1 /*
   2  * Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 package org.graalvm.compiler.nodes.calc;
  24 
  25 import org.graalvm.compiler.core.common.type.ArithmeticOpTable;
  26 import org.graalvm.compiler.core.common.type.ArithmeticOpTable.BinaryOp;
  27 import org.graalvm.compiler.core.common.type.ArithmeticOpTable.BinaryOp.Sub;
  28 import org.graalvm.compiler.core.common.type.IntegerStamp;
  29 import org.graalvm.compiler.core.common.type.Stamp;
  30 import org.graalvm.compiler.core.common.type.StampFactory;
  31 import org.graalvm.compiler.graph.NodeClass;
  32 import org.graalvm.compiler.graph.spi.CanonicalizerTool;
  33 import org.graalvm.compiler.lir.gen.ArithmeticLIRGeneratorTool;
  34 import org.graalvm.compiler.nodeinfo.NodeInfo;
  35 import org.graalvm.compiler.nodes.ConstantNode;
  36 import org.graalvm.compiler.nodes.ValueNode;
  37 import org.graalvm.compiler.nodes.spi.NodeLIRBuilderTool;
  38 import org.graalvm.compiler.nodes.util.GraphUtil;
  39 
  40 import jdk.vm.ci.meta.Constant;
  41 import jdk.vm.ci.meta.PrimitiveConstant;
  42 
  43 @NodeInfo(shortName = "-")
  44 public class SubNode extends BinaryArithmeticNode<Sub> implements NarrowableArithmeticNode {
  45 
  46     public static final NodeClass<SubNode> TYPE = NodeClass.create(SubNode.class);
  47 
  48     public SubNode(ValueNode x, ValueNode y) {
  49         this(TYPE, x, y);
  50     }
  51 
  52     protected SubNode(NodeClass<? extends SubNode> c, ValueNode x, ValueNode y) {
  53         super(c, ArithmeticOpTable::getSub, x, y);
  54     }
  55 
  56     public static ValueNode create(ValueNode x, ValueNode y) {
  57         BinaryOp<Sub> op = ArithmeticOpTable.forStamp(x.stamp()).getSub();
  58         Stamp stamp = op.foldStamp(x.stamp(), y.stamp());
  59         ConstantNode tryConstantFold = tryConstantFold(op, x, y, stamp);
  60         if (tryConstantFold != null) {
  61             return tryConstantFold;
  62         } else {
  63             return new SubNode(x, y);
  64         }
  65     }
  66 
  67     @SuppressWarnings("hiding")
  68     @Override
  69     public ValueNode canonical(CanonicalizerTool tool, ValueNode forX, ValueNode forY) {
  70         ValueNode ret = super.canonical(tool, forX, forY);
  71         if (ret != this) {
  72             return ret;
  73         }
  74 
  75         BinaryOp<Sub> op = getOp(forX, forY);
  76         if (GraphUtil.unproxify(forX) == GraphUtil.unproxify(forY)) {
  77             Constant zero = op.getZero(forX.stamp());
  78             if (zero != null) {
  79                 return ConstantNode.forPrimitive(stamp(), zero);
  80             }
  81         }
  82         boolean associative = op.isAssociative();
  83         if (associative) {
  84             if (forX instanceof AddNode) {
  85                 AddNode x = (AddNode) forX;
  86                 if (x.getY() == forY) {
  87                     // (a + b) - b
  88                     return x.getX();
  89                 }
  90                 if (x.getX() == forY) {
  91                     // (a + b) - a
  92                     return x.getY();
  93                 }
  94             } else if (forX instanceof SubNode) {
  95                 SubNode x = (SubNode) forX;
  96                 if (x.getX() == forY) {
  97                     // (a - b) - a
  98                     return new NegateNode(x.getY());
  99                 }
 100             }
 101             if (forY instanceof AddNode) {
 102                 AddNode y = (AddNode) forY;
 103                 if (y.getX() == forX) {
 104                     // a - (a + b)
 105                     return new NegateNode(y.getY());
 106                 }
 107                 if (y.getY() == forX) {
 108                     // b - (a + b)
 109                     return new NegateNode(y.getX());
 110                 }
 111             } else if (forY instanceof SubNode) {
 112                 SubNode y = (SubNode) forY;
 113                 if (y.getX() == forX) {
 114                     // a - (a - b)
 115                     return y.getY();
 116                 }
 117             }
 118         }
 119         if (forY.isConstant()) {
 120             Constant c = forY.asConstant();
 121             if (op.isNeutral(c)) {
 122                 return forX;
 123             }
 124             if (associative) {
 125                 BinaryNode reassociated = reassociate(this, ValueNode.isConstantPredicate(), forX, forY);
 126                 if (reassociated != this) {
 127                     return reassociated;
 128                 }
 129             }
 130             if (c instanceof PrimitiveConstant && ((PrimitiveConstant) c).getJavaKind().isNumericInteger()) {
 131                 long i = ((PrimitiveConstant) c).asLong();
 132                 if (i < 0 || ((IntegerStamp) StampFactory.forKind(forY.getStackKind())).contains(-i)) {
 133                     // Adding a negative is more friendly to the backend since adds are
 134                     // commutative, so prefer add when it fits.
 135                     return BinaryArithmeticNode.add(forX, ConstantNode.forIntegerStamp(stamp(), -i));
 136                 }
 137             }
 138         } else if (forX.isConstant()) {
 139             Constant c = forX.asConstant();
 140             if (ArithmeticOpTable.forStamp(stamp()).getAdd().isNeutral(c)) {
 141                 /*
 142                  * Note that for floating point numbers, + and - have different neutral elements. We
 143                  * have to test for the neutral element of +, because we are doing this
 144                  * transformation: 0 - x == (-x) + 0 == -x.
 145                  */
 146                 return new NegateNode(forY);
 147             }
 148             if (associative) {
 149                 return reassociate(this, ValueNode.isConstantPredicate(), forX, forY);
 150             }
 151         }
 152         if (forY instanceof NegateNode) {
 153             return BinaryArithmeticNode.add(forX, ((NegateNode) forY).getValue());
 154         }
 155         return this;
 156     }
 157 
 158     @Override
 159     public void generate(NodeLIRBuilderTool nodeValueMap, ArithmeticLIRGeneratorTool gen) {
 160         nodeValueMap.setResult(this, gen.emitSub(nodeValueMap.operand(getX()), nodeValueMap.operand(getY()), false));
 161     }
 162 }