< prev index next >

src/java.desktop/share/classes/sun/java2d/marlin/DDasher.java

Print this page

        

*** 135,145 **** } phase += dash[sidx]; dashOn = !dashOn; } } ! } else if (phase > 0) { if (cycles >= MAX_CYCLES) { phase = 0.0d; } else { int fullcycles = FloatMath.floor_int(cycles); if ((fullcycles & dash.length & 1) != 0) { --- 135,145 ---- } phase += dash[sidx]; dashOn = !dashOn; } } ! } else if (phase > 0.0d) { if (cycles >= MAX_CYCLES) { phase = 0.0d; } else { int fullcycles = FloatMath.floor_int(cycles); if ((fullcycles & dash.length & 1) != 0) {
*** 155,170 **** } } this.dash = dash; this.dashLen = dashLen; ! this.startPhase = this.phase = phase; this.startDashOn = dashOn; this.startIdx = sidx; this.starting = true; ! needsMoveTo = false; ! firstSegidx = 0; this.recycleDashes = recycleDashes; return this; // fluent API } --- 155,171 ---- } } this.dash = dash; this.dashLen = dashLen; ! this.phase = phase; ! this.startPhase = phase; this.startDashOn = dashOn; this.startIdx = sidx; this.starting = true; ! this.needsMoveTo = false; ! this.firstSegidx = 0; this.recycleDashes = recycleDashes; return this; // fluent API }
*** 200,219 **** return newDashes; } @Override public void moveTo(double x0, double y0) { ! if (firstSegidx > 0) { out.moveTo(sx, sy); emitFirstSegments(); } needsMoveTo = true; this.idx = startIdx; this.dashOn = this.startDashOn; this.phase = this.startPhase; ! this.sx = this.x0 = x0; ! this.sy = this.y0 = y0; this.starting = true; } private void emitSeg(double[] buf, int off, int type) { switch (type) { --- 201,222 ---- return newDashes; } @Override public void moveTo(double x0, double y0) { ! if (firstSegidx != 0) { out.moveTo(sx, sy); emitFirstSegments(); } needsMoveTo = true; this.idx = startIdx; this.dashOn = this.startDashOn; this.phase = this.startPhase; ! this.sx = x0; ! this.sy = y0; ! this.x0 = x0; ! this.y0 = y0; this.starting = true; } private void emitSeg(double[] buf, int off, int type) { switch (type) {
*** 234,244 **** } private void emitFirstSegments() { final double[] fSegBuf = firstSegmentsBuffer; ! for (int i = 0; i < firstSegidx; ) { int type = (int)fSegBuf[i]; emitSeg(fSegBuf, i + 1, type); i += (type - 1); } firstSegidx = 0; --- 237,247 ---- } private void emitFirstSegments() { final double[] fSegBuf = firstSegmentsBuffer; ! for (int i = 0, len = firstSegidx; i < len; ) { int type = (int)fSegBuf[i]; emitSeg(fSegBuf, i + 1, type); i += (type - 1); } firstSegidx = 0;
*** 249,300 **** // buffer below. private double[] firstSegmentsBuffer; // dynamic array private int firstSegidx; // precondition: pts must be in relative coordinates (relative to x0,y0) ! private void goTo(double[] pts, int off, final int type) { ! double x = pts[off + type - 4]; ! double y = pts[off + type - 3]; ! if (dashOn) { if (starting) { ! int len = type - 1; // - 2 + 1 ! int segIdx = firstSegidx; ! double[] buf = firstSegmentsBuffer; ! if (segIdx + len > buf.length) { ! if (DO_STATS) { ! rdrCtx.stats.stat_array_dasher_firstSegmentsBuffer ! .add(segIdx + len); ! } ! firstSegmentsBuffer = buf ! = firstSegmentsBuffer_ref.widenArray(buf, segIdx, ! segIdx + len); ! } ! buf[segIdx++] = type; ! len--; ! // small arraycopy (2, 4 or 6) but with offset: ! System.arraycopy(pts, off, buf, segIdx, len); ! segIdx += len; ! firstSegidx = segIdx; } else { if (needsMoveTo) { - out.moveTo(x0, y0); needsMoveTo = false; } emitSeg(pts, off, type); } } else { ! starting = false; needsMoveTo = true; } this.x0 = x; this.y0 = y; } @Override public void lineTo(double x1, double y1) { ! double dx = x1 - x0; ! double dy = y1 - y0; double len = dx*dx + dy*dy; if (len == 0.0d) { return; } --- 252,312 ---- // buffer below. private double[] firstSegmentsBuffer; // dynamic array private int firstSegidx; // precondition: pts must be in relative coordinates (relative to x0,y0) ! private void goTo(double[] pts, final int off, final int type, final boolean on) { ! final int index = off + type; ! final double x = pts[index - 4]; ! final double y = pts[index - 