< prev index next >

src/java.desktop/share/classes/sun/java2d/marlin/Renderer.java

Print this page


   1 /*
   2  * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d.marlin;
  27 
  28 import java.util.Arrays;
  29 import sun.awt.geom.PathConsumer2D;
  30 import static sun.java2d.marlin.OffHeapArray.SIZE_INT;
  31 import jdk.internal.misc.Unsafe;
  32 
  33 final class Renderer implements PathConsumer2D, MarlinConst {
  34 
  35     static final boolean DISABLE_RENDER = false;
  36 
  37     static final boolean ENABLE_BLOCK_FLAGS = MarlinProperties.isUseTileFlags();
  38     static final boolean ENABLE_BLOCK_FLAGS_HEURISTICS = MarlinProperties.isUseTileFlagsWithHeuristics();
  39 
  40     private static final int ALL_BUT_LSB = 0xfffffffe;
  41     private static final int ERR_STEP_MAX = 0x7fffffff; // = 2^31 - 1
  42 
  43     private static final double POWER_2_TO_32 = 0x1.0p32;
  44 
  45     // use float to make tosubpix methods faster (no int to float conversion)
  46     public static final float F_SUBPIXEL_POSITIONS_X
  47         = (float) SUBPIXEL_POSITIONS_X;
  48     public static final float F_SUBPIXEL_POSITIONS_Y
  49         = (float) SUBPIXEL_POSITIONS_Y;
  50     public static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
  51     public static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;
  52 
  53     // number of subpixels corresponding to a tile line
  54     private static final int SUBPIXEL_TILE
  55         = TILE_SIZE << SUBPIXEL_LG_POSITIONS_Y;
  56 
  57     // 2048 (pixelSize) pixels (height) x 8 subpixels = 64K
  58     static final int INITIAL_BUCKET_ARRAY
  59         = INITIAL_PIXEL_DIM * SUBPIXEL_POSITIONS_Y;
  60 
  61     // crossing capacity = edges count / 8 ~ 512
  62     static final int INITIAL_CROSSING_COUNT = INITIAL_EDGES_COUNT >> 3;
  63 
  64     public static final int WIND_EVEN_ODD = 0;
  65     public static final int WIND_NON_ZERO = 1;
  66 
  67     // common to all types of input path segments.
  68     // OFFSET as bytes
  69     // only integer values:
  70     public static final long OFF_CURX_OR  = 0;
  71     public static final long OFF_ERROR    = OFF_CURX_OR  + SIZE_INT;
  72     public static final long OFF_BUMP_X   = OFF_ERROR    + SIZE_INT;
  73     public static final long OFF_BUMP_ERR = OFF_BUMP_X   + SIZE_INT;
  74     public static final long OFF_NEXT     = OFF_BUMP_ERR + SIZE_INT;
  75     public static final long OFF_YMAX     = OFF_NEXT     + SIZE_INT;
  76 
  77     // size of one edge in bytes
  78     public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT);
  79 
  80     // curve break into lines
  81     // cubic error in subpixels to decrement step
  82     private static final float CUB_DEC_ERR_SUBPIX
  83         = 2.5f * (NORM_SUBPIXELS / 8f); // 2.5 subpixel for typical 8x8 subpixels
  84     // cubic error in subpixels to increment step
  85     private static final float CUB_INC_ERR_SUBPIX
  86         = 1f * (NORM_SUBPIXELS / 8f); // 1 subpixel for typical 8x8 subpixels
  87 
  88     // cubic bind length to decrement step = 8 * error in subpixels
  89     // pisces: 20 / 8
  90     // openjfx pisces: 8 / 3.2
  91     // multiply by 8 = error scale factor:
  92     public static final float CUB_DEC_BND
  93         = 8f * CUB_DEC_ERR_SUBPIX; // 20f means 2.5 subpixel error
  94     // cubic bind length to increment step = 8 * error in subpixels
  95     public static final float CUB_INC_BND
  96         = 8f * CUB_INC_ERR_SUBPIX; // 8f means 1 subpixel error
  97 
  98     // cubic countlg
  99     public static final int CUB_COUNT_LG = 2;
 100     // cubic count = 2^countlg
 101     private static final int CUB_COUNT = 1 << CUB_COUNT_LG;
 102     // cubic count^2 = 4^countlg
 103     private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG);
 104     // cubic count^3 = 8^countlg
 105     private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG);
 106     // cubic dt = 1 / count
 107     private static final float CUB_INV_COUNT = 1f / CUB_COUNT;
 108     // cubic dt^2 = 1 / count^2 = 1 / 4^countlg
 109     private static final float CUB_INV_COUNT_2 = 1f / CUB_COUNT_2;
 110     // cubic dt^3 = 1 / count^3 = 1 / 8^countlg
 111     private static final float CUB_INV_COUNT_3 = 1f / CUB_COUNT_3;
 112 
 113     // quad break into lines
 114     // quadratic error in subpixels
 115     private static final float QUAD_DEC_ERR_SUBPIX
 116         = 1f * (NORM_SUBPIXELS / 8f); // 1 subpixel for typical 8x8 subpixels



 117 
 118     // quadratic bind length to decrement step = 8 * error in subpixels
 119     // pisces and openjfx pisces: 32
 120     public static final float QUAD_DEC_BND
 121         = 8f * QUAD_DEC_ERR_SUBPIX; // 8f means 1 subpixel error
 122 
 123 //////////////////////////////////////////////////////////////////////////////
 124 //  SCAN LINE
 125 //////////////////////////////////////////////////////////////////////////////
 126     // crossings ie subpixel edge x coordinates
 127     private int[] crossings;
 128     // auxiliary storage for crossings (merge sort)
 129     private int[] aux_crossings;
 130 
 131     // indices into the segment pointer lists. They indicate the "active"
 132     // sublist in the segment lists (the portion of the list that contains
 133     // all the segments that cross the next scan line).
 134     private int edgeCount;
 135     private int[] edgePtrs;
 136     // auxiliary storage for edge pointers (merge sort)
 137     private int[] aux_edgePtrs;
 138 
 139     // max used for both edgePtrs and crossings (stats only)
 140     private int activeEdgeMaxUsed;
 141 
 142     // crossings ref (dirty)
 143     private final IntArrayCache.Reference crossings_ref;
 144     // edgePtrs ref (dirty)
 145     private final IntArrayCache.Reference edgePtrs_ref;
 146     // merge sort initial arrays (large enough to satisfy most usages) (1024)
 147     // aux_crossings ref (dirty)
 148     private final IntArrayCache.Reference aux_crossings_ref;
 149     // aux_edgePtrs ref (dirty)
 150     private final IntArrayCache.Reference aux_edgePtrs_ref;
 151 
 152 //////////////////////////////////////////////////////////////////////////////
 153 //  EDGE LIST
 154 //////////////////////////////////////////////////////////////////////////////
 155     private int edgeMinY = Integer.MAX_VALUE;
 156     private int edgeMaxY = Integer.MIN_VALUE;
 157     private float edgeMinX = Float.POSITIVE_INFINITY;
 158     private float edgeMaxX = Float.NEGATIVE_INFINITY;
 159 
 160     // edges [floats|ints] stored in off-heap memory
 161     private final OffHeapArray edges;
 162 
 163     private int[] edgeBuckets;
 164     private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed)
 165     // used range for edgeBuckets / edgeBucketCounts
 166     private int buckets_minY;
 167     private int buckets_maxY;
 168     // sum of each edge delta Y (subpixels)
 169     private int edgeSumDeltaY;
 170 
 171     // edgeBuckets ref (clean)
 172     private final IntArrayCache.Reference edgeBuckets_ref;
 173     // edgeBucketCounts ref (clean)
 174     private final IntArrayCache.Reference edgeBucketCounts_ref;
 175 
 176     // Flattens using adaptive forward differencing. This only carries out
 177     // one iteration of the AFD loop. All it does is update AFD variables (i.e.
 178     // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
 179     private void quadBreakIntoLinesAndAdd(float x0, float y0,
 180                                           final Curve c,
 181                                           final float x2, final float y2)
 182     {
 183         int count = 1; // dt = 1 / count
 184 
 185         // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1)
 186         float maxDD = FloatMath.max(Math.abs(c.dbx), Math.abs(c.dby));
 187 
 188         final float _DEC_BND = QUAD_DEC_BND;
 189 
 190         while (maxDD >= _DEC_BND) {
 191             // divide step by half:
 192             maxDD /= 4f; // error divided by 2^2 = 4
 193 
 194             count <<= 1;
 195             if (DO_STATS) {
 196                 rdrCtx.stats.stat_rdr_quadBreak_dec.add(count);
 197             }
 198         }
 199 
 200         int nL = 0; // line count
 201         if (count > 1) {
 202             final float icount = 1f / count; // dt
 203             final float icount2 = icount * icount; // dt^2
 204 
 205             final float ddx = c.dbx * icount2;
 206             final float ddy = c.dby * icount2;
 207             float dx = c.bx * icount2 + c.cx * icount;
 208             float dy = c.by * icount2 + c.cy * icount;
 209 
 210             float x1, y1;
 211 
 212             while (--count > 0) {
 213                 x1 = x0 + dx;
 214                 dx += ddx;
 215                 y1 = y0 + dy;
 216                 dy += ddy;
 217 
 218                 addLine(x0, y0, x1, y1);
 219 
 220                 if (DO_STATS) { nL++; }
 221                 x0 = x1;
 222                 y0 = y1;


