1 /*
   2  * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #ifndef SHARE_VM_OPTO_SUPERWORD_HPP
  25 #define SHARE_VM_OPTO_SUPERWORD_HPP
  26 
  27 #include "opto/loopnode.hpp"
  28 #include "opto/node.hpp"
  29 #include "opto/phaseX.hpp"
  30 #include "opto/vectornode.hpp"
  31 #include "utilities/growableArray.hpp"
  32 
  33 //
  34 //                  S U P E R W O R D   T R A N S F O R M
  35 //
  36 // SuperWords are short, fixed length vectors.
  37 //
  38 // Algorithm from:
  39 //
  40 // Exploiting SuperWord Level Parallelism with
  41 //   Multimedia Instruction Sets
  42 // by
  43 //   Samuel Larsen and Saman Amarasinghe
  44 //   MIT Laboratory for Computer Science
  45 // date
  46 //   May 2000
  47 // published in
  48 //   ACM SIGPLAN Notices
  49 //   Proceedings of ACM PLDI '00,  Volume 35 Issue 5
  50 //
  51 // Definition 3.1 A Pack is an n-tuple, <s1, ...,sn>, where
  52 // s1,...,sn are independent isomorphic statements in a basic
  53 // block.
  54 //
  55 // Definition 3.2 A PackSet is a set of Packs.
  56 //
  57 // Definition 3.3 A Pair is a Pack of size two, where the
  58 // first statement is considered the left element, and the
  59 // second statement is considered the right element.
  60 
  61 class SWPointer;
  62 class OrderedPair;
  63 
  64 // ========================= Dependence Graph =====================
  65 
  66 class DepMem;
  67 
  68 //------------------------------DepEdge---------------------------
  69 // An edge in the dependence graph.  The edges incident to a dependence
  70 // node are threaded through _next_in for incoming edges and _next_out
  71 // for outgoing edges.
  72 class DepEdge : public ResourceObj {
  73  protected:
  74   DepMem* _pred;
  75   DepMem* _succ;
  76   DepEdge* _next_in;   // list of in edges, null terminated
  77   DepEdge* _next_out;  // list of out edges, null terminated
  78 
  79  public:
  80   DepEdge(DepMem* pred, DepMem* succ, DepEdge* next_in, DepEdge* next_out) :
  81     _pred(pred), _succ(succ), _next_in(next_in), _next_out(next_out) {}
  82 
  83   DepEdge* next_in()  { return _next_in; }
  84   DepEdge* next_out() { return _next_out; }
  85   DepMem*  pred()     { return _pred; }
  86   DepMem*  succ()     { return _succ; }
  87 
  88   void print();
  89 };
  90 
  91 //------------------------------DepMem---------------------------
  92 // A node in the dependence graph.  _in_head starts the threaded list of
  93 // incoming edges, and _out_head starts the list of outgoing edges.
  94 class DepMem : public ResourceObj {
  95  protected:
  96   Node*    _node;     // Corresponding ideal node
  97   DepEdge* _in_head;  // Head of list of in edges, null terminated
  98   DepEdge* _out_head; // Head of list of out edges, null terminated
  99 
 100  public:
 101   DepMem(Node* node) : _node(node), _in_head(NULL), _out_head(NULL) {}
 102 
 103   Node*    node()                { return _node;     }
 104   DepEdge* in_head()             { return _in_head;  }
 105   DepEdge* out_head()            { return _out_head; }
 106   void set_in_head(DepEdge* hd)  { _in_head = hd;    }
 107   void set_out_head(DepEdge* hd) { _out_head = hd;   }
 108 
 109   int in_cnt();  // Incoming edge count
 110   int out_cnt(); // Outgoing edge count
 111 
 112   void print();
 113 };
 114 
 115 //------------------------------DepGraph---------------------------
 116 class DepGraph VALUE_OBJ_CLASS_SPEC {
 117  protected:
 118   Arena* _arena;
 119   GrowableArray<DepMem*> _map;
 120   DepMem* _root;
 121   DepMem* _tail;
 122 
 123  public:
 124   DepGraph(Arena* a) : _arena(a), _map(a, 8,  0, NULL) {
 125     _root = new (_arena) DepMem(NULL);
 126     _tail = new (_arena) DepMem(NULL);
 127   }
 128 
 129   DepMem* root() { return _root; }
 130   DepMem* tail() { return _tail; }
 131 
 132   // Return dependence node corresponding to an ideal node
 133   DepMem* dep(Node* node) { return _map.at(node->_idx); }
 134 
 135   // Make a new dependence graph node for an ideal node.
