1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/castnode.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/convertnode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/movenode.hpp"
  37 #include "opto/opaquenode.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "opto/superword.hpp"
  42 #include "opto/vectornode.hpp"
  43 
  44 //------------------------------is_loop_exit-----------------------------------
  45 // Given an IfNode, return the loop-exiting projection or NULL if both
  46 // arms remain in the loop.
  47 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
  48   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
  49   PhaseIdealLoop *phase = _phase;
  50   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  51   // we need loop unswitching instead of peeling.
  52   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
  53     return iff->raw_out(0);
  54   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
  55     return iff->raw_out(1);
  56   return NULL;
  57 }
  58 
  59 
  60 //=============================================================================
  61 
  62 
  63 //------------------------------record_for_igvn----------------------------
  64 // Put loop body on igvn work list
  65 void IdealLoopTree::record_for_igvn() {
  66   for( uint i = 0; i < _body.size(); i++ ) {
  67     Node *n = _body.at(i);
  68     _phase->_igvn._worklist.push(n);
  69   }
  70 }
  71 
  72 //------------------------------compute_exact_trip_count-----------------------
  73 // Compute loop exact trip count if possible. Do not recalculate trip count for
  74 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
  75 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
  76   if (!_head->as_Loop()->is_valid_counted_loop()) {
  77     return;
  78   }
  79   CountedLoopNode* cl = _head->as_CountedLoop();
  80   // Trip count may become nonexact for iteration split loops since
  81   // RCE modifies limits. Note, _trip_count value is not reset since
  82   // it is used to limit unrolling of main loop.
  83   cl->set_nonexact_trip_count();
  84 
  85   // Loop's test should be part of loop.
  86   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  87     return; // Infinite loop
  88 
  89 #ifdef ASSERT
  90   BoolTest::mask bt = cl->loopexit()->test_trip();
  91   assert(bt == BoolTest::lt || bt == BoolTest::gt ||
  92          bt == BoolTest::ne, "canonical test is expected");
  93 #endif
  94 
  95   Node* init_n = cl->init_trip();
  96   Node* limit_n = cl->limit();
  97   if (init_n  != NULL &&  init_n->is_Con() &&
  98       limit_n != NULL && limit_n->is_Con()) {
  99     // Use longs to avoid integer overflow.
 100     int stride_con  = cl->stride_con();
 101     jlong init_con   = cl->init_trip()->get_int();
 102     jlong limit_con  = cl->limit()->get_int();
 103     int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
 104     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
 105     if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
 106       // Set exact trip count.
 107       cl->set_exact_trip_count((uint)trip_count);
 108     }
 109   }
 110 }
 111 
 112 //------------------------------compute_profile_trip_cnt----------------------------
 113 // Compute loop trip count from profile data as
 114 //    (backedge_count + loop_exit_count) / loop_exit_count
 115 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
 116   if (!_head->is_CountedLoop()) {
 117     return;
 118   }
 119   CountedLoopNode* head = _head->as_CountedLoop();
 120   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
 121     return; // Already computed
 122   }
 123   float trip_cnt = (float)max_jint; // default is big
 124 
 125   Node* back = head->in(LoopNode::LoopBackControl);
 126   while (back != head) {
 127     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 128         back->in(0) &&
 129         back->in(0)->is_If() &&
 130         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
 131         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
 132       break;
 133     }
 134     back = phase->idom(back);
 135   }
 136   if (back != head) {
 137     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 138            back->in(0), "if-projection exists");
 139     IfNode* back_if = back->in(0)->as_If();
 140     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
 141 
 142     // Now compute a loop exit count
 143     float loop_exit_cnt = 0.0f;
 144     for( uint i = 0; i < _body.size(); i++ ) {
 145       Node *n = _body[i];
 146       if( n->is_If() ) {
 147         IfNode *iff = n->as_If();
 148         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
 149           Node *exit = is_loop_exit(iff);
 150           if( exit ) {
 151             float exit_prob = iff->_prob;
 152             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
 153             if (exit_prob > PROB_MIN) {
 154               float exit_cnt = iff->_fcnt * exit_prob;
 155               loop_exit_cnt += exit_cnt;
 156             }
 157           }
 158         }
 159       }
 160     }
 161     if (loop_exit_cnt > 0.0f) {
 162       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
 163     } else {
 164       // No exit count so use
 165       trip_cnt = loop_back_cnt;
 166     }
 167   }
 168 #ifndef PRODUCT
 169   if (TraceProfileTripCount) {
 170     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
 171   }
 172 #endif
 173   head->set_profile_trip_cnt(trip_cnt);
 174 }
 175 
 176 //---------------------is_invariant_addition-----------------------------
 177 // Return nonzero index of invariant operand for an Add or Sub
 178 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
 179 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
 180   int op = n->Opcode();
 181   if (op == Op_AddI || op == Op_SubI) {
 182     bool in1_invar = this->is_invariant(n->in(1));
 183     bool in2_invar = this->is_invariant(n->in(2));
 184     if (in1_invar && !in2_invar) return 1;
 185     if (!in1_invar && in2_invar) return 2;
 186   }
 187   return 0;
 188 }
 189 
 190 //---------------------reassociate_add_sub-----------------------------
 191 // Reassociate invariant add and subtract expressions:
 192 //
 193 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
 194 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
 195 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
 196 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
 197 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
 198 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
 199 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
 200 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
 201 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
 202 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
 203 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
 204 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
 205 //
 206 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
 207   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
 208   if (is_invariant(n1)) return NULL;
 209   int inv1_idx = is_invariant_addition(n1, phase);
 210   if (!inv1_idx) return NULL;
 211   // Don't mess with add of constant (igvn moves them to expression tree root.)
 212   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
 213   Node* inv1 = n1->in(inv1_idx);
 214   Node* n2 = n1->in(3 - inv1_idx);
 215   int inv2_idx = is_invariant_addition(n2, phase);
 216   if (!inv2_idx) return NULL;
 217   Node* x    = n2->in(3 - inv2_idx);
 218   Node* inv2 = n2->in(inv2_idx);
 219 
 220   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
 221   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
 222   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
 223   if (n1->is_Sub() && inv1_idx == 1) {
 224     neg_x    = !neg_x;
 225     neg_inv2 = !neg_inv2;
 226   }
 227   Node* inv1_c = phase->get_ctrl(inv1);
 228   Node* inv2_c = phase->get_ctrl(inv2);
 229   Node* n_inv1;
 230   if (neg_inv1) {
 231     Node *zero = phase->_igvn.intcon(0);
 232     phase->set_ctrl(zero, phase->C->root());
 233     n_inv1 = new SubINode(zero, inv1);
 234     phase->register_new_node(n_inv1, inv1_c);
 235   } else {
 236     n_inv1 = inv1;
 237   }
 238   Node* inv;
 239   if (neg_inv2) {
 240     inv = new SubINode(n_inv1, inv2);
 241   } else {
 242     inv = new AddINode(n_inv1, inv2);
 243   }
 244   phase->register_new_node(inv, phase->get_early_ctrl(inv));
 245 
 246   Node* addx;
 247   if (neg_x) {
 248     addx = new SubINode(inv, x);
 249   } else {
 250     addx = new AddINode(x, inv);
 251   }
 252   phase->register_new_node(addx, phase->get_ctrl(x));
 253   phase->_igvn.replace_node(n1, addx);
 254   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
 255   _body.yank(n1);
 256   return addx;
 257 }
 258 
 259 //---------------------reassociate_invariants-----------------------------
 260 // Reassociate invariant expressions:
 261 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
 262   for (int i = _body.size() - 1; i >= 0; i--) {
 263     Node *n = _body.at(i);
 264     for (int j = 0; j < 5; j++) {
 265       Node* nn = reassociate_add_sub(n, phase);
 266       if (nn == NULL) break;
 267       n = nn; // again
 268     };
 269   }
 270 }
 271 
 272 //------------------------------policy_peeling---------------------------------
 273 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 274 // make some loop-invariant test (usually a null-check) happen before the loop.
 275 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
 276   Node *test = ((IdealLoopTree*)this)->tail();
 277   int  body_size = ((IdealLoopTree*)this)->_body.size();
 278   // Peeling does loop cloning which can result in O(N^2) node construction
 279   if( body_size > 255 /* Prevent overflow for large body_size */
 280       || (body_size * body_size + phase->C->live_nodes()) > phase->C->max_node_limit() ) {
 281     return false;           // too large to safely clone
 282   }
 283   while( test != _head ) {      // Scan till run off top of loop
 284     if( test->is_If() ) {       // Test?
 285       Node *ctrl = phase->get_ctrl(test->in(1));
 286       if (ctrl->is_top())
 287         return false;           // Found dead test on live IF?  No peeling!
 288       // Standard IF only has one input value to check for loop invariance
 289       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
 290       // Condition is not a member of this loop?
 291       if( !is_member(phase->get_loop(ctrl)) &&
 292           is_loop_exit(test) )
 293         return true;            // Found reason to peel!
 294     }
 295     // Walk up dominators to loop _head looking for test which is
 296     // executed on every path thru loop.
 297     test = phase->idom(test);
 298   }
 299   return false;
 300 }
 301 
 302 //------------------------------peeled_dom_test_elim---------------------------
 303 // If we got the effect of peeling, either by actually peeling or by making
 304 // a pre-loop which must execute at least once, we can remove all
 305 // loop-invariant dominated tests in the main body.
 306 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
 307   bool progress = true;
 308   while( progress ) {
 309     progress = false;           // Reset for next iteration
 310     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
 311     Node *test = prev->in(0);
 312     while( test != loop->_head ) { // Scan till run off top of loop
 313 
 314       int p_op = prev->Opcode();
 315       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
 316           test->is_If() &&      // Test?
 317           !test->in(1)->is_Con() && // And not already obvious?
 318           // Condition is not a member of this loop?
 319           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
 320         // Walk loop body looking for instances of this test
 321         for( uint i = 0; i < loop->_body.size(); i++ ) {
 322           Node *n = loop->_body.at(i);
 323           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
 324             // IfNode was dominated by version in peeled loop body
 325             progress = true;
 326             dominated_by( old_new[prev->_idx], n );
 327           }
 328         }
 329       }
 330       prev = test;
 331       test = idom(test);
 332     } // End of scan tests in loop
 333 
 334   } // End of while( progress )
 335 }
 336 
 337 //------------------------------do_peeling-------------------------------------
 338 // Peel the first iteration of the given loop.
 339 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 340 //         The pre-loop illegally has 2 control users (old & new loops).
 341 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 342 //         Do this by making the old-loop fall-in edges act as if they came
 343 //         around the loopback from the prior iteration (follow the old-loop
 344 //         backedges) and then map to the new peeled iteration.  This leaves
 345 //         the pre-loop with only 1 user (the new peeled iteration), but the
 346 //         peeled-loop backedge has 2 users.
 347 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 348 //         extra backedge user.
 349 //
 350 //                   orig
 351 //
 352 //                  stmt1
 353 //                    |
 354 //                    v
 355 //              loop predicate
 356 //                    |
 357 //                    v
 358 //                   loop<----+
 359 //                     |      |
 360 //                   stmt2    |
 361 //                     |      |
 362 //                     v      |
 363 //                    if      ^
 364 //                   / \      |
 365 //                  /   \     |
 366 //                 v     v    |
 367 //               false true   |
 368 //               /       \    |
 369 //              /         ----+
 370 //             |
 371 //             v
 372 //           exit
 373 //
 374 //
 375 //            after clone loop
 376 //
 377 //                   stmt1
 378 //                     |
 379 //                     v
 380 //               loop predicate
 381 //                 /       \
 382 //        clone   /         \   orig
 383 //               /           \
 384 //              /             \
 385 //             v               v
 386 //   +---->loop clone          loop<----+
 387 //   |      |                    |      |
 388 //   |    stmt2 clone          stmt2    |
 389 //   |      |                    |      |
 390 //   |      v                    v      |
 391 //   ^      if clone            If      ^
 392 //   |      / \                / \      |
 393 //   |     /   \              /   \     |
 394 //   |    v     v            v     v    |
 395 //   |    true  false      false true   |
 396 //   |    /         \      /       \    |
 397 //   +----           \    /         ----+
 398 //                    \  /
 399 //                    1v v2
 400 //                  region
 401 //                     |
 402 //                     v
 403 //                   exit
 404 //
 405 //
 406 //         after peel and predicate move
 407 //
 408 //                   stmt1
 409 //                    /
 410 //                   /
 411 //        clone     /            orig
 412 //                 /
 413 //                /              +----------+
 414 //               /               |          |
 415 //              /          loop predicate   |
 416 //             /                 |          |
 417 //            v                  v          |
 418 //   TOP-->loop clone          loop<----+   |
 419 //          |                    |      |   |
 420 //        stmt2 clone          stmt2    |   |
 421 //          |                    |      |   ^
 422 //          v                    v      |   |
 423 //          if clone            If      ^   |
 424 //          / \                / \      |   |
 425 //         /   \              /   \     |   |
 426 //        v     v            v     v    |   |
 427 //      true   false      false  true   |   |
 428 //        |         \      /       \    |   |
 429 //        |          \    /         ----+   ^
 430 //        |           \  /                  |
 431 //        |           1v v2                 |
 432 //        v         region                  |
 433 //        |            |                    |
 434 //        |            v                    |
 435 //        |          exit                   |
 436 //        |                                 |
 437 //        +--------------->-----------------+
 438 //
 439 //
 440 //              final graph
 441 //
 442 //                  stmt1
 443 //                    |
 444 //                    v
 445 //                  stmt2 clone
 446 //                    |
 447 //                    v
 448 //                   if clone
 449 //                  / |
 450 //                 /  |
 451 //                v   v
 452 //            false  true
 453 //             |      |
 454 //             |      v
 455 //             | loop predicate
 456 //             |      |
 457 //             |      v
 458 //             |     loop<----+
 459 //             |      |       |
 460 //             |    stmt2     |
 461 //             |      |       |
 462 //             |      v       |
 463 //             v      if      ^
 464 //             |     /  \     |
 465 //             |    /    \    |
 466 //             |   v     v    |
 467 //             | false  true  |
 468 //             |  |        \  |
 469 //             v  v         --+
 470 //            region
 471 //              |
 472 //              v
 473 //             exit
 474 //
 475 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
 476 
 477   C->set_major_progress();
 478   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
 479   // 'pre' loop from the main and the 'pre' can no longer have it's
 480   // iterations adjusted.  Therefore, we need to declare this loop as
 481   // no longer a 'main' loop; it will need new pre and post loops before
 482   // we can do further RCE.
