1 /*
   2  * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #ifndef SHARE_VM_OPTO_SUPERWORD_HPP
  25 #define SHARE_VM_OPTO_SUPERWORD_HPP
  26 
  27 #include "opto/loopnode.hpp"
  28 #include "opto/node.hpp"
  29 #include "opto/phaseX.hpp"
  30 #include "opto/vectornode.hpp"
  31 #include "utilities/growableArray.hpp"
  32 
  33 //
  34 //                  S U P E R W O R D   T R A N S F O R M
  35 //
  36 // SuperWords are short, fixed length vectors.
  37 //
  38 // Algorithm from:
  39 //
  40 // Exploiting SuperWord Level Parallelism with
  41 //   Multimedia Instruction Sets
  42 // by
  43 //   Samuel Larsen and Saman Amarasighe
  44 //   MIT Laboratory for Computer Science
  45 // date
  46 //   May 2000
  47 // published in
  48 //   ACM SIGPLAN Notices
  49 //   Proceedings of ACM PLDI '00,  Volume 35 Issue 5
  50 //
  51 // Definition 3.1 A Pack is an n-tuple, <s1, ...,sn>, where
  52 // s1,...,sn are independent isomorphic statements in a basic
  53 // block.
  54 //
  55 // Definition 3.2 A PackSet is a set of Packs.
  56 //
  57 // Definition 3.3 A Pair is a Pack of size two, where the
  58 // first statement is considered the left element, and the
  59 // second statement is considered the right element.
  60 
  61 class SWPointer;
  62 class OrderedPair;
  63 
  64 // ========================= Dependence Graph =====================
  65 
  66 class DepMem;
  67 
  68 //------------------------------DepEdge---------------------------
  69 // An edge in the dependence graph.  The edges incident to a dependence
  70 // node are threaded through _next_in for incoming edges and _next_out
  71 // for outgoing edges.
  72 class DepEdge : public ResourceObj {
  73  protected:
  74   DepMem* _pred;
  75   DepMem* _succ;
  76   DepEdge* _next_in;   // list of in edges, null terminated
  77   DepEdge* _next_out;  // list of out edges, null terminated
  78 
  79  public:
  80   DepEdge(DepMem* pred, DepMem* succ, DepEdge* next_in, DepEdge* next_out) :
  81     _pred(pred), _succ(succ), _next_in(next_in), _next_out(next_out) {}
  82 
  83   DepEdge* next_in()  { return _next_in; }
  84   DepEdge* next_out() { return _next_out; }
  85   DepMem*  pred()     { return _pred; }
  86   DepMem*  succ()     { return _succ; }
  87 
  88   void print();
  89 };
  90 
  91 //------------------------------DepMem---------------------------
  92 // A node in the dependence graph.  _in_head starts the threaded list of
  93 // incoming edges, and _out_head starts the list of outgoing edges.
  94 class DepMem : public ResourceObj {
  95  protected:
  96   Node*    _node;     // Corresponding ideal node
  97   DepEdge* _in_head;  // Head of list of in edges, null terminated
  98   DepEdge* _out_head; // Head of list of out edges, null terminated
  99 
 100  public:
 101   DepMem(Node* node) : _node(node), _in_head(NULL), _out_head(NULL) {}
 102 
 103   Node*    node()                { return _node;     }
 104   DepEdge* in_head()             { return _in_head;  }
 105   DepEdge* out_head()            { return _out_head; }
 106   void set_in_head(DepEdge* hd)  { _in_head = hd;    }
 107   void set_out_head(DepEdge* hd) { _out_head = hd;   }
 108 
 109   int in_cnt();  // Incoming edge count
 110   int out_cnt(); // Outgoing edge count
 111 
 112   void print();
 113 };
 114 
 115 //------------------------------DepGraph---------------------------
 116 class DepGraph VALUE_OBJ_CLASS_SPEC {
 117  protected:
 118   Arena* _arena;
 119   GrowableArray<DepMem*> _map;
 120   DepMem* _root;
 121   DepMem* _tail;
 122 
 123  public:
 124   DepGraph(Arena* a) : _arena(a), _map(a, 8,  0, NULL) {
 125     _root = new (_arena) DepMem(NULL);
 126     _tail = new (_arena) DepMem(NULL);
 127   }
 128 
 129   DepMem* root() { return _root; }
 130   DepMem* tail() { return _tail; }
 131 
 132   // Return dependence node corresponding to an ideal node
 133   DepMem* dep(Node* node) { return _map.at(node->_idx); }
 134 
 135   // Make a new dependence graph node for an ideal node.