 136   DepMem* make_node(Node* node);
 137 
 138   // Make a new dependence graph edge dprec->dsucc
 139   DepEdge* make_edge(DepMem* dpred, DepMem* dsucc);
 140 
 141   DepEdge* make_edge(Node* pred,   Node* succ)   { return make_edge(dep(pred), dep(succ)); }
 142   DepEdge* make_edge(DepMem* pred, Node* succ)   { return make_edge(pred,      dep(succ)); }
 143   DepEdge* make_edge(Node* pred,   DepMem* succ) { return make_edge(dep(pred), succ);      }
 144 
 145   void init() { _map.clear(); } // initialize
 146 
 147   void print(Node* n)   { dep(n)->print(); }
 148   void print(DepMem* d) { d->print(); }
 149 };
 150 
 151 //------------------------------DepPreds---------------------------
 152 // Iterator over predecessors in the dependence graph and
 153 // non-memory-graph inputs of ideal nodes.
 154 class DepPreds : public StackObj {
 155 private:
 156   Node*    _n;
 157   int      _next_idx, _end_idx;
 158   DepEdge* _dep_next;
 159   Node*    _current;
 160   bool     _done;
 161 
 162 public:
 163   DepPreds(Node* n, DepGraph& dg);
 164   Node* current() { return _current; }
 165   bool  done()    { return _done; }
 166   void  next();
 167 };
 168 
 169 //------------------------------DepSuccs---------------------------
 170 // Iterator over successors in the dependence graph and
 171 // non-memory-graph outputs of ideal nodes.
 172 class DepSuccs : public StackObj {
 173 private:
 174   Node*    _n;
 175   int      _next_idx, _end_idx;
 176   DepEdge* _dep_next;
 177   Node*    _current;
 178   bool     _done;
 179 
 180 public:
 181   DepSuccs(Node* n, DepGraph& dg);
 182   Node* current() { return _current; }
 183   bool  done()    { return _done; }
 184   void  next();
 185 };
 186 
 187 
 188 // ========================= SuperWord =====================
 189 
 190 // -----------------------------SWNodeInfo---------------------------------
 191 // Per node info needed by SuperWord
 192 class SWNodeInfo VALUE_OBJ_CLASS_SPEC {
 193  public:
 194   int         _alignment; // memory alignment for a node
 195   int         _depth;     // Max expression (DAG) depth from block start
 196   const Type* _velt_type; // vector element type
 197   Node_List*  _my_pack;   // pack containing this node
 198 
 199   SWNodeInfo() : _alignment(-1), _depth(0), _velt_type(NULL), _my_pack(NULL) {}
 200   static const SWNodeInfo initial;
 201 };
 202 
 203 // -----------------------------SuperWord---------------------------------
 204 // Transforms scalar operations into packed (superword) operations.
 205 class SuperWord : public ResourceObj {
 206     friend SWPointer;
 207  private:
 208   PhaseIdealLoop* _phase;
 209   Arena*          _arena;
 210   PhaseIterGVN   &_igvn;
 211 
 212   enum consts { top_align = -1, bottom_align = -666 };
 213 
 214   GrowableArray<Node_List*> _packset;    // Packs for the current block
 215 
 216   GrowableArray<int> _bb_idx;            // Map from Node _idx to index within block
 217 
 218   GrowableArray<Node*> _block;           // Nodes in current block
 219   GrowableArray<Node*> _data_entry;      // Nodes with all inputs from outside
 220   GrowableArray<Node*> _mem_slice_head;  // Memory slice head nodes
 221   GrowableArray<Node*> _mem_slice_tail;  // Memory slice tail nodes
 222   GrowableArray<Node*> _iteration_first; // nodes in the generation that has deps from phi
 223   GrowableArray<Node*> _iteration_last;  // nodes in the generation that has deps to   phi
 224   GrowableArray<SWNodeInfo> _node_info;  // Info needed per node
 225   CloneMap&                 _clone_map;  // map of nodes created in cloning
 226 
 227   MemNode* _align_to_ref;                // Memory reference that pre-loop will align to
 228 
 229   GrowableArray<OrderedPair> _disjoint_ptrs; // runtime disambiguated pointer pairs
 230 
 231   DepGraph _dg; // Dependence graph
 232 
 233   // Scratch pads
 234   VectorSet    _visited;       // Visited set
 235   VectorSet    _post_visited;  // Post-visited set
 236   Node_Stack   _n_idx_list;    // List of (node,index) pairs