 229         }
 230     }
 231 
 232     // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
 233     // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
 234     // numerical errors, and our callers already have the exact values.
 235     // Another alternative would be to pass all the control points, and call
 236     // c.set here, but then too many numbers are passed around.
 237     private void curveBreakIntoLinesAndAdd(float x0, float y0,
 238                                            final Curve c,
 239                                            final float x3, final float y3)
 240     {
 241         int count           = CUB_COUNT;
 242         final float icount  = CUB_INV_COUNT;   // dt
 243         final float icount2 = CUB_INV_COUNT_2; // dt^2
 244         final float icount3 = CUB_INV_COUNT_3; // dt^3
 245 
 246         // the dx and dy refer to forward differencing variables, not the last
 247         // coefficients of the "points" polynomial
 248         float dddx, dddy, ddx, ddy, dx, dy;
 249         dddx = 2f * c.dax * icount3;
 250         dddy = 2f * c.day * icount3;
 251         ddx = dddx + c.dbx * icount2;
 252         ddy = dddy + c.dby * icount2;
 253         dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount;
 254         dy = c.ay * icount3 + c.by * icount2 + c.cy * icount;
 255 
 256         // we use x0, y0 to walk the line
 257         float x1 = x0, y1 = y0;
 258         int nL = 0; // line count
 259 
 260         final float _DEC_BND = CUB_DEC_BND;
 261         final float _INC_BND = CUB_INC_BND;
 262 
 263         while (count > 0) {
 264             // divide step by half:
 265             while (Math.abs(ddx) >= _DEC_BND || Math.abs(ddy) >= _DEC_BND) {
 266                 dddx /= 8f;
 267                 dddy /= 8f;
 268                 ddx = ddx/4f - dddx;
 269                 ddy = ddy/4f - dddy;
 270                 dx = (dx - ddx) / 2f;
 271                 dy = (dy - ddy) / 2f;
 272 
 273                 count <<= 1;
 274                 if (DO_STATS) {
 275                     rdrCtx.stats.stat_rdr_curveBreak_dec.add(count);
 276                 }
 277             }
 278 
 279             // double step:
 280             // TODO: why use first derivative dX|Y instead of second ddX|Y ?
 281             // both scale changes should use speed or acceleration to have the same metric.
 282 
 283             // can only do this on even "count" values, because we must divide count by 2
 284             while (count % 2 == 0
 285                    && Math.abs(dx) <= _INC_BND && Math.abs(dy) <= _INC_BND)
 286             {
 287                 dx = 2f * dx + ddx;
 288                 dy = 2f * dy + ddy;
 289                 ddx = 4f * (ddx + dddx);
 290                 ddy = 4f * (ddy + dddy);
 291                 dddx *= 8f;
 292                 dddy *= 8f;
 293 
 294                 count >>= 1;
 295                 if (DO_STATS) {
 296                     rdrCtx.stats.stat_rdr_curveBreak_inc.add(count);
 297                 }
 298             }
 299             if (--count > 0) {
 300                 x1 += dx;
 301                 dx += ddx;
 302                 ddx += dddx;
 303                 y1 += dy;
 304                 dy += ddy;
 305                 ddy += dddy;
 306             } else {
 307                 x1 = x3;
 308                 y1 = y3;
 309             }
 310 
 311             addLine(x0, y0, x1, y1);
 312 


 320     }
 321 
 322     private void addLine(float x1, float y1, float x2, float y2) {
 323         if (DO_MONITORS) {
 324             rdrCtx.stats.mon_rdr_addLine.start();
 325         }
 326         if (DO_STATS) {
 327             rdrCtx.stats.stat_rdr_addLine.add(1);
 328         }
 329         int or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
 330         if (y2 < y1) {
 331             or = 0;
 332             float tmp = y2;
 333             y2 = y1;
 334             y1 = tmp;
 335             tmp = x2;
 336             x2 = x1;
 337             x1 = tmp;
 338         }
 339 
 340         // convert subpixel coordinates (float) into pixel positions (int)
 341 
 342         // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5)
 343         // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply
 344         // ceil(y1) or ceil(y2)
 345         // upper integer (inclusive)
 346         final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY);
 347 
 348         // note: use boundsMaxY (last Y exclusive) to compute correct coverage
 349         // upper integer (exclusive)
 350         final int lastCrossing  = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY);
 351 
 352         /* skip horizontal lines in pixel space and clip edges
 353            out of y range [boundsMinY; boundsMaxY] */
 354         if (firstCrossing >= lastCrossing) {
 355             if (DO_MONITORS) {
 356                 rdrCtx.stats.mon_rdr_addLine.stop();
 357             }
 358             if (DO_STATS) {
 359                 rdrCtx.stats.stat_rdr_addLine_skip.add(1);
 360             }
 361             return;
 362         }
 363 
 364         // edge min/max X/Y are in subpixel space (inclusive) within bounds:
 365         // note: Use integer crossings to ensure consistent range within
 366         // edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0)
 367         if (firstCrossing < edgeMinY) {
 368             edgeMinY = firstCrossing;
 369         }
 370         if (lastCrossing > edgeMaxY) {
 371             edgeMaxY = lastCrossing;
 372         }
 373 
 374         // Use double-precision for improved accuracy:
 375         final double x1d   = x1;
 376         final double y1d   = y1;
 377         final double slope = (x1d - x2) / (y1d - y2);
 378 
 379         if (slope >= 0.0) { // <==> x1 < x2
 380             if (x1 < edgeMinX) {
 381                 edgeMinX = x1;
 382             }
 383             if (x2 > edgeMaxX) {
 384                 edgeMaxX = x2;
 385             }
 386         } else {
 387             if (x2 < edgeMinX) {
 388                 edgeMinX = x2;
 389             }
 390             if (x1 > edgeMaxX) {
 391                 edgeMaxX = x1;
 392             }
 393         }
 394 
 395         // local variables for performance:
 396         final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES;
 397 
 398         final OffHeapArray _edges = edges;
 399 


 422 
 423         // The x value must be bumped up to its position at the next HPC we will evaluate.
 424         // "firstcrossing" is the (sub)pixel number where the next crossing occurs
 425         // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5"
 426         // so the Y distance we cover is "firstcrossing + 0.5 - trueY".
 427         // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have
 428         // y1 = trueY - 0.5
 429         // trueY = y1 + 0.5
 430         // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5)
 431         //                             = firstcrossing - y1
 432         // The x coordinate at that HPC is then:
 433         // x1_intercept = x1 + (firstcrossing - y1) * slope
 434         // The next VPC is then given by:
 435         // VPC index = ceil(x1_intercept - 0.5), or alternately
 436         // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon)
 437         // epsilon is hard to pin down in floating point, but easy in fixed point, so if
 438         // we convert to fixed point then these operations get easier:
 439         // long x1_fixed = x1_intercept * 2^32;  (fixed point 32.32 format)
 440         // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1)
 441         //                 = fixed_floor(x1_fixed + 2^31 - 1)
 442         //                 = fixed_floor(x1_fixed + 0x7fffffff)
 443         // and error       = fixed_fract(x1_fixed + 0x7fffffff)
 444         final double x1_intercept = x1d + (firstCrossing - y1d) * slope;
 445 
 446         // inlined scalb(x1_intercept, 32):
 447         final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept))
 448                                      + 0x7fffffffL;
 449         // curx:
 450         // last bit corresponds to the orientation
 451         _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or);
 452         addr += SIZE_INT;
 453         _unsafe.putInt(addr,  ((int)  x1_fixed_biased) >>> 1);
 454         addr += SIZE_INT;
 455 
 456         // inlined scalb(slope, 32):
 457         final long slope_fixed = (long) (POWER_2_TO_32 * slope);
 458 
 459         // last bit set to 0 to keep orientation:
 460         _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB));
 461         addr += SIZE_INT;
 462         _unsafe.putInt(addr,  ((int)  slope_fixed) >>> 1);
 463         addr += SIZE_INT;
 464 
 465         final int[] _edgeBuckets      = edgeBuckets;
 466         final int[] _edgeBucketCounts = edgeBucketCounts;
 467 
 468         final int _boundsMinY = boundsMinY;
 469 
 470         // each bucket is a linked list. this method adds ptr to the
 471         // start of the "bucket"th linked list.
 472         final int bucketIdx = firstCrossing - _boundsMinY;
 473 
 474         // pointer from bucket
 475         _unsafe.putInt(addr, _edgeBuckets[bucketIdx]);
 476         addr += SIZE_INT;
 477         // y max (inclusive)
 478         _unsafe.putInt(addr,  lastCrossing);
 479 
 480         // Update buckets:
 481         // directly the edge struct "pointer"
 482         _edgeBuckets[bucketIdx]       = edgePtr;
 483         _edgeBucketCounts[bucketIdx] += 2; // 1 << 1
 484         // last bit means edge end
 485         _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1;
 486 
 487         // update sum of delta Y (subpixels):
 488         edgeSumDeltaY += (lastCrossing - firstCrossing);
 489 
 490         // update free pointer (ie length in bytes)
 491         _edges.used += _SIZEOF_EDGE_BYTES;
 492 
 493         if (DO_MONITORS) {
 494             rdrCtx.stats.mon_rdr_addLine.stop();
 495         }
 496     }
 497 
 498 // END EDGE LIST
 499 //////////////////////////////////////////////////////////////////////////////
 500 
 501     // Cache to store RLE-encoded coverage mask of the current primitive
 502     final MarlinCache cache;
 503 
 504     // Bounds of the drawing region, at subpixel precision.
 505     private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY;
 506 
 507     // Current winding rule
 508     private int windingRule;
 509 


 551         alphaLine     = alphaLine_ref.initial;
 552 
 553         this.cache = rdrCtx.cache;
 554 
 555         crossings_ref     = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 556         aux_crossings_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 557         edgePtrs_ref      = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 558         aux_edgePtrs_ref  = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 559 
 560         crossings     = crossings_ref.initial;
 561         aux_crossings = aux_crossings_ref.initial;
 562         edgePtrs      = edgePtrs_ref.initial;
 563         aux_edgePtrs  = aux_edgePtrs_ref.initial;
 564 
 565         blkFlags_ref = rdrCtx.newCleanIntArrayRef(INITIAL_ARRAY); // 1K = 1 tile line
 566         blkFlags     = blkFlags_ref.initial;
 567     }
 568 
 569     Renderer init(final int pix_boundsX, final int pix_boundsY,
 570                   final int pix_boundsWidth, final int pix_boundsHeight,
 571                   final int windingRule) {
 572 
 573         this.windingRule = windingRule;
 574 
 575         // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
 576         this.boundsMinX =  pix_boundsX << SUBPIXEL_LG_POSITIONS_X;
 577         this.boundsMaxX =
 578             (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X;
 579         this.boundsMinY =  pix_boundsY << SUBPIXEL_LG_POSITIONS_Y;
 580         this.boundsMaxY =
 581             (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y;
 582 
 583         if (DO_LOG_BOUNDS) {
 584             MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... "
 585                                 + boundsMaxX + "[ [" + boundsMinY + " ... "
 586                                 + boundsMaxY + "[");
 587         }
 588 
 589         // see addLine: ceil(boundsMaxY) => boundsMaxY + 1
 590         // +1 for edgeBucketCounts
 591         final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1;
 592 