 136   DepMem* make_node(Node* node);
 137 
 138   // Make a new dependence graph edge dprec->dsucc
 139   DepEdge* make_edge(DepMem* dpred, DepMem* dsucc);
 140 
 141   DepEdge* make_edge(Node* pred,   Node* succ)   { return make_edge(dep(pred), dep(succ)); }
 142   DepEdge* make_edge(DepMem* pred, Node* succ)   { return make_edge(pred,      dep(succ)); }
 143   DepEdge* make_edge(Node* pred,   DepMem* succ) { return make_edge(dep(pred), succ);      }
 144 
 145   void init() { _map.clear(); } // initialize
 146 
 147   void print(Node* n)   { dep(n)->print(); }
 148   void print(DepMem* d) { d->print(); }
 149 };
 150 
 151 //------------------------------DepPreds---------------------------
 152 // Iterator over predecessors in the dependence graph and
 153 // non-memory-graph inputs of ideal nodes.
 154 class DepPreds : public StackObj {
 155 private:
 156   Node*    _n;
 157   int      _next_idx, _end_idx;
 158   DepEdge* _dep_next;
 159   Node*    _current;
 160   bool     _done;
 161 
 162 public:
 163   DepPreds(Node* n, DepGraph& dg);
 164   Node* current() { return _current; }
 165   bool  done()    { return _done; }
 166   void  next();
 167 };
 168 
 169 //------------------------------DepSuccs---------------------------
 170 // Iterator over successors in the dependence graph and
 171 // non-memory-graph outputs of ideal nodes.
 172 class DepSuccs : public StackObj {
 173 private:
 174   Node*    _n;
 175   int      _next_idx, _end_idx;
 176   DepEdge* _dep_next;
 177   Node*    _current;
 178   bool     _done;
 179 
 180 public:
 181   DepSuccs(Node* n, DepGraph& dg);
 182   Node* current() { return _current; }
 183   bool  done()    { return _done; }
 184   void  next();
 185 };
 186 
 187 
 188 // ========================= SuperWord =====================
 189 
 190 // -----------------------------SWNodeInfo---------------------------------
 191 // Per node info needed by SuperWord
 192 class SWNodeInfo VALUE_OBJ_CLASS_SPEC {
 193  public:
 194   int         _alignment; // memory alignment for a node
 195   int         _depth;     // Max expression (DAG) depth from block start
 196   const Type* _velt_type; // vector element type
 197   Node_List*  _my_pack;   // pack containing this node
 198 
 199   SWNodeInfo() : _alignment(-1), _depth(0), _velt_type(NULL), _my_pack(NULL) {}
 200   static const SWNodeInfo initial;
 201 };
 202 
 203 // -----------------------------SuperWord---------------------------------
 204 // Transforms scalar operations into packed (superword) operations.
