014   %}
11015   ins_encode %{
11016     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register,
11017                  $tmp$$XMMRegister, true);
11018   %}
11019   ins_pipe(pipe_slow);
11020 %}
11021 
11022 instruct string_compareL(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
11023                          rax_RegI result, legRegD tmp1, rFlagsReg cr)
11024 %{
11025   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
11026   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11027   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11028 
11029   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11030   ins_encode %{
11031     __ string_compare($str1$$Register, $str2$$Register,
11032                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11033                       $tmp1$$XMMRegister, StrIntrinsicNode::LL);
11034   %}
11035   ins_pipe( pipe_slow );
11036 %}
11037 
11038 instruct string_compareU(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
11039                          rax_RegI result, legRegD tmp1, rFlagsReg cr)
11040 %{
11041   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
11042   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11043   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11044 
11045   format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11046   ins_encode %{
11047     __ string_compare($str1$$Register, $str2$$Register,
11048                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11049                       $tmp1$$XMMRegister, StrIntrinsicNode::UU);
11050   %}
11051   ins_pipe( pipe_slow );
11052 %}
11053 
11054 instruct string_compareLU(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
11055                           rax_RegI result, legRegD tmp1, rFlagsReg cr)
11056 %{
11057   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
11058   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11059   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11060 
11061   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11062   ins_encode %{
11063     __ string_compare($str1$$Register, $str2$$Register,
11064                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11065                       $tmp1$$XMMRegister, StrIntrinsicNode::LU);
11066   %}
11067   ins_pipe( pipe_slow );
11068 %}
11069 
11070 instruct string_compareUL(rsi_RegP str1, rdx_RegI cnt1, rdi_RegP str2, rcx_RegI cnt2,
11071                           rax_RegI result, legRegD tmp1, rFlagsReg cr)
11072 %{
11073   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
11074   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11075   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11076 
11077   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11078   ins_encode %{
11079     __ string_compare($str2$$Register, $str1$$Register,
11080                       $cnt2$$Register, $cnt1$$Register, $result$$Register,
11081                       $tmp1$$XMMRegister, StrIntrinsicNode::UL);
11082   %}
11083   ins_pipe( pipe_slow );
11084 %}
11085 
11086 // fast search of substring with known size.
11087 instruct string_indexof_conL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
11088                              rbx_RegI result, legRegD tmp_vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
11089 %{
11090   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL));
11091   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11092   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11093 
11094   format %{ "String IndexOf byte[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $tmp_vec, $cnt1, $cnt2, $tmp" %}
11095   ins_encode %{
11096     int icnt2 = (int)$int_cnt2$$constant;
11097     if (icnt2 >= 16) {
11098       // IndexOf for constant substrings with size >= 16 elements
11099       // which don't need to be loaded through stack.
11100       __ string_indexofC8($str1$$Register, $str2$$Register,
11101                           $cnt1$$Register, $cnt2$$Register,
11102                           icnt2, $result$$Register,
11103                           $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11104     } else {
11105       // Small strings are loaded through stack if they cross page boundary.
11106       __ string_indexof($str1$$Register, $str2$$Register,
11107                         $cnt1$$Register, $cnt2$$Register,
11108                         icnt2, $result$$Register,
11109                         $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11110     }
11111   %}
11112   ins_pipe( pipe_slow );
11113 %}
11114 
11115 // fast search of substring with known size.
11116 instruct string_indexof_conU(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
11117                              rbx_RegI result, legRegD tmp_vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
11118 %{
11119   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU));
11120   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11121   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11122 
11123   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $tmp_vec, $cnt1, $cnt2, $tmp" %}
11124   ins_encode %{
11125     int icnt2 = (int)$int_cnt2$$constant;
11126     if (icnt2 >= 8) {
11127       // IndexOf for constant substrings with size >= 8 elements
11128       // which don't need to be loaded through stack.
11129       __ string_indexofC8($str1$$Register, $str2$$Register,
11130                           $cnt1$$Register, $cnt2$$Register,
11131                           icnt2, $result$$Register,
11132                           $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11133     } else {
11134       // Small strings are loaded through stack if they cross page boundary.
11135       __ string_indexof($str1$$Register, $str2$$Register,
11136                         $cnt1$$Register, $cnt2$$Register,
11137                         icnt2, $result$$Register,
11138                         $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11139     }
11140   %}
11141   ins_pipe( pipe_slow );
11142 %}
11143 
11144 // fast search of substring with known size.
11145 instruct string_indexof_conUL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
11146                               rbx_RegI result, legRegD tmp_vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
11147 %{
11148   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL));
11149   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11150   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11151 
11152   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $tmp_vec, $cnt1, $cnt2, $tmp" %}
11153   ins_encode %{
11154     int icnt2 = (int)$int_cnt2$$constant;
11155     if (icnt2 >= 8) {
11156       // IndexOf for constant substrings with size >= 8 elements
11157       // which don't need to be loaded through stack.
11158       __ string_indexofC8($str1$$Register, $str2$$Register,
11159                           $cnt1$$Register, $cnt2$$Register,
11160                           icnt2, $result$$Register,
11161                           $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11162     } else {
11163       // Small strings are loaded through stack if they cross page boundary.
11164       __ string_indexof($str1$$Register, $str2$$Register,
11165                         $cnt1$$Register, $cnt2$$Register,
11166                         icnt2, $result$$Register,
11167                         $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11168     }
11169   %}
11170   ins_pipe( pipe_slow );
11171 %}
11172 
11173 instruct string_indexofL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11174                          rbx_RegI result, legRegD tmp_vec, rcx_RegI tmp, rFlagsReg cr)
11175 %{
11176   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL));
11177   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11178   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11179 
11180   format %{ "String IndexOf byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11181   ins_encode %{
11182     __ string_indexof($str1$$Register, $str2$$Register,
11183                       $cnt1$$Register, $cnt2$$Register,
11184                       (-1), $result$$Register,
11185                       $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::LL);
11186   %}
11187   ins_pipe( pipe_slow );
11188 %}
11189 
11190 instruct string_indexofU(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11191                          rbx_RegI result, legRegD tmp_vec, rcx_RegI tmp, rFlagsReg cr)
11192 %{
11193   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU));
11194   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11195   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11196 
11197   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11198   ins_encode %{
11199     __ string_indexof($str1$$Register, $str2$$Register,