 483 #ifndef PRODUCT
 484   if (TraceLoopOpts) {
 485     tty->print("Peel         ");
 486     loop->dump_head();
 487   }
 488 #endif
 489   Node* head = loop->_head;
 490   bool counted_loop = head->is_CountedLoop();
 491   if (counted_loop) {
 492     CountedLoopNode *cl = head->as_CountedLoop();
 493     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
 494     cl->set_trip_count(cl->trip_count() - 1);
 495     if (cl->is_main_loop()) {
 496       cl->set_normal_loop();
 497 #ifndef PRODUCT
 498       if (PrintOpto && VerifyLoopOptimizations) {
 499         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
 500         loop->dump_head();
 501       }
 502 #endif
 503     }
 504   }
 505   Node* entry = head->in(LoopNode::EntryControl);
 506 
 507   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 508   //         The pre-loop illegally has 2 control users (old & new loops).
 509   clone_loop( loop, old_new, dom_depth(head) );
 510 
 511   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 512   //         Do this by making the old-loop fall-in edges act as if they came
 513   //         around the loopback from the prior iteration (follow the old-loop
 514   //         backedges) and then map to the new peeled iteration.  This leaves
 515   //         the pre-loop with only 1 user (the new peeled iteration), but the
 516   //         peeled-loop backedge has 2 users.
 517   Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx];
 518   _igvn.hash_delete(head);
 519   head->set_req(LoopNode::EntryControl, new_entry);
 520   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
 521     Node* old = head->fast_out(j);
 522     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
 523       Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
 524       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
 525         // Then loop body backedge value remains the same.
 526         new_exit_value = old->in(LoopNode::LoopBackControl);
 527       _igvn.hash_delete(old);
 528       old->set_req(LoopNode::EntryControl, new_exit_value);
 529     }
 530   }
 531 
 532 
 533   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 534   //         extra backedge user.
 535   Node* new_head = old_new[head->_idx];
 536   _igvn.hash_delete(new_head);
 537   new_head->set_req(LoopNode::LoopBackControl, C->top());
 538   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
 539     Node* use = new_head->fast_out(j2);
 540     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
 541       _igvn.hash_delete(use);
 542       use->set_req(LoopNode::LoopBackControl, C->top());
 543     }
 544   }
 545 
 546 
 547   // Step 4: Correct dom-depth info.  Set to loop-head depth.
 548   int dd = dom_depth(head);
 549   set_idom(head, head->in(1), dd);
 550   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
 551     Node *old = loop->_body.at(j3);
 552     Node *nnn = old_new[old->_idx];
 553     if (!has_ctrl(nnn))
 554       set_idom(nnn, idom(nnn), dd-1);
 555   }
 556 
 557   // Now force out all loop-invariant dominating tests.  The optimizer
 558   // finds some, but we _know_ they are all useless.
 559   peeled_dom_test_elim(loop,old_new);
 560 
 561   loop->record_for_igvn();
 562 }
 563 
 564 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
 565 
 566 //------------------------------policy_maximally_unroll------------------------
 567 // Calculate exact loop trip count and return true if loop can be maximally
 568 // unrolled.
 569 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
 570   CountedLoopNode *cl = _head->as_CountedLoop();
 571   assert(cl->is_normal_loop(), "");
 572   if (!cl->is_valid_counted_loop())
 573     return false; // Malformed counted loop
 574 
 575   if (!cl->has_exact_trip_count()) {
 576     // Trip count is not exact.
 577     return false;
 578   }
 579 
 580   uint trip_count = cl->trip_count();
 581   // Note, max_juint is used to indicate unknown trip count.
 582   assert(trip_count > 1, "one iteration loop should be optimized out already");
 583   assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
 584 
 585   // Real policy: if we maximally unroll, does it get too big?
 586   // Allow the unrolled mess to get larger than standard loop
 587   // size.  After all, it will no longer be a loop.
 588   uint body_size    = _body.size();
 589   uint unroll_limit = (uint)LoopUnrollLimit * 4;
 590   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
 591   if (trip_count > unroll_limit || body_size > unroll_limit) {
 592     return false;
 593   }
 594 
 595   // Fully unroll a loop with few iterations regardless next
 596   // conditions since following loop optimizations will split
 597   // such loop anyway (pre-main-post).
 598   if (trip_count <= 3)
 599     return true;
 600 
 601   // Take into account that after unroll conjoined heads and tails will fold,
 602   // otherwise policy_unroll() may allow more unrolling than max unrolling.
 603   uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
 604   uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
 605   if (body_size != tst_body_size) // Check for int overflow
 606     return false;
 607   if (new_body_size > unroll_limit ||
 608       // Unrolling can result in a large amount of node construction
 609       new_body_size >= phase->C->max_node_limit() - phase->C->live_nodes()) {
 610     return false;
 611   }
 612 
 613   // Do not unroll a loop with String intrinsics code.
 614   // String intrinsics are large and have loops.
 615   for (uint k = 0; k < _body.size(); k++) {
 616     Node* n = _body.at(k);
 617     switch (n->Opcode()) {
 618       case Op_StrComp:
 619       case Op_StrEquals:
 620       case Op_StrIndexOf:
 621       case Op_EncodeISOArray:
 622       case Op_AryEq: {
 623         return false;
 624       }
 625 #if INCLUDE_RTM_OPT
 626       case Op_FastLock:
 627       case Op_FastUnlock: {
 628         // Don't unroll RTM locking code because it is large.
 629         if (UseRTMLocking) {
 630           return false;
 631         }
 632       }
 633 #endif
 634     } // switch
 635   }
 636 
 637   return true; // Do maximally unroll
 638 }
 639 
 640 
 641 //------------------------------policy_unroll----------------------------------
 642 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 643 // the loop is a CountedLoop and the body is small enough.
 644 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) {
 645 
 646   CountedLoopNode *cl = _head->as_CountedLoop();
 647   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
 648 
 649   if (!cl->is_valid_counted_loop())
 650     return false; // Malformed counted loop
 651 
 652   // Protect against over-unrolling.
 653   // After split at least one iteration will be executed in pre-loop.
 654   if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
 655 
 656   _local_loop_unroll_limit = LoopUnrollLimit;
 657   _local_loop_unroll_factor = 4;
 658   int future_unroll_ct = cl->unrolled_count() * 2;
 659   if (future_unroll_ct > LoopMaxUnroll) return false;
 660 
 661   if (UseSuperWord) {
 662     if (cl->is_reduction_loop() == false) phase->mark_reductions(this);
 663 
 664     // Only attempt slp analysis when user controls do not prohibit it
 665     if (LoopMaxUnroll > _local_loop_unroll_factor) {
 666       // Once policy_slp_analysis succeeds, mark the loop with the
 667       // maximal unroll factor so that we minimize analysis passes
 668       if (cl->has_passed_slp() == false) {
 669         if (policy_slp_analysis(cl, phase)) {
 670           if (_local_loop_unroll_factor > 4) {
 671             cl->mark_passed_slp();
 672             cl->set_slp_max_unroll(_local_loop_unroll_factor);
 673           }
 674         }
 675       }
 676 
 677       if (cl->has_passed_slp()) {
 678         int slp_max_unroll_factor = cl->slp_max_unroll();
 679         if ((slp_max_unroll_factor > 4) &&
 680             (slp_max_unroll_factor >= future_unroll_ct)) {
 681           int new_limit = cl->node_count_before_unroll() * slp_max_unroll_factor;
 682           if (new_limit > LoopUnrollLimit) {
 683 #ifndef PRODUCT
 684             if (TraceSuperWordLoopUnrollAnalysis) {
 685               tty->print_cr("slp analysis is applying unroll limit  %d, the original limit was %d\n",
 686                             new_limit, _local_loop_unroll_limit);
 687             }
 688 #endif
 689             _local_loop_unroll_limit = new_limit;
 690           }
 691         }
 692       }
 693     }
 694   }
 695 
 696   // Check for initial stride being a small enough constant
 697   if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
 698 
 699   // Don't unroll if the next round of unrolling would push us
 700   // over the expected trip count of the loop.  One is subtracted
 701   // from the expected trip count because the pre-loop normally
 702   // executes 1 iteration.
 703   if (UnrollLimitForProfileCheck > 0 &&
 704       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
 705       future_unroll_ct        > UnrollLimitForProfileCheck &&
 706       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
 707     return false;
 708   }
 709 
 710   // When unroll count is greater than LoopUnrollMin, don't unroll if:
 711   //   the residual iterations are more than 10% of the trip count
 712   //   and rounds of "unroll,optimize" are not making significant progress
 713   //   Progress defined as current size less than 20% larger than previous size.
 714   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
 715       future_unroll_ct > LoopUnrollMin &&
 716       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
 717       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
 718     return false;
 719   }
 720 
 721   Node *init_n = cl->init_trip();
 722   Node *limit_n = cl->limit();
 723   int stride_con = cl->stride_con();
 724   // Non-constant bounds.
 725   // Protect against over-unrolling when init or/and limit are not constant
 726   // (so that trip_count's init value is maxint) but iv range is known.
 727   if (init_n   == NULL || !init_n->is_Con()  ||
 728       limit_n  == NULL || !limit_n->is_Con()) {
 729     Node* phi = cl->phi();
 730     if (phi != NULL) {
 731       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
 732       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
 733       int next_stride = stride_con * 2; // stride after this unroll
 734       if (next_stride > 0) {
 735         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
 736             iv_type->_lo + next_stride >  iv_type->_hi) {
 737           return false;  // over-unrolling
 738         }
 739       } else if (next_stride < 0) {
 740         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
 741             iv_type->_hi + next_stride <  iv_type->_lo) {
 742           return false;  // over-unrolling
 743         }
 744       }
 745     }
 746   }
 747 
 748   // After unroll limit will be adjusted: new_limit = limit-stride.
 749   // Bailout if adjustment overflow.
 750   const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
 751   if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
 752       stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
 753     return false;  // overflow
 754 
 755   // Adjust body_size to determine if we unroll or not
 756   uint body_size = _body.size();
 757   // Key test to unroll loop in CRC32 java code
 758   int xors_in_loop = 0;
 759   // Also count ModL, DivL and MulL which expand mightly
 760   for (uint k = 0; k < _body.size(); k++) {
 761     Node* n = _body.at(k);
 762     switch (n->Opcode()) {
 763       case Op_XorI: xors_in_loop++; break; // CRC32 java code
 764       case Op_ModL: body_size += 30; break;
 765       case Op_DivL: body_size += 30; break;
 766       case Op_MulL: body_size += 10; break;
 767       case Op_StrComp:
 768       case Op_StrEquals:
 769       case Op_StrIndexOf:
 770       case Op_EncodeISOArray:
 771       case Op_AryEq: {
 772         // Do not unroll a loop with String intrinsics code.
 773         // String intrinsics are large and have loops.
 774         return false;
 775       }
 776 #if INCLUDE_RTM_OPT
 777       case Op_FastLock:
 778       case Op_FastUnlock: {
 779         // Don't unroll RTM locking code because it is large.