 205 class SuperWord : public ResourceObj {
 206  private:
 207   PhaseIdealLoop* _phase;
 208   Arena*          _arena;
 209   PhaseIterGVN   &_igvn;
 210 
 211   enum consts { top_align = -1, bottom_align = -666 };
 212 
 213   GrowableArray<Node_List*> _packset;    // Packs for the current block
 214 
 215   GrowableArray<int> _bb_idx;            // Map from Node _idx to index within block
 216 
 217   GrowableArray<Node*> _block;           // Nodes in current block
 218   GrowableArray<Node*> _data_entry;      // Nodes with all inputs from outside
 219   GrowableArray<Node*> _mem_slice_head;  // Memory slice head nodes
 220   GrowableArray<Node*> _mem_slice_tail;  // Memory slice tail nodes
 221 
 222   GrowableArray<SWNodeInfo> _node_info;  // Info needed per node
 223 
 224   MemNode* _align_to_ref;                // Memory reference that pre-loop will align to
 225 
 226   GrowableArray<OrderedPair> _disjoint_ptrs; // runtime disambiguated pointer pairs
 227 
 228   DepGraph _dg; // Dependence graph
 229 
 230   // Scratch pads
 231   VectorSet    _visited;       // Visited set
 232   VectorSet    _post_visited;  // Post-visited set
 233   Node_Stack   _n_idx_list;    // List of (node,index) pairs
 234   GrowableArray<Node*> _nlist; // List of nodes
 235   GrowableArray<Node*> _stk;   // Stack of nodes
 236 
 237  public:
 238   SuperWord(PhaseIdealLoop* phase);
 239 
 240   void transform_loop(IdealLoopTree* lpt, bool do_optimization);
 241 
 242   // Accessors for SWPointer
 243   PhaseIdealLoop* phase()          { return _phase; }
 244   IdealLoopTree* lpt()             { return _lpt; }
 245   PhiNode* iv()                    { return _iv; }
 246   bool early_return()              { return _early_return; }
 247 
 248  private:
 249   IdealLoopTree* _lpt;             // Current loop tree node
 250   LoopNode*      _lp;              // Current LoopNode
 251   Node*          _bb;              // Current basic block
 252   PhiNode*       _iv;              // Induction var
 253   bool           _race_possible;   // In cases where SDMU is true
 254   bool           _early_return;    // True if we do not initialize
 255 
 256   // Accessors
 257   Arena* arena()                   { return _arena; }
 258 
 259   Node* bb()                       { return _bb; }
 260   void  set_bb(Node* bb)           { _bb = bb; }
 261 
 262   void set_lpt(IdealLoopTree* lpt) { _lpt = lpt; }
 263 
 264   LoopNode* lp()                   { return _lp; }
 265   void      set_lp(LoopNode* lp)   { _lp = lp;
 266                                      _iv = lp->as_CountedLoop()->phi()->as_Phi(); }
 267   int      iv_stride()             { return lp()->as_CountedLoop()->stride_con(); }
 268 
 269   int vector_width(Node* n) {
 270     BasicType bt = velt_basic_type(n);
 271     return MIN2(ABS(iv_stride()), Matcher::max_vector_size(bt));
 272   }
 273   int vector_width_in_bytes(Node* n) {
 274     BasicType bt = velt_basic_type(n);
 275     return vector_width(n)*type2aelembytes(bt);
 276   }
 277   MemNode* align_to_ref()            { return _align_to_ref; }
 278   void  set_align_to_ref(MemNode* m) { _align_to_ref = m; }
 279 
 280   Node* ctrl(Node* n) const { return _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n; }
 281 
 282   // block accessors
 283   bool in_bb(Node* n)      { return n != NULL && n->outcnt() > 0 && ctrl(n) == _bb; }
 284   int  bb_idx(Node* n)     { assert(in_bb(n), "must be"); return _bb_idx.at(n->_idx); }
 285   void set_bb_idx(Node* n, int i) { _bb_idx.at_put_grow(n->_idx, i); }
 286 
 287   // visited set accessors
 288   void visited_clear()           { _visited.Clear(); }
 289   void visited_set(Node* n)      { return _visited.set(bb_idx(n)); }
 290   int visited_test(Node* n)      { return _visited.test(bb_idx(n)); }
 291   int visited_test_set(Node* n)  { return _visited.test_set(bb_idx(n)); }
 292   void post_visited_clear()      { _post_visited.Clear(); }
 293   void post_visited_set(Node* n) { return _post_visited.set(bb_idx(n)); }