11200                       $cnt1$$Register, $cnt2$$Register,
11201                       (-1), $result$$Register,
11202                       $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UU);
11203   %}
11204   ins_pipe( pipe_slow );
11205 %}
11206 
11207 instruct string_indexofUL(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
11208                           rbx_RegI result, legRegD tmp_vec, rcx_RegI tmp, rFlagsReg cr)
11209 %{
11210   predicate(UseSSE42Intrinsics && (((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL));
11211   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11212   effect(TEMP tmp_vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11213 
11214   format %{ "String IndexOf char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11215   ins_encode %{
11216     __ string_indexof($str1$$Register, $str2$$Register,
11217                       $cnt1$$Register, $cnt2$$Register,
11218                       (-1), $result$$Register,
11219                       $tmp_vec$$XMMRegister, $tmp$$Register, StrIntrinsicNode::UL);
11220   %}
11221   ins_pipe( pipe_slow );
11222 %}
11223 
11224 instruct string_indexofU_char(rdi_RegP str1, rdx_RegI cnt1, rax_RegI ch,
11225                               rbx_RegI result, legRegD tmp_vec1, legRegD tmp_vec2, legRegD tmp_vec3, rcx_RegI tmp, rFlagsReg cr)
11226 %{
11227   predicate(UseSSE42Intrinsics);
11228   match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
11229   effect(TEMP tmp_vec1, TEMP tmp_vec2, TEMP tmp_vec3, USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP tmp, KILL cr);
11230   format %{ "String IndexOf char[] $str1,$cnt1,$ch -> $result   // KILL all" %}
11231   ins_encode %{
11232     __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register, $result$$Register,
11233                            $tmp_vec1$$XMMRegister, $tmp_vec2$$XMMRegister, $tmp_vec3$$XMMRegister, $tmp$$Register);
11234   %}
11235   ins_pipe( pipe_slow );
11236 %}
11237 
11238 // fast string equals
11239 instruct string_equals(rdi_RegP str1, rsi_RegP str2, rcx_RegI cnt, rax_RegI result,
11240                        legRegD tmp1, legRegD tmp2, rbx_RegI tmp3, rFlagsReg cr)
11241 %{
11242   match(Set result (StrEquals (Binary str1 str2) cnt));
11243   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11244 
11245   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11246   ins_encode %{
11247     __ arrays_equals(false, $str1$$Register, $str2$$Register,
11248                      $cnt$$Register, $result$$Register, $tmp3$$Register,
11249                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */);
11250   %}
11251   ins_pipe( pipe_slow );
11252 %}
11253 
11254 // fast array equals
11255 instruct array_equalsB(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11256                        legRegD tmp1, legRegD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11257 %{
11258   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
11259   match(Set result (AryEq ary1 ary2));
11260   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11261 
11262   format %{ "Array Equals byte[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11263   ins_encode %{
11264     __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11265                      $tmp3$$Register, $result$$Register, $tmp4$$Register,
11266                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, false /* char */);
11267   %}
11268   ins_pipe( pipe_slow );
11269 %}
11270 
11271 instruct array_equalsC(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
11272                        legRegD tmp1, legRegD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
11273 %{
11274   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
11275   match(Set result (AryEq ary1 ary2));
11276   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11277 
11278   format %{ "Array Equals char[] $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11279   ins_encode %{
11280     __ arrays_equals(true, $ary1$$Register, $ary2$$Register,
11281                      $tmp3$$Register, $result$$Register, $tmp4$$Register,
11282                      $tmp1$$XMMRegister, $tmp2$$XMMRegister, true /* char */);
11283   %}
11284   ins_pipe( pipe_slow );
11285 %}
11286 
11287 instruct has_negatives(rsi_RegP ary1, rcx_RegI len, rax_RegI result,
11288                        legRegD tmp1, legRegD tmp2, rbx_RegI tmp3, rFlagsReg cr)
11289 %{
11290   match(Set result (HasNegatives ary1 len));
11291   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL len, KILL tmp3, KILL cr);
11292 
11293   format %{ "has negatives byte[] $ary1,$len -> $result   // KILL $tmp1, $tmp2, $tmp3" %}
11294   ins_encode %{
11295     __ has_negatives($ary1$$Register, $len$$Register,
11296                      $result$$Register, $tmp3$$Register,
11297                      $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11298   %}
11299   ins_pipe( pipe_slow );
11300 %}
11301 
11302 // fast char[] to byte[] compression
11303 instruct string_compress(rsi_RegP src, rdi_RegP dst, rdx_RegI len, legRegD tmp1, legRegD tmp2, legRegD tmp3, legRegD tmp4,
11304                          rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11305   match(Set result (StrCompressedCopy src (Binary dst len)));
11306   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11307 
11308   format %{ "String Compress $src,$dst -> $result    // KILL RAX, RCX, RDX" %}
11309   ins_encode %{
11310     __ char_array_compress($src$$Register, $dst$$Register, $len$$Register,
11311                            $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11312                            $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11313   %}
11314   ins_pipe( pipe_slow );
11315 %}
11316 
11317 // fast byte[] to char[] inflation
11318 instruct string_inflate(Universe dummy, rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11319                         legRegD tmp1, rcx_RegI tmp2, rFlagsReg cr) %{
11320   match(Set dummy (StrInflatedCopy src (Binary dst len)));
11321   effect(TEMP tmp1, TEMP tmp2, USE_KILL src, USE_KILL dst, USE_KILL len, KILL cr);
11322 
11323   format %{ "String Inflate $src,$dst    // KILL $tmp1, $tmp2" %}
11324   ins_encode %{
11325     __ byte_array_inflate($src$$Register, $dst$$Register, $len$$Register,
11326                           $tmp1$$XMMRegister, $tmp2$$Register);
11327   %}
11328   ins_pipe( pipe_slow );
11329 %}
11330 
11331 // encode char[] to byte[] in ISO_8859_1
11332 instruct encode_iso_array(rsi_RegP src, rdi_RegP dst, rdx_RegI len,
11333                           legRegD tmp1, legRegD tmp2, legRegD tmp3, legRegD tmp4,
11334                           rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
11335   match(Set result (EncodeISOArray src (Binary dst len)));
11336   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11337 
11338   format %{ "Encode array $src,$dst,$len -> $result    // KILL RCX, RDX, $tmp1, $tmp2, $tmp3, $tmp4, RSI, RDI " %}
11339   ins_encode %{
11340     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
11341                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11342                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11343   %}
11344   ins_pipe( pipe_slow );
11345 %}
11346 
11347 //----------Overflow Math Instructions-----------------------------------------
11348 
11349 instruct overflowAddI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
11350 %{
11351   match(Set cr (OverflowAddI op1 op2));
11352   effect(DEF cr, USE_KILL op1, USE op2);
11353 
11354   format %{ "addl    $op1, $op2\t# overflow check int" %}
11355 
11356   ins_encode %{
11357     __ addl($op1$$Register, $op2$$Register);
11358   %}
11359   ins_pipe(ialu_reg_reg);
11360 %}
11361 
11362 instruct overflowAddI_rReg_imm(rFlagsReg cr, rax_RegI op1, immI op2)
11363 %{
11364   match(Set cr (OverflowAddI op1 op2));
11365   effect(DEF cr, USE_KILL op1, USE op2);
11366 
11367   format %{ "addl    $op1, $op2\t# overflow check int" %}
11368 
11369   ins_encode %{
11370     __ addl($op1$$Register, $op2$$constant);
11371   %}
11372   ins_pipe(ialu_reg_reg);
11373 %}
11374 
11375 instruct overflowAddL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
11376 %{
11377   match(Set cr (OverflowAddL op1 op2));
11378   effect(DEF cr, USE_KILL op1, USE op2);
11379 
11380   format %{ "addq    $op1, $op2\t# overflow check long" %}
11381   ins_encode %{
11382     __ addq($op1$$Register, $op2$$Register);
11383   %}
11384   ins_pipe(ialu_reg_reg);
11385 %}
11386 
11387 instruct overflowAddL_rReg_imm(rFlagsReg cr, rax_RegL op1, immL32 op2)
11388 %{
11389   match(Set cr (OverflowAddL op1 op2));
11390   effect(DEF cr, USE_KILL op1, USE op2);
11391 
11392   format %{ "addq    $op1, $op2\t# overflow check long" %}
11393   ins_encode %{
11394     __ addq($op1$$Register, $op2$$constant);