 237   GrowableArray<Node*> _nlist; // List of nodes
 238   GrowableArray<Node*> _stk;   // Stack of nodes
 239 
 240  public:
 241   SuperWord(PhaseIdealLoop* phase);
 242 
 243   void transform_loop(IdealLoopTree* lpt);
 244 
 245   // Accessors for SWPointer
 246   PhaseIdealLoop* phase()          { return _phase; }
 247   IdealLoopTree* lpt()             { return _lpt; }
 248   PhiNode* iv()                    { return _iv; }
 249 #ifndef PRODUCT
 250   bool     is_debug()              { return _vector_loop_debug > 0; }
 251   bool     is_trace_alignment()    { return (_vector_loop_debug & 2) > 0; }
 252   bool     is_trace_mem_slice()    { return (_vector_loop_debug & 4) > 0; }
 253   bool     is_trace_loop()         { return (_vector_loop_debug & 8) > 0; }
 254   bool     is_trace_adjacent()     { return (_vector_loop_debug & 16) > 0; }
 255 #endif  
 256   bool     do_vector_loop()        { return _do_vector_loop; }
 257  private:
 258   IdealLoopTree* _lpt;             // Current loop tree node
 259   LoopNode*      _lp;              // Current LoopNode
 260   Node*          _bb;              // Current basic block
 261   PhiNode*       _iv;              // Induction var
 262   bool           _race_possible;   // In cases where SDMU is true
 263   bool           _do_vector_loop;  // whether to do vectorization/simd style
 264   int            _num_work_vecs;   // Number of non memory vector operations
 265   int            _num_reductions;  // Number of reduction expressions applied
 266   int            _ii_first;        // generation with direct deps from mem phi
 267   int            _ii_last;         // generation with direct deps to   mem phi
 268   GrowableArray<int> _ii_order; 
 269 #ifndef PRODUCT
 270   uintx          _vector_loop_debug; // provide more printing in debug mode
 271 #endif
 272 
 273   // Accessors
 274   Arena* arena()                   { return _arena; }
 275 
 276   Node* bb()                       { return _bb; }
 277   void  set_bb(Node* bb)           { _bb = bb; }
 278 
 279   void set_lpt(IdealLoopTree* lpt) { _lpt = lpt; }
 280 
 281   LoopNode* lp()                   { return _lp; }
 282   void      set_lp(LoopNode* lp)   { _lp = lp;
 283                                      _iv = lp->as_CountedLoop()->phi()->as_Phi(); }
 284   int      iv_stride()             { return lp()->as_CountedLoop()->stride_con(); }
 285 
 286   int vector_width(Node* n) {
 287     BasicType bt = velt_basic_type(n);
 288     return MIN2(ABS(iv_stride()), Matcher::max_vector_size(bt));
 289   }
 290   int vector_width_in_bytes(Node* n) {
 291     BasicType bt = velt_basic_type(n);
 292     return vector_width(n)*type2aelembytes(bt);
 293   }
 294   MemNode* align_to_ref()            { return _align_to_ref; }
 295   void  set_align_to_ref(MemNode* m) { _align_to_ref = m; }
 296 
 297   Node* ctrl(Node* n) const { return _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n; }
 298 
 299   // block accessors
 300   bool in_bb(Node* n)      { return n != NULL && n->outcnt() > 0 && ctrl(n) == _bb; }
 301   int  bb_idx(Node* n)     { assert(in_bb(n), "must be"); return _bb_idx.at(n->_idx); }
 302   void set_bb_idx(Node* n, int i) { _bb_idx.at_put_grow(n->_idx, i); }
 303 
 304   // visited set accessors
 305   void visited_clear()           { _visited.Clear(); }
 306   void visited_set(Node* n)      { return _visited.set(bb_idx(n)); }
 307   int visited_test(Node* n)      { return _visited.test(bb_idx(n)); }
 308   int visited_test_set(Node* n)  { return _visited.test_set(bb_idx(n)); }
 309   void post_visited_clear()      { _post_visited.Clear(); }
 310   void post_visited_set(Node* n) { return _post_visited.set(bb_idx(n)); }
 311   int post_visited_test(Node* n) { return _post_visited.test(bb_idx(n)); }
 312 
 313   // Ensure node_info contains element "i"
 314   void grow_node_info(int i) { if (i >= _node_info.length()) _node_info.at_put_grow(i, SWNodeInfo::initial); }
 315 
 316   // memory alignment for a node