 294   int post_visited_test(Node* n) { return _post_visited.test(bb_idx(n)); }
 295 
 296   // Ensure node_info contains element "i"
 297   void grow_node_info(int i) { if (i >= _node_info.length()) _node_info.at_put_grow(i, SWNodeInfo::initial); }
 298 
 299   // memory alignment for a node
 300   int alignment(Node* n)                     { return _node_info.adr_at(bb_idx(n))->_alignment; }
 301   void set_alignment(Node* n, int a)         { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_alignment = a; }
 302 
 303   // Max expression (DAG) depth from beginning of the block for each node
 304   int depth(Node* n)                         { return _node_info.adr_at(bb_idx(n))->_depth; }
 305   void set_depth(Node* n, int d)             { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_depth = d; }
 306 
 307   // vector element type
 308   const Type* velt_type(Node* n)             { return _node_info.adr_at(bb_idx(n))->_velt_type; }
 309   BasicType velt_basic_type(Node* n)         { return velt_type(n)->array_element_basic_type(); }
 310   void set_velt_type(Node* n, const Type* t) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_velt_type = t; }
 311   bool same_velt_type(Node* n1, Node* n2);
 312 
 313   // my_pack
 314   Node_List* my_pack(Node* n)                { return !in_bb(n) ? NULL : _node_info.adr_at(bb_idx(n))->_my_pack; }
 315   void set_my_pack(Node* n, Node_List* p)    { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_my_pack = p; }
 316 
 317   // methods
 318 
 319   // Extract the superword level parallelism
 320   void SLP_extract();
 321   // Find the adjacent memory references and create pack pairs for them.
 322   void find_adjacent_refs();
 323   // Find a memory reference to align the loop induction variable to.
 324   MemNode* find_align_to_ref(Node_List &memops);
 325   // Calculate loop's iv adjustment for this memory ops.
 326   int get_iv_adjustment(MemNode* mem);
 327   // Can the preloop align the reference to position zero in the vector?
 328   bool ref_is_alignable(SWPointer& p);
 329   // Construct dependency graph.
 330   void dependence_graph();
 331   // Return a memory slice (node list) in predecessor order starting at "start"
 332   void mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds);
 333   // Can s1 and s2 be in a pack with s1 immediately preceding s2 and  s1 aligned at "align"
 334   bool stmts_can_pack(Node* s1, Node* s2, int align);
 335   // Does s exist in a pack at position pos?
 336   bool exists_at(Node* s, uint pos);
 337   // Is s1 immediately before s2 in memory?
 338   bool are_adjacent_refs(Node* s1, Node* s2);
 339   // Are s1 and s2 similar?
 340   bool isomorphic(Node* s1, Node* s2);
 341   // Is there no data path from s1 to s2 or s2 to s1?
 342   bool independent(Node* s1, Node* s2);
 343   // Is there a data path between s1 and s2 and both are reductions?
 344   bool reduction(Node* s1, Node* s2);
 345   // Helper for independent
 346   bool independent_path(Node* shallow, Node* deep, uint dp=0);
 347   void set_alignment(Node* s1, Node* s2, int align);
 348   int data_size(Node* s);
 349   // Extend packset by following use->def and def->use links from pack members.
 350   void extend_packlist();
 351   // Extend the packset by visiting operand definitions of nodes in pack p
 352   bool follow_use_defs(Node_List* p);
 353   // Extend the packset by visiting uses of nodes in pack p
 354   bool follow_def_uses(Node_List* p);
 355   // For extended packsets, ordinally arrange uses packset by major component
 356   void order_def_uses(Node_List* p);
 357   // Estimate the savings from executing s1 and s2 as a pack
 358   int est_savings(Node* s1, Node* s2);
 359   int adjacent_profit(Node* s1, Node* s2);
 360   int pack_cost(int ct);
 361   int unpack_cost(int ct);
 362   // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
 363   void combine_packs();
 364   // Construct the map from nodes to packs.
 365   void construct_my_pack_map();
 366   // Remove packs that are not implemented or not profitable.