11395   %}
11396   ins_pipe(ialu_reg_reg);
11397 %}
11398 
11399 instruct overflowSubI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
11400 %{
11401   match(Set cr (OverflowSubI op1 op2));
11402 
11403   format %{ "cmpl    $op1, $op2\t# overflow check int" %}
11404   ins_encode %{
11405     __ cmpl($op1$$Register, $op2$$Register);
11406   %}
11407   ins_pipe(ialu_reg_reg);
11408 %}
11409 
11410 instruct overflowSubI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
11411 %{
11412   match(Set cr (OverflowSubI op1 op2));
11413 
11414   format %{ "cmpl    $op1, $op2\t# overflow check int" %}
11415   ins_encode %{
11416     __ cmpl($op1$$Register, $op2$$constant);
11417   %}
11418   ins_pipe(ialu_reg_reg);
11419 %}
11420 
11421 instruct overflowSubL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
11422 %{
11423   match(Set cr (OverflowSubL op1 op2));
11424 
11425   format %{ "cmpq    $op1, $op2\t# overflow check long" %}
11426   ins_encode %{
11427     __ cmpq($op1$$Register, $op2$$Register);
11428   %}
11429   ins_pipe(ialu_reg_reg);
11430 %}
11431 
11432 instruct overflowSubL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
11433 %{
11434   match(Set cr (OverflowSubL op1 op2));
11435 
11436   format %{ "cmpq    $op1, $op2\t# overflow check long" %}
11437   ins_encode %{
11438     __ cmpq($op1$$Register, $op2$$constant);
11439   %}
11440   ins_pipe(ialu_reg_reg);
11441 %}
11442 
11443 instruct overflowNegI_rReg(rFlagsReg cr, immI0 zero, rax_RegI op2)
11444 %{
11445   match(Set cr (OverflowSubI zero op2));
11446   effect(DEF cr, USE_KILL op2);
11447 
11448   format %{ "negl    $op2\t# overflow check int" %}
11449   ins_encode %{
11450     __ negl($op2$$Register);
11451   %}
11452   ins_pipe(ialu_reg_reg);
11453 %}
11454 
11455 instruct overflowNegL_rReg(rFlagsReg cr, immL0 zero, rax_RegL op2)
11456 %{
11457   match(Set cr (OverflowSubL zero op2));
11458   effect(DEF cr, USE_KILL op2);
11459 
11460   format %{ "negq    $op2\t# overflow check long" %}
11461   ins_encode %{
11462     __ negq($op2$$Register);
11463   %}
11464   ins_pipe(ialu_reg_reg);
11465 %}
11466 
11467 instruct overflowMulI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
11468 %{
11469   match(Set cr (OverflowMulI op1 op2));
11470   effect(DEF cr, USE_KILL op1, USE op2);
11471 
11472   format %{ "imull    $op1, $op2\t# overflow check int" %}
11473   ins_encode %{
11474     __ imull($op1$$Register, $op2$$Register);
11475   %}
11476   ins_pipe(ialu_reg_reg_alu0);
11477 %}
11478 
11479 instruct overflowMulI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2, rRegI tmp)
11480 %{
11481   match(Set cr (OverflowMulI op1 op2));
11482   effect(DEF cr, TEMP tmp, USE op1, USE op2);
11483 
11484   format %{ "imull    $tmp, $op1, $op2\t# overflow check int" %}
11485   ins_encode %{
11486     __ imull($tmp$$Register, $op1$$Register, $op2$$constant);
11487   %}
11488   ins_pipe(ialu_reg_reg_alu0);
11489 %}
11490 
11491 instruct overflowMulL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
11492 %{
11493   match(Set cr (OverflowMulL op1 op2));
11494   effect(DEF cr, USE_KILL op1, USE op2);
11495 
11496   format %{ "imulq    $op1, $op2\t# overflow check long" %}
11497   ins_encode %{
11498     __ imulq($op1$$Register, $op2$$Register);
11499   %}
11500   ins_pipe(ialu_reg_reg_alu0);
11501 %}
11502 
11503 instruct overflowMulL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2, rRegL tmp)
11504 %{
11505   match(Set cr (OverflowMulL op1 op2));
11506   effect(DEF cr, TEMP tmp, USE op1, USE op2);
11507 
11508   format %{ "imulq    $tmp, $op1, $op2\t# overflow check long" %}
11509   ins_encode %{
11510     __ imulq($tmp$$Register, $op1$$Register, $op2$$constant);
11511   %}
11512   ins_pipe(ialu_reg_reg_alu0);
11513 %}
11514 
11515 
11516 //----------Control Flow Instructions------------------------------------------
11517 // Signed compare Instructions
11518 
11519 // XXX more variants!!
11520 instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
11521 %{
11522   match(Set cr (CmpI op1 op2));
11523   effect(DEF cr, USE op1, USE op2);
11524 
11525   format %{ "cmpl    $op1, $op2" %}
11526   opcode(0x3B);  /* Opcode 3B /r */
11527   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
11528   ins_pipe(ialu_cr_reg_reg);
11529 %}
11530 
11531 instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
11532 %{
11533   match(Set cr (CmpI op1 op2));
11534 
11535   format %{ "cmpl    $op1, $op2" %}
11536   opcode(0x81, 0x07); /* Opcode 81 /7 */
11537   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
11538   ins_pipe(ialu_cr_reg_imm);
11539 %}
11540 
11541 instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
11542 %{
11543   match(Set cr (CmpI op1 (LoadI op2)));
11544 
11545   ins_cost(500); // XXX
11546   format %{ "cmpl    $op1, $op2" %}
11547   opcode(0x3B); /* Opcode 3B /r */
11548   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
11549   ins_pipe(ialu_cr_reg_mem);
11550 %}
11551 
11552 instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
11553 %{
11554   match(Set cr (CmpI src zero));
11555 
11556   format %{ "testl   $src, $src" %}
11557   opcode(0x85);
11558   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
11559   ins_pipe(ialu_cr_reg_imm);
11560 %}
11561 
11562 instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
11563 %{
11564   match(Set cr (CmpI (AndI src con) zero));
11565 
11566   format %{ "testl   $src, $con" %}
11567   opcode(0xF7, 0x00);
11568   ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
11569   ins_pipe(ialu_cr_reg_imm);
11570 %}
11571 
11572 instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
11573 %{
11574   match(Set cr (CmpI (AndI src (LoadI mem)) zero));
11575 
11576   format %{ "testl   $src, $mem" %}
11577   opcode(0x85);
11578   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
11579   ins_pipe(ialu_cr_reg_mem);
11580 %}
11581 
11582 // Unsigned compare Instructions; really, same as signed except they
11583 // produce an rFlagsRegU instead of rFlagsReg.
11584 instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
11585 %{
11586   match(Set cr (CmpU op1 op2));
11587 
11588   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11589   opcode(0x3B); /* Opcode 3B /r */
11590   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
11591   ins_pipe(ialu_cr_reg_reg);
11592 %}
11593 
11594 instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
11595 %{
11596   match(Set cr (CmpU op1 op2));
11597 
11598   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11599   opcode(0x81,0x07); /* Opcode 81 /7 */
11600   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
11601   ins_pipe(ialu_cr_reg_imm);
11602 %}
11603 
11604 instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
11605 %{
11606   match(Set cr (CmpU op1 (LoadI op2)));
11607 
11608   ins_cost(500); // XXX
11609   format %{ "cmpl    $op1, $op2\t# unsigned" %}
11610   opcode(0x3B); /* Opcode 3B /r */
11611   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
11612   ins_pipe(ialu_cr_reg_mem);
11613 %}
11614 
11615 // // // Cisc-spilled version of cmpU_rReg
11616 // //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
11617 // //%{
11618 // //  match(Set cr (CmpU (LoadI op1) op2));
11619 // //
11620 // //  format %{ "CMPu   $op1,$op2" %}
11621 // //  ins_cost(500);
11622 // //  opcode(0x39);  /* Opcode 39 /r */
11623 // //  ins_encode( OpcP, reg_mem( op1, op2) );
11624 // //%}
11625 
11626 instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
11627 %{
11628   match(Set cr (CmpU src zero));
11629 
11630   format %{ "testl   $src, $src\t# unsigned" %}
11631   opcode(0x85);
11632   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
11633   ins_pipe(ialu_cr_reg_imm);
11634 %}
11635 
11636 instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
11637 %{
11638   match(Set cr (CmpP op1 op2));
11639 
11640   format %{ "cmpq    $op1, $op2\t# ptr" %}
11641   opcode(0x3B); /* Opcode 3B /r */
11642   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11643   ins_pipe(ialu_cr_reg_reg);
11644 %}
11645 
11646 instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
11647 %{
11648   match(Set cr (CmpP op1 (LoadP op2)));
11649   predicate(n->in(2)->as_Load()->barrier_data() == 0);
11650 
11651   ins_cost(500); // XXX
11652   format %{ "cmpq    $op1, $op2\t# ptr" %}
11653   opcode(0x3B); /* Opcode 3B /r */
11654   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11655   ins_pipe(ialu_cr_reg_mem);
11656 %}
11657 
11658 // // // Cisc-spilled version of cmpP_rReg
11659 // //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
11660 // //%{
11661 // //  match(Set cr (CmpP (LoadP op1) op2));
11662 // //
11663 // //  format %{ "CMPu   $op1,$op2" %}
11664 // //  ins_cost(500);
11665 // //  opcode(0x39);  /* Opcode 39 /r */
11666 // //  ins_encode( OpcP, reg_mem( op1, op2) );
11667 // //%}
11668 
11669 // XXX this is generalized by compP_rReg_mem???