 317   int alignment(Node* n)                     { return _node_info.adr_at(bb_idx(n))->_alignment; }
 318   void set_alignment(Node* n, int a)         { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_alignment = a; }
 319 
 320   // Max expression (DAG) depth from beginning of the block for each node
 321   int depth(Node* n)                         { return _node_info.adr_at(bb_idx(n))->_depth; }
 322   void set_depth(Node* n, int d)             { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_depth = d; }
 323 
 324   // vector element type
 325   const Type* velt_type(Node* n)             { return _node_info.adr_at(bb_idx(n))->_velt_type; }
 326   BasicType velt_basic_type(Node* n)         { return velt_type(n)->array_element_basic_type(); }
 327   void set_velt_type(Node* n, const Type* t) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_velt_type = t; }
 328   bool same_velt_type(Node* n1, Node* n2);
 329 
 330   // my_pack
 331   Node_List* my_pack(Node* n)                { return !in_bb(n) ? NULL : _node_info.adr_at(bb_idx(n))->_my_pack; }
 332   void set_my_pack(Node* n, Node_List* p)    { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_my_pack = p; }
 333 
 334   // CloneMap utilities
 335   bool same_origin_idx(Node* a, Node* b) const;
 336   bool same_generation(Node* a, Node* b) const;
 337   
 338   // methods
 339 
 340   // Extract the superword level parallelism
 341   void SLP_extract();
 342   // Find the adjacent memory references and create pack pairs for them.
 343   void find_adjacent_refs();
 344   // Find a memory reference to align the loop induction variable to.
 345   MemNode* find_align_to_ref(Node_List &memops);
 346   // Calculate loop's iv adjustment for this memory ops.
 347   int get_iv_adjustment(MemNode* mem);
 348   // Can the preloop align the reference to position zero in the vector?
 349   bool ref_is_alignable(SWPointer& p);
 350   // rebuild the graph so all loads in different iterations of cloned loop become dependant on phi node (in _do_vector_loop only)
 351   bool hoist_loads_in_graph();
 352   // Test whether MemNode::Memory dependency to the same load but in the first iteration of this loop is coming from memory phi
 353   // Return false if failed
 354   Node* find_phi_for_mem_dep(LoadNode* ld);
 355   // Return same node but from the first generation. Return 0, if not found
 356   Node* first_node(Node* nd);
 357   // Return same node as this but from the last generation. Return 0, if not found
 358   Node* last_node(Node* n);
 359   // Mark nodes belonging to first and last generation
 360   // returns first generation index or -1 if vectorization/simd is impossible
 361   int mark_generations();
 362   // swapping inputs of commutative instruction (Add or Mul)
 363   bool fix_commutative_inputs(Node* gold, Node* fix);
 364   // make packs forcefully (in _do_vector_loop only)
 365   bool pack_parallel();
 366   // Construct dependency graph.
 367   void dependence_graph();
 368   // Return a memory slice (node list) in predecessor order starting at "start"
 369   void mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds);
 370   // Can s1 and s2 be in a pack with s1 immediately preceding s2 and  s1 aligned at "align"
 371   bool stmts_can_pack(Node* s1, Node* s2, int align);
 372   // Does s exist in a pack at position pos?
 373   bool exists_at(Node* s, uint pos);
 374   // Is s1 immediately before s2 in memory?
 375   bool are_adjacent_refs(Node* s1, Node* s2);
 376   // Are s1 and s2 similar?
 377   bool isomorphic(Node* s1, Node* s2);
 378   // Is there no data path from s1 to s2 or s2 to s1?
 379   bool independent(Node* s1, Node* s2);
 380   // Is there a data path between s1 and s2 and both are reductions?
 381   bool reduction(Node* s1, Node* s2);
 382   // Helper for independent
 383   bool independent_path(Node* shallow, Node* deep, uint dp=0);
 384   void set_alignment(Node* s1, Node* s2, int align);
 385   int data_size(Node* s);
 386   // Extend packset by following use->def and def->use links from pack members.
