/* * Copyright (c) 2013, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package org.graalvm.compiler.phases.common; import java.util.ArrayList; import java.util.HashSet; import java.util.Iterator; import java.util.List; import org.graalvm.compiler.debug.Debug; import org.graalvm.compiler.debug.DebugCounter; import org.graalvm.compiler.graph.Node; import org.graalvm.compiler.graph.iterators.NodeIterable; import org.graalvm.compiler.nodes.AbstractBeginNode; import org.graalvm.compiler.nodes.ControlSplitNode; import org.graalvm.compiler.nodes.GuardNode; import org.graalvm.compiler.nodes.StartNode; import org.graalvm.compiler.nodes.StructuredGraph; import org.graalvm.compiler.nodes.cfg.Block; import org.graalvm.compiler.nodes.cfg.ControlFlowGraph; import org.graalvm.compiler.nodes.extended.AnchoringNode; import org.graalvm.compiler.phases.Phase; public class OptimizeGuardAnchorsPhase extends Phase { private static final DebugCounter counterGuardsAnchorOptimized = Debug.counter("GuardsAnchorOptimized"); private static final DebugCounter counterGuardsOptimizedAtSplit = Debug.counter("GuardsOptimizedAtSplit"); public static class LazyCFG extends LazyValue { public LazyCFG(StructuredGraph graph) { super(() -> ControlFlowGraph.compute(graph, true, false, true, true)); } } @Override protected void run(StructuredGraph graph) { if (!graph.getGuardsStage().allowsFloatingGuards()) { return; } LazyCFG cfg = new LazyCFG(graph); for (AbstractBeginNode begin : graph.getNodes(AbstractBeginNode.TYPE)) { if (!(begin instanceof StartNode || begin.predecessor() instanceof ControlSplitNode)) { NodeIterable guards = begin.guards(); if (guards.isNotEmpty()) { AbstractBeginNode newAnchor = computeOptimalAnchor(cfg.get(), begin); // newAnchor == begin is possible because postdominator computation assumes that // loops never end if (newAnchor != begin) { for (GuardNode guard : guards.snapshot()) { guard.setAnchor(newAnchor); } counterGuardsAnchorOptimized.increment(); } } } } for (ControlSplitNode controlSplit : graph.getNodes(ControlSplitNode.TYPE)) { optimizeAtControlSplit(controlSplit, cfg); } } public static AbstractBeginNode getOptimalAnchor(LazyCFG cfg, AbstractBeginNode begin) { if (begin instanceof StartNode || begin.predecessor() instanceof ControlSplitNode) { return begin; } return computeOptimalAnchor(cfg.get(), begin); } private static AbstractBeginNode computeOptimalAnchor(ControlFlowGraph cfg, AbstractBeginNode begin) { Block anchor = cfg.blockFor(begin); while (anchor.getDominator() != null && anchor.getDominator().getPostdominator() == anchor) { anchor = anchor.getDominator(); } return anchor.getBeginNode(); } private static void optimizeAtControlSplit(ControlSplitNode controlSplit, LazyCFG cfg) { AbstractBeginNode successor = findMinimumUsagesSuccessor(controlSplit); int successorCount = controlSplit.successors().count(); for (GuardNode guard : successor.guards().snapshot()) { if (guard.isDeleted() || guard.getCondition().getUsageCount() < successorCount) { continue; } List otherGuards = new ArrayList<>(successorCount - 1); HashSet successorsWithoutGuards = new HashSet<>(controlSplit.successors().count()); controlSplit.successors().snapshotTo(successorsWithoutGuards); successorsWithoutGuards.remove(guard.getAnchor()); for (GuardNode conditonGuard : guard.getCondition().usages().filter(GuardNode.class)) { if (conditonGuard != guard) { AnchoringNode conditionGuardAnchor = conditonGuard.getAnchor(); if (conditionGuardAnchor.asNode().predecessor() == controlSplit && compatibleGuards(guard, conditonGuard)) { otherGuards.add(conditonGuard); successorsWithoutGuards.remove(conditionGuardAnchor); } } } if (successorsWithoutGuards.isEmpty()) { assert otherGuards.size() >= successorCount - 1; AbstractBeginNode anchor = computeOptimalAnchor(cfg.get(), AbstractBeginNode.prevBegin(controlSplit)); GuardNode newGuard = controlSplit.graph().unique(new GuardNode(guard.getCondition(), anchor, guard.getReason(), guard.getAction(), guard.isNegated(), guard.getSpeculation())); for (GuardNode otherGuard : otherGuards) { otherGuard.replaceAndDelete(newGuard); } guard.replaceAndDelete(newGuard); counterGuardsOptimizedAtSplit.increment(); } otherGuards.clear(); } } private static boolean compatibleGuards(GuardNode guard, GuardNode conditonGuard) { return conditonGuard.isNegated() == guard.isNegated() && conditonGuard.getAction() == guard.getAction() && conditonGuard.getReason() == guard.getReason() && conditonGuard.getSpeculation().equals(guard.getSpeculation()); } private static AbstractBeginNode findMinimumUsagesSuccessor(ControlSplitNode controlSplit) { Iterator successors = controlSplit.successors().iterator(); AbstractBeginNode min = (AbstractBeginNode) successors.next(); int minUsages = min.getUsageCount(); while (successors.hasNext()) { AbstractBeginNode successor = (AbstractBeginNode) successors.next(); int count = successor.getUsageCount(); if (count < minUsages) { minUsages = count; min = successor; } } return min; } }