 594             if (DO_STATS) {
 595                 rdrCtx.stats.stat_array_renderer_edgeBuckets
 596                     .add(edgeBucketsLength);
 597                 rdrCtx.stats.stat_array_renderer_edgeBucketCounts
 598                     .add(edgeBucketsLength);
 599             }
 600             edgeBuckets = edgeBuckets_ref.getArray(edgeBucketsLength);
 601             edgeBucketCounts = edgeBucketCounts_ref.getArray(edgeBucketsLength);
 602         }
 603 
 604         edgeMinY = Integer.MAX_VALUE;
 605         edgeMaxY = Integer.MIN_VALUE;
 606         edgeMinX = Float.POSITIVE_INFINITY;
 607         edgeMaxX = Float.NEGATIVE_INFINITY;
 608 
 609         // reset used mark:
 610         edgeCount = 0;
 611         activeEdgeMaxUsed = 0;
 612         edges.used = 0;
 613 
 614         edgeSumDeltaY = 0;
 615 
 616         return this; // fluent API
 617     }
 618 
 619     /**
 620      * Disposes this renderer and recycle it clean up before reusing this instance
 621      */
 622     void dispose() {
 623         if (DO_STATS) {
 624             rdrCtx.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed);
 625             rdrCtx.stats.stat_rdr_edges.add(edges.used);
 626             rdrCtx.stats.stat_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
 627             rdrCtx.stats.hist_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
 628             rdrCtx.stats.totalOffHeap += edges.length;
 629         }
 630         // Return arrays:
 631         crossings = crossings_ref.putArray(crossings);
 632         aux_crossings = aux_crossings_ref.putArray(aux_crossings);
 633 
 634         edgePtrs = edgePtrs_ref.putArray(edgePtrs);
 635         aux_edgePtrs = aux_edgePtrs_ref.putArray(aux_edgePtrs);


 652                                                              buckets_minY,
 653                                                              buckets_maxY + 1);
 654         } else {
 655             // unused arrays
 656             edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, 0, 0);
 657             edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 0, 0);
 658         }
 659 
 660         // At last: resize back off-heap edges to initial size
 661         if (edges.length != INITIAL_EDGES_CAPACITY) {
 662             // note: may throw OOME:
 663             edges.resize(INITIAL_EDGES_CAPACITY);
 664         }
 665         if (DO_CLEAN_DIRTY) {
 666             // Force zero-fill dirty arrays:
 667             edges.fill(BYTE_0);
 668         }
 669         if (DO_MONITORS) {
 670             rdrCtx.stats.mon_rdr_endRendering.stop();
 671         }


 672     }
 673 
 674     private static float tosubpixx(final float pix_x) {
 675         return F_SUBPIXEL_POSITIONS_X * pix_x;
 676     }
 677 
 678     private static float tosubpixy(final float pix_y) {
 679         // shift y by -0.5 for fast ceil(y - 0.5):
 680         return F_SUBPIXEL_POSITIONS_Y * pix_y - 0.5f;
 681     }
 682 
 683     @Override
 684     public void moveTo(float pix_x0, float pix_y0) {
 685         closePath();
 686         final float sx = tosubpixx(pix_x0);
 687         final float sy = tosubpixy(pix_y0);
 688         this.sx0 = sx;
 689         this.sy0 = sy;
 690         this.x0 = sx;
 691         this.y0 = sy;
 692     }
 693 
 694     @Override
 695     public void lineTo(float pix_x1, float pix_y1) {
 696         final float x1 = tosubpixx(pix_x1);
 697         final float y1 = tosubpixy(pix_y1);
 698         addLine(x0, y0, x1, y1);
 699         x0 = x1;
 700         y0 = y1;
 701     }
 702 
 703     @Override
 704     public void curveTo(float x1, float y1,
 705             float x2, float y2,
 706             float x3, float y3)
 707     {
 708         final float xe = tosubpixx(x3);
 709         final float ye = tosubpixy(y3);
 710         curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1),
 711                           tosubpixx(x2), tosubpixy(y2), xe, ye);
 712         curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
 713         x0 = xe;
 714         y0 = ye;
 715     }
 716 
 717     @Override
 718     public void quadTo(float x1, float y1, float x2, float y2) {
 719         final float xe = tosubpixx(x2);
 720         final float ye = tosubpixy(y2);
 721         curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), xe, ye);
 722         quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
 723         x0 = xe;
 724         y0 = ye;
 725     }
 726 


 952                  */
 953                 if ((ptrLen < 10) || (numCrossings < 40)) {
 954                     if (DO_STATS) {
 955                         rdrCtx.stats.hist_rdr_crossings.add(numCrossings);
 956                         rdrCtx.stats.hist_rdr_crossings_adds.add(ptrLen);
 957                     }
 958 
 959                     /*
 960                      * threshold to use binary insertion sort instead of
 961                      * straight insertion sort (to reduce minimize comparisons).
 962                      */
 963                     useBinarySearch = (numCrossings >= 20);
 964 
 965                     // if small enough:
 966                     lastCross = _MIN_VALUE;
 967 
 968                     for (i = 0; i < numCrossings; i++) {
 969                         // get the pointer to the edge
 970                         ecur = _edgePtrs[i];
 971 
 972                         /* convert subpixel coordinates (float) into pixel
 973                             positions (int) for coming scanline */
 974                         /* note: it is faster to always update edges even
 975                            if it is removed from AEL for coming or last scanline */
 976 
 977                         // random access so use unsafe:
 978                         addr = addr0 + ecur; // ecur + OFF_F_CURX
 979 
 980                         // get current crossing:
 981                         curx = _unsafe.getInt(addr);
 982 
 983                         // update crossing with orientation at last bit:
 984                         cross = curx;
 985 
 986                         // Increment x using DDA (fixed point):
 987                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
 988 
 989                         // Increment error:
 990                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
 991                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
 992 
 993                         // Manual carry handling:


1052                     }
1053                 } else {
1054                     if (DO_STATS) {
1055                         rdrCtx.stats.stat_rdr_crossings_msorts.add(numCrossings);
1056                         rdrCtx.stats.hist_rdr_crossings_ratio
1057                             .add((1000 * ptrLen) / numCrossings);
1058                         rdrCtx.stats.hist_rdr_crossings_msorts.add(numCrossings);
1059                         rdrCtx.stats.hist_rdr_crossings_msorts_adds.add(ptrLen);
1060                     }
1061 
1062                     // Copy sorted data in auxiliary arrays
1063                     // and perform insertion sort on almost sorted data
1064                     // (ie i < prevNumCrossings):
1065 
1066                     lastCross = _MIN_VALUE;
1067 
1068                     for (i = 0; i < numCrossings; i++) {
1069                         // get the pointer to the edge
1070                         ecur = _edgePtrs[i];
1071 
1072                         /* convert subpixel coordinates (float) into pixel
1073                             positions (int) for coming scanline */
1074                         /* note: it is faster to always update edges even
1075                            if it is removed from AEL for coming or last scanline */
1076 
1077                         // random access so use unsafe:
1078                         addr = addr0 + ecur; // ecur + OFF_F_CURX
1079 
1080                         // get current crossing:
1081                         curx = _unsafe.getInt(addr);
1082 
1083                         // update crossing with orientation at last bit:
1084                         cross = curx;
1085 
1086                         // Increment x using DDA (fixed point):
1087                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
1088 
1089                         // Increment error:
1090                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
1091                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
1092 
1093                         // Manual carry handling:


1159                 prev = curx = x0;
1160                 // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1161                 // last bit contains orientation (0 or 1)
1162                 crorientation = ((curxo & 0x1) << 1) - 1;
1163 
1164                 if (windingRuleEvenOdd) {
1165                     sum = crorientation;
1166 
1167                     // Even Odd winding rule: take care of mask ie sum(orientations)
1168                     for (i = 1; i < numCrossings; i++) {
1169                         curxo = _crossings[i];
1170                         curx  =  curxo >> 1;
1171                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1172                         // last bit contains orientation (0 or 1)
1173                         crorientation = ((curxo & 0x1) << 1) - 1;
1174 
1175                         if ((sum & 0x1) != 0) {
1176                             // TODO: perform line clipping on left-right sides
1177                             // to avoid such bound checks:
1178                             x0 = (prev > bboxx0) ? prev : bboxx0;
1179                             x1 = (curx < bboxx1) ? curx : bboxx1;







1180 
1181                             if (x0 < x1) {
1182                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
1183                                 x1 -= bboxx0; // in the alpha array.
1184 
1185                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1186                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1187 
1188                                 if (pix_x == pix_xmaxm1) {
1189                                     // Start and end in same pixel
1190                                     tmp = (x1 - x0); // number of subpixels
1191                                     _alpha[pix_x    ] += tmp;
1192                                     _alpha[pix_x + 1] -= tmp;
1193 
1194                                     if (useBlkFlags) {
1195                                         // flag used blocks:
1196                                         _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;

1197                                     }
1198                                 } else {
1199                                     tmp = (x0 & _SUBPIXEL_MASK_X);
1200                                     _alpha[pix_x    ]
1201                                         += (_SUBPIXEL_POSITIONS_X - tmp);
1202                                     _alpha[pix_x + 1]
1203                                         += tmp;
1204 
1205                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1206 
1207                                     tmp = (x1 & _SUBPIXEL_MASK_X);
1208                                     _alpha[pix_xmax    ]
1209                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
1210                                     _alpha[pix_xmax + 1]
1211                                         -= tmp;
1212 
1213                                     if (useBlkFlags) {
1214                                         // flag used blocks:

1215                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1216                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1217                                     }
1218                                 }
1219                             }
1220                         }
1221 
1222                         sum += crorientation;
1223                         prev = curx;
1224                     }
1225                 } else {
1226                     // Non-zero winding rule: optimize that case (default)
1227                     // and avoid processing intermediate crossings
1228                     for (i = 1, sum = 0;; i++) {
1229                         sum += crorientation;
1230 
1231                         if (sum != 0) {
1232                             // prev = min(curx)
1233                             if (prev > curx) {
1234                                 prev = curx;
1235                             }
1236                         } else {
1237                             // TODO: perform line clipping on left-right sides
1238                             // to avoid such bound checks:
1239                             x0 = (prev > bboxx0) ? prev : bboxx0;
1240                             x1 = (curx < bboxx1) ? curx : bboxx1;