 780         if (UseRTMLocking) {
 781           return false;
 782         }
 783       }
 784 #endif
 785     } // switch
 786   }
 787 
 788   // Check for being too big
 789   if (body_size > (uint)_local_loop_unroll_limit) {
 790     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
 791     // Normal case: loop too big
 792     return false;
 793   }
 794 
 795   // Unroll once!  (Each trip will soon do double iterations)
 796   return true;
 797 }
 798 
 799 bool IdealLoopTree::policy_slp_analysis( CountedLoopNode *cl, PhaseIdealLoop *phase ) {
 800   // SLP analysis
 801   bool not_slp = false;
 802 
 803   // Enable this functionality target by target as needed
 804   if (SuperWordLoopUnrollAnalysis) {
 805     SuperWord sw(phase);
 806     sw.transform_loop(this, false);
 807 
 808     // If the loop is slp canonical analyze it
 809     if (sw.early_return() == false) {
 810       Arena *a = Thread::current()->resource_area();
 811       int max_vector = Matcher::max_vector_size(T_INT);
 812       size_t ignored_size = _body.size()*sizeof(int*);
 813       int *ignored_loop_nodes = (int*)a->Amalloc_D(ignored_size);
 814       Node_Stack nstack((int)ignored_size);
 815       Node *cl_exit = cl->loopexit();
 816 
 817       // First clear the entries
 818       for (uint i = 0; i < _body.size(); i++) {
 819         ignored_loop_nodes[i] = -1;
 820       }
 821 
 822       // Process the loop, some/all of the stack entries will not be in order, ergo
 823       // need to preprocess the ignored initial state before we process the loop
 824       for (uint i = 0; i < _body.size(); i++) {
 825         Node* n = _body.at(i);
 826         if (n == cl->incr() ||
 827             n->is_reduction() ||
 828             n->is_AddP() ||
 829             n->is_Cmp() ||
 830             n->is_IfTrue() ||
 831             n->is_CountedLoop() ||
 832             (n == cl_exit)) {
 833           ignored_loop_nodes[i] = n->_idx;
 834           continue;
 835         }
 836 
 837         if (n->is_If()) {
 838           IfNode *iff = n->as_If();
 839           if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) {
 840             if (is_loop_exit(iff)) {
 841               ignored_loop_nodes[i] = n->_idx;
 842               continue;
 843             }
 844           }
 845         }
 846 
 847         if (n->is_Phi() && (n->bottom_type() == Type::MEMORY)) {
 848           Node* n_tail = n->in(LoopNode::LoopBackControl);
 849           if (n_tail != n->in(LoopNode::EntryControl)) {
 850             if (!n_tail->is_Mem()) {
 851               not_slp = true;
 852               break;
 853             }
 854           }
 855         }
 856 
 857         // This must happen after check of phi/if
 858         if (n->is_Phi() || n->is_If()) {
 859           ignored_loop_nodes[i] = n->_idx;
 860           continue;
 861         }
 862 
 863         if (n->is_LoadStore() || n->is_MergeMem() ||
 864             (n->is_Proj() && !n->as_Proj()->is_CFG())) {
 865           not_slp = true;
 866           break;
 867         }
 868 
 869         if (n->is_Mem()) {
 870           Node* adr = n->in(MemNode::Address);
 871           Node* n_ctrl = phase->get_ctrl(adr);
 872 
 873           // save a queue of post process nodes
 874           if (n_ctrl != NULL && is_member(phase->get_loop(n_ctrl))) {
 875             MemNode* current = n->as_Mem();
 876             BasicType bt = current->memory_type();
 877             if (is_java_primitive(bt) == false) {
 878               ignored_loop_nodes[i] = n->_idx;
 879               continue;
 880             }
 881 
 882             // Process the memory expression
 883             int stack_idx = 0;
 884             bool have_side_effects = true;
 885             if (adr->is_AddP() == false) {
 886               nstack.push(adr, stack_idx++);
 887             } else {
 888               // Mark the components of the memory operation in nstack
 889               SWPointer p1(current, &sw, &nstack, true);
 890               have_side_effects = p1.node_stack()->is_nonempty();
 891             }
 892 
 893             // Process the pointer stack
 894             while (have_side_effects) {
 895               Node* pointer_node = nstack.node();
 896               for (uint j = 0; j < _body.size(); j++) {
 897                 Node* cur_node = _body.at(j);
 898                 if (cur_node == pointer_node) {
 899                   ignored_loop_nodes[j] = cur_node->_idx;
 900                   break;
 901                 }
 902               }
 903               nstack.pop();
 904               have_side_effects = nstack.is_nonempty();
 905             }
 906 
 907             // Cleanup
 908             nstack.clear();
 909           }
 910         }
 911       }
 912 
 913       if (not_slp == false) {
 914         // Now we try to find the maximum supported consistent vector which the machine
 915         // description can use
 916         for (uint i = 0; i < _body.size(); i++) {
 917           if (ignored_loop_nodes[i] != -1) continue;
 918 
 919           BasicType bt;
 920           Node* n = _body.at(i);
 921           if (n->is_Store()) {
 922             bt = n->as_Mem()->memory_type();
 923           } else {
 924             bt = n->bottom_type()->basic_type();
 925           }
 926 
 927           int cur_max_vector = Matcher::max_vector_size(bt);
 928 
 929           // If a max vector exists which is not larger than _local_loop_unroll_factor
 930           // stop looking, we already have the max vector to map to.
 931           if (cur_max_vector <= _local_loop_unroll_factor) {
 932             not_slp = true;
 933 #ifndef PRODUCT
 934             if (TraceSuperWordLoopUnrollAnalysis) {
 935               tty->print_cr("slp analysis fails: unroll limit equals max vector\n");
 936             }
 937 #endif
 938             break;
 939           }
 940 
 941           // Map the maximal common vector
 942           if (VectorNode::implemented(n->Opcode(), cur_max_vector, bt)) {
 943             if (cur_max_vector < max_vector) {
 944               max_vector = cur_max_vector;
 945             }
 946           }
 947         }
 948         if (not_slp == false) _local_loop_unroll_factor = max_vector;
 949       }
 950 
 951       if (not_slp) {
 952         // Mark the loop as processed so that we do not try again
 953         cl->mark_passed_slp();
 954         cl->set_slp_max_unroll(_local_loop_unroll_factor);
 955       }
 956 
 957       // Now clean things up
 958       a->Afree(ignored_loop_nodes, ignored_size);
 959     }
 960   }
 961 
 962   return (not_slp == false);
 963 }
 964 
 965 //------------------------------policy_align-----------------------------------
 966 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
 967 // expression that does the alignment.  Note that only one array base can be
 968 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
 969 // if we vectorize short memory ops into longer memory ops, we may want to
 970 // increase alignment.
 971 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
 972   return false;
 973 }
 974 
 975 //------------------------------policy_range_check-----------------------------
 976 // Return TRUE or FALSE if the loop should be range-check-eliminated.
 977 // Actually we do iteration-splitting, a more powerful form of RCE.
 978 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
 979   if (!RangeCheckElimination) return false;
 980 
 981   CountedLoopNode *cl = _head->as_CountedLoop();
 982   // If we unrolled with no intention of doing RCE and we later
 983   // changed our minds, we got no pre-loop.  Either we need to
 984   // make a new pre-loop, or we gotta disallow RCE.
 985   if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
 986   Node *trip_counter = cl->phi();
 987 
 988   // Check loop body for tests of trip-counter plus loop-invariant vs
 989   // loop-invariant.
 990   for (uint i = 0; i < _body.size(); i++) {
 991     Node *iff = _body[i];
 992     if (iff->Opcode() == Op_If) { // Test?
 993 
 994       // Comparing trip+off vs limit
 995       Node *bol = iff->in(1);
 996       if (bol->req() != 2) continue; // dead constant test
 997       if (!bol->is_Bool()) {
 998         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
 999         continue;
1000       }
1001       if (bol->as_Bool()->_test._test == BoolTest::ne)
1002         continue; // not RC
1003 
1004       Node *cmp = bol->in(1);
1005       Node *rc_exp = cmp->in(1);
1006       Node *limit = cmp->in(2);
1007 
1008       Node *limit_c = phase->get_ctrl(limit);
1009       if( limit_c == phase->C->top() )
1010         return false;           // Found dead test on live IF?  No RCE!
1011       if( is_member(phase->get_loop(limit_c) ) ) {
1012         // Compare might have operands swapped; commute them
1013         rc_exp = cmp->in(2);
1014         limit  = cmp->in(1);
1015         limit_c = phase->get_ctrl(limit);
1016         if( is_member(phase->get_loop(limit_c) ) )
1017           continue;             // Both inputs are loop varying; cannot RCE
1018       }
1019 
1020       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
1021         continue;
1022       }
1023       // Yeah!  Found a test like 'trip+off vs limit'
1024       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
1025       // we need loop unswitching instead of iteration splitting.
1026       if( is_loop_exit(iff) )
1027         return true;            // Found reason to split iterations
1028     } // End of is IF
1029   }
1030 
1031   return false;
1032 }
1033 
1034 //------------------------------policy_peel_only-------------------------------
1035 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
1036 // for unrolling loops with NO array accesses.
1037 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
1038 
1039   for( uint i = 0; i < _body.size(); i++ )
1040     if( _body[i]->is_Mem() )
1041       return false;
1042 
1043   // No memory accesses at all!
1044   return true;
1045 }
1046 
1047 //------------------------------clone_up_backedge_goo--------------------------
1048 // If Node n lives in the back_ctrl block and cannot float, we clone a private
1049 // version of n in preheader_ctrl block and return that, otherwise return n.
1050 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
1051   if( get_ctrl(n) != back_ctrl ) return n;
1052 
1053   // Only visit once
1054   if (visited.test_set(n->_idx)) {
1055     Node *x = clones.find(n->_idx);
1056     if (x != NULL)
1057       return x;
1058     return n;
1059   }
1060 
1061   Node *x = NULL;               // If required, a clone of 'n'
1062   // Check for 'n' being pinned in the backedge.
1063   if( n->in(0) && n->in(0) == back_ctrl ) {
1064     assert(clones.find(n->_idx) == NULL, "dead loop");
1065     x = n->clone();             // Clone a copy of 'n' to preheader
1066     clones.push(x, n->_idx);
1067     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
1068   }
1069 
1070   // Recursive fixup any other input edges into x.
1071   // If there are no changes we can just return 'n', otherwise
1072   // we need to clone a private copy and change it.
1073   for( uint i = 1; i < n->req(); i++ ) {
1074     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
1075     if( g != n->in(i) ) {
1076       if( !x ) {
1077         assert(clones.find(n->_idx) == NULL, "dead loop");
1078         x = n->clone();
1079         clones.push(x, n->_idx);
1080       }
1081       x->set_req(i, g);
1082     }
1083   }
1084   if( x ) {                     // x can legally float to pre-header location
1085     register_new_node( x, preheader_ctrl );
1086     return x;
1087   } else {                      // raise n to cover LCA of uses
1088     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
1089   }
1090   return n;
1091 }
1092 
1093 bool PhaseIdealLoop::cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop) {
1094   Node* castii = new CastIINode(incr, TypeInt::INT, true);
1095   castii->set_req(0, ctrl);
1096   register_new_node(castii, ctrl);
1097   for (DUIterator_Fast imax, i = incr->fast_outs(imax); i < imax; i++) {
1098     Node* n = incr->fast_out(i);
1099     if (n->is_Phi() && n->in(0) == loop) {
1100       int nrep = n->replace_edge(incr, castii);
1101       return true;
1102     }
1103   }
1104   return false;
1105 }
1106 
1107 //------------------------------insert_pre_post_loops--------------------------
1108 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
1109 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
1110 // alignment.  Useful to unroll loops that do no array accesses.
1111 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
1112 
1113 #ifndef PRODUCT
1114   if (TraceLoopOpts) {
1115     if (peel_only)
1116       tty->print("PeelMainPost ");
1117     else
1118       tty->print("PreMainPost  ");
1119     loop->dump_head();
1120   }
1121 #endif
1122   C->set_major_progress();
1123 
1124   // Find common pieces of the loop being guarded with pre & post loops
1125   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
1126   assert( main_head->is_normal_loop(), "" );
1127   CountedLoopEndNode *main_end = main_head->loopexit();
1128   guarantee(main_end != NULL, "no loop exit node");
1129   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
1130   uint dd_main_head = dom_depth(main_head);
1131   uint max = main_head->outcnt();
1132 
1133   Node *pre_header= main_head->in(LoopNode::EntryControl);
1134   Node *init      = main_head->init_trip();
1135   Node *incr      = main_end ->incr();
1136   Node *limit     = main_end ->limit();
1137   Node *stride    = main_end ->stride();
1138   Node *cmp       = main_end ->cmp_node();
1139   BoolTest::mask b_test = main_end->test_trip();
1140 
1141   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
1142   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
1143   if( bol->outcnt() != 1 ) {
1144     bol = bol->clone();
1145     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
1146     _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, bol);
1147   }
1148   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
1149   if( cmp->outcnt() != 1 ) {
1150     cmp = cmp->clone();
1151     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
1152     _igvn.replace_input_of(bol, 1, cmp);
1153   }
1154 
1155   //------------------------------
1156   // Step A: Create Post-Loop.
1157   Node* main_exit = main_end->proj_out(false);
1158   assert( main_exit->Opcode() == Op_IfFalse, "" );
1159   int dd_main_exit = dom_depth(main_exit);
1160 
1161   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
1162   // loop pre-header illegally has 2 control users (old & new loops).
1163   clone_loop( loop, old_new, dd_main_exit );
1164   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
1165   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
1166   post_head->set_post_loop(main_head);
1167 
1168   // Reduce the post-loop trip count.
1169   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
1170   post_end->_prob = PROB_FAIR;
1171 
1172   // Build the main-loop normal exit.
1173   IfFalseNode *new_main_exit = new IfFalseNode(main_end);
1174   _igvn.register_new_node_with_optimizer( new_main_exit );
1175   set_idom(new_main_exit, main_end, dd_main_exit );
1176   set_loop(new_main_exit, loop->_parent);
1177 
1178   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
1179   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
1180   // (the main-loop trip-counter exit value) because we will be changing
1181   // the exit value (via unrolling) so we cannot constant-fold away the zero
1182   // trip guard until all unrolling is done.
1183   Node *zer_opaq = new Opaque1Node(C, incr);
1184   Node *zer_cmp  = new CmpINode( zer_opaq, limit );
1185   Node *zer_bol  = new BoolNode( zer_cmp, b_test );
1186   register_new_node( zer_opaq, new_main_exit );
1187   register_new_node( zer_cmp , new_main_exit );
1188   register_new_node( zer_bol , new_main_exit );
1189 
1190   // Build the IfNode
1191   IfNode *zer_iff = new IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
1192   _igvn.register_new_node_with_optimizer( zer_iff );
1193   set_idom(zer_iff, new_main_exit, dd_main_exit);
1194   set_loop(zer_iff, loop->_parent);
1195 
1196   // Plug in the false-path, taken if we need to skip post-loop
1197   _igvn.replace_input_of(main_exit, 0, zer_iff);
1198   set_idom(main_exit, zer_iff, dd_main_exit);
1199   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
1200   // Make the true-path, must enter the post loop
1201   Node *zer_taken = new IfTrueNode( zer_iff );
1202   _igvn.register_new_node_with_optimizer( zer_taken );
1203   set_idom(zer_taken, zer_iff, dd_main_exit);
1204   set_loop(zer_taken, loop->_parent);
1205   // Plug in the true path
1206   _igvn.hash_delete( post_head );
1207   post_head->set_req(LoopNode::EntryControl, zer_taken);
1208   set_idom(post_head, zer_taken, dd_main_exit);
1209 
1210   Arena *a = Thread::current()->resource_area();
1211   VectorSet visited(a);
1212   Node_Stack clones(a, main_head->back_control()->outcnt());
1213   // Step A3: Make the fall-in values to the post-loop come from the
1214   // fall-out values of the main-loop.