 387   void extend_packlist();
 388   // Extend the packset by visiting operand definitions of nodes in pack p
 389   bool follow_use_defs(Node_List* p);
 390   // Extend the packset by visiting uses of nodes in pack p
 391   bool follow_def_uses(Node_List* p);
 392   // For extended packsets, ordinally arrange uses packset by major component
 393   void order_def_uses(Node_List* p);
 394   // Estimate the savings from executing s1 and s2 as a pack
 395   int est_savings(Node* s1, Node* s2);
 396   int adjacent_profit(Node* s1, Node* s2);
 397   int pack_cost(int ct);
 398   int unpack_cost(int ct);
 399   // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
 400   void combine_packs();
 401   // Construct the map from nodes to packs.
 402   void construct_my_pack_map();
 403   // Remove packs that are not implemented or not profitable.
 404   void filter_packs();
 405   // Adjust the memory graph for the packed operations
 406   void schedule();
 407   // Remove "current" from its current position in the memory graph and insert
 408   // it after the appropriate insert points (lip or uip);
 409   void remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip, Node *uip, Unique_Node_List &schd_before);
 410   // Within a store pack, schedule stores together by moving out the sandwiched memory ops according
 411   // to dependence info; and within a load pack, move loads down to the last executed load.
 412   void co_locate_pack(Node_List* p);
 413   // Convert packs into vector node operations
 414   void output();
 415   // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
 416   Node* vector_opd(Node_List* p, int opd_idx);
 417   // Can code be generated for pack p?
 418   bool implemented(Node_List* p);
 419   // For pack p, are all operands and all uses (with in the block) vector?
 420   bool profitable(Node_List* p);
 421   // If a use of pack p is not a vector use, then replace the use with an extract operation.
 422   void insert_extracts(Node_List* p);
 423   // Is use->in(u_idx) a vector use?
 424   bool is_vector_use(Node* use, int u_idx);
 425   // Construct reverse postorder list of block members
 426   bool construct_bb();
 427   // Initialize per node info
 428   void initialize_bb();
 429   // Insert n into block after pos
 430   void bb_insert_after(Node* n, int pos);
 431   // Compute max depth for expressions from beginning of block
 432   void compute_max_depth();
 433   // Compute necessary vector element type for expressions
 434   void compute_vector_element_type();
 435   // Are s1 and s2 in a pack pair and ordered as s1,s2?
 436   bool in_packset(Node* s1, Node* s2);
 437   // Is s in pack p?
 438   Node_List* in_pack(Node* s, Node_List* p);
 439   // Remove the pack at position pos in the packset
 440   void remove_pack_at(int pos);
 441   // Return the node executed first in pack p.
 442   Node* executed_first(Node_List* p);
 443   // Return the node executed last in pack p.
 444   Node* executed_last(Node_List* p);
 445   static LoadNode::ControlDependency control_dependency(Node_List* p);
 446   // Alignment within a vector memory reference
 447   int memory_alignment(MemNode* s, int iv_adjust);
 448   // (Start, end] half-open range defining which operands are vector
 449   void vector_opd_range(Node* n, uint* start, uint* end);
 450   // Smallest type containing range of values
 451   const Type* container_type(Node* n);
 452   // Adjust pre-loop limit so that in main loop, a load/store reference
 453   // to align_to_ref will be a position zero in the vector.
 454   void align_initial_loop_index(MemNode* align_to_ref);
 455   // Find pre loop end from main loop.  Returns null if none.
 456   CountedLoopEndNode* get_pre_loop_end(CountedLoopNode *cl);
 457   // Is the use of d1 in u1 at the same operand position as d2 in u2?