1241 
1242                             if (x0 < x1) {
1243                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
1244                                 x1 -= bboxx0; // in the alpha array.
1245 
1246                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1247                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1248 
1249                                 if (pix_x == pix_xmaxm1) {
1250                                     // Start and end in same pixel
1251                                     tmp = (x1 - x0); // number of subpixels
1252                                     _alpha[pix_x    ] += tmp;
1253                                     _alpha[pix_x + 1] -= tmp;
1254 
1255                                     if (useBlkFlags) {
1256                                         // flag used blocks:
1257                                         _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;

1258                                     }
1259                                 } else {
1260                                     tmp = (x0 & _SUBPIXEL_MASK_X);
1261                                     _alpha[pix_x    ]
1262                                         += (_SUBPIXEL_POSITIONS_X - tmp);
1263                                     _alpha[pix_x + 1]
1264                                         += tmp;
1265 
1266                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1267 
1268                                     tmp = (x1 & _SUBPIXEL_MASK_X);
1269                                     _alpha[pix_xmax    ]
1270                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
1271                                     _alpha[pix_xmax + 1]
1272                                         -= tmp;
1273 
1274                                     if (useBlkFlags) {
1275                                         // flag used blocks:

1276                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1277                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1278                                     }
1279                                 }
1280                             }
1281                             prev = _MAX_VALUE;
1282                         }
1283 
1284                         if (i == numCrossings) {
1285                             break;
1286                         }
1287 
1288                         curxo = _crossings[i];
1289                         curx  =  curxo >> 1;
1290                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1291                         // last bit contains orientation (0 or 1)
1292                         crorientation = ((curxo & 0x1) << 1) - 1;
1293                     }
1294                 }
1295             } // numCrossings > 0
1296 
1297             // even if this last row had no crossings, alpha will be zeroed
1298             // from the last emitRow call. But this doesn't matter because
1299             // maxX < minX, so no row will be emitted to the MarlinCache.
1300             if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) {
1301                 lastY = y >> _SUBPIXEL_LG_POSITIONS_Y;
1302 
1303                 // convert subpixel to pixel coordinate within boundaries:
1304                 minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1305                 maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1306 
1307                 if (maxX >= minX) {
1308                     // note: alpha array will be zeroed by copyAARow()
1309                     // +2 because alpha [pix_minX; pix_maxX+1]
1310                     // fix range [x0; x1[
1311                     copyAARow(_alpha, lastY, minX, maxX + 2, useBlkFlags);



1312 
1313                     // speculative for next pixel row (scanline coherence):
1314                     if (_enableBlkFlagsHeuristics) {
1315                         // Use block flags if large pixel span and few crossings:
1316                         // ie mean(distance between crossings) is larger than
1317                         // 1 block size;
1318 
1319                         // fast check width:
1320                         maxX -= minX;
1321 
1322                         // if stroking: numCrossings /= 2
1323                         // => shift numCrossings by 1
1324                         // condition = (width / (numCrossings - 1)) > blockSize
1325                         useBlkFlags = (maxX > _BLK_SIZE) && (maxX >
1326                             (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG));
1327 
1328                         if (DO_STATS) {
1329                             tmp = FloatMath.max(1,
1330                                     ((numCrossings >> stroking) - 1));
1331                             rdrCtx.stats.hist_tile_generator_encoding_dist


1333                         }
1334                     }
1335                 } else {
1336                     _cache.clearAARow(lastY);
1337                 }
1338                 minX = _MAX_VALUE;
1339                 maxX = _MIN_VALUE;
1340             }
1341         } // scan line iterator
1342 
1343         // Emit final row
1344         y--;
1345         y >>= _SUBPIXEL_LG_POSITIONS_Y;
1346 
1347         // convert subpixel to pixel coordinate within boundaries:
1348         minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1349         maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1350 
1351         if (maxX >= minX) {
1352             // note: alpha array will be zeroed by copyAARow()
1353             // +2 because alpha [pix_minX; pix_maxX+1]
1354             // fix range [x0; x1[
1355             copyAARow(_alpha, y, minX, maxX + 2, useBlkFlags);



1356         } else if (y != lastY) {
1357             _cache.clearAARow(y);
1358         }
1359 
1360         // update member:
1361         edgeCount = numCrossings;
1362         prevUseBlkFlags = useBlkFlags;
1363 
1364         if (DO_STATS) {
1365             // update max used mark
1366             activeEdgeMaxUsed = _arrayMaxUsed;
1367         }
1368     }
1369 
1370     boolean endRendering() {
1371         if (DO_MONITORS) {
1372             rdrCtx.stats.mon_rdr_endRendering.start();
1373         }
1374         if (edgeMinY == Integer.MAX_VALUE) {
1375             return false; // undefined edges bounds
1376         }
1377 
1378         final int _boundsMinY = boundsMinY;
1379         final int _boundsMaxY = boundsMaxY;
1380 
1381         // bounds as inclusive intervals
1382         final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5f), boundsMinX);
1383         final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5f), boundsMaxX - 1);
1384 
1385         // edge Min/Max Y are already rounded to subpixels within bounds:
1386         final int spminY = edgeMinY;
1387         final int spmaxY;
1388         int maxY = edgeMaxY;
1389 
1390         if (maxY <= _boundsMaxY - 1) {
1391             spmaxY = maxY;
1392         } else {
1393             spmaxY = _boundsMaxY - 1;
1394             maxY   = _boundsMaxY;
1395         }
1396         buckets_minY = spminY - _boundsMinY;
1397         buckets_maxY = maxY   - _boundsMinY;
1398 
1399         if (DO_LOG_BOUNDS) {
1400             MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX
1401                                 + "][" + edgeMinY + " ... " + edgeMaxY + "]");
1402             MarlinUtils.logInfo("spXY    = [" + spminX + " ... " + spmaxX
1403                                 + "][" + spminY + " ... " + spmaxY + "]");
1404         }
1405 
1406         // test clipping for shapes out of bounds
1407         if ((spminX > spmaxX) || (spminY > spmaxY)) {
1408             return false;
1409         }
1410 
1411         // half open intervals
1412         // inclusive:
1413         final int pminX =  spminX                    >> SUBPIXEL_LG_POSITIONS_X;
1414         // exclusive:
1415         final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
1416         // inclusive:
1417         final int pminY =  spminY                    >> SUBPIXEL_LG_POSITIONS_Y;
1418         // exclusive:
1419         final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
1420 
1421         // store BBox to answer ptg.getBBox():
1422         this.cache.init(pminX, pminY, pmaxX, pmaxY, edgeSumDeltaY);
1423 
1424         // Heuristics for using block flags:
1425         if (ENABLE_BLOCK_FLAGS) {
1426             enableBlkFlags = this.cache.useRLE;
1427             prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS;
1428 
1429             if (enableBlkFlags) {
1430                 // ensure blockFlags array is large enough:
1431                 // note: +2 to ensure enough space left at end
1432                 final int nxTiles = ((pmaxX - pminX) >> TILE_SIZE_LG) + 2;
1433                 if (nxTiles > INITIAL_ARRAY) {
1434                     blkFlags = blkFlags_ref.getArray(nxTiles);
1435                 }
1436             }
1437         }
1438 
1439         // memorize the rendering bounding box:
1440         /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries
1441            to have correct coverage computation */
1442         // inclusive:
1443         bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X;
1444         // exclusive:
1445         bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X;
1446         // inclusive:
1447         bbox_spminY = spminY;
1448         // exclusive:
1449         bbox_spmaxY = FloatMath.min(spmaxY + 1, pmaxY << SUBPIXEL_LG_POSITIONS_Y);
1450 
1451         if (DO_LOG_BOUNDS) {
1452             MarlinUtils.logInfo("pXY       = [" + pminX + " ... " + pmaxX
1453                                 + "[ [" + pminY + " ... " + pmaxY + "[");
1454             MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... "
1455                                 + bbox_spmaxX + "[ [" + bbox_spminY + " ... "
1456                                 + bbox_spmaxY + "[");
1457         }
1458 
1459         // Prepare alpha line:
1460         // add 2 to better deal with the last pixel in a pixel row.
1461         final int width = (pmaxX - pminX) + 2;
1462 
1463         // Useful when processing tile line by tile line
1464         if (width > INITIAL_AA_ARRAY) {
1465             if (DO_STATS) {
1466                 rdrCtx.stats.stat_array_renderer_alphaline.add(width);
1467             }
1468             alphaLine = alphaLine_ref.getArray(width);
1469         }


1487         // avoid rendering for last call to nextTile()
1488         if (fixed_spminY < bbox_spmaxY) {
1489             // process a complete tile line ie scanlines for 32 rows
1490             final int spmaxY = FloatMath.min(bbox_spmaxY, spminY + SUBPIXEL_TILE);
1491 
1492             // process tile line [0 - 32]
1493             cache.resetTileLine(pminY);
1494 
1495             // Process only one tile line:
1496             _endRendering(fixed_spminY, spmaxY);
1497         }
1498         if (DO_MONITORS) {
1499             rdrCtx.stats.mon_rdr_endRendering_Y.stop();
1500         }
1501     }
1502 
1503     void copyAARow(final int[] alphaRow,
1504                    final int pix_y, final int pix_from, final int pix_to,
1505                    final boolean useBlockFlags)
1506     {



1507         if (useBlockFlags) {
1508             if (DO_STATS) {
1509                 rdrCtx.stats.hist_tile_generator_encoding.add(1);
1510             }
1511             cache.copyAARowRLE_WithBlockFlags(blkFlags, alphaRow, pix_y, pix_from, pix_to);
1512         } else {
1513             if (DO_STATS) {
1514                 rdrCtx.stats.hist_tile_generator_encoding.add(0);
1515             }
1516             cache.copyAARowNoRLE(alphaRow, pix_y, pix_from, pix_to);



1517         }
1518     }
1519 }
   1 /*
   2  * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d.marlin;
  27 