 367   void filter_packs();
 368   // Adjust the memory graph for the packed operations
 369   void schedule();
 370   // Remove "current" from its current position in the memory graph and insert
 371   // it after the appropriate insert points (lip or uip);
 372   void remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip, Node *uip, Unique_Node_List &schd_before);
 373   // Within a store pack, schedule stores together by moving out the sandwiched memory ops according
 374   // to dependence info; and within a load pack, move loads down to the last executed load.
 375   void co_locate_pack(Node_List* p);
 376   // Convert packs into vector node operations
 377   void output();
 378   // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
 379   Node* vector_opd(Node_List* p, int opd_idx);
 380   // Can code be generated for pack p?
 381   bool implemented(Node_List* p);
 382   // For pack p, are all operands and all uses (with in the block) vector?
 383   bool profitable(Node_List* p);
 384   // If a use of pack p is not a vector use, then replace the use with an extract operation.
 385   void insert_extracts(Node_List* p);
 386   // Is use->in(u_idx) a vector use?
 387   bool is_vector_use(Node* use, int u_idx);
 388   // Construct reverse postorder list of block members
 389   bool construct_bb();
 390   // Initialize per node info
 391   void initialize_bb();
 392   // Insert n into block after pos
 393   void bb_insert_after(Node* n, int pos);
 394   // Compute max depth for expressions from beginning of block
 395   void compute_max_depth();
 396   // Compute necessary vector element type for expressions
 397   void compute_vector_element_type();
 398   // Are s1 and s2 in a pack pair and ordered as s1,s2?
 399   bool in_packset(Node* s1, Node* s2);
 400   // Is s in pack p?
 401   Node_List* in_pack(Node* s, Node_List* p);
 402   // Remove the pack at position pos in the packset
 403   void remove_pack_at(int pos);
 404   // Return the node executed first in pack p.
 405   Node* executed_first(Node_List* p);
 406   // Return the node executed last in pack p.
 407   Node* executed_last(Node_List* p);
 408   // Alignment within a vector memory reference
 409   int memory_alignment(MemNode* s, int iv_adjust);
 410   // (Start, end] half-open range defining which operands are vector
 411   void vector_opd_range(Node* n, uint* start, uint* end);
 412   // Smallest type containing range of values
 413   const Type* container_type(Node* n);
 414   // Adjust pre-loop limit so that in main loop, a load/store reference
 415   // to align_to_ref will be a position zero in the vector.
 416   void align_initial_loop_index(MemNode* align_to_ref);
 417   // Find pre loop end from main loop.  Returns null if none.
 418   CountedLoopEndNode* get_pre_loop_end(CountedLoopNode *cl);
 419   // Is the use of d1 in u1 at the same operand position as d2 in u2?
 420   bool opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2);
 421   void init();
 422 
 423   // print methods
 424   void print_packset();
 425   void print_pack(Node_List* p);
 426   void print_bb();
 427   void print_stmt(Node* s);
 428   char* blank(uint depth);
 429 
 430   void packset_sort(int n);
 431 };
 432 
 433 
 434 
 435 //------------------------------SWPointer---------------------------
 436 // Information about an address for dependence checking and vector alignment
 437 class SWPointer VALUE_OBJ_CLASS_SPEC {
 438  protected:
 439   MemNode*    _mem;          // My memory reference node
 440   SuperWord*  _slp;          // SuperWord class
 441 
 442   Node*       _base;         // NULL if unsafe nonheap reference
 443   Node*       _adr;          // address pointer
 444   jint        _scale;        // multipler for iv (in bytes), 0 if no loop iv
 445   jint        _offset;       // constant offset (in bytes)
 446   Node*       _invar;        // invariant offset (in bytes), NULL if none
 447   bool        _negate_invar; // if true then use: (0 - _invar)
 448   Node_Stack* _nstack;       // stack used to record a swpointer trace of variants
 449   bool        _analyze_only; // Used in loop unrolling only for swpointer trace
 450   uint        _stack_idx;    // Used in loop unrolling only for swpointer trace
 451 
 452   PhaseIdealLoop* phase() { return _slp->phase(); }
 453   IdealLoopTree*  lpt()   { return _slp->lpt(); }
 454   PhiNode*        iv()    { return _slp->iv();  } // Induction var
 455 
 456   bool invariant(Node* n) {
 457     Node *n_c = phase()->get_ctrl(n);
 458     return !lpt()->is_member(phase()->get_loop(n_c));
 459   }
 460 
 461   // Match: k*iv + offset
 462   bool scaled_iv_plus_offset(Node* n);
 463   // Match: k*iv where k is a constant that's not zero
 464   bool scaled_iv(Node* n);
 465   // Match: offset is (k [+/- invariant])
 466   bool offset_plus_k(Node* n, bool negate = false);
 467 
 468  public:
 469   enum CMP {
 470     Less          = 1,
 471     Greater       = 2,
 472     Equal         = 4,
 473     NotEqual      = (Less | Greater),
 474     NotComparable = (Less | Greater | Equal)
 475   };
 476 
 477   SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only);
 478   // Following is used to create a temporary object during
 479   // the pattern match of an address expression.
 480   SWPointer(SWPointer* p);
 481 
 482   bool valid()  { return _adr != NULL; }
 483   bool has_iv() { return _scale != 0; }
 484 
 485   Node* base()             { return _base; }
 486   Node* adr()              { return _adr; }
 487   MemNode* mem()           { return _mem; }
 488   int   scale_in_bytes()   { return _scale; }
 489   Node* invar()            { return _invar; }
 490   bool  negate_invar()     { return _negate_invar; }
 491   int   offset_in_bytes()  { return _offset; }
 492   int   memory_size()      { return _mem->memory_size(); }
 493   Node_Stack* node_stack() { return _nstack; }
 494 
 495   // Comparable?
 496   int cmp(SWPointer& q) {
 497     if (valid() && q.valid() &&
 498         (_adr == q._adr || _base == _adr && q._base == q._adr) &&
 499         _scale == q._scale   &&
 500         _invar == q._invar   &&
 501         _negate_invar == q._negate_invar) {
 502       bool overlap = q._offset <   _offset +   memory_size() &&
 503                        _offset < q._offset + q.memory_size();
 504       return overlap ? Equal : (_offset < q._offset ? Less : Greater);
 505     } else {
 506       return NotComparable;
 507     }
 508   }
 509 
 510   bool not_equal(SWPointer& q)    { return not_equal(cmp(q)); }
 511   bool equal(SWPointer& q)        { return equal(cmp(q)); }
 512   bool comparable(SWPointer& q)   { return comparable(cmp(q)); }
 513   static bool not_equal(int cmp)  { return cmp <= NotEqual; }
 514   static bool equal(int cmp)      { return cmp == Equal; }
 515   static bool comparable(int cmp) { return cmp < NotComparable; }
 516 
 517   void print();
 518 };
 519 
 520 
 521 //------------------------------OrderedPair---------------------------
 522 // Ordered pair of Node*.
 523 class OrderedPair VALUE_OBJ_CLASS_SPEC {
 524  protected:
 525   Node* _p1;
 526   Node* _p2;
 527  public:
 528   OrderedPair() : _p1(NULL), _p2(NULL) {}
 529   OrderedPair(Node* p1, Node* p2) {
 530     if (p1->_idx < p2->_idx) {
 531       _p1 = p1; _p2 = p2;
 532     } else {
 533       _p1 = p2; _p2 = p1;
 534     }
 535   }
 536 
 537   bool operator==(const OrderedPair &rhs) {
 538     return _p1 == rhs._p1 && _p2 == rhs._p2;
 539   }
 540   void print() { tty->print("  (%d, %d)", _p1->_idx, _p2->_idx); }
 541 
 542   static const OrderedPair initial;
 543 };
 544 
 545 #endif // SHARE_VM_OPTO_SUPERWORD_HPP