1215   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
1216     Node* main_phi = main_head->fast_out(i);
1217     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
1218       Node *post_phi = old_new[main_phi->_idx];
1219       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
1220                                               post_head->init_control(),
1221                                               main_phi->in(LoopNode::LoopBackControl),
1222                                               visited, clones);
1223       _igvn.hash_delete(post_phi);
1224       post_phi->set_req( LoopNode::EntryControl, fallmain );
1225     }
1226   }
1227 
1228   // Update local caches for next stanza
1229   main_exit = new_main_exit;
1230 
1231 
1232   //------------------------------
1233   // Step B: Create Pre-Loop.
1234 
1235   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
1236   // loop pre-header illegally has 2 control users (old & new loops).
1237   clone_loop( loop, old_new, dd_main_head );
1238   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
1239   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
1240   pre_head->set_pre_loop(main_head);
1241   Node *pre_incr = old_new[incr->_idx];
1242 
1243   // Reduce the pre-loop trip count.
1244   pre_end->_prob = PROB_FAIR;
1245 
1246   // Find the pre-loop normal exit.
1247   Node* pre_exit = pre_end->proj_out(false);
1248   assert( pre_exit->Opcode() == Op_IfFalse, "" );
1249   IfFalseNode *new_pre_exit = new IfFalseNode(pre_end);
1250   _igvn.register_new_node_with_optimizer( new_pre_exit );
1251   set_idom(new_pre_exit, pre_end, dd_main_head);
1252   set_loop(new_pre_exit, loop->_parent);
1253 
1254   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
1255   // pre-loop, the main-loop may not execute at all.  Later in life this
1256   // zero-trip guard will become the minimum-trip guard when we unroll
1257   // the main-loop.
1258   Node *min_opaq = new Opaque1Node(C, limit);
1259   Node *min_cmp  = new CmpINode( pre_incr, min_opaq );
1260   Node *min_bol  = new BoolNode( min_cmp, b_test );
1261   register_new_node( min_opaq, new_pre_exit );
1262   register_new_node( min_cmp , new_pre_exit );
1263   register_new_node( min_bol , new_pre_exit );
1264 
1265   // Build the IfNode (assume the main-loop is executed always).
1266   IfNode *min_iff = new IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
1267   _igvn.register_new_node_with_optimizer( min_iff );
1268   set_idom(min_iff, new_pre_exit, dd_main_head);
1269   set_loop(min_iff, loop->_parent);
1270 
1271   // Plug in the false-path, taken if we need to skip main-loop
1272   _igvn.hash_delete( pre_exit );
1273   pre_exit->set_req(0, min_iff);
1274   set_idom(pre_exit, min_iff, dd_main_head);
1275   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
1276   // Make the true-path, must enter the main loop
1277   Node *min_taken = new IfTrueNode( min_iff );
1278   _igvn.register_new_node_with_optimizer( min_taken );
1279   set_idom(min_taken, min_iff, dd_main_head);
1280   set_loop(min_taken, loop->_parent);
1281   // Plug in the true path
1282   _igvn.hash_delete( main_head );
1283   main_head->set_req(LoopNode::EntryControl, min_taken);
1284   set_idom(main_head, min_taken, dd_main_head);
1285 
1286   visited.Clear();
1287   clones.clear();
1288   // Step B3: Make the fall-in values to the main-loop come from the
1289   // fall-out values of the pre-loop.
1290   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
1291     Node* main_phi = main_head->fast_out(i2);
1292     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
1293       Node *pre_phi = old_new[main_phi->_idx];
1294       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
1295                                              main_head->init_control(),
1296                                              pre_phi->in(LoopNode::LoopBackControl),
1297                                              visited, clones);
1298       _igvn.hash_delete(main_phi);
1299       main_phi->set_req( LoopNode::EntryControl, fallpre );
1300     }
1301   }
1302 
1303   // Nodes inside the loop may be control dependent on a predicate
1304   // that was moved before the preloop. If the back branch of the main
1305   // or post loops becomes dead, those nodes won't be dependent on the
1306   // test that guards that loop nest anymore which could lead to an
1307   // incorrect array access because it executes independently of the
1308   // test that was guarding the loop nest. We add a special CastII on
1309   // the if branch that enters the loop, between the input induction
1310   // variable value and the induction variable Phi to preserve correct
1311   // dependencies.
1312 
1313   // CastII for the post loop:
1314   bool inserted = cast_incr_before_loop(zer_opaq->in(1), zer_taken, post_head);
1315   assert(inserted, "no castII inserted");
1316 
1317   // CastII for the main loop:
1318   inserted = cast_incr_before_loop(pre_incr, min_taken, main_head);
1319   assert(inserted, "no castII inserted");
1320 
1321   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
1322   // RCE and alignment may change this later.
1323   Node *cmp_end = pre_end->cmp_node();
1324   assert( cmp_end->in(2) == limit, "" );
1325   Node *pre_limit = new AddINode( init, stride );
1326 
1327   // Save the original loop limit in this Opaque1 node for
1328   // use by range check elimination.
1329   Node *pre_opaq  = new Opaque1Node(C, pre_limit, limit);
1330 
1331   register_new_node( pre_limit, pre_head->in(0) );
1332   register_new_node( pre_opaq , pre_head->in(0) );
1333 
1334   // Since no other users of pre-loop compare, I can hack limit directly
1335   assert( cmp_end->outcnt() == 1, "no other users" );
1336   _igvn.hash_delete(cmp_end);
1337   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
1338 
1339   // Special case for not-equal loop bounds:
1340   // Change pre loop test, main loop test, and the
1341   // main loop guard test to use lt or gt depending on stride
1342   // direction:
1343   // positive stride use <
1344   // negative stride use >
1345   //
1346   // not-equal test is kept for post loop to handle case
1347   // when init > limit when stride > 0 (and reverse).
1348 
1349   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
1350 
1351     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
1352     // Modify pre loop end condition
1353     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1354     BoolNode* new_bol0 = new BoolNode(pre_bol->in(1), new_test);
1355     register_new_node( new_bol0, pre_head->in(0) );
1356     _igvn.replace_input_of(pre_end, CountedLoopEndNode::TestValue, new_bol0);
1357     // Modify main loop guard condition
1358     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
1359     BoolNode* new_bol1 = new BoolNode(min_bol->in(1), new_test);
1360     register_new_node( new_bol1, new_pre_exit );
1361     _igvn.hash_delete(min_iff);
1362     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
1363     // Modify main loop end condition
1364     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1365     BoolNode* new_bol2 = new BoolNode(main_bol->in(1), new_test);
1366     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
1367     _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, new_bol2);
1368   }
1369 
1370   // Flag main loop
1371   main_head->set_main_loop();
1372   if( peel_only ) main_head->set_main_no_pre_loop();
1373 
1374   // Subtract a trip count for the pre-loop.
1375   main_head->set_trip_count(main_head->trip_count() - 1);
1376 
1377   // It's difficult to be precise about the trip-counts
1378   // for the pre/post loops.  They are usually very short,
1379   // so guess that 4 trips is a reasonable value.
1380   post_head->set_profile_trip_cnt(4.0);
1381   pre_head->set_profile_trip_cnt(4.0);
1382 
1383   // Now force out all loop-invariant dominating tests.  The optimizer
1384   // finds some, but we _know_ they are all useless.
1385   peeled_dom_test_elim(loop,old_new);
1386   loop->record_for_igvn();
1387 }
1388 
1389 //------------------------------is_invariant-----------------------------
1390 // Return true if n is invariant
1391 bool IdealLoopTree::is_invariant(Node* n) const {
1392   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
1393   if (n_c->is_top()) return false;
1394   return !is_member(_phase->get_loop(n_c));
1395 }
1396 
1397 
1398 //------------------------------do_unroll--------------------------------------
1399 // Unroll the loop body one step - make each trip do 2 iterations.
1400 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
1401   assert(LoopUnrollLimit, "");
1402   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
1403   CountedLoopEndNode *loop_end = loop_head->loopexit();
1404   assert(loop_end, "");
1405 #ifndef PRODUCT
1406   if (PrintOpto && VerifyLoopOptimizations) {
1407     tty->print("Unrolling ");
1408     loop->dump_head();
1409   } else if (TraceLoopOpts) {
1410     if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
1411       tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
1412     } else {
1413       tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
1414     }
1415     loop->dump_head();
1416   }
1417 #endif
1418 
1419   // Remember loop node count before unrolling to detect
1420   // if rounds of unroll,optimize are making progress
1421   loop_head->set_node_count_before_unroll(loop->_body.size());
1422 
1423   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
1424   Node *limit = loop_head->limit();
1425   Node *init  = loop_head->init_trip();
1426   Node *stride = loop_head->stride();
1427 
1428   Node *opaq = NULL;
1429   if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
1430     // Search for zero-trip guard.
1431     assert( loop_head->is_main_loop(), "" );
1432     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
1433     Node *iff = ctrl->in(0);
1434     assert( iff->Opcode() == Op_If, "" );
1435     Node *bol = iff->in(1);
1436     assert( bol->Opcode() == Op_Bool, "" );
1437     Node *cmp = bol->in(1);
1438     assert( cmp->Opcode() == Op_CmpI, "" );
1439     opaq = cmp->in(2);
1440     // Occasionally it's possible for a zero-trip guard Opaque1 node to be
1441     // optimized away and then another round of loop opts attempted.
1442     // We can not optimize this particular loop in that case.
1443     if (opaq->Opcode() != Op_Opaque1)
1444       return; // Cannot find zero-trip guard!  Bail out!
1445     // Zero-trip test uses an 'opaque' node which is not shared.
1446     assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
1447   }
1448 
1449   C->set_major_progress();
1450 
1451   Node* new_limit = NULL;
1452   if (UnrollLimitCheck) {
1453     int stride_con = stride->get_int();
1454     int stride_p = (stride_con > 0) ? stride_con : -stride_con;
1455     uint old_trip_count = loop_head->trip_count();
1456     // Verify that unroll policy result is still valid.
1457     assert(old_trip_count > 1 &&
1458            (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
1459 
1460     // Adjust loop limit to keep valid iterations number after unroll.
1461     // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
1462     // which may overflow.
1463     if (!adjust_min_trip) {
1464       assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
1465              "odd trip count for maximally unroll");
1466       // Don't need to adjust limit for maximally unroll since trip count is even.
1467     } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
1468       // Loop's limit is constant. Loop's init could be constant when pre-loop
1469       // become peeled iteration.
1470       jlong init_con = init->get_int();
1471       // We can keep old loop limit if iterations count stays the same:
1472       //   old_trip_count == new_trip_count * 2
1473       // Note: since old_trip_count >= 2 then new_trip_count >= 1
1474       // so we also don't need to adjust zero trip test.
1475       jlong limit_con  = limit->get_int();
1476       // (stride_con*2) not overflow since stride_con <= 8.
1477       int new_stride_con = stride_con * 2;
1478       int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
1479       jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con;
1480       // New trip count should satisfy next conditions.
1481       assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
1482       uint new_trip_count = (uint)trip_count;
1483       adjust_min_trip = (old_trip_count != new_trip_count*2);
1484     }
1485 
1486     if (adjust_min_trip) {
1487       // Step 2: Adjust the trip limit if it is called for.
1488       // The adjustment amount is -stride. Need to make sure if the
1489       // adjustment underflows or overflows, then the main loop is skipped.
1490       Node* cmp = loop_end->cmp_node();
1491       assert(cmp->in(2) == limit, "sanity");
1492       assert(opaq != NULL && opaq->in(1) == limit, "sanity");
1493 
1494       // Verify that policy_unroll result is still valid.
1495       const TypeInt* limit_type = _igvn.type(limit)->is_int();
1496       assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
1497              stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
1498 
1499       if (limit->is_Con()) {
1500         // The check in policy_unroll and the assert above guarantee
1501         // no underflow if limit is constant.
1502         new_limit = _igvn.intcon(limit->get_int() - stride_con);
1503         set_ctrl(new_limit, C->root());
1504       } else {
1505         // Limit is not constant.
1506         if (loop_head->unrolled_count() == 1) { // only for first unroll
1507           // Separate limit by Opaque node in case it is an incremented
1508           // variable from previous loop to avoid using pre-incremented
1509           // value which could increase register pressure.
1510           // Otherwise reorg_offsets() optimization will create a separate
1511           // Opaque node for each use of trip-counter and as result
1512           // zero trip guard limit will be different from loop limit.
1513           assert(has_ctrl(opaq), "should have it");
1514           Node* opaq_ctrl = get_ctrl(opaq);
1515           limit = new Opaque2Node( C, limit );
1516           register_new_node( limit, opaq_ctrl );
1517         }
1518         if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
1519                    stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
1520           // No underflow.
1521           new_limit = new SubINode(limit, stride);
1522         } else {
1523           // (limit - stride) may underflow.
1524           // Clamp the adjustment value with MININT or MAXINT:
1525           //
1526           //   new_limit = limit-stride
1527           //   if (stride > 0)
1528           //     new_limit = (limit < new_limit) ? MININT : new_limit;
1529           //   else
1530           //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
1531           //
1532           BoolTest::mask bt = loop_end->test_trip();
1533           assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
1534           Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
1535           set_ctrl(adj_max, C->root());
1536           Node* old_limit = NULL;
1537           Node* adj_limit = NULL;
1538           Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
1539           if (loop_head->unrolled_count() > 1 &&
1540               limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
1541               limit->in(CMoveNode::IfTrue) == adj_max &&
1542               bol->as_Bool()->_test._test == bt &&
1543               bol->in(1)->Opcode() == Op_CmpI &&
1544               bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
1545             // Loop was unrolled before.
1546             // Optimize the limit to avoid nested CMove:
1547             // use original limit as old limit.
1548             old_limit = bol->in(1)->in(1);
1549             // Adjust previous adjusted limit.