  28 import sun.awt.geom.PathConsumer2D;
  29 import static sun.java2d.marlin.OffHeapArray.SIZE_INT;
  30 import jdk.internal.misc.Unsafe;
  31 
  32 final class Renderer implements PathConsumer2D, MarlinRenderer {
  33 
  34     static final boolean DISABLE_RENDER = false;
  35 
  36     static final boolean ENABLE_BLOCK_FLAGS = MarlinProperties.isUseTileFlags();
  37     static final boolean ENABLE_BLOCK_FLAGS_HEURISTICS = MarlinProperties.isUseTileFlagsWithHeuristics();
  38 
  39     private static final int ALL_BUT_LSB = 0xFFFFFFFE;
  40     private static final int ERR_STEP_MAX = 0x7FFFFFFF; // = 2^31 - 1
  41 
  42     private static final double POWER_2_TO_32 = 0x1.0p32d;
  43 
  44     // use float to make tosubpix methods faster (no int to float conversion)
  45     static final float SUBPIXEL_SCALE_X = (float) SUBPIXEL_POSITIONS_X;
  46     static final float SUBPIXEL_SCALE_Y = (float) SUBPIXEL_POSITIONS_Y;
  47     static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
  48     static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;


  49 
  50     // number of subpixels corresponding to a tile line
  51     private static final int SUBPIXEL_TILE
  52         = TILE_H << SUBPIXEL_LG_POSITIONS_Y;
  53 
  54     // 2048 (pixelSize) pixels (height) x 8 subpixels = 64K
  55     static final int INITIAL_BUCKET_ARRAY
  56         = INITIAL_PIXEL_DIM * SUBPIXEL_POSITIONS_Y;
  57 
  58     // crossing capacity = edges count / 4 ~ 1024
  59     static final int INITIAL_CROSSING_COUNT = INITIAL_EDGES_COUNT >> 2;
  60 
  61     public static final int WIND_EVEN_ODD = 0;
  62     public static final int WIND_NON_ZERO = 1;
  63 
  64     // common to all types of input path segments.
  65     // OFFSET as bytes
  66     // only integer values:
  67     public static final long OFF_CURX_OR  = 0;
  68     public static final long OFF_ERROR    = OFF_CURX_OR  + SIZE_INT;
  69     public static final long OFF_BUMP_X   = OFF_ERROR    + SIZE_INT;
  70     public static final long OFF_BUMP_ERR = OFF_BUMP_X   + SIZE_INT;
  71     public static final long OFF_NEXT     = OFF_BUMP_ERR + SIZE_INT;
  72     public static final long OFF_YMAX     = OFF_NEXT     + SIZE_INT;
  73 
  74     // size of one edge in bytes
  75     public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT);
  76 
  77     // curve break into lines
  78     // cubic error in subpixels to decrement step
  79     private static final float CUB_DEC_ERR_SUBPIX
  80         = MarlinProperties.getCubicDecD2() * (NORM_SUBPIXELS / 8.0f); // 1 pixel
  81     // cubic error in subpixels to increment step
  82     private static final float CUB_INC_ERR_SUBPIX
  83         = MarlinProperties.getCubicIncD1() * (NORM_SUBPIXELS / 8.0f); // 0.4 pixel
  84 
  85     // TestNonAARasterization (JDK-8170879): cubics
  86     // bad paths (59294/100000 == 59,29%, 94335 bad pixels (avg = 1,59), 3966 warnings (avg = 0,07)
  87 
  88     // cubic bind length to decrement step
  89     public static final float CUB_DEC_BND
  90         = 8.0f * CUB_DEC_ERR_SUBPIX;
  91     // cubic bind length to increment step
  92     public static final float CUB_INC_BND
  93         = 8.0f * CUB_INC_ERR_SUBPIX;
  94 
  95     // cubic countlg
  96     public static final int CUB_COUNT_LG = 2;
  97     // cubic count = 2^countlg
  98     private static final int CUB_COUNT = 1 << CUB_COUNT_LG;
  99     // cubic count^2 = 4^countlg
 100     private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG);
 101     // cubic count^3 = 8^countlg
 102     private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG);
 103     // cubic dt = 1 / count
 104     private static final float CUB_INV_COUNT = 1.0f / CUB_COUNT;
 105     // cubic dt^2 = 1 / count^2 = 1 / 4^countlg
 106     private static final float CUB_INV_COUNT_2 = 1.0f / CUB_COUNT_2;
 107     // cubic dt^3 = 1 / count^3 = 1 / 8^countlg
 108     private static final float CUB_INV_COUNT_3 = 1.0f / CUB_COUNT_3;
 109 
 110     // quad break into lines
 111     // quadratic error in subpixels
 112     private static final float QUAD_DEC_ERR_SUBPIX
 113         = MarlinProperties.getQuadDecD2() * (NORM_SUBPIXELS / 8.0f); // 0.5 pixel
 114 
 115     // TestNonAARasterization (JDK-8170879): quads
 116     // bad paths (62916/100000 == 62,92%, 103818 bad pixels (avg = 1,65), 6514 warnings (avg = 0,10)
 117 
 118     // quadratic bind length to decrement step

 119     public static final float QUAD_DEC_BND
 120         = 8.0f * QUAD_DEC_ERR_SUBPIX;
 121 
 122 //////////////////////////////////////////////////////////////////////////////
 123 //  SCAN LINE
 124 //////////////////////////////////////////////////////////////////////////////
 125     // crossings ie subpixel edge x coordinates
 126     private int[] crossings;
 127     // auxiliary storage for crossings (merge sort)
 128     private int[] aux_crossings;
 129 
 130     // indices into the segment pointer lists. They indicate the "active"
 131     // sublist in the segment lists (the portion of the list that contains
 132     // all the segments that cross the next scan line).
 133     private int edgeCount;
 134     private int[] edgePtrs;
 135     // auxiliary storage for edge pointers (merge sort)
 136     private int[] aux_edgePtrs;
 137 
 138     // max used for both edgePtrs and crossings (stats only)
 139     private int activeEdgeMaxUsed;
 140 
 141     // crossings ref (dirty)
 142     private final IntArrayCache.Reference crossings_ref;
 143     // edgePtrs ref (dirty)
 144     private final IntArrayCache.Reference edgePtrs_ref;
 145     // merge sort initial arrays (large enough to satisfy most usages) (1024)
 146     // aux_crossings ref (dirty)
 147     private final IntArrayCache.Reference aux_crossings_ref;
 148     // aux_edgePtrs ref (dirty)
 149     private final IntArrayCache.Reference aux_edgePtrs_ref;
 150 
 151 //////////////////////////////////////////////////////////////////////////////
 152 //  EDGE LIST
 153 //////////////////////////////////////////////////////////////////////////////
 154     private int edgeMinY = Integer.MAX_VALUE;
 155     private int edgeMaxY = Integer.MIN_VALUE;
 156     private float edgeMinX = Float.POSITIVE_INFINITY;
 157     private float edgeMaxX = Float.NEGATIVE_INFINITY;
 158 
 159     // edges [ints] stored in off-heap memory
 160     private final OffHeapArray edges;
 161 
 162     private int[] edgeBuckets;
 163     private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed)
 164     // used range for edgeBuckets / edgeBucketCounts
 165     private int buckets_minY;
 166     private int buckets_maxY;


 167 
 168     // edgeBuckets ref (clean)
 169     private final IntArrayCache.Reference edgeBuckets_ref;
 170     // edgeBucketCounts ref (clean)
 171     private final IntArrayCache.Reference edgeBucketCounts_ref;
 172 
 173     // Flattens using adaptive forward differencing. This only carries out
 174     // one iteration of the AFD loop. All it does is update AFD variables (i.e.
 175     // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
 176     private void quadBreakIntoLinesAndAdd(float x0, float y0,
 177                                           final Curve c,
 178                                           final float x2, final float y2)
 179     {
 180         int count = 1; // dt = 1 / count
 181 
 182         // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1)
 183         float maxDD = Math.abs(c.dbx) + Math.abs(c.dby);
 184 
 185         final float _DEC_BND = QUAD_DEC_BND;
 186 
 187         while (maxDD >= _DEC_BND) {
 188             // divide step by half:
 189             maxDD /= 4.0f; // error divided by 2^2 = 4
 190 
 191             count <<= 1;
 192             if (DO_STATS) {
 193                 rdrCtx.stats.stat_rdr_quadBreak_dec.add(count);
 194             }
 195         }
 196 
 197         int nL = 0; // line count
 198         if (count > 1) {
 199             final float icount = 1.0f / count; // dt
 200             final float icount2 = icount * icount; // dt^2
 201 
 202             final float ddx = c.dbx * icount2;
 203             final float ddy = c.dby * icount2;
 204             float dx = c.bx * icount2 + c.cx * icount;
 205             float dy = c.by * icount2 + c.cy * icount;
 206 
 207             float x1, y1;
 208 
 209             while (--count > 0) {
 210                 x1 = x0 + dx;
 211                 dx += ddx;
 212                 y1 = y0 + dy;
 213                 dy += ddy;
 214 
 215                 addLine(x0, y0, x1, y1);
 216 
 217                 if (DO_STATS) { nL++; }
 218                 x0 = x1;
 219                 y0 = y1;


 226         }
 227     }
 228 
 229     // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
 230     // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
 231     // numerical errors, and our callers already have the exact values.
 232     // Another alternative would be to pass all the control points, and call
 233     // c.set here, but then too many numbers are passed around.
 234     private void curveBreakIntoLinesAndAdd(float x0, float y0,
 235                                            final Curve c,
 236                                            final float x3, final float y3)
 237     {
 238         int count           = CUB_COUNT;
 239         final float icount  = CUB_INV_COUNT;   // dt
 240         final float icount2 = CUB_INV_COUNT_2; // dt^2
 241         final float icount3 = CUB_INV_COUNT_3; // dt^3
 242 
 243         // the dx and dy refer to forward differencing variables, not the last
 244         // coefficients of the "points" polynomial
 245         float dddx, dddy, ddx, ddy, dx, dy;
 246         dddx = 2.0f * c.dax * icount3;
 247         dddy = 2.0f * c.day * icount3;
 248         ddx = dddx + c.dbx * icount2;
 249         ddy = dddy + c.dby * icount2;
 250         dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount;
 251         dy = c.ay * icount3 + c.by * icount2 + c.cy * icount;
 252 
 253         // we use x0, y0 to walk the line
 254         float x1 = x0, y1 = y0;
 255         int nL = 0; // line count
 256 
 257         final float _DEC_BND = CUB_DEC_BND;
 258         final float _INC_BND = CUB_INC_BND;
 259 
 260         while (count > 0) {
 261             // divide step by half:
 262             while (Math.abs(ddx) + Math.abs(ddy) >= _DEC_BND) {
 263                 dddx /= 8.0f;
 264                 dddy /= 8.0f;
 265                 ddx = ddx / 4.0f - dddx;
 266                 ddy = ddy / 4.0f - dddy;
 267                 dx = (dx - ddx) / 2.0f;
 268                 dy = (dy - ddy) / 2.0f;
 269 
 270                 count <<= 1;
 271                 if (DO_STATS) {
 272                     rdrCtx.stats.stat_rdr_curveBreak_dec.add(count);
 273                 }
 274             }
 275 
 276             // double step:



 277             // can only do this on even "count" values, because we must divide count by 2
 278             while (count % 2 == 0
 279                    && Math.abs(dx) + Math.abs(dy) <= _INC_BND)
 280             {
 281                 dx = 2.0f * dx + ddx;
 282                 dy = 2.0f * dy + ddy;
 283                 ddx = 4.0f * (ddx + dddx);
 284                 ddy = 4.0f * (ddy + dddy);
 285                 dddx *= 8.0f;
 286                 dddy *= 8.0f;
 287 
 288                 count >>= 1;
 289                 if (DO_STATS) {
 290                     rdrCtx.stats.stat_rdr_curveBreak_inc.add(count);
 291                 }
 292             }
 293             if (--count > 0) {
 294                 x1 += dx;
 295                 dx += ddx;
 296                 ddx += dddx;
 297                 y1 += dy;
 298                 dy += ddy;
 299                 ddy += dddy;
 300             } else {
 301                 x1 = x3;
 302                 y1 = y3;
 303             }
 304 
 305             addLine(x0, y0, x1, y1);
 306 


 314     }
 315 
 316     private void addLine(float x1, float y1, float x2, float y2) {
 317         if (DO_MONITORS) {
 318             rdrCtx.stats.mon_rdr_addLine.start();
 319         }
 320         if (DO_STATS) {
 321             rdrCtx.stats.stat_rdr_addLine.add(1);
 322         }
 323         int or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
 324         if (y2 < y1) {
 325             or = 0;
 326             float tmp = y2;
 327             y2 = y1;
 328             y1 = tmp;
 329             tmp = x2;
 330             x2 = x1;
 331             x1 = tmp;
 332         }
 333 
 334         // convert subpixel coordinates [float] into pixel positions [int]
 335 
 336         // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5)
 337         // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply
 338         // ceil(y1) or ceil(y2)
 339         // upper integer (inclusive)
 340         final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY);
 341 
 342         // note: use boundsMaxY (last Y exclusive) to compute correct coverage
 343         // upper integer (exclusive)
 344         final int lastCrossing  = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY);
 345 
 346         /* skip horizontal lines in pixel space and clip edges
 347            out of y range [boundsMinY; boundsMaxY] */
 348         if (firstCrossing >= lastCrossing) {
 349             if (DO_MONITORS) {
 350                 rdrCtx.stats.mon_rdr_addLine.stop();
 351             }
 352             if (DO_STATS) {
 353                 rdrCtx.stats.stat_rdr_addLine_skip.add(1);
 354             }
 355             return;
 356         }
 357 
 358         // edge min/max X/Y are in subpixel space (half-open interval):
 359         // note: Use integer crossings to ensure consistent range within
 360         // edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0)
 361         if (firstCrossing < edgeMinY) {
 362             edgeMinY = firstCrossing;
 363         }
 364         if (lastCrossing > edgeMaxY) {
 365             edgeMaxY = lastCrossing;
 366         }
 367 
 368         // Use double-precision for improved accuracy:
 369         final double x1d   = x1;
 370         final double y1d   = y1;
 371         final double slope = (x1d - x2) / (y1d - y2);
 372 
 373         if (slope >= 0.0d) { // <==> x1 < x2
 374             if (x1 < edgeMinX) {
 375                 edgeMinX = x1;
 376             }
 377             if (x2 > edgeMaxX) {
 378                 edgeMaxX = x2;
 379             }
 380         } else {
 381             if (x2 < edgeMinX) {
 382                 edgeMinX = x2;
 383             }
 384             if (x1 > edgeMaxX) {
 385                 edgeMaxX = x1;
 386             }
 387         }
 388 
 389         // local variables for performance:
 390         final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES;
 391 
 392         final OffHeapArray _edges = edges;
 393 


 416 
 417         // The x value must be bumped up to its position at the next HPC we will evaluate.
 418         // "firstcrossing" is the (sub)pixel number where the next crossing occurs
 419         // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5"
 420         // so the Y distance we cover is "firstcrossing + 0.5 - trueY".
 421         // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have
 422         // y1 = trueY - 0.5
 423         // trueY = y1 + 0.5
 424         // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5)
 425         //                             = firstcrossing - y1
 426         // The x coordinate at that HPC is then:
 427         // x1_intercept = x1 + (firstcrossing - y1) * slope
 428         // The next VPC is then given by:
 429         // VPC index = ceil(x1_intercept - 0.5), or alternately
 430         // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon)
 431         // epsilon is hard to pin down in floating point, but easy in fixed point, so if
 432         // we convert to fixed point then these operations get easier:
 433         // long x1_fixed = x1_intercept * 2^32;  (fixed point 32.32 format)
 434         // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1)
 435         //                 = fixed_floor(x1_fixed + 2^31 - 1)
 436         //                 = fixed_floor(x1_fixed + 0x7FFFFFFF)
 437         // and error       = fixed_fract(x1_fixed + 0x7FFFFFFF)
 438         final double x1_intercept = x1d + (firstCrossing - y1d) * slope;
 439 
 440         // inlined scalb(x1_intercept, 32):
 441         final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept))
 442                                      + 0x7FFFFFFFL;
 443         // curx:
 444         // last bit corresponds to the orientation
 445         _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or);
 446         addr += SIZE_INT;
 447         _unsafe.putInt(addr,  ((int)  x1_fixed_biased) >>> 1);
 448         addr += SIZE_INT;
 449 
 450         // inlined scalb(slope, 32):
 451         final long slope_fixed = (long) (POWER_2_TO_32 * slope);
 452 
 453         // last bit set to 0 to keep orientation:
 454         _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB));
 455         addr += SIZE_INT;
 456         _unsafe.putInt(addr,  ((int)  slope_fixed) >>> 1);
 457         addr += SIZE_INT;
 458 
 459         final int[] _edgeBuckets      = edgeBuckets;
 460         final int[] _edgeBucketCounts = edgeBucketCounts;
 461 
 462         final int _boundsMinY = boundsMinY;
 463 
 464         // each bucket is a linked list. this method adds ptr to the
 465         // start of the "bucket"th linked list.
 466         final int bucketIdx = firstCrossing - _boundsMinY;
 467 
 468         // pointer from bucket
 469         _unsafe.putInt(addr, _edgeBuckets[bucketIdx]);
 470         addr += SIZE_INT;
 471         // y max (exclusive)
 472         _unsafe.putInt(addr,  lastCrossing);
 473 
 474         // Update buckets:
 475         // directly the edge struct "pointer"
 476         _edgeBuckets[bucketIdx]       = edgePtr;
 477         _edgeBucketCounts[bucketIdx] += 2; // 1 << 1
 478         // last bit means edge end
 479         _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1;
 480 



 481         // update free pointer (ie length in bytes)
 482         _edges.used += _SIZEOF_EDGE_BYTES;
 483 
 484         if (DO_MONITORS) {
 485             rdrCtx.stats.mon_rdr_addLine.stop();
 486         }
 487     }
 488 
 489 // END EDGE LIST
 490 //////////////////////////////////////////////////////////////////////////////
 491 
 492     // Cache to store RLE-encoded coverage mask of the current primitive
 493     final MarlinCache cache;
 494 
 495     // Bounds of the drawing region, at subpixel precision.
 496     private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY;
 497 
 498     // Current winding rule
 499     private int windingRule;
 500 


 542         alphaLine     = alphaLine_ref.initial;
 543 
 544         this.cache = rdrCtx.cache;
 545 
 546         crossings_ref     = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 547         aux_crossings_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 548         edgePtrs_ref      = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 549         aux_edgePtrs_ref  = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
 550 
 551         crossings     = crossings_ref.initial;
 552         aux_crossings = aux_crossings_ref.initial;
 553         edgePtrs      = edgePtrs_ref.initial;
 554         aux_edgePtrs  = aux_edgePtrs_ref.initial;
 555 
 556         blkFlags_ref = rdrCtx.newCleanIntArrayRef(INITIAL_ARRAY); // 1K = 1 tile line
 557         blkFlags     = blkFlags_ref.initial;
 558     }
 559 
 560     Renderer init(final int pix_boundsX, final int pix_boundsY,
 561                   final int pix_boundsWidth, final int pix_boundsHeight,
 562                   final int windingRule)
 563     {
 564         this.windingRule = windingRule;
 565 
 566         // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
 567         this.boundsMinX =  pix_boundsX << SUBPIXEL_LG_POSITIONS_X;
 568         this.boundsMaxX =
 569             (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X;
 570         this.boundsMinY =  pix_boundsY << SUBPIXEL_LG_POSITIONS_Y;
 571         this.boundsMaxY =
 572             (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y;
 573 
 574         if (DO_LOG_BOUNDS) {
 575             MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... "
 576                                 + boundsMaxX + "[ [" + boundsMinY + " ... "
 577                                 + boundsMaxY + "[");
 578         }
 579 
 580         // see addLine: ceil(boundsMaxY) => boundsMaxY + 1
 581         // +1 for edgeBucketCounts
 582         final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1;
 583 