 458   bool opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2);
 459   void init();
 460   // clean up some basic structures - used if the ideal graph was rebuilt
 461   void restart();
 462 
 463   // print methods
 464   void print_packset();
 465   void print_pack(Node_List* p);
 466   void print_bb();
 467   void print_stmt(Node* s);
 468   char* blank(uint depth);
 469 
 470   void packset_sort(int n);
 471 };
 472 
 473 
 474 
 475 //------------------------------SWPointer---------------------------
 476 // Information about an address for dependence checking and vector alignment
 477 class SWPointer VALUE_OBJ_CLASS_SPEC {
 478  protected:
 479   MemNode*   _mem;     // My memory reference node
 480   SuperWord* _slp;     // SuperWord class
 481 
 482   Node* _base;         // NULL if unsafe nonheap reference
 483   Node* _adr;          // address pointer
 484   jint  _scale;        // multiplier for iv (in bytes), 0 if no loop iv
 485   jint  _offset;       // constant offset (in bytes)
 486   Node* _invar;        // invariant offset (in bytes), NULL if none
 487   bool  _negate_invar; // if true then use: (0 - _invar)
 488 #ifndef PRODUCT  
 489   static int   _depth; // depth of the current syntax clause in the syntax expression (for debug only)
 490 #endif
 491   PhaseIdealLoop* phase() { return _slp->phase(); }
 492   IdealLoopTree*  lpt()   { return _slp->lpt(); }
 493   PhiNode*        iv()    { return _slp->iv();  } // Induction var
 494 
 495   bool invariant(Node* n);
 496 
 497   // Match: k*iv + offset
 498   bool scaled_iv_plus_offset(Node* n);
 499   // Match: k*iv where k is a constant that's not zero
 500   bool scaled_iv(Node* n);
 501   // Match: offset is (k [+/- invariant])
 502   bool offset_plus_k(Node* n, bool negate = false);
 503 
 504  public:
 505   enum CMP {
 506     Less          = 1,
 507     Greater       = 2,
 508     Equal         = 4,
 509     NotEqual      = (Less | Greater),
 510     NotComparable = (Less | Greater | Equal)
 511   };
 512 
 513   SWPointer(MemNode* mem, SuperWord* slp);
 514   // Following is used to create a temporary object during
 515   // the pattern match of an address expression.
 516   SWPointer(SWPointer* p);
 517 
 518   bool valid()  { return _adr != NULL; }
 519   bool has_iv() { return _scale != 0; }
 520 
 521   Node* base()            { return _base; }
 522   Node* adr()             { return _adr; }
 523   MemNode* mem()          { return _mem; }
 524   int   scale_in_bytes()  { return _scale; }
 525   Node* invar()           { return _invar; }
 526   bool  negate_invar()    { return _negate_invar; }
 527   int   offset_in_bytes() { return _offset; }
 528   int   memory_size()     { return _mem->memory_size(); }
 529 
 530   // Comparable?
 531   int cmp(SWPointer& q) {
 532     if (valid() && q.valid() &&
 533         (_adr == q._adr || _base == _adr && q._base == q._adr) &&
 534         _scale == q._scale   &&
 535         _invar == q._invar   &&
 536         _negate_invar == q._negate_invar) {
 537       bool overlap = q._offset <   _offset +   memory_size() &&
 538                        _offset < q._offset + q.memory_size();
 539       return overlap ? Equal : (_offset < q._offset ? Less : Greater);
 540     } else {
 541       return NotComparable;
 542     }
 543   }
 544 
 545   bool not_equal(SWPointer& q)    { return not_equal(cmp(q)); }
 546   bool equal(SWPointer& q)        { return equal(cmp(q)); }
 547   bool comparable(SWPointer& q)   { return comparable(cmp(q)); }
 548   static bool not_equal(int cmp)  { return cmp <= NotEqual; }
 549   static bool equal(int cmp)      { return cmp == Equal; }
 550   static bool comparable(int cmp) { return cmp < NotComparable; }
 551 
 552   void print();
 553 #ifndef PRODUCT
 554   void print_depth();
 555   int  depth() { return _depth; }
 556   void set_depth(int d) { _depth = d; }
 557   void inc_depth() { _depth++;}
 558   void dec_depth() { if (_depth > 0) _depth--;}
 559 #endif  
 560  
 561  class Depth {
 562     friend SWPointer;
 563 #ifndef PRODUCT
 564     Depth()  { ++_depth; }
 565     ~Depth() { if (_depth > 0) _depth--;}
 566 #endif    
 567   };
 568 };
 569 
 570 
 571 //------------------------------OrderedPair---------------------------
 572 // Ordered pair of Node*.
 573 class OrderedPair VALUE_OBJ_CLASS_SPEC {
 574  protected:
 575   Node* _p1;
 576   Node* _p2;
 577  public:
 578   OrderedPair() : _p1(NULL), _p2(NULL) {}
 579   OrderedPair(Node* p1, Node* p2) {
 580     if (p1->_idx < p2->_idx) {
 581       _p1 = p1; _p2 = p2;
 582     } else {
 583       _p1 = p2; _p2 = p1;
 584     }
 585   }
 586 
 587   bool operator==(const OrderedPair &rhs) {
 588     return _p1 == rhs._p1 && _p2 == rhs._p2;
 589   }
 590   void print() { tty->print("  (%d, %d)", _p1->_idx, _p2->_idx); }
 591 
 592   static const OrderedPair initial;
 593 };
 594 
 595 #endif // SHARE_VM_OPTO_SUPERWORD_HPP