1550             adj_limit = limit->in(CMoveNode::IfFalse);
1551             adj_limit = new SubINode(adj_limit, stride);
1552           } else {
1553             old_limit = limit;
1554             adj_limit = new SubINode(limit, stride);
1555           }
1556           assert(old_limit != NULL && adj_limit != NULL, "");
1557           register_new_node( adj_limit, ctrl ); // adjust amount
1558           Node* adj_cmp = new CmpINode(old_limit, adj_limit);
1559           register_new_node( adj_cmp, ctrl );
1560           Node* adj_bool = new BoolNode(adj_cmp, bt);
1561           register_new_node( adj_bool, ctrl );
1562           new_limit = new CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
1563         }
1564         register_new_node(new_limit, ctrl);
1565       }
1566       assert(new_limit != NULL, "");
1567       // Replace in loop test.
1568       assert(loop_end->in(1)->in(1) == cmp, "sanity");
1569       if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
1570         // Don't need to create new test since only one user.
1571         _igvn.hash_delete(cmp);
1572         cmp->set_req(2, new_limit);
1573       } else {
1574         // Create new test since it is shared.
1575         Node* ctrl2 = loop_end->in(0);
1576         Node* cmp2  = cmp->clone();
1577         cmp2->set_req(2, new_limit);
1578         register_new_node(cmp2, ctrl2);
1579         Node* bol2 = loop_end->in(1)->clone();
1580         bol2->set_req(1, cmp2);
1581         register_new_node(bol2, ctrl2);
1582         _igvn.replace_input_of(loop_end, 1, bol2);
1583       }
1584       // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1585       // Make it a 1-trip test (means at least 2 trips).
1586 
1587       // Guard test uses an 'opaque' node which is not shared.  Hence I
1588       // can edit it's inputs directly.  Hammer in the new limit for the
1589       // minimum-trip guard.
1590       assert(opaq->outcnt() == 1, "");
1591       _igvn.replace_input_of(opaq, 1, new_limit);
1592     }
1593 
1594     // Adjust max trip count. The trip count is intentionally rounded
1595     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1596     // the main, unrolled, part of the loop will never execute as it is protected
1597     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1598     // and later determined that part of the unrolled loop was dead.
1599     loop_head->set_trip_count(old_trip_count / 2);
1600 
1601     // Double the count of original iterations in the unrolled loop body.
1602     loop_head->double_unrolled_count();
1603 
1604   } else { // LoopLimitCheck
1605 
1606     // Adjust max trip count. The trip count is intentionally rounded
1607     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1608     // the main, unrolled, part of the loop will never execute as it is protected
1609     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1610     // and later determined that part of the unrolled loop was dead.
1611     loop_head->set_trip_count(loop_head->trip_count() / 2);
1612 
1613     // Double the count of original iterations in the unrolled loop body.
1614     loop_head->double_unrolled_count();
1615 
1616     // -----------
1617     // Step 2: Cut back the trip counter for an unroll amount of 2.
1618     // Loop will normally trip (limit - init)/stride_con.  Since it's a
1619     // CountedLoop this is exact (stride divides limit-init exactly).
1620     // We are going to double the loop body, so we want to knock off any
1621     // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
1622     Node *span = new SubINode( limit, init );
1623     register_new_node( span, ctrl );
1624     Node *trip = new DivINode( 0, span, stride );
1625     register_new_node( trip, ctrl );
1626     Node *mtwo = _igvn.intcon(-2);
1627     set_ctrl(mtwo, C->root());
1628     Node *rond = new AndINode( trip, mtwo );
1629     register_new_node( rond, ctrl );
1630     Node *spn2 = new MulINode( rond, stride );
1631     register_new_node( spn2, ctrl );
1632     new_limit = new AddINode( spn2, init );
1633     register_new_node( new_limit, ctrl );
1634 
1635     // Hammer in the new limit
1636     Node *ctrl2 = loop_end->in(0);
1637     Node *cmp2 = new CmpINode( loop_head->incr(), new_limit );
1638     register_new_node( cmp2, ctrl2 );
1639     Node *bol2 = new BoolNode( cmp2, loop_end->test_trip() );
1640     register_new_node( bol2, ctrl2 );
1641     _igvn.replace_input_of(loop_end, CountedLoopEndNode::TestValue, bol2);
1642 
1643     // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1644     // Make it a 1-trip test (means at least 2 trips).
1645     if( adjust_min_trip ) {
1646       assert( new_limit != NULL, "" );
1647       // Guard test uses an 'opaque' node which is not shared.  Hence I
1648       // can edit it's inputs directly.  Hammer in the new limit for the
1649       // minimum-trip guard.
1650       assert( opaq->outcnt() == 1, "" );
1651       _igvn.hash_delete(opaq);
1652       opaq->set_req(1, new_limit);
1653     }
1654   } // LoopLimitCheck
1655 
1656   // ---------
1657   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
1658   // represents the odd iterations; since the loop trips an even number of
1659   // times its backedge is never taken.  Kill the backedge.
1660   uint dd = dom_depth(loop_head);
1661   clone_loop( loop, old_new, dd );
1662 
1663   // Make backedges of the clone equal to backedges of the original.
1664   // Make the fall-in from the original come from the fall-out of the clone.
1665   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
1666     Node* phi = loop_head->fast_out(j);
1667     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
1668       Node *newphi = old_new[phi->_idx];
1669       _igvn.hash_delete( phi );
1670       _igvn.hash_delete( newphi );
1671 
1672       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
1673       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
1674       phi   ->set_req(LoopNode::LoopBackControl, C->top());
1675     }
1676   }
1677   Node *clone_head = old_new[loop_head->_idx];
1678   _igvn.hash_delete( clone_head );
1679   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
1680   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
1681   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
1682   loop->_head = clone_head;     // New loop header
1683 
1684   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
1685   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
1686 
1687   // Kill the clone's backedge
1688   Node *newcle = old_new[loop_end->_idx];
1689   _igvn.hash_delete( newcle );
1690   Node *one = _igvn.intcon(1);
1691   set_ctrl(one, C->root());
1692   newcle->set_req(1, one);
1693   // Force clone into same loop body
1694   uint max = loop->_body.size();
1695   for( uint k = 0; k < max; k++ ) {
1696     Node *old = loop->_body.at(k);
1697     Node *nnn = old_new[old->_idx];
1698     loop->_body.push(nnn);
1699     if (!has_ctrl(old))
1700       set_loop(nnn, loop);
1701   }
1702 
1703   loop->record_for_igvn();
1704 }
1705 
1706 //------------------------------do_maximally_unroll----------------------------
1707 
1708 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
1709   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1710   assert(cl->has_exact_trip_count(), "trip count is not exact");
1711   assert(cl->trip_count() > 0, "");
1712 #ifndef PRODUCT
1713   if (TraceLoopOpts) {
1714     tty->print("MaxUnroll  %d ", cl->trip_count());
1715     loop->dump_head();
1716   }
1717 #endif
1718 
1719   // If loop is tripping an odd number of times, peel odd iteration
1720   if ((cl->trip_count() & 1) == 1) {
1721     do_peeling(loop, old_new);
1722   }
1723 
1724   // Now its tripping an even number of times remaining.  Double loop body.
1725   // Do not adjust pre-guards; they are not needed and do not exist.
1726   if (cl->trip_count() > 0) {
1727     assert((cl->trip_count() & 1) == 0, "missed peeling");
1728     do_unroll(loop, old_new, false);
1729   }
1730 }
1731 
1732 void PhaseIdealLoop::mark_reductions(IdealLoopTree *loop) {
1733   if (SuperWordReductions == false) return;
1734 
1735   CountedLoopNode* loop_head = loop->_head->as_CountedLoop();
1736   if (loop_head->unrolled_count() > 1) {
1737     return;
1738   }
1739 
1740   Node* trip_phi = loop_head->phi();
1741   for (DUIterator_Fast imax, i = loop_head->fast_outs(imax); i < imax; i++) {
1742     Node* phi = loop_head->fast_out(i);
1743     if (phi->is_Phi() && phi->outcnt() > 0 && phi != trip_phi) {
1744       // For definitions which are loop inclusive and not tripcounts.
1745       Node* def_node = phi->in(LoopNode::LoopBackControl);
1746 
1747       if (def_node != NULL) {
1748         Node* n_ctrl = get_ctrl(def_node);
1749         if (n_ctrl != NULL && loop->is_member(get_loop(n_ctrl))) {
1750           // Now test it to see if it fits the standard pattern for a reduction operator.
1751           int opc = def_node->Opcode();
1752           if (opc != ReductionNode::opcode(opc, def_node->bottom_type()->basic_type())) {
1753             if (!def_node->is_reduction()) { // Not marked yet
1754               // To be a reduction, the arithmetic node must have the phi as input and provide a def to it
1755               for (unsigned j = 1; j < def_node->req(); j++) {
1756                 Node* in = def_node->in(j);
1757                 if (in == phi) {
1758                   loop_head->mark_has_reductions();
1759                   def_node->add_flag(Node::Flag_is_reduction);
1760                   break;
1761                 }
1762               }
1763             }
1764           }
1765         }
1766       }
1767     }
1768   }
1769 }
1770 
1771 //------------------------------dominates_backedge---------------------------------
1772 // Returns true if ctrl is executed on every complete iteration
1773 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
1774   assert(ctrl->is_CFG(), "must be control");
1775   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
1776   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
1777 }
1778 
1779 //------------------------------adjust_limit-----------------------------------
1780 // Helper function for add_constraint().
1781 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
1782   // Compute "I :: (limit-offset)/scale"
1783   Node *con = new SubINode(rc_limit, offset);
1784   register_new_node(con, pre_ctrl);
1785   Node *X = new DivINode(0, con, scale);
1786   register_new_node(X, pre_ctrl);
1787 
1788   // Adjust loop limit
1789   loop_limit = (stride_con > 0)
1790                ? (Node*)(new MinINode(loop_limit, X))
1791                : (Node*)(new MaxINode(loop_limit, X));
1792   register_new_node(loop_limit, pre_ctrl);
1793   return loop_limit;
1794 }
1795 
1796 //------------------------------add_constraint---------------------------------
1797 // Constrain the main loop iterations so the conditions:
1798 //    low_limit <= scale_con * I + offset  <  upper_limit
1799 // always holds true.  That is, either increase the number of iterations in
1800 // the pre-loop or the post-loop until the condition holds true in the main
1801 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
1802 // stride and scale are constants (offset and limit often are).
1803 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
1804   // For positive stride, the pre-loop limit always uses a MAX function
1805   // and the main loop a MIN function.  For negative stride these are
1806   // reversed.
1807 
1808   // Also for positive stride*scale the affine function is increasing, so the
1809   // pre-loop must check for underflow and the post-loop for overflow.
1810   // Negative stride*scale reverses this; pre-loop checks for overflow and
1811   // post-loop for underflow.
1812 
1813   Node *scale = _igvn.intcon(scale_con);
1814   set_ctrl(scale, C->root());
1815 
1816   if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
1817     // The overflow limit: scale*I+offset < upper_limit
1818     // For main-loop compute
1819     //   ( if (scale > 0) /* and stride > 0 */
1820     //       I < (upper_limit-offset)/scale
1821     //     else /* scale < 0 and stride < 0 */
1822     //       I > (upper_limit-offset)/scale
1823     //   )
1824     //
1825     // (upper_limit-offset) may overflow or underflow.
1826     // But it is fine since main loop will either have
1827     // less iterations or will be skipped in such case.
1828     *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
1829 
1830     // The underflow limit: low_limit <= scale*I+offset.
1831     // For pre-loop compute
1832     //   NOT(scale*I+offset >= low_limit)
1833     //   scale*I+offset < low_limit
1834     //   ( if (scale > 0) /* and stride > 0 */
1835     //       I < (low_limit-offset)/scale
1836     //     else /* scale < 0 and stride < 0 */
1837     //       I > (low_limit-offset)/scale
1838     //   )
1839 
1840     if (low_limit->get_int() == -max_jint) {
1841       if (!RangeLimitCheck) return;
1842       // We need this guard when scale*pre_limit+offset >= limit
1843       // due to underflow. So we need execute pre-loop until
1844       // scale*I+offset >= min_int. But (min_int-offset) will
1845       // underflow when offset > 0 and X will be > original_limit
1846       // when stride > 0. To avoid it we replace positive offset with 0.
1847       //
1848       // Also (min_int+1 == -max_int) is used instead of min_int here
1849       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1850       Node* shift = _igvn.intcon(31);
1851       set_ctrl(shift, C->root());
1852       Node* sign = new RShiftINode(offset, shift);
1853       register_new_node(sign, pre_ctrl);
1854       offset = new AndINode(offset, sign);
1855       register_new_node(offset, pre_ctrl);
1856     } else {
1857       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1858       // The only problem we have here when offset == min_int
1859       // since (0-min_int) == min_int. It may be fine for stride > 0
1860       // but for stride < 0 X will be < original_limit. To avoid it
1861       // max(pre_limit, original_limit) is used in do_range_check().
1862     }
1863     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1864     *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
1865 
1866   } else { // stride_con*scale_con < 0
1867     // For negative stride*scale pre-loop checks for overflow and
1868     // post-loop for underflow.
1869     //
1870     // The overflow limit: scale*I+offset < upper_limit
1871     // For pre-loop compute
1872     //   NOT(scale*I+offset < upper_limit)
1873     //   scale*I+offset >= upper_limit
1874     //   scale*I+offset+1 > upper_limit
1875     //   ( if (scale < 0) /* and stride > 0 */
1876     //       I < (upper_limit-(offset+1))/scale
1877     //     else /* scale > 0 and stride < 0 */
1878     //       I > (upper_limit-(offset+1))/scale
1879     //   )
1880     //
1881     // (upper_limit-offset-1) may underflow or overflow.
1882     // To avoid it min(pre_limit, original_limit) is used
1883     // in do_range_check() for stride > 0 and max() for < 0.