 585             if (DO_STATS) {
 586                 rdrCtx.stats.stat_array_renderer_edgeBuckets
 587                     .add(edgeBucketsLength);
 588                 rdrCtx.stats.stat_array_renderer_edgeBucketCounts
 589                     .add(edgeBucketsLength);
 590             }
 591             edgeBuckets = edgeBuckets_ref.getArray(edgeBucketsLength);
 592             edgeBucketCounts = edgeBucketCounts_ref.getArray(edgeBucketsLength);
 593         }
 594 
 595         edgeMinY = Integer.MAX_VALUE;
 596         edgeMaxY = Integer.MIN_VALUE;
 597         edgeMinX = Float.POSITIVE_INFINITY;
 598         edgeMaxX = Float.NEGATIVE_INFINITY;
 599 
 600         // reset used mark:
 601         edgeCount = 0;
 602         activeEdgeMaxUsed = 0;
 603         edges.used = 0;
 604 


 605         return this; // fluent API
 606     }
 607 
 608     /**
 609      * Disposes this renderer and recycle it clean up before reusing this instance
 610      */
 611     void dispose() {
 612         if (DO_STATS) {
 613             rdrCtx.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed);
 614             rdrCtx.stats.stat_rdr_edges.add(edges.used);
 615             rdrCtx.stats.stat_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
 616             rdrCtx.stats.hist_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
 617             rdrCtx.stats.totalOffHeap += edges.length;
 618         }
 619         // Return arrays:
 620         crossings = crossings_ref.putArray(crossings);
 621         aux_crossings = aux_crossings_ref.putArray(aux_crossings);
 622 
 623         edgePtrs = edgePtrs_ref.putArray(edgePtrs);
 624         aux_edgePtrs = aux_edgePtrs_ref.putArray(aux_edgePtrs);


 641                                                              buckets_minY,
 642                                                              buckets_maxY + 1);
 643         } else {
 644             // unused arrays
 645             edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, 0, 0);
 646             edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 0, 0);
 647         }
 648 
 649         // At last: resize back off-heap edges to initial size
 650         if (edges.length != INITIAL_EDGES_CAPACITY) {
 651             // note: may throw OOME:
 652             edges.resize(INITIAL_EDGES_CAPACITY);
 653         }
 654         if (DO_CLEAN_DIRTY) {
 655             // Force zero-fill dirty arrays:
 656             edges.fill(BYTE_0);
 657         }
 658         if (DO_MONITORS) {
 659             rdrCtx.stats.mon_rdr_endRendering.stop();
 660         }
 661         // recycle the RendererContext instance
 662         MarlinRenderingEngine.returnRendererContext(rdrCtx);
 663     }
 664 
 665     private static float tosubpixx(final float pix_x) {
 666         return SUBPIXEL_SCALE_X * pix_x;
 667     }
 668 
 669     private static float tosubpixy(final float pix_y) {
 670         // shift y by -0.5 for fast ceil(y - 0.5):
 671         return SUBPIXEL_SCALE_Y * pix_y - 0.5f;
 672     }
 673 
 674     @Override
 675     public void moveTo(float pix_x0, float pix_y0) {
 676         closePath();
 677         final float sx = tosubpixx(pix_x0);
 678         final float sy = tosubpixy(pix_y0);
 679         this.sx0 = sx;
 680         this.sy0 = sy;
 681         this.x0 = sx;
 682         this.y0 = sy;
 683     }
 684 
 685     @Override
 686     public void lineTo(float pix_x1, float pix_y1) {
 687         final float x1 = tosubpixx(pix_x1);
 688         final float y1 = tosubpixy(pix_y1);
 689         addLine(x0, y0, x1, y1);
 690         x0 = x1;
 691         y0 = y1;
 692     }
 693 
 694     @Override
 695     public void curveTo(float x1, float y1,
 696                         float x2, float y2,
 697                         float x3, float y3)
 698     {
 699         final float xe = tosubpixx(x3);
 700         final float ye = tosubpixy(y3);
 701         curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1),
 702                           tosubpixx(x2), tosubpixy(y2), xe, ye);
 703         curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
 704         x0 = xe;
 705         y0 = ye;
 706     }
 707 
 708     @Override
 709     public void quadTo(float x1, float y1, float x2, float y2) {
 710         final float xe = tosubpixx(x2);
 711         final float ye = tosubpixy(y2);
 712         curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), xe, ye);
 713         quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
 714         x0 = xe;
 715         y0 = ye;
 716     }
 717 


 943                  */
 944                 if ((ptrLen < 10) || (numCrossings < 40)) {
 945                     if (DO_STATS) {
 946                         rdrCtx.stats.hist_rdr_crossings.add(numCrossings);
 947                         rdrCtx.stats.hist_rdr_crossings_adds.add(ptrLen);
 948                     }
 949 
 950                     /*
 951                      * threshold to use binary insertion sort instead of
 952                      * straight insertion sort (to reduce minimize comparisons).
 953                      */
 954                     useBinarySearch = (numCrossings >= 20);
 955 
 956                     // if small enough:
 957                     lastCross = _MIN_VALUE;
 958 
 959                     for (i = 0; i < numCrossings; i++) {
 960                         // get the pointer to the edge
 961                         ecur = _edgePtrs[i];
 962 
 963                         /* convert subpixel coordinates into pixel
 964                             positions for coming scanline */
 965                         /* note: it is faster to always update edges even
 966                            if it is removed from AEL for coming or last scanline */
 967 
 968                         // random access so use unsafe:
 969                         addr = addr0 + ecur; // ecur + OFF_F_CURX
 970 
 971                         // get current crossing:
 972                         curx = _unsafe.getInt(addr);
 973 
 974                         // update crossing with orientation at last bit:
 975                         cross = curx;
 976 
 977                         // Increment x using DDA (fixed point):
 978                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
 979 
 980                         // Increment error:
 981                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
 982                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
 983 
 984                         // Manual carry handling:


1043                     }
1044                 } else {
1045                     if (DO_STATS) {
1046                         rdrCtx.stats.stat_rdr_crossings_msorts.add(numCrossings);
1047                         rdrCtx.stats.hist_rdr_crossings_ratio
1048                             .add((1000 * ptrLen) / numCrossings);
1049                         rdrCtx.stats.hist_rdr_crossings_msorts.add(numCrossings);
1050                         rdrCtx.stats.hist_rdr_crossings_msorts_adds.add(ptrLen);
1051                     }
1052 
1053                     // Copy sorted data in auxiliary arrays
1054                     // and perform insertion sort on almost sorted data
1055                     // (ie i < prevNumCrossings):
1056 
1057                     lastCross = _MIN_VALUE;
1058 
1059                     for (i = 0; i < numCrossings; i++) {
1060                         // get the pointer to the edge
1061                         ecur = _edgePtrs[i];
1062 
1063                         /* convert subpixel coordinates into pixel
1064                             positions for coming scanline */
1065                         /* note: it is faster to always update edges even
1066                            if it is removed from AEL for coming or last scanline */
1067 
1068                         // random access so use unsafe:
1069                         addr = addr0 + ecur; // ecur + OFF_F_CURX
1070 
1071                         // get current crossing:
1072                         curx = _unsafe.getInt(addr);
1073 
1074                         // update crossing with orientation at last bit:
1075                         cross = curx;
1076 
1077                         // Increment x using DDA (fixed point):
1078                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
1079 
1080                         // Increment error:
1081                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
1082                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
1083 
1084                         // Manual carry handling:


1150                 prev = curx = x0;
1151                 // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1152                 // last bit contains orientation (0 or 1)
1153                 crorientation = ((curxo & 0x1) << 1) - 1;
1154 
1155                 if (windingRuleEvenOdd) {
1156                     sum = crorientation;
1157 
1158                     // Even Odd winding rule: take care of mask ie sum(orientations)
1159                     for (i = 1; i < numCrossings; i++) {
1160                         curxo = _crossings[i];
1161                         curx  =  curxo >> 1;
1162                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1163                         // last bit contains orientation (0 or 1)
1164                         crorientation = ((curxo & 0x1) << 1) - 1;
1165 
1166                         if ((sum & 0x1) != 0) {
1167                             // TODO: perform line clipping on left-right sides
1168                             // to avoid such bound checks:
1169                             x0 = (prev > bboxx0) ? prev : bboxx0;
1170 
1171                             if (curx < bboxx1) {
1172                                 x1 = curx;
1173                             } else {
1174                                 x1 = bboxx1;
1175                                 // skip right side (fast exit loop):
1176                                 i = numCrossings;
1177                             }
1178 
1179                             if (x0 < x1) {
1180                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
1181                                 x1 -= bboxx0; // in the alpha array.
1182 
1183                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1184                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1185 
1186                                 if (pix_x == pix_xmaxm1) {
1187                                     // Start and end in same pixel
1188                                     tmp = (x1 - x0); // number of subpixels
1189                                     _alpha[pix_x    ] += tmp;
1190                                     _alpha[pix_x + 1] -= tmp;
1191 
1192                                     if (useBlkFlags) {
1193                                         // flag used blocks:
1194                                         // note: block processing handles extra pixel:
1195                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1196                                     }
1197                                 } else {
1198                                     tmp = (x0 & _SUBPIXEL_MASK_X);
1199                                     _alpha[pix_x    ]
1200                                         += (_SUBPIXEL_POSITIONS_X - tmp);
1201                                     _alpha[pix_x + 1]
1202                                         += tmp;
1203 
1204                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1205 
1206                                     tmp = (x1 & _SUBPIXEL_MASK_X);
1207                                     _alpha[pix_xmax    ]
1208                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
1209                                     _alpha[pix_xmax + 1]
1210                                         -= tmp;
1211 
1212                                     if (useBlkFlags) {
1213                                         // flag used blocks:
1214                                         // note: block processing handles extra pixel:
1215                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1216                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1217                                     }
1218                                 }
1219                             }
1220                         }
1221 
1222                         sum += crorientation;
1223                         prev = curx;
1224                     }
1225                 } else {
1226                     // Non-zero winding rule: optimize that case (default)
1227                     // and avoid processing intermediate crossings
1228                     for (i = 1, sum = 0;; i++) {
1229                         sum += crorientation;
1230 
1231                         if (sum != 0) {
1232                             // prev = min(curx)
1233                             if (prev > curx) {
1234                                 prev = curx;
1235                             }
1236                         } else {
1237                             // TODO: perform line clipping on left-right sides
1238                             // to avoid such bound checks:
1239                             x0 = (prev > bboxx0) ? prev : bboxx0;
1240 
1241                             if (curx < bboxx1) {
1242                                 x1 = curx;
1243                             } else {
1244                                 x1 = bboxx1;
1245                                 // skip right side (fast exit loop):
1246                                 i = numCrossings;
1247                             }
1248 
1249                             if (x0 < x1) {
1250                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
1251                                 x1 -= bboxx0; // in the alpha array.
1252 
1253                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1254                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1255 
1256                                 if (pix_x == pix_xmaxm1) {
1257                                     // Start and end in same pixel
1258                                     tmp = (x1 - x0); // number of subpixels
1259                                     _alpha[pix_x    ] += tmp;
1260                                     _alpha[pix_x + 1] -= tmp;
1261 
1262                                     if (useBlkFlags) {
1263                                         // flag used blocks:
1264                                         // note: block processing handles extra pixel:
1265                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1266                                     }
1267                                 } else {
1268                                     tmp = (x0 & _SUBPIXEL_MASK_X);
1269                                     _alpha[pix_x    ]
1270                                         += (_SUBPIXEL_POSITIONS_X - tmp);
1271                                     _alpha[pix_x + 1]
1272                                         += tmp;
1273 
1274                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1275 
1276                                     tmp = (x1 & _SUBPIXEL_MASK_X);
1277                                     _alpha[pix_xmax    ]
1278                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
1279                                     _alpha[pix_xmax + 1]
1280                                         -= tmp;
1281 
1282                                     if (useBlkFlags) {
1283                                         // flag used blocks:
1284                                         // note: block processing handles extra pixel:
1285                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1286                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1287                                     }
1288                                 }
1289                             }
1290                             prev = _MAX_VALUE;
1291                         }
1292 
1293                         if (i == numCrossings) {
1294                             break;
1295                         }
1296 
1297                         curxo = _crossings[i];
1298                         curx  =  curxo >> 1;
1299                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1300                         // last bit contains orientation (0 or 1)
1301                         crorientation = ((curxo & 0x1) << 1) - 1;
1302                     }
1303                 }
1304             } // numCrossings > 0
1305 
1306             // even if this last row had no crossings, alpha will be zeroed
1307             // from the last emitRow call. But this doesn't matter because
1308             // maxX < minX, so no row will be emitted to the MarlinCache.
1309             if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) {
1310                 lastY = y >> _SUBPIXEL_LG_POSITIONS_Y;
1311 
1312                 // convert subpixel to pixel coordinate within boundaries:
1313                 minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1314                 maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1315 
1316                 if (maxX >= minX) {
1317                     // note: alpha array will be zeroed by copyAARow()
1318                     // +1 because alpha [pix_minX; pix_maxX[
1319                     // fix range [x0; x1[
1320                     // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1321                     // inclusive: alpha[bboxx1] ignored, alpha[bboxx1+1] == 0
1322                     // (normally so never cleared below)
1323                     copyAARow(_alpha, lastY, minX, maxX + 1, useBlkFlags);
1324 
1325                     // speculative for next pixel row (scanline coherence):
1326                     if (_enableBlkFlagsHeuristics) {
1327                         // Use block flags if large pixel span and few crossings:
1328                         // ie mean(distance between crossings) is larger than
1329                         // 1 block size;
1330 
1331                         // fast check width:
1332                         maxX -= minX;
1333 
1334                         // if stroking: numCrossings /= 2
1335                         // => shift numCrossings by 1
1336                         // condition = (width / (numCrossings - 1)) > blockSize
1337                         useBlkFlags = (maxX > _BLK_SIZE) && (maxX >
1338                             (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG));
1339 
1340                         if (DO_STATS) {
1341                             tmp = FloatMath.max(1,
1342                                     ((numCrossings >> stroking) - 1));
1343                             rdrCtx.stats.hist_tile_generator_encoding_dist


1345                         }
1346                     }
1347                 } else {
1348                     _cache.clearAARow(lastY);
1349                 }
1350                 minX = _MAX_VALUE;
1351                 maxX = _MIN_VALUE;
1352             }
1353         } // scan line iterator
1354 
1355         // Emit final row
1356         y--;
1357         y >>= _SUBPIXEL_LG_POSITIONS_Y;
1358 
1359         // convert subpixel to pixel coordinate within boundaries:
1360         minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1361         maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1362 
1363         if (maxX >= minX) {
1364             // note: alpha array will be zeroed by copyAARow()
1365             // +1 because alpha [pix_minX; pix_maxX[
1366             // fix range [x0; x1[
1367             // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1368             // inclusive: alpha[bboxx1] ignored then cleared and
1369             // alpha[bboxx1+1] == 0 (normally so never cleared after)
1370             copyAARow(_alpha, y, minX, maxX + 1, useBlkFlags);
1371         } else if (y != lastY) {
1372             _cache.clearAARow(y);
1373         }
1374 
1375         // update member:
1376         edgeCount = numCrossings;
1377         prevUseBlkFlags = useBlkFlags;
1378 
1379         if (DO_STATS) {
1380             // update max used mark
1381             activeEdgeMaxUsed = _arrayMaxUsed;
1382         }
1383     }
1384 
1385     boolean endRendering() {
1386         if (DO_MONITORS) {
1387             rdrCtx.stats.mon_rdr_endRendering.start();
1388         }
1389         if (edgeMinY == Integer.MAX_VALUE) {
1390             return false; // undefined edges bounds
1391         }
1392 
1393         // bounds as half-open intervals



1394         final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5f), boundsMinX);
1395         final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5f), boundsMaxX);
1396 
1397         // edge Min/Max Y are already rounded to subpixels within bounds:
1398         final int spminY = edgeMinY;
1399         final int spmaxY = edgeMaxY;

1400 
1401         buckets_minY = spminY - boundsMinY;
1402         buckets_maxY = spmaxY - boundsMinY;






1403 
1404         if (DO_LOG_BOUNDS) {
1405             MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX
1406                                 + "[ [" + edgeMinY + " ... " + edgeMaxY + "[");
1407             MarlinUtils.logInfo("spXY    = [" + spminX + " ... " + spmaxX
1408                                 + "[ [" + spminY + " ... " + spmaxY + "[");
1409         }
1410 
1411         // test clipping for shapes out of bounds
1412         if ((spminX >= spmaxX) || (spminY >= spmaxY)) {
1413             return false;
1414         }
1415 
1416         // half open intervals
1417         // inclusive:
1418         final int pminX =  spminX                    >> SUBPIXEL_LG_POSITIONS_X;
1419         // exclusive:
1420         final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
1421         // inclusive:
1422         final int pminY =  spminY                    >> SUBPIXEL_LG_POSITIONS_Y;
1423         // exclusive:
1424         final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
1425 
1426         // store BBox to answer ptg.getBBox():
1427         this.cache.init(pminX, pminY, pmaxX, pmaxY);
1428 
1429         // Heuristics for using block flags:
1430         if (ENABLE_BLOCK_FLAGS) {
1431             enableBlkFlags = this.cache.useRLE;
1432             prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS;
1433 
1434             if (enableBlkFlags) {
1435                 // ensure blockFlags array is large enough:
1436                 // note: +2 to ensure enough space left at end
1437                 final int blkLen = ((pmaxX - pminX) >> BLOCK_SIZE_LG) + 2;
1438                 if (blkLen > INITIAL_ARRAY) {
1439                     blkFlags = blkFlags_ref.getArray(blkLen);
1440                 }
1441             }
1442         }
1443 
1444         // memorize the rendering bounding box:
1445         /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries
1446            to have correct coverage computation */
1447         // inclusive:
1448         bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X;
1449         // exclusive:
1450         bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X;
1451         // inclusive:
1452         bbox_spminY = spminY;
1453         // exclusive:
1454         bbox_spmaxY = spmaxY;
1455 
1456         if (DO_LOG_BOUNDS) {
1457             MarlinUtils.logInfo("pXY       = [" + pminX + " ... " + pmaxX
1458                                 + "[ [" + pminY + " ... " + pmaxY + "[");
1459             MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... "
1460                                 + bbox_spmaxX + "[ [" + bbox_spminY + " ... "
1461                                 + bbox_spmaxY + "[");
1462         }
1463 
1464         // Prepare alpha line:
1465         // add 2 to better deal with the last pixel in a pixel row.
1466         final int width = (pmaxX - pminX) + 2;
1467 
1468         // Useful when processing tile line by tile line
1469         if (width > INITIAL_AA_ARRAY) {
1470             if (DO_STATS) {
1471                 rdrCtx.stats.stat_array_renderer_alphaline.add(width);
1472             }
1473             alphaLine = alphaLine_ref.getArray(width);
1474         }


1492         // avoid rendering for last call to nextTile()
1493         if (fixed_spminY < bbox_spmaxY) {
1494             // process a complete tile line ie scanlines for 32 rows
1495             final int spmaxY = FloatMath.min(bbox_spmaxY, spminY + SUBPIXEL_TILE);
1496 
1497             // process tile line [0 - 32]
1498             cache.resetTileLine(pminY);
1499 
1500             // Process only one tile line:
1501             _endRendering(fixed_spminY, spmaxY);
1502         }
1503         if (DO_MONITORS) {
1504             rdrCtx.stats.mon_rdr_endRendering_Y.stop();
1505         }
1506     }
1507 
1508     void copyAARow(final int[] alphaRow,
1509                    final int pix_y, final int pix_from, final int pix_to,
1510                    final boolean useBlockFlags)
1511     {
1512         if (DO_MONITORS) {
1513             rdrCtx.stats.mon_rdr_copyAARow.start();
1514         }
1515         if (useBlockFlags) {
1516             if (DO_STATS) {
1517                 rdrCtx.stats.hist_tile_generator_encoding.add(1);
1518             }
1519             cache.copyAARowRLE_WithBlockFlags(blkFlags, alphaRow, pix_y, pix_from, pix_to);
1520         } else {
1521             if (DO_STATS) {
1522                 rdrCtx.stats.hist_tile_generator_encoding.add(0);
1523             }
1524             cache.copyAARowNoRLE(alphaRow, pix_y, pix_from, pix_to);
1525         }
1526         if (DO_MONITORS) {
1527             rdrCtx.stats.mon_rdr_copyAARow.stop();
1528         }
1529     }
1530 }
< prev index next >