11670 // Compare raw pointer (used in out-of-heap check).
11671 // Only works because non-oop pointers must be raw pointers
11672 // and raw pointers have no anti-dependencies.
11673 instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
11674 %{
11675   predicate(n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none &&
11676             n->in(2)->as_Load()->barrier_data() == 0);
11677   match(Set cr (CmpP op1 (LoadP op2)));
11678 
11679   format %{ "cmpq    $op1, $op2\t# raw ptr" %}
11680   opcode(0x3B); /* Opcode 3B /r */
11681   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11682   ins_pipe(ialu_cr_reg_mem);
11683 %}
11684 
11685 // This will generate a signed flags result. This should be OK since
11686 // any compare to a zero should be eq/neq.
11687 instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
11688 %{
11689   match(Set cr (CmpP src zero));
11690 
11691   format %{ "testq   $src, $src\t# ptr" %}
11692   opcode(0x85);
11693   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11694   ins_pipe(ialu_cr_reg_imm);
11695 %}
11696 
11697 // This will generate a signed flags result. This should be OK since
11698 // any compare to a zero should be eq/neq.
11699 instruct testP_mem(rFlagsReg cr, memory op, immP0 zero)
11700 %{
11701   predicate((!UseCompressedOops || (CompressedOops::base() != NULL)) &&
11702             n->in(1)->as_Load()->barrier_data() == 0);
11703   match(Set cr (CmpP (LoadP op) zero));
11704 
11705   ins_cost(500); // XXX
11706   format %{ "testq   $op, 0xffffffffffffffff\t# ptr" %}
11707   opcode(0xF7); /* Opcode F7 /0 */
11708   ins_encode(REX_mem_wide(op),
11709              OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
11710   ins_pipe(ialu_cr_reg_imm);
11711 %}
11712 
11713 instruct testP_mem_reg0(rFlagsReg cr, memory mem, immP0 zero)
11714 %{
11715   predicate(UseCompressedOops && (CompressedOops::base() == NULL) &&
11716             n->in(1)->as_Load()->barrier_data() == 0);
11717   match(Set cr (CmpP (LoadP mem) zero));
11718 
11719   format %{ "cmpq    R12, $mem\t# ptr (R12_heapbase==0)" %}
11720   ins_encode %{
11721     __ cmpq(r12, $mem$$Address);
11722   %}
11723   ins_pipe(ialu_cr_reg_mem);
11724 %}
11725 
11726 instruct compN_rReg(rFlagsRegU cr, rRegN op1, rRegN op2)
11727 %{
11728   match(Set cr (CmpN op1 op2));
11729 
11730   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
11731   ins_encode %{ __ cmpl($op1$$Register, $op2$$Register); %}
11732   ins_pipe(ialu_cr_reg_reg);
11733 %}
11734 
11735 instruct compN_rReg_mem(rFlagsRegU cr, rRegN src, memory mem)
11736 %{
11737   match(Set cr (CmpN src (LoadN mem)));
11738 
11739   format %{ "cmpl    $src, $mem\t# compressed ptr" %}
11740   ins_encode %{
11741     __ cmpl($src$$Register, $mem$$Address);
11742   %}
11743   ins_pipe(ialu_cr_reg_mem);
11744 %}
11745 
11746 instruct compN_rReg_imm(rFlagsRegU cr, rRegN op1, immN op2) %{
11747   match(Set cr (CmpN op1 op2));
11748 
11749   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
11750   ins_encode %{
11751     __ cmp_narrow_oop($op1$$Register, (jobject)$op2$$constant);
11752   %}
11753   ins_pipe(ialu_cr_reg_imm);
11754 %}
11755 
11756 instruct compN_mem_imm(rFlagsRegU cr, memory mem, immN src)
11757 %{
11758   match(Set cr (CmpN src (LoadN mem)));
11759 
11760   format %{ "cmpl    $mem, $src\t# compressed ptr" %}
11761   ins_encode %{
11762     __ cmp_narrow_oop($mem$$Address, (jobject)$src$$constant);
11763   %}
11764   ins_pipe(ialu_cr_reg_mem);
11765 %}
11766 
11767 instruct compN_rReg_imm_klass(rFlagsRegU cr, rRegN op1, immNKlass op2) %{
11768   match(Set cr (CmpN op1 op2));
11769 
11770   format %{ "cmpl    $op1, $op2\t# compressed klass ptr" %}
11771   ins_encode %{
11772     __ cmp_narrow_klass($op1$$Register, (Klass*)$op2$$constant);
11773   %}
11774   ins_pipe(ialu_cr_reg_imm);
11775 %}
11776 
11777 instruct compN_mem_imm_klass(rFlagsRegU cr, memory mem, immNKlass src)
11778 %{
11779   match(Set cr (CmpN src (LoadNKlass mem)));
11780 
11781   format %{ "cmpl    $mem, $src\t# compressed klass ptr" %}
11782   ins_encode %{
11783     __ cmp_narrow_klass($mem$$Address, (Klass*)$src$$constant);
11784   %}
11785   ins_pipe(ialu_cr_reg_mem);
11786 %}
11787 
11788 instruct testN_reg(rFlagsReg cr, rRegN src, immN0 zero) %{
11789   match(Set cr (CmpN src zero));
11790 
11791   format %{ "testl   $src, $src\t# compressed ptr" %}
11792   ins_encode %{ __ testl($src$$Register, $src$$Register); %}
11793   ins_pipe(ialu_cr_reg_imm);
11794 %}
11795 
11796 instruct testN_mem(rFlagsReg cr, memory mem, immN0 zero)
11797 %{
11798   predicate(CompressedOops::base() != NULL);
11799   match(Set cr (CmpN (LoadN mem) zero));
11800 
11801   ins_cost(500); // XXX
11802   format %{ "testl   $mem, 0xffffffff\t# compressed ptr" %}
11803   ins_encode %{
11804     __ cmpl($mem$$Address, (int)0xFFFFFFFF);
11805   %}
11806   ins_pipe(ialu_cr_reg_mem);
11807 %}
11808 
11809 instruct testN_mem_reg0(rFlagsReg cr, memory mem, immN0 zero)
11810 %{
11811   predicate(CompressedOops::base() == NULL);
11812   match(Set cr (CmpN (LoadN mem) zero));
11813 
11814   format %{ "cmpl    R12, $mem\t# compressed ptr (R12_heapbase==0)" %}
11815   ins_encode %{
11816     __ cmpl(r12, $mem$$Address);
11817   %}
11818   ins_pipe(ialu_cr_reg_mem);
11819 %}
11820 
11821 // Yanked all unsigned pointer compare operations.
11822 // Pointer compares are done with CmpP which is already unsigned.
11823 
11824 instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
11825 %{
11826   match(Set cr (CmpL op1 op2));
11827 
11828   format %{ "cmpq    $op1, $op2" %}
11829   opcode(0x3B);  /* Opcode 3B /r */
11830   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11831   ins_pipe(ialu_cr_reg_reg);
11832 %}
11833 
11834 instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
11835 %{
11836   match(Set cr (CmpL op1 op2));
11837 
11838   format %{ "cmpq    $op1, $op2" %}
11839   opcode(0x81, 0x07); /* Opcode 81 /7 */
11840   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
11841   ins_pipe(ialu_cr_reg_imm);
11842 %}
11843 
11844 instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
11845 %{
11846   match(Set cr (CmpL op1 (LoadL op2)));
11847 
11848   format %{ "cmpq    $op1, $op2" %}
11849   opcode(0x3B); /* Opcode 3B /r */
11850   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11851   ins_pipe(ialu_cr_reg_mem);
11852 %}
11853 
11854 instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
11855 %{
11856   match(Set cr (CmpL src zero));
11857 
11858   format %{ "testq   $src, $src" %}
11859   opcode(0x85);
11860   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11861   ins_pipe(ialu_cr_reg_imm);
11862 %}
11863 
11864 instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
11865 %{
11866   match(Set cr (CmpL (AndL src con) zero));
11867 
11868   format %{ "testq   $src, $con\t# long" %}
11869   opcode(0xF7, 0x00);
11870   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
11871   ins_pipe(ialu_cr_reg_imm);
11872 %}
11873 
11874 instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
11875 %{
11876   match(Set cr (CmpL (AndL src (LoadL mem)) zero));
11877 
11878   format %{ "testq   $src, $mem" %}
11879   opcode(0x85);
11880   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
11881   ins_pipe(ialu_cr_reg_mem);
11882 %}
11883 
11884 instruct testL_reg_mem2(rFlagsReg cr, rRegP src, memory mem, immL0 zero)
11885 %{
11886   match(Set cr (CmpL (AndL (CastP2X src) (LoadL mem)) zero));
11887 
11888   format %{ "testq   $src, $mem" %}
11889   opcode(0x85);
11890   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
11891   ins_pipe(ialu_cr_reg_mem);
11892 %}
11893 
11894 // Manifest a CmpL result in an integer register.  Very painful.
11895 // This is the test to avoid.
11896 instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
11897 %{
11898   match(Set dst (CmpL3 src1 src2));
11899   effect(KILL flags);
11900 
11901   ins_cost(275); // XXX
11902   format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
11903             "movl    $dst, -1\n\t"
11904             "jl,s    done\n\t"
11905             "setne   $dst\n\t"
11906             "movzbl  $dst, $dst\n\t"
11907     "done:" %}
11908   ins_encode(cmpl3_flag(src1, src2, dst));
11909   ins_pipe(pipe_slow);
11910 %}
11911 
11912 // Unsigned long compare Instructions; really, same as signed long except they
11913 // produce an rFlagsRegU instead of rFlagsReg.
11914 instruct compUL_rReg(rFlagsRegU cr, rRegL op1, rRegL op2)
11915 %{
11916   match(Set cr (CmpUL op1 op2));
11917 
11918   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11919   opcode(0x3B);  /* Opcode 3B /r */
11920   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
11921   ins_pipe(ialu_cr_reg_reg);
11922 %}
11923 
11924 instruct compUL_rReg_imm(rFlagsRegU cr, rRegL op1, immL32 op2)
11925 %{
11926   match(Set cr (CmpUL op1 op2));
11927 
11928   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11929   opcode(0x81, 0x07); /* Opcode 81 /7 */
11930   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
11931   ins_pipe(ialu_cr_reg_imm);
11932 %}
11933 
11934 instruct compUL_rReg_mem(rFlagsRegU cr, rRegL op1, memory op2)
11935 %{
11936   match(Set cr (CmpUL op1 (LoadL op2)));
11937 
11938   format %{ "cmpq    $op1, $op2\t# unsigned" %}
11939   opcode(0x3B); /* Opcode 3B /r */
11940   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11941   ins_pipe(ialu_cr_reg_mem);
11942 %}
11943 
11944 instruct testUL_reg(rFlagsRegU cr, rRegL src, immL0 zero)
11945 %{
11946   match(Set cr (CmpUL src zero));
11947 
11948   format %{ "testq   $src, $src\t# unsigned" %}
11949   opcode(0x85);
11950   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11951   ins_pipe(ialu_cr_reg_imm);
11952 %}
11953 
11954 instruct compB_mem_imm(rFlagsReg cr, memory mem, immI8 imm)
11955 %{
11956   match(Set cr (CmpI (LoadB mem) imm));
11957 
11958   ins_cost(125);
11959   format %{ "cmpb    $mem, $imm" %}
11960   ins_encode %{ __ cmpb($mem$$Address, $imm$$constant); %}
11961   ins_pipe(ialu_cr_reg_mem);
11962 %}
11963 
11964 instruct testUB_mem_imm(rFlagsReg cr, memory mem, immU8 imm, immI0 zero)
11965 %{
11966   match(Set cr (CmpI (AndI (LoadUB mem) imm) zero));
11967 
11968   ins_cost(125);
11969   format %{ "testb   $mem, $imm\t# ubyte" %}
11970   ins_encode %{ __ testb($mem$$Address, $imm$$constant); %}
11971   ins_pipe(ialu_cr_reg_mem);
11972 %}
11973 
11974 instruct testB_mem_imm(rFlagsReg cr, memory mem, immI8 imm, immI0 zero)
11975 %{
11976   match(Set cr (CmpI (AndI (LoadB mem) imm) zero));
11977 
11978   ins_cost(125);
11979   format %{ "testb   $mem, $imm\t# byte" %}
11980   ins_encode %{ __ testb($mem$$Address, $imm$$constant); %}
11981   ins_pipe(ialu_cr_reg_mem);
11982 %}
11983 
11984 //----------Max and Min--------------------------------------------------------
11985 // Min Instructions
11986 
11987 instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
11988 %{
11989   effect(USE_DEF dst, USE src, USE cr);
11990 
11991   format %{ "cmovlgt $dst, $src\t# min" %}
11992   opcode(0x0F, 0x4F);
11993   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
11994   ins_pipe(pipe_cmov_reg);
11995 %}
11996 
11997 
11998 instruct minI_rReg(rRegI dst, rRegI src)
11999 %{
12000   match(Set dst (MinI dst src));
12001 
12002   ins_cost(200);
12003   expand %{
12004     rFlagsReg cr;
12005     compI_rReg(cr, dst, src);
12006     cmovI_reg_g(dst, src, cr);
12007   %}
12008 %}
12009 
12010 instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
12011 %{
12012   effect(USE_DEF dst, USE src, USE cr);
12013 
12014   format %{ "cmovllt $dst, $src\t# max" %}
12015   opcode(0x0F, 0x4C);
12016   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
12017   ins_pipe(pipe_cmov_reg);
12018 %}
12019 
12020 
12021 instruct maxI_rReg(rRegI dst, rRegI src)
12022 %{
12023   match(Set dst (MaxI dst src));
12024 
12025   ins_cost(200);
12026   expand %{
12027     rFlagsReg cr;
12028     compI_rReg(cr, dst, src);
12029     cmovI_reg_l(dst, src, cr);
12030   %}
12031 %}
12032 
12033 // ============================================================================
12034 // Branch Instructions
12035 
12036 // Jump Direct - Label defines a relative address from JMP+1
12037 instruct jmpDir(label labl)
12038 %{
12039   match(Goto);
12040   effect(USE labl);
12041 
12042   ins_cost(300);
12043   format %{ "jmp     $labl" %}
12044   size(5);
12045   ins_encode %{
12046     Label* L = $labl$$label;
12047     __ jmp(*L, false); // Always long jump
12048   %}
12049   ins_pipe(pipe_jmp);
12050 %}
12051 
12052 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12053 instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
12054 %{
12055   match(If cop cr);
12056   effect(USE labl);
12057 
12058   ins_cost(300);
12059   format %{ "j$cop     $labl" %}
12060   size(6);
12061   ins_encode %{
12062     Label* L = $labl$$label;
12063     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12064   %}
12065   ins_pipe(pipe_jcc);
12066 %}
12067 
12068 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12069 instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
12070 %{
12071   predicate(!n->has_vector_mask_set());
12072   match(CountedLoopEnd cop cr);
12073   effect(USE labl);
12074 
12075   ins_cost(300);
12076   format %{ "j$cop     $labl\t# loop end" %}
12077   size(6);
12078   ins_encode %{
12079     Label* L = $labl$$label;
12080     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12081   %}
12082   ins_pipe(pipe_jcc);
12083 %}
12084 
12085 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12086 instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12087   predicate(!n->has_vector_mask_set());
12088   match(CountedLoopEnd cop cmp);
12089   effect(USE labl);
12090 
12091   ins_cost(300);
12092   format %{ "j$cop,u   $labl\t# loop end" %}
12093   size(6);
12094   ins_encode %{
12095     Label* L = $labl$$label;
12096     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12097   %}
12098   ins_pipe(pipe_jcc);
12099 %}
12100 
12101 instruct jmpLoopEndUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12102   predicate(!n->has_vector_mask_set());
12103   match(CountedLoopEnd cop cmp);
12104   effect(USE labl);
12105 
12106   ins_cost(200);
12107   format %{ "j$cop,u   $labl\t# loop end" %}
12108   size(6);
12109   ins_encode %{
12110     Label* L = $labl$$label;
12111     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12112   %}
12113   ins_pipe(pipe_jcc);
12114 %}
12115 
12116 // mask version
12117 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12118 instruct jmpLoopEnd_and_restoreMask(cmpOp cop, rFlagsReg cr, label labl)
12119 %{
12120   predicate(n->has_vector_mask_set());
12121   match(CountedLoopEnd cop cr);
12122   effect(USE labl);
12123 
12124   ins_cost(400);
12125   format %{ "j$cop     $labl\t# loop end\n\t"
12126             "restorevectmask \t# vector mask restore for loops" %}
12127   size(10);
12128   ins_encode %{
12129     Label* L = $labl$$label;
12130     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12131     __ restorevectmask();
12132   %}
12133   ins_pipe(pipe_jcc);
12134 %}
12135 
12136 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12137 instruct jmpLoopEndU_and_restoreMask(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12138   predicate(n->has_vector_mask_set());
12139   match(CountedLoopEnd cop cmp);
12140   effect(USE labl);
12141 
12142   ins_cost(400);
12143   format %{ "j$cop,u   $labl\t# loop end\n\t"
12144             "restorevectmask \t# vector mask restore for loops" %}
12145   size(10);
12146   ins_encode %{
12147     Label* L = $labl$$label;
12148     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12149     __ restorevectmask();
12150   %}
12151   ins_pipe(pipe_jcc);
12152 %}
12153 
12154 instruct jmpLoopEndUCF_and_restoreMask(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12155   predicate(n->has_vector_mask_set());
12156   match(CountedLoopEnd cop cmp);
12157   effect(USE labl);
12158 
12159   ins_cost(300);
12160   format %{ "j$cop,u   $labl\t# loop end\n\t"
12161             "restorevectmask \t# vector mask restore for loops" %}
12162   size(10);
12163   ins_encode %{
12164     Label* L = $labl$$label;
12165     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12166     __ restorevectmask();
12167   %}
12168   ins_pipe(pipe_jcc);
12169 %}
12170 
12171 // Jump Direct Conditional - using unsigned comparison
12172 instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12173   match(If cop cmp);
12174   effect(USE labl);
12175 
12176   ins_cost(300);
12177   format %{ "j$cop,u   $labl" %}
12178   size(6);
12179   ins_encode %{
12180     Label* L = $labl$$label;
12181     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12182   %}
12183   ins_pipe(pipe_jcc);
12184 %}
12185 
12186 instruct jmpConUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12187   match(If cop cmp);
12188   effect(USE labl);
12189 
12190   ins_cost(200);
12191   format %{ "j$cop,u   $labl" %}
12192   size(6);
12193   ins_encode %{
12194     Label* L = $labl$$label;
12195     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12196   %}
12197   ins_pipe(pipe_jcc);
12198 %}
12199 
12200 instruct jmpConUCF2(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
12201   match(If cop cmp);
12202   effect(USE labl);
12203 
12204   ins_cost(200);
12205   format %{ $$template
12206     if ($cop$$cmpcode == Assembler::notEqual) {
12207       $$emit$$"jp,u    $labl\n\t"
12208       $$emit$$"j$cop,u   $labl"
12209     } else {
12210       $$emit$$"jp,u    done\n\t"
12211       $$emit$$"j$cop,u   $labl\n\t"
12212       $$emit$$"done:"
12213     }
12214   %}
12215   ins_encode %{
12216     Label* l = $labl$$label;
12217     if ($cop$$cmpcode == Assembler::notEqual) {
12218       __ jcc(Assembler::parity, *l, false);
12219       __ jcc(Assembler::notEqual, *l, false);
12220     } else if ($cop$$cmpcode == Assembler::equal) {
12221       Label done;
12222       __ jccb(Assembler::parity, done);
12223       __ jcc(Assembler::equal, *l, false);
12224       __ bind(done);
12225     } else {
12226        ShouldNotReachHere();
12227     }
12228   %}
12229   ins_pipe(pipe_jcc);
12230 %}
12231 
12232 // ============================================================================
12233 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary
12234 // superklass array for an instance of the superklass.  Set a hidden
12235 // internal cache on a hit (cache is checked with exposed code in
12236 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
12237 // encoding ALSO sets flags.
12238 
12239 instruct partialSubtypeCheck(rdi_RegP result,
12240                              rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
12241                              rFlagsReg cr)
12242 %{
12243   match(Set result (PartialSubtypeCheck sub super));
12244   effect(KILL rcx, KILL cr);
12245 
12246   ins_cost(1100);  // slightly larger than the next version
12247   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
12248             "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
12249             "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
12250             "repne   scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
12251             "jne,s   miss\t\t# Missed: rdi not-zero\n\t"
12252             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
12253             "xorq    $result, $result\t\t Hit: rdi zero\n\t"
12254     "miss:\t" %}
12255 
12256   opcode(0x1); // Force a XOR of RDI
12257   ins_encode(enc_PartialSubtypeCheck());
12258   ins_pipe(pipe_slow);
12259 %}
12260 
12261 instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
12262                                      rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
12263                                      immP0 zero,
12264                                      rdi_RegP result)
12265 %{
12266   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12267   effect(KILL rcx, KILL result);
12268 
12269   ins_cost(1000);
12270   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
12271             "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
12272             "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
12273             "repne   scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
12274             "jne,s   miss\t\t# Missed: flags nz\n\t"
12275             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
12276     "miss:\t" %}
12277 
12278   opcode(0x0); // No need to XOR RDI
12279   ins_encode(enc_PartialSubtypeCheck());
12280   ins_pipe(pipe_slow);
12281 %}
12282 
12283 // ============================================================================
12284 // Branch Instructions -- short offset versions
12285 //
12286 // These instructions are used to replace jumps of a long offset (the default
12287 // match) with jumps of a shorter offset.  These instructions are all tagged
12288 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12289 // match rules in general matching.  Instead, the ADLC generates a conversion
12290 // method in the MachNode which can be used to do in-place replacement of the
12291 // long variant with the shorter variant.  The compiler will determine if a
12292 // branch can be taken by the is_short_branch_offset() predicate in the machine
12293 // specific code section of the file.