1884     Node *one  = _igvn.intcon(1);
1885     set_ctrl(one, C->root());
1886 
1887     Node *plus_one = new AddINode(offset, one);
1888     register_new_node( plus_one, pre_ctrl );
1889     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1890     *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
1891 
1892     if (low_limit->get_int() == -max_jint) {
1893       if (!RangeLimitCheck) return;
1894       // We need this guard when scale*main_limit+offset >= limit
1895       // due to underflow. So we need execute main-loop while
1896       // scale*I+offset+1 > min_int. But (min_int-offset-1) will
1897       // underflow when (offset+1) > 0 and X will be < main_limit
1898       // when scale < 0 (and stride > 0). To avoid it we replace
1899       // positive (offset+1) with 0.
1900       //
1901       // Also (min_int+1 == -max_int) is used instead of min_int here
1902       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1903       Node* shift = _igvn.intcon(31);
1904       set_ctrl(shift, C->root());
1905       Node* sign = new RShiftINode(plus_one, shift);
1906       register_new_node(sign, pre_ctrl);
1907       plus_one = new AndINode(plus_one, sign);
1908       register_new_node(plus_one, pre_ctrl);
1909     } else {
1910       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1911       // The only problem we have here when offset == max_int
1912       // since (max_int+1) == min_int and (0-min_int) == min_int.
1913       // But it is fine since main loop will either have
1914       // less iterations or will be skipped in such case.
1915     }
1916     // The underflow limit: low_limit <= scale*I+offset.
1917     // For main-loop compute
1918     //   scale*I+offset+1 > low_limit
1919     //   ( if (scale < 0) /* and stride > 0 */
1920     //       I < (low_limit-(offset+1))/scale
1921     //     else /* scale > 0 and stride < 0 */
1922     //       I > (low_limit-(offset+1))/scale
1923     //   )
1924 
1925     *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
1926   }
1927 }
1928 
1929 
1930 //------------------------------is_scaled_iv---------------------------------
1931 // Return true if exp is a constant times an induction var
1932 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
1933   if (exp == iv) {
1934     if (p_scale != NULL) {
1935       *p_scale = 1;
1936     }
1937     return true;
1938   }
1939   int opc = exp->Opcode();
1940   if (opc == Op_MulI) {
1941     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1942       if (p_scale != NULL) {
1943         *p_scale = exp->in(2)->get_int();
1944       }
1945       return true;
1946     }
1947     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
1948       if (p_scale != NULL) {
1949         *p_scale = exp->in(1)->get_int();
1950       }
1951       return true;
1952     }
1953   } else if (opc == Op_LShiftI) {
1954     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1955       if (p_scale != NULL) {
1956         *p_scale = 1 << exp->in(2)->get_int();
1957       }
1958       return true;
1959     }
1960   }
1961   return false;
1962 }
1963 
1964 //-----------------------------is_scaled_iv_plus_offset------------------------------
1965 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
1966 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
1967   if (is_scaled_iv(exp, iv, p_scale)) {
1968     if (p_offset != NULL) {
1969       Node *zero = _igvn.intcon(0);
1970       set_ctrl(zero, C->root());
1971       *p_offset = zero;
1972     }
1973     return true;
1974   }
1975   int opc = exp->Opcode();
1976   if (opc == Op_AddI) {
1977     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1978       if (p_offset != NULL) {
1979         *p_offset = exp->in(2);
1980       }
1981       return true;
1982     }
1983     if (exp->in(2)->is_Con()) {
1984       Node* offset2 = NULL;
1985       if (depth < 2 &&
1986           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
1987                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
1988         if (p_offset != NULL) {
1989           Node *ctrl_off2 = get_ctrl(offset2);
1990           Node* offset = new AddINode(offset2, exp->in(2));
1991           register_new_node(offset, ctrl_off2);
1992           *p_offset = offset;
1993         }
1994         return true;
1995       }
1996     }
1997   } else if (opc == Op_SubI) {
1998     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1999       if (p_offset != NULL) {
2000         Node *zero = _igvn.intcon(0);
2001         set_ctrl(zero, C->root());
2002         Node *ctrl_off = get_ctrl(exp->in(2));
2003         Node* offset = new SubINode(zero, exp->in(2));
2004         register_new_node(offset, ctrl_off);
2005         *p_offset = offset;
2006       }
2007       return true;
2008     }
2009     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
2010       if (p_offset != NULL) {
2011         *p_scale *= -1;
2012         *p_offset = exp->in(1);
2013       }
2014       return true;
2015     }
2016   }
2017   return false;
2018 }
2019 
2020 //------------------------------do_range_check---------------------------------
2021 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
2022 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
2023 #ifndef PRODUCT
2024   if (PrintOpto && VerifyLoopOptimizations) {
2025     tty->print("Range Check Elimination ");
2026     loop->dump_head();
2027   } else if (TraceLoopOpts) {
2028     tty->print("RangeCheck   ");
2029     loop->dump_head();
2030   }
2031 #endif
2032   assert(RangeCheckElimination, "");
2033   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2034   assert(cl->is_main_loop(), "");
2035 
2036   // protect against stride not being a constant
2037   if (!cl->stride_is_con())
2038     return;
2039 
2040   // Find the trip counter; we are iteration splitting based on it
2041   Node *trip_counter = cl->phi();
2042   // Find the main loop limit; we will trim it's iterations
2043   // to not ever trip end tests
2044   Node *main_limit = cl->limit();
2045 
2046   // Need to find the main-loop zero-trip guard
2047   Node *ctrl  = cl->in(LoopNode::EntryControl);
2048   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
2049   Node *iffm = ctrl->in(0);
2050   assert(iffm->Opcode() == Op_If, "");
2051   Node *bolzm = iffm->in(1);
2052   assert(bolzm->Opcode() == Op_Bool, "");
2053   Node *cmpzm = bolzm->in(1);
2054   assert(cmpzm->is_Cmp(), "");
2055   Node *opqzm = cmpzm->in(2);
2056   // Can not optimize a loop if zero-trip Opaque1 node is optimized
2057   // away and then another round of loop opts attempted.
2058   if (opqzm->Opcode() != Op_Opaque1)
2059     return;
2060   assert(opqzm->in(1) == main_limit, "do not understand situation");
2061 
2062   // Find the pre-loop limit; we will expand it's iterations to
2063   // not ever trip low tests.
2064   Node *p_f = iffm->in(0);
2065   assert(p_f->Opcode() == Op_IfFalse, "");
2066   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
2067   assert(pre_end->loopnode()->is_pre_loop(), "");
2068   Node *pre_opaq1 = pre_end->limit();
2069   // Occasionally it's possible for a pre-loop Opaque1 node to be
2070   // optimized away and then another round of loop opts attempted.
2071   // We can not optimize this particular loop in that case.
2072   if (pre_opaq1->Opcode() != Op_Opaque1)
2073     return;
2074   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
2075   Node *pre_limit = pre_opaq->in(1);
2076 
2077   // Where do we put new limit calculations
2078   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
2079 
2080   // Ensure the original loop limit is available from the
2081   // pre-loop Opaque1 node.
2082   Node *orig_limit = pre_opaq->original_loop_limit();
2083   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
2084     return;
2085 
2086   // Must know if its a count-up or count-down loop
2087 
2088   int stride_con = cl->stride_con();
2089   Node *zero = _igvn.intcon(0);
2090   Node *one  = _igvn.intcon(1);
2091   // Use symmetrical int range [-max_jint,max_jint]
2092   Node *mini = _igvn.intcon(-max_jint);
2093   set_ctrl(zero, C->root());
2094   set_ctrl(one,  C->root());
2095   set_ctrl(mini, C->root());
2096 
2097   // Range checks that do not dominate the loop backedge (ie.
2098   // conditionally executed) can lengthen the pre loop limit beyond
2099   // the original loop limit. To prevent this, the pre limit is
2100   // (for stride > 0) MINed with the original loop limit (MAXed
2101   // stride < 0) when some range_check (rc) is conditionally
2102   // executed.
2103   bool conditional_rc = false;
2104 
2105   // Check loop body for tests of trip-counter plus loop-invariant vs
2106   // loop-invariant.
2107   for( uint i = 0; i < loop->_body.size(); i++ ) {
2108     Node *iff = loop->_body[i];
2109     if( iff->Opcode() == Op_If ) { // Test?
2110 
2111       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
2112       // we need loop unswitching instead of iteration splitting.
2113       Node *exit = loop->is_loop_exit(iff);
2114       if( !exit ) continue;
2115       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
2116 
2117       // Get boolean condition to test
2118       Node *i1 = iff->in(1);
2119       if( !i1->is_Bool() ) continue;
2120       BoolNode *bol = i1->as_Bool();
2121       BoolTest b_test = bol->_test;
2122       // Flip sense of test if exit condition is flipped
2123       if( flip )
2124         b_test = b_test.negate();
2125 
2126       // Get compare
2127       Node *cmp = bol->in(1);
2128 
2129       // Look for trip_counter + offset vs limit
2130       Node *rc_exp = cmp->in(1);
2131       Node *limit  = cmp->in(2);
2132       jint scale_con= 1;        // Assume trip counter not scaled
2133 
2134       Node *limit_c = get_ctrl(limit);
2135       if( loop->is_member(get_loop(limit_c) ) ) {
2136         // Compare might have operands swapped; commute them
2137         b_test = b_test.commute();
2138         rc_exp = cmp->in(2);
2139         limit  = cmp->in(1);
2140         limit_c = get_ctrl(limit);
2141         if( loop->is_member(get_loop(limit_c) ) )
2142           continue;             // Both inputs are loop varying; cannot RCE
2143       }
2144       // Here we know 'limit' is loop invariant
2145 
2146       // 'limit' maybe pinned below the zero trip test (probably from a
2147       // previous round of rce), in which case, it can't be used in the
2148       // zero trip test expression which must occur before the zero test's if.
2149       if( limit_c == ctrl ) {
2150         continue;  // Don't rce this check but continue looking for other candidates.
2151       }
2152 
2153       // Check for scaled induction variable plus an offset
2154       Node *offset = NULL;
2155 
2156       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
2157         continue;
2158       }
2159 
2160       Node *offset_c = get_ctrl(offset);
2161       if( loop->is_member( get_loop(offset_c) ) )
2162         continue;               // Offset is not really loop invariant
2163       // Here we know 'offset' is loop invariant.
2164 
2165       // As above for the 'limit', the 'offset' maybe pinned below the
2166       // zero trip test.
2167       if( offset_c == ctrl ) {
2168         continue; // Don't rce this check but continue looking for other candidates.
2169       }
2170 #ifdef ASSERT
2171       if (TraceRangeLimitCheck) {
2172         tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
2173         bol->dump(2);
2174       }
2175 #endif
2176       // At this point we have the expression as:
2177       //   scale_con * trip_counter + offset :: limit
2178       // where scale_con, offset and limit are loop invariant.  Trip_counter
2179       // monotonically increases by stride_con, a constant.  Both (or either)
2180       // stride_con and scale_con can be negative which will flip about the
2181       // sense of the test.
2182 
2183       // Adjust pre and main loop limits to guard the correct iteration set
2184       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
2185         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
2186           // The underflow and overflow limits: 0 <= scale*I+offset < limit
2187           add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
2188           if (!conditional_rc) {
2189             // (0-offset)/scale could be outside of loop iterations range.
2190             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
2191           }
2192         } else {
2193 #ifndef PRODUCT
2194           if( PrintOpto )
2195             tty->print_cr("missed RCE opportunity");
2196 #endif
2197           continue;             // In release mode, ignore it
2198         }
2199       } else {                  // Otherwise work on normal compares
2200         switch( b_test._test ) {
2201         case BoolTest::gt:
2202           // Fall into GE case
2203         case BoolTest::ge:
2204           // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
2205           scale_con = -scale_con;
2206           offset = new SubINode( zero, offset );
2207           register_new_node( offset, pre_ctrl );
2208           limit  = new SubINode( zero, limit  );
2209           register_new_node( limit, pre_ctrl );
2210           // Fall into LE case
2211         case BoolTest::le:
2212           if (b_test._test != BoolTest::gt) {
2213             // Convert X <= Y to X < Y+1
2214             limit = new AddINode( limit, one );
2215             register_new_node( limit, pre_ctrl );
2216           }
2217           // Fall into LT case
2218         case BoolTest::lt:
2219           // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
2220           // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
2221           // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
2222           add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
2223           if (!conditional_rc) {
2224             // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
2225             // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
2226             // still be outside of loop range.
2227             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
2228           }
2229           break;
2230         default:
2231 #ifndef PRODUCT
2232           if( PrintOpto )
2233             tty->print_cr("missed RCE opportunity");
2234 #endif
2235           continue;             // Unhandled case
2236         }
2237       }
2238 
2239       // Kill the eliminated test
2240       C->set_major_progress();
2241       Node *kill_con = _igvn.intcon( 1-flip );
2242       set_ctrl(kill_con, C->root());
2243       _igvn.replace_input_of(iff, 1, kill_con);
2244       // Find surviving projection
2245       assert(iff->is_If(), "");
2246       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
2247       // Find loads off the surviving projection; remove their control edge
2248       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
2249         Node* cd = dp->fast_out(i); // Control-dependent node
2250         if (cd->is_Load() && cd->depends_only_on_test()) {   // Loads can now float around in the loop
2251           // Allow the load to float around in the loop, or before it
2252           // but NOT before the pre-loop.
2253           _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
2254           --i;
2255           --imax;
2256         }
2257       }
2258 
2259     } // End of is IF
2260 
2261   }
2262 
2263   // Update loop limits
2264   if (conditional_rc) {
2265     pre_limit = (stride_con > 0) ? (Node*)new MinINode(pre_limit, orig_limit)
2266                                  : (Node*)new MaxINode(pre_limit, orig_limit);
2267     register_new_node(pre_limit, pre_ctrl);
2268   }
2269   _igvn.replace_input_of(pre_opaq, 1, pre_limit);
2270 
2271   // Note:: we are making the main loop limit no longer precise;
2272   // need to round up based on stride.
2273   cl->set_nonexact_trip_count();
2274   if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
2275     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
2276     // Hopefully, compiler will optimize for powers of 2.
2277     Node *ctrl = get_ctrl(main_limit);
2278     Node *stride = cl->stride();
2279     Node *init = cl->init_trip()->uncast();
2280     Node *span = new SubINode(main_limit,init);
2281     register_new_node(span,ctrl);
2282     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
2283     Node *add = new AddINode(span,rndup);
2284     register_new_node(add,ctrl);
2285     Node *div = new DivINode(0,add,stride);
2286     register_new_node(div,ctrl);
2287     Node *mul = new MulINode(div,stride);
2288     register_new_node(mul,ctrl);
2289     Node *newlim = new AddINode(mul,init);
2290     register_new_node(newlim,ctrl);
2291     main_limit = newlim;
2292   }
2293 
2294   Node *main_cle = cl->loopexit();
2295   Node *main_bol = main_cle->in(1);
2296   // Hacking loop bounds; need private copies of exit test
2297   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
2298     main_bol = main_bol->clone();// Clone a private BoolNode
2299     register_new_node( main_bol, main_cle->in(0) );
2300     _igvn.replace_input_of(main_cle, 1, main_bol);
2301   }
2302   Node *main_cmp = main_bol->in(1);
2303   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
2304     main_cmp = main_cmp->clone();// Clone a private CmpNode
2305     register_new_node( main_cmp, main_cle->in(0) );
2306     _igvn.replace_input_of(main_bol, 1, main_cmp);
2307   }
2308   // Hack the now-private loop bounds
2309   _igvn.replace_input_of(main_cmp, 2, main_limit);
2310   // The OpaqueNode is unshared by design
2311   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
2312   _igvn.replace_input_of(opqzm, 1, main_limit);
2313 }
2314 
2315 //------------------------------DCE_loop_body----------------------------------
2316 // Remove simplistic dead code from loop body
2317 void IdealLoopTree::DCE_loop_body() {
2318   for( uint i = 0; i < _body.size(); i++ )
2319     if( _body.at(i)->outcnt() == 0 )
2320       _body.map( i--, _body.pop() );
2321 }
2322 
2323 
2324 //------------------------------adjust_loop_exit_prob--------------------------
2325 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
2326 // Replace with a 1-in-10 exit guess.
2327 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
2328   Node *test = tail();
2329   while( test != _head ) {
2330     uint top = test->Opcode();
2331     if( top == Op_IfTrue || top == Op_IfFalse ) {
2332       int test_con = ((ProjNode*)test)->_con;
2333       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
2334       IfNode *iff = test->in(0)->as_If();
2335       if( iff->outcnt() == 2 ) {        // Ignore dead tests
2336         Node *bol = iff->in(1);
2337         if( bol && bol->req() > 1 && bol->in(1) &&
2338             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
2339              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
2340              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
2341              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
2342              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
2343              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
2344              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
2345           return;               // Allocation loops RARELY take backedge
2346         // Find the OTHER exit path from the IF
2347         Node* ex = iff->proj_out(1-test_con);
2348         float p = iff->_prob;
2349         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
2350           if( top == Op_IfTrue ) {
2351             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
2352               iff->_prob = PROB_STATIC_FREQUENT;
2353             }
2354           } else {
2355             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
2356               iff->_prob = PROB_STATIC_INFREQUENT;
2357             }
2358           }
2359         }
2360       }
2361     }
2362     test = phase->idom(test);
2363   }
2364 }
2365 
2366 
2367 //------------------------------policy_do_remove_empty_loop--------------------
2368 // Micro-benchmark spamming.  Policy is to always remove empty loops.
2369 // The 'DO' part is to replace the trip counter with the value it will
2370 // have on the last iteration.  This will break the loop.
2371 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
2372   // Minimum size must be empty loop
2373   if (_body.size() > EMPTY_LOOP_SIZE)
2374     return false;
2375 
2376   if (!_head->is_CountedLoop())
2377     return false;     // Dead loop
2378   CountedLoopNode *cl = _head->as_CountedLoop();
2379   if (!cl->is_valid_counted_loop())
2380     return false; // Malformed loop
2381   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
2382     return false;             // Infinite loop
2383 
2384 #ifdef ASSERT
2385   // Ensure only one phi which is the iv.
2386   Node* iv = NULL;
2387   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
2388     Node* n = cl->fast_out(i);
2389     if (n->Opcode() == Op_Phi) {
2390       assert(iv == NULL, "Too many phis" );
2391       iv = n;
2392     }
2393   }
2394   assert(iv == cl->phi(), "Wrong phi" );
2395 #endif
2396 
2397   // main and post loops have explicitly created zero trip guard
2398   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
2399   if (needs_guard) {
2400     // Skip guard if values not overlap.
2401     const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
2402     const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
2403     int  stride_con = cl->stride_con();
2404     if (stride_con > 0) {
2405       needs_guard = (init_t->_hi >= limit_t->_lo);
2406     } else {
2407       needs_guard = (init_t->_lo <= limit_t->_hi);
2408     }
2409   }
2410   if (needs_guard) {
2411     // Check for an obvious zero trip guard.
2412     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
2413     if (inctrl->Opcode() == Op_IfTrue) {
2414       // The test should look like just the backedge of a CountedLoop
2415       Node* iff = inctrl->in(0);
2416       if (iff->is_If()) {
2417         Node* bol = iff->in(1);
2418         if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
2419           Node* cmp = bol->in(1);
2420           if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
2421             needs_guard = false;
2422           }
2423         }
2424       }
2425     }
2426   }
2427 
2428 #ifndef PRODUCT
2429   if (PrintOpto) {
2430     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
2431     this->dump_head();
2432   } else if (TraceLoopOpts) {
2433     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
2434     this->dump_head();
2435   }
2436 #endif
2437 
2438   if (needs_guard) {
2439     // Peel the loop to ensure there's a zero trip guard
2440     Node_List old_new;
2441     phase->do_peeling(this, old_new);
2442   }
2443 
2444   // Replace the phi at loop head with the final value of the last
2445   // iteration.  Then the CountedLoopEnd will collapse (backedge never
2446   // taken) and all loop-invariant uses of the exit values will be correct.
2447   Node *phi = cl->phi();
2448   Node *exact_limit = phase->exact_limit(this);
2449   if (exact_limit != cl->limit()) {
2450     // We also need to replace the original limit to collapse loop exit.
2451     Node* cmp = cl->loopexit()->cmp_node();
2452     assert(cl->limit() == cmp->in(2), "sanity");
2453     phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
2454     phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
2455   }
2456   // Note: the final value after increment should not overflow since
2457   // counted loop has limit check predicate.
2458   Node *final = new SubINode( exact_limit, cl->stride() );
2459   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
2460   phase->_igvn.replace_node(phi,final);
2461   phase->C->set_major_progress();
2462   return true;
2463 }
2464 
2465 //------------------------------policy_do_one_iteration_loop-------------------
2466 // Convert one iteration loop into normal code.
2467 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
2468   if (!_head->as_Loop()->is_valid_counted_loop())
2469     return false; // Only for counted loop
2470 
2471   CountedLoopNode *cl = _head->as_CountedLoop();
2472   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
2473     return false;
2474   }
2475 
2476 #ifndef PRODUCT
2477   if(TraceLoopOpts) {
2478     tty->print("OneIteration ");
2479     this->dump_head();
2480   }
2481 #endif
2482 
2483   Node *init_n = cl->init_trip();
2484 #ifdef ASSERT
2485   // Loop boundaries should be constant since trip count is exact.
2486   assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
2487 #endif
2488   // Replace the phi at loop head with the value of the init_trip.
2489   // Then the CountedLoopEnd will collapse (backedge will not be taken)
2490   // and all loop-invariant uses of the exit values will be correct.
2491   phase->_igvn.replace_node(cl->phi(), cl->init_trip());
2492   phase->C->set_major_progress();
2493   return true;
2494 }
2495 
2496 //=============================================================================
2497 //------------------------------iteration_split_impl---------------------------
2498 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
2499   // Compute exact loop trip count if possible.
2500   compute_exact_trip_count(phase);
2501 
2502   // Convert one iteration loop into normal code.
2503   if (policy_do_one_iteration_loop(phase))
2504     return true;
2505 
2506   // Check and remove empty loops (spam micro-benchmarks)
2507   if (policy_do_remove_empty_loop(phase))
2508     return true;  // Here we removed an empty loop
2509 
2510   bool should_peel = policy_peeling(phase); // Should we peel?
2511 
2512   bool should_unswitch = policy_unswitching(phase);
2513 
2514   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
2515   // This removes loop-invariant tests (usually null checks).
2516   if (!_head->is_CountedLoop()) { // Non-counted loop
2517     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
2518       // Partial peel succeeded so terminate this round of loop opts
2519       return false;
2520     }
2521     if (should_peel) {            // Should we peel?
2522 #ifndef PRODUCT
2523       if (PrintOpto) tty->print_cr("should_peel");
2524 #endif
2525       phase->do_peeling(this,old_new);
2526     } else if (should_unswitch) {
2527       phase->do_unswitching(this, old_new);
2528     }
2529     return true;
2530   }
2531   CountedLoopNode *cl = _head->as_CountedLoop();
2532 
2533   if (!cl->is_valid_counted_loop()) return true; // Ignore various kinds of broken loops
2534 
2535   // Do nothing special to pre- and post- loops
2536   if (cl->is_pre_loop() || cl->is_post_loop()) return true;
2537 
2538   // Compute loop trip count from profile data
2539   compute_profile_trip_cnt(phase);
2540 
2541   // Before attempting fancy unrolling, RCE or alignment, see if we want
2542   // to completely unroll this loop or do loop unswitching.
2543   if (cl->is_normal_loop()) {
2544     if (should_unswitch) {
2545       phase->do_unswitching(this, old_new);
2546       return true;
2547     }
2548     bool should_maximally_unroll =  policy_maximally_unroll(phase);
2549     if (should_maximally_unroll) {
2550       // Here we did some unrolling and peeling.  Eventually we will
2551       // completely unroll this loop and it will no longer be a loop.
2552       phase->do_maximally_unroll(this,old_new);
2553       return true;
2554     }
2555   }
2556 
2557   // Skip next optimizations if running low on nodes. Note that
2558   // policy_unswitching and policy_maximally_unroll have this check.
2559   int nodes_left = phase->C->max_node_limit() - phase->C->live_nodes();
2560   if ((int)(2 * _body.size()) > nodes_left) {
2561     return true;
2562   }
2563 
2564   // Counted loops may be peeled, may need some iterations run up
2565   // front for RCE, and may want to align loop refs to a cache
2566   // line.  Thus we clone a full loop up front whose trip count is
2567   // at least 1 (if peeling), but may be several more.
2568 
2569   // The main loop will start cache-line aligned with at least 1
2570   // iteration of the unrolled body (zero-trip test required) and
2571   // will have some range checks removed.
2572 
2573   // A post-loop will finish any odd iterations (leftover after
2574   // unrolling), plus any needed for RCE purposes.
2575 
2576   bool should_unroll = policy_unroll(phase);
2577 
2578   bool should_rce = policy_range_check(phase);
2579 
2580   bool should_align = policy_align(phase);
2581 
2582   // If not RCE'ing (iteration splitting) or Aligning, then we do not
2583   // need a pre-loop.  We may still need to peel an initial iteration but
2584   // we will not be needing an unknown number of pre-iterations.
2585   //
2586   // Basically, if may_rce_align reports FALSE first time through,
2587   // we will not be able to later do RCE or Aligning on this loop.
2588   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
2589 
2590   // If we have any of these conditions (RCE, alignment, unrolling) met, then
2591   // we switch to the pre-/main-/post-loop model.  This model also covers
2592   // peeling.
2593   if (should_rce || should_align || should_unroll) {
2594     if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
2595       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
2596 
2597     // Adjust the pre- and main-loop limits to let the pre and post loops run
2598     // with full checks, but the main-loop with no checks.  Remove said
2599     // checks from the main body.
2600     if (should_rce)
2601       phase->do_range_check(this,old_new);
2602 
2603     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
2604     // twice as many iterations as before) and the main body limit (only do
2605     // an even number of trips).  If we are peeling, we might enable some RCE
2606     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
2607     // peeling.
2608     if (should_unroll && !should_peel) {
2609       phase->do_unroll(this, old_new, true);
2610     }
2611 
2612     // Adjust the pre-loop limits to align the main body
2613     // iterations.
2614     if (should_align)
2615       Unimplemented();
2616 
2617   } else {                      // Else we have an unchanged counted loop
2618     if (should_peel)           // Might want to peel but do nothing else
2619       phase->do_peeling(this,old_new);
2620   }
2621   return true;
2622 }
2623 
2624 
2625 //=============================================================================
2626 //------------------------------iteration_split--------------------------------
2627 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
2628   // Recursively iteration split nested loops
2629   if (_child && !_child->iteration_split(phase, old_new))
2630     return false;
2631 
2632   // Clean out prior deadwood
2633   DCE_loop_body();
2634 
2635 
2636   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
2637   // Replace with a 1-in-10 exit guess.
2638   if (_parent /*not the root loop*/ &&
2639       !_irreducible &&
2640       // Also ignore the occasional dead backedge
2641       !tail()->is_top()) {
2642     adjust_loop_exit_prob(phase);
2643   }
2644 
2645   // Gate unrolling, RCE and peeling efforts.
2646   if (!_child &&                // If not an inner loop, do not split
2647       !_irreducible &&
2648       _allow_optimizations &&
2649       !tail()->is_top()) {     // Also ignore the occasional dead backedge
2650     if (!_has_call) {
2651         if (!iteration_split_impl(phase, old_new)) {
2652           return false;
2653         }
2654     } else if (policy_unswitching(phase)) {
2655       phase->do_unswitching(this, old_new);
2656     }
2657   }
2658 
2659   // Minor offset re-organization to remove loop-fallout uses of
2660   // trip counter when there was no major reshaping.