12294 
12295 // Jump Direct - Label defines a relative address from JMP+1
12296 instruct jmpDir_short(label labl) %{
12297   match(Goto);
12298   effect(USE labl);
12299 
12300   ins_cost(300);
12301   format %{ "jmp,s   $labl" %}
12302   size(2);
12303   ins_encode %{
12304     Label* L = $labl$$label;
12305     __ jmpb(*L);
12306   %}
12307   ins_pipe(pipe_jmp);
12308   ins_short_branch(1);
12309 %}
12310 
12311 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12312 instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl) %{
12313   match(If cop cr);
12314   effect(USE labl);
12315 
12316   ins_cost(300);
12317   format %{ "j$cop,s   $labl" %}
12318   size(2);
12319   ins_encode %{
12320     Label* L = $labl$$label;
12321     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12322   %}
12323   ins_pipe(pipe_jcc);
12324   ins_short_branch(1);
12325 %}
12326 
12327 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12328 instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl) %{
12329   match(CountedLoopEnd cop cr);
12330   effect(USE labl);
12331 
12332   ins_cost(300);
12333   format %{ "j$cop,s   $labl\t# loop end" %}
12334   size(2);
12335   ins_encode %{
12336     Label* L = $labl$$label;
12337     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12338   %}
12339   ins_pipe(pipe_jcc);
12340   ins_short_branch(1);
12341 %}
12342 
12343 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12344 instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12345   match(CountedLoopEnd cop cmp);
12346   effect(USE labl);
12347 
12348   ins_cost(300);
12349   format %{ "j$cop,us  $labl\t# loop end" %}
12350   size(2);
12351   ins_encode %{
12352     Label* L = $labl$$label;
12353     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12354   %}
12355   ins_pipe(pipe_jcc);
12356   ins_short_branch(1);
12357 %}
12358 
12359 instruct jmpLoopEndUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12360   match(CountedLoopEnd cop cmp);
12361   effect(USE labl);
12362 
12363   ins_cost(300);
12364   format %{ "j$cop,us  $labl\t# loop end" %}
12365   size(2);
12366   ins_encode %{
12367     Label* L = $labl$$label;
12368     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12369   %}
12370   ins_pipe(pipe_jcc);
12371   ins_short_branch(1);
12372 %}
12373 
12374 // Jump Direct Conditional - using unsigned comparison
12375 instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
12376   match(If cop cmp);
12377   effect(USE labl);
12378 
12379   ins_cost(300);
12380   format %{ "j$cop,us  $labl" %}
12381   size(2);
12382   ins_encode %{
12383     Label* L = $labl$$label;
12384     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12385   %}
12386   ins_pipe(pipe_jcc);
12387   ins_short_branch(1);
12388 %}
12389 
12390 instruct jmpConUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
12391   match(If cop cmp);
12392   effect(USE labl);
12393 
12394   ins_cost(300);
12395   format %{ "j$cop,us  $labl" %}
12396   size(2);
12397   ins_encode %{
12398     Label* L = $labl$$label;
12399     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12400   %}
12401   ins_pipe(pipe_jcc);
12402   ins_short_branch(1);
12403 %}
12404 
12405 instruct jmpConUCF2_short(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
12406   match(If cop cmp);
12407   effect(USE labl);
12408 
12409   ins_cost(300);
12410   format %{ $$template
12411     if ($cop$$cmpcode == Assembler::notEqual) {
12412       $$emit$$"jp,u,s  $labl\n\t"
12413       $$emit$$"j$cop,u,s  $labl"
12414     } else {
12415       $$emit$$"jp,u,s  done\n\t"
12416       $$emit$$"j$cop,u,s  $labl\n\t"
12417       $$emit$$"done:"
12418     }
12419   %}
12420   size(4);
12421   ins_encode %{
12422     Label* l = $labl$$label;
12423     if ($cop$$cmpcode == Assembler::notEqual) {
12424       __ jccb(Assembler::parity, *l);
12425       __ jccb(Assembler::notEqual, *l);
12426     } else if ($cop$$cmpcode == Assembler::equal) {
12427       Label done;
12428       __ jccb(Assembler::parity, done);
12429       __ jccb(Assembler::equal, *l);
12430       __ bind(done);
12431     } else {
12432        ShouldNotReachHere();
12433     }
12434   %}
12435   ins_pipe(pipe_jcc);
12436   ins_short_branch(1);
12437 %}
12438 
12439 // ============================================================================
12440 // inlined locking and unlocking
12441 
12442 instruct cmpFastLockRTM(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rdx_RegI scr, rRegI cx1, rRegI cx2) %{
12443   predicate(Compile::current()->use_rtm());
12444   match(Set cr (FastLock object box));
12445   effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
12446   ins_cost(300);
12447   format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
12448   ins_encode %{
12449     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12450                  $scr$$Register, $cx1$$Register, $cx2$$Register,
12451                  _counters, _rtm_counters, _stack_rtm_counters,
12452                  ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
12453                  true, ra_->C->profile_rtm());
12454   %}
12455   ins_pipe(pipe_slow);
12456 %}
12457 
12458 instruct cmpFastLock(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rRegP scr, rRegP cx1) %{
12459   predicate(!Compile::current()->use_rtm());
12460   match(Set cr (FastLock object box));
12461   effect(TEMP tmp, TEMP scr, TEMP cx1, USE_KILL box);
12462   ins_cost(300);
12463   format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr" %}
12464   ins_encode %{
12465     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12466                  $scr$$Register, $cx1$$Register, noreg, _counters, NULL, NULL, NULL, false, false);
12467   %}
12468   ins_pipe(pipe_slow);
12469 %}
12470 
12471 instruct cmpFastUnlock(rFlagsReg cr, rRegP object, rax_RegP box, rRegP tmp) %{
12472   match(Set cr (FastUnlock object box));
12473   effect(TEMP tmp, USE_KILL box);
12474   ins_cost(300);
12475   format %{ "fastunlock $object,$box\t! kills $box,$tmp" %}
12476   ins_encode %{
12477     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
12478   %}
12479   ins_pipe(pipe_slow);
12480 %}
12481 
12482 
12483 // ============================================================================
12484 // Safepoint Instructions
12485 instruct safePoint_poll_tls(rFlagsReg cr, rRegP poll)
12486 %{
12487   match(SafePoint poll);
12488   effect(KILL cr, USE poll);
12489 
12490   format %{ "testl   rax, [$poll]\t"
12491             "# Safepoint: poll for GC" %}
12492   ins_cost(125);
12493   size(4); /* setting an explicit size will cause debug builds to assert if size is incorrect */
12494   ins_encode %{
12495     __ relocate(relocInfo::poll_type);
12496     address pre_pc = __ pc();
12497     __ testl(rax, Address($poll$$Register, 0));
12498     assert(nativeInstruction_at(pre_pc)->is_safepoint_poll(), "must emit test %%eax [reg]");
12499   %}
12500   ins_pipe(ialu_reg_mem);
12501 %}
12502 
12503 // ============================================================================
12504 // Procedure Call/Return Instructions
12505 // Call Java Static Instruction
12506 // Note: If this code changes, the corresponding ret_addr_offset() and
12507 //       compute_padding() functions will have to be adjusted.
12508 instruct CallStaticJavaDirect(method meth) %{
12509   match(CallStaticJava);
12510   effect(USE meth);
12511 
12512   ins_cost(300);
12513   format %{ "call,static " %}
12514   opcode(0xE8); /* E8 cd */
12515   ins_encode(clear_avx, Java_Static_Call(meth), call_epilog);
12516   ins_pipe(pipe_slow);
12517   ins_alignment(4);
12518 %}
12519 
12520 // Call Java Dynamic Instruction
12521 // Note: If this code changes, the corresponding ret_addr_offset() and
12522 //       compute_padding() functions will have to be adjusted.
12523 instruct CallDynamicJavaDirect(method meth)
12524 %{
12525   match(CallDynamicJava);
12526   effect(USE meth);
12527 
12528   ins_cost(300);
12529   format %{ "movq    rax, #Universe::non_oop_word()\n\t"
12530             "call,dynamic " %}
12531   ins_encode(clear_avx, Java_Dynamic_Call(meth), call_epilog);
12532   ins_pipe(pipe_slow);
12533   ins_alignment(4);
12534 %}
12535 
12536 // Call Runtime Instruction
12537 instruct CallRuntimeDirect(method meth)
12538 %{
12539   match(CallRuntime);
12540   effect(USE meth);
12541 
12542   ins_cost(300);
12543   format %{ "call,runtime " %}
12544   ins_encode(clear_avx, Java_To_Runtime(meth));
12545   ins_pipe(pipe_slow);
12546 %}
12547 
12548 // Call runtime without safepoint
12549 instruct CallLeafDirect(method meth)
12550 %{
12551   match(CallLeaf);
12552   effect(USE meth);
12553 
12554   ins_cost(300);
12555   format %{ "call_leaf,runtime " %}
12556   ins_encode(clear_avx, Java_To_Runtime(meth));
12557   ins_pipe(pipe_slow);
12558 %}
12559 
12560 // Call runtime without safepoint
12561 instruct CallLeafNoFPDirect(method meth)
12562 %{
12563   match(CallLeafNoFP);
12564   effect(USE meth);
12565 
12566   ins_cost(300);
12567   format %{ "call_leaf_nofp,runtime " %}
12568   ins_encode(clear_avx, Java_To_Runtime(meth));
12569   ins_pipe(pipe_slow);
12570 %}
12571 
12572 // Return Instruction
12573 // Remove the return address & jump to it.
12574 // Notice: We always emit a nop after a ret to make sure there is room
12575 // for safepoint patching
12576 instruct Ret()
12577 %{
12578   match(Return);
12579 
12580   format %{ "ret" %}
12581   opcode(0xC3);
12582   ins_encode(OpcP);
12583   ins_pipe(pipe_jmp);
12584 %}
12585 
12586 // Tail Call; Jump from runtime stub to Java code.
12587 // Also known as an 'interprocedural jump'.
12588 // Target of jump will eventually return to caller.
12589 // TailJump below removes the return address.
12590 instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_oop)
12591 %{
12592   match(TailCall jump_target method_oop);
12593 
12594   ins_cost(300);
12595   format %{ "jmp     $jump_target\t# rbx holds method oop" %}
12596   opcode(0xFF, 0x4); /* Opcode FF /4 */
12597   ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
12598   ins_pipe(pipe_jmp);
12599 %}
12600 
12601 // Tail Jump; remove the return address; jump to target.
12602 // TailCall above leaves the return address around.
12603 instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
12604 %{
12605   match(TailJump jump_target ex_oop);
12606 
12607   ins_cost(300);
12608   format %{ "popq    rdx\t# pop return address\n\t"
12609             "jmp     $jump_target" %}
12610   opcode(0xFF, 0x4); /* Opcode FF /4 */
12611   ins_encode(Opcode(0x5a), // popq rdx
12612              REX_reg(jump_target), OpcP, reg_opc(jump_target));
12613   ins_pipe(pipe_jmp);
12614 %}
12615 
12616 // Create exception oop: created by stack-crawling runtime code.
12617 // Created exception is now available to this handler, and is setup
12618 // just prior to jumping to this handler.  No code emitted.
12619 instruct CreateException(rax_RegP ex_oop)
12620 %{
12621   match(Set ex_oop (CreateEx));
12622 
12623   size(0);
12624   // use the following format syntax
12625   format %{ "# exception oop is in rax; no code emitted" %}
12626   ins_encode();
12627   ins_pipe(empty);
12628 %}
12629 
12630 // Rethrow exception:
12631 // The exception oop will come in the first argument position.
12632 // Then JUMP (not call) to the rethrow stub code.
12633 instruct RethrowException()
12634 %{
12635   match(Rethrow);
12636 
12637   // use the following format syntax
12638   format %{ "jmp     rethrow_stub" %}
12639   ins_encode(enc_rethrow);
12640   ins_pipe(pipe_jmp);
12641 %}
12642 
12643 // ============================================================================
12644 // This name is KNOWN by the ADLC and cannot be changed.
12645 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
12646 // for this guy.
12647 instruct tlsLoadP(r15_RegP dst) %{
12648   match(Set dst (ThreadLocal));
12649   effect(DEF dst);
12650 
12651   size(0);
12652   format %{ "# TLS is in R15" %}
12653   ins_encode( /*empty encoding*/ );
12654   ins_pipe(ialu_reg_reg);
12655 %}
12656 
12657 
12658 //----------PEEPHOLE RULES-----------------------------------------------------
12659 // These must follow all instruction definitions as they use the names
12660 // defined in the instructions definitions.
12661 //
12662 // peepmatch ( root_instr_name [preceding_instruction]* );
12663 //
12664 // peepconstraint %{
12665 // (instruction_number.operand_name relational_op instruction_number.operand_name
12666 //  [, ...] );
12667 // // instruction numbers are zero-based using left to right order in peepmatch
12668 //
12669 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
12670 // // provide an instruction_number.operand_name for each operand that appears
12671 // // in the replacement instruction's match rule
12672 //
12673 // ---------VM FLAGS---------------------------------------------------------
12674 //
12675 // All peephole optimizations can be turned off using -XX:-OptoPeephole
12676 //
12677 // Each peephole rule is given an identifying number starting with zero and
12678 // increasing by one in the order seen by the parser.  An individual peephole
12679 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12680 // on the command-line.
12681 //
12682 // ---------CURRENT LIMITATIONS----------------------------------------------
12683 //
12684 // Only match adjacent instructions in same basic block
12685 // Only equality constraints
12686 // Only constraints between operands, not (0.dest_reg == RAX_enc)
12687 // Only one replacement instruction
12688 //
12689 // ---------EXAMPLE----------------------------------------------------------
12690 //
12691 // // pertinent parts of existing instructions in architecture description
12692 // instruct movI(rRegI dst, rRegI src)
12693 // %{
12694 //   match(Set dst (CopyI src));
12695 // %}
12696 //
12697 // instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
12698 // %{
12699 //   match(Set dst (AddI dst src));
12700 //   effect(KILL cr);
12701 // %}
12702 //
12703 // // Change (inc mov) to lea
12704 // peephole %{
12705 //   // increment preceeded by register-register move
12706 //   peepmatch ( incI_rReg movI );
12707 //   // require that the destination register of the increment
12708 //   // match the destination register of the move
12709 //   peepconstraint ( 0.dst == 1.dst );
12710 //   // construct a replacement instruction that sets
12711 //   // the destination to ( move's source register + one )
12712 //   peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
12713 // %}
12714 //
12715 
12716 // Implementation no longer uses movX instructions since
12717 // machine-independent system no longer uses CopyX nodes.
12718 //
12719 // peephole
12720 // %{
12721 //   peepmatch (incI_rReg movI);
12722 //   peepconstraint (0.dst == 1.dst);
12723 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12724 // %}
12725 
12726 // peephole
12727 // %{
12728 //   peepmatch (decI_rReg movI);
12729 //   peepconstraint (0.dst == 1.dst);
12730 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12731 // %}
12732 
12733 // peephole
12734 // %{
12735 //   peepmatch (addI_rReg_imm movI);
12736 //   peepconstraint (0.dst == 1.dst);
12737 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
12738 // %}
12739 
12740 // peephole
12741 // %{
12742 //   peepmatch (incL_rReg movL);
12743 //   peepconstraint (0.dst == 1.dst);
12744 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12745 // %}
12746 
12747 // peephole
12748 // %{
12749 //   peepmatch (decL_rReg movL);
12750 //   peepconstraint (0.dst == 1.dst);
12751 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12752 // %}
12753 
12754 // peephole
12755 // %{
12756 //   peepmatch (addL_rReg_imm movL);
12757 //   peepconstraint (0.dst == 1.dst);
12758 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
12759 // %}
12760 
12761 // peephole
12762 // %{
12763 //   peepmatch (addP_rReg_imm movP);
12764 //   peepconstraint (0.dst == 1.dst);
12765 //   peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
12766 // %}
12767 
12768 // // Change load of spilled value to only a spill
12769 // instruct storeI(memory mem, rRegI src)
12770 // %{
12771 //   match(Set mem (StoreI mem src));
12772 // %}
12773 //
12774 // instruct loadI(rRegI dst, memory mem)
12775 // %{
12776 //   match(Set dst (LoadI mem));
12777 // %}
12778 //
12779 
12780 peephole
12781 %{
12782   peepmatch (loadI storeI);
12783   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
12784   peepreplace (storeI(1.mem 1.mem 1.src));
12785 %}
12786 
12787 peephole
12788 %{
12789   peepmatch (loadL storeL);
12790   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
12791   peepreplace (storeL(1.mem 1.mem 1.src));
12792 %}
12793 
12794 //----------SMARTSPILL RULES---------------------------------------------------
12795 // These must follow all instruction definitions as they use the names
12796 // defined in the instructions definitions.