2661   phase->reorg_offsets(this);
2662 
2663   if (_next && !_next->iteration_split(phase, old_new))
2664     return false;
2665   return true;
2666 }
2667 
2668 
2669 //=============================================================================
2670 // Process all the loops in the loop tree and replace any fill
2671 // patterns with an intrisc version.
2672 bool PhaseIdealLoop::do_intrinsify_fill() {
2673   bool changed = false;
2674   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2675     IdealLoopTree* lpt = iter.current();
2676     changed |= intrinsify_fill(lpt);
2677   }
2678   return changed;
2679 }
2680 
2681 
2682 // Examine an inner loop looking for a a single store of an invariant
2683 // value in a unit stride loop,
2684 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
2685                                      Node*& shift, Node*& con) {
2686   const char* msg = NULL;
2687   Node* msg_node = NULL;
2688 
2689   store_value = NULL;
2690   con = NULL;
2691   shift = NULL;
2692 
2693   // Process the loop looking for stores.  If there are multiple
2694   // stores or extra control flow give at this point.
2695   CountedLoopNode* head = lpt->_head->as_CountedLoop();
2696   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2697     Node* n = lpt->_body.at(i);
2698     if (n->outcnt() == 0) continue; // Ignore dead
2699     if (n->is_Store()) {
2700       if (store != NULL) {
2701         msg = "multiple stores";
2702         break;
2703       }
2704       int opc = n->Opcode();
2705       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreNKlass || opc == Op_StoreCM) {
2706         msg = "oop fills not handled";
2707         break;
2708       }
2709       Node* value = n->in(MemNode::ValueIn);
2710       if (!lpt->is_invariant(value)) {
2711         msg  = "variant store value";
2712       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
2713         msg = "not array address";
2714       }
2715       store = n;
2716       store_value = value;
2717     } else if (n->is_If() && n != head->loopexit()) {
2718       msg = "extra control flow";
2719       msg_node = n;
2720     }
2721   }
2722 
2723   if (store == NULL) {
2724     // No store in loop
2725     return false;
2726   }
2727 
2728   if (msg == NULL && head->stride_con() != 1) {
2729     // could handle negative strides too
2730     if (head->stride_con() < 0) {
2731       msg = "negative stride";
2732     } else {
2733       msg = "non-unit stride";
2734     }
2735   }
2736 
2737   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
2738     msg = "can't handle store address";
2739     msg_node = store->in(MemNode::Address);
2740   }
2741 
2742   if (msg == NULL &&
2743       (!store->in(MemNode::Memory)->is_Phi() ||
2744        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
2745     msg = "store memory isn't proper phi";
2746     msg_node = store->in(MemNode::Memory);
2747   }
2748 
2749   // Make sure there is an appropriate fill routine
2750   BasicType t = store->as_Mem()->memory_type();
2751   const char* fill_name;
2752   if (msg == NULL &&
2753       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
2754     msg = "unsupported store";
2755     msg_node = store;
2756   }
2757 
2758   if (msg != NULL) {
2759 #ifndef PRODUCT
2760     if (TraceOptimizeFill) {
2761       tty->print_cr("not fill intrinsic candidate: %s", msg);
2762       if (msg_node != NULL) msg_node->dump();
2763     }
2764 #endif
2765     return false;
2766   }
2767 
2768   // Make sure the address expression can be handled.  It should be
2769   // head->phi * elsize + con.  head->phi might have a ConvI2L.
2770   Node* elements[4];
2771   Node* conv = NULL;
2772   bool found_index = false;
2773   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
2774   for (int e = 0; e < count; e++) {
2775     Node* n = elements[e];
2776     if (n->is_Con() && con == NULL) {
2777       con = n;
2778     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
2779       Node* value = n->in(1);
2780 #ifdef _LP64
2781       if (value->Opcode() == Op_ConvI2L) {
2782         conv = value;
2783         value = value->in(1);
2784       }
2785 #endif
2786       if (value != head->phi()) {
2787         msg = "unhandled shift in address";
2788       } else {
2789         if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
2790           msg = "scale doesn't match";
2791         } else {
2792           found_index = true;
2793           shift = n;
2794         }
2795       }
2796     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
2797       if (n->in(1) == head->phi()) {
2798         found_index = true;
2799         conv = n;
2800       } else {
2801         msg = "unhandled input to ConvI2L";
2802       }
2803     } else if (n == head->phi()) {
2804       // no shift, check below for allowed cases
2805       found_index = true;
2806     } else {
2807       msg = "unhandled node in address";
2808       msg_node = n;
2809     }
2810   }
2811 
2812   if (count == -1) {
2813     msg = "malformed address expression";
2814     msg_node = store;
2815   }
2816 
2817   if (!found_index) {
2818     msg = "missing use of index";
2819   }
2820 
2821   // byte sized items won't have a shift
2822   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
2823     msg = "can't find shift";
2824     msg_node = store;
2825   }
2826 
2827   if (msg != NULL) {
2828 #ifndef PRODUCT
2829     if (TraceOptimizeFill) {
2830       tty->print_cr("not fill intrinsic: %s", msg);
2831       if (msg_node != NULL) msg_node->dump();
2832     }
2833 #endif
2834     return false;
2835   }
2836 
2837   // No make sure all the other nodes in the loop can be handled
2838   VectorSet ok(Thread::current()->resource_area());
2839 
2840   // store related values are ok
2841   ok.set(store->_idx);
2842   ok.set(store->in(MemNode::Memory)->_idx);
2843 
2844   CountedLoopEndNode* loop_exit = head->loopexit();
2845   guarantee(loop_exit != NULL, "no loop exit node");
2846 
2847   // Loop structure is ok
2848   ok.set(head->_idx);
2849   ok.set(loop_exit->_idx);
2850   ok.set(head->phi()->_idx);
2851   ok.set(head->incr()->_idx);
2852   ok.set(loop_exit->cmp_node()->_idx);
2853   ok.set(loop_exit->in(1)->_idx);
2854 
2855   // Address elements are ok
2856   if (con)   ok.set(con->_idx);
2857   if (shift) ok.set(shift->_idx);
2858   if (conv)  ok.set(conv->_idx);
2859 
2860   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2861     Node* n = lpt->_body.at(i);
2862     if (n->outcnt() == 0) continue; // Ignore dead
2863     if (ok.test(n->_idx)) continue;
2864     // Backedge projection is ok
2865     if (n->is_IfTrue() && n->in(0) == loop_exit) continue;
2866     if (!n->is_AddP()) {
2867       msg = "unhandled node";
2868       msg_node = n;
2869       break;
2870     }
2871   }
2872 
2873   // Make sure no unexpected values are used outside the loop
2874   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2875     Node* n = lpt->_body.at(i);
2876     // These values can be replaced with other nodes if they are used
2877     // outside the loop.
2878     if (n == store || n == loop_exit || n == head->incr() || n == store->in(MemNode::Memory)) continue;
2879     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
2880       Node* use = iter.get();
2881       if (!lpt->_body.contains(use)) {
2882         msg = "node is used outside loop";
2883         // lpt->_body.dump();
2884         msg_node = n;
2885         break;
2886       }
2887     }
2888   }
2889 
2890 #ifdef ASSERT
2891   if (TraceOptimizeFill) {
2892     if (msg != NULL) {
2893       tty->print_cr("no fill intrinsic: %s", msg);
2894       if (msg_node != NULL) msg_node->dump();
2895     } else {
2896       tty->print_cr("fill intrinsic for:");
2897     }
2898     store->dump();
2899     if (Verbose) {
2900       lpt->_body.dump();
2901     }
2902   }
2903 #endif
2904 
2905   return msg == NULL;
2906 }
2907 
2908 
2909 
2910 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
2911   // Only for counted inner loops
2912   if (!lpt->is_counted() || !lpt->is_inner()) {
2913     return false;
2914   }
2915 
2916   // Must have constant stride
2917   CountedLoopNode* head = lpt->_head->as_CountedLoop();
2918   if (!head->is_valid_counted_loop() || !head->is_normal_loop()) {
2919     return false;
2920   }
2921 
2922   // Check that the body only contains a store of a loop invariant
2923   // value that is indexed by the loop phi.
2924   Node* store = NULL;
2925   Node* store_value = NULL;
2926   Node* shift = NULL;
2927   Node* offset = NULL;
2928   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
2929     return false;
2930   }
2931 
2932 #ifndef PRODUCT
2933   if (TraceLoopOpts) {
2934     tty->print("ArrayFill    ");
2935     lpt->dump_head();
2936   }
2937 #endif
2938 
2939   // Now replace the whole loop body by a call to a fill routine that
2940   // covers the same region as the loop.
2941   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
2942 
2943   // Build an expression for the beginning of the copy region
2944   Node* index = head->init_trip();
2945 #ifdef _LP64
2946   index = new ConvI2LNode(index);
2947   _igvn.register_new_node_with_optimizer(index);
2948 #endif
2949   if (shift != NULL) {
2950     // byte arrays don't require a shift but others do.
2951     index = new LShiftXNode(index, shift->in(2));
2952     _igvn.register_new_node_with_optimizer(index);
2953   }
2954   index = new AddPNode(base, base, index);
2955   _igvn.register_new_node_with_optimizer(index);
2956   Node* from = new AddPNode(base, index, offset);
2957   _igvn.register_new_node_with_optimizer(from);
2958   // Compute the number of elements to copy
2959   Node* len = new SubINode(head->limit(), head->init_trip());
2960   _igvn.register_new_node_with_optimizer(len);
2961 
2962   BasicType t = store->as_Mem()->memory_type();
2963   bool aligned = false;
2964   if (offset != NULL && head->init_trip()->is_Con()) {
2965     int element_size = type2aelembytes(t);
2966     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
2967   }
2968 
2969   // Build a call to the fill routine
2970   const char* fill_name;
2971   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
2972   assert(fill != NULL, "what?");
2973 
2974   // Convert float/double to int/long for fill routines
2975   if (t == T_FLOAT) {
2976     store_value = new MoveF2INode(store_value);
2977     _igvn.register_new_node_with_optimizer(store_value);
2978   } else if (t == T_DOUBLE) {
2979     store_value = new MoveD2LNode(store_value);
2980     _igvn.register_new_node_with_optimizer(store_value);
2981   }
2982 
2983   if (CCallingConventionRequiresIntsAsLongs &&
2984       // See StubRoutines::select_fill_function for types. FLOAT has been converted to INT.
2985       (t == T_FLOAT || t == T_INT ||  is_subword_type(t))) {
2986     store_value = new ConvI2LNode(store_value);
2987     _igvn.register_new_node_with_optimizer(store_value);
2988   }
2989 
2990   Node* mem_phi = store->in(MemNode::Memory);
2991   Node* result_ctrl;
2992   Node* result_mem;
2993   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
2994   CallLeafNode *call = new CallLeafNoFPNode(call_type, fill,
2995                                             fill_name, TypeAryPtr::get_array_body_type(t));
2996   uint cnt = 0;
2997   call->init_req(TypeFunc::Parms + cnt++, from);
2998   call->init_req(TypeFunc::Parms + cnt++, store_value);
2999   if (CCallingConventionRequiresIntsAsLongs) {
3000     call->init_req(TypeFunc::Parms + cnt++, C->top());
3001   }
3002 #ifdef _LP64
3003   len = new ConvI2LNode(len);
3004   _igvn.register_new_node_with_optimizer(len);
3005 #endif
3006   call->init_req(TypeFunc::Parms + cnt++, len);
3007 #ifdef _LP64
3008   call->init_req(TypeFunc::Parms + cnt++, C->top());
3009 #endif
3010   call->init_req(TypeFunc::Control,   head->init_control());
3011   call->init_req(TypeFunc::I_O,       C->top());       // Does no I/O.
3012   call->init_req(TypeFunc::Memory,    mem_phi->in(LoopNode::EntryControl));
3013   call->init_req(TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr));
3014   call->init_req(TypeFunc::FramePtr,  C->start()->proj_out(TypeFunc::FramePtr));
3015   _igvn.register_new_node_with_optimizer(call);
3016   result_ctrl = new ProjNode(call,TypeFunc::Control);
3017   _igvn.register_new_node_with_optimizer(result_ctrl);
3018   result_mem = new ProjNode(call,TypeFunc::Memory);
3019   _igvn.register_new_node_with_optimizer(result_mem);
3020 
3021 /* Disable following optimization until proper fix (add missing checks).
3022 
3023   // If this fill is tightly coupled to an allocation and overwrites
3024   // the whole body, allow it to take over the zeroing.
3025   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
3026   if (alloc != NULL && alloc->is_AllocateArray()) {
3027     Node* length = alloc->as_AllocateArray()->Ideal_length();
3028     if (head->limit() == length &&
3029         head->init_trip() == _igvn.intcon(0)) {
3030       if (TraceOptimizeFill) {
3031         tty->print_cr("Eliminated zeroing in allocation");
3032       }
3033       alloc->maybe_set_complete(&_igvn);
3034     } else {
3035 #ifdef ASSERT
3036       if (TraceOptimizeFill) {
3037         tty->print_cr("filling array but bounds don't match");
3038         alloc->dump();
3039         head->init_trip()->dump();
3040         head->limit()->dump();
3041         length->dump();
3042       }
3043 #endif
3044     }
3045   }
3046 */
3047 
3048   // Redirect the old control and memory edges that are outside the loop.
3049   Node* exit = head->loopexit()->proj_out(0);
3050   // Sometimes the memory phi of the head is used as the outgoing
3051   // state of the loop.  It's safe in this case to replace it with the
3052   // result_mem.
3053   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
3054   _igvn.replace_node(exit, result_ctrl);
3055   _igvn.replace_node(store, result_mem);
3056   // Any uses the increment outside of the loop become the loop limit.
3057   _igvn.replace_node(head->incr(), head->limit());
3058 
3059   // Disconnect the head from the loop.
3060   for (uint i = 0; i < lpt->_body.size(); i++) {
3061     Node* n = lpt->_body.at(i);
3062     _igvn.replace_node(n, C->top());
3063   }
3064 
3065   return true;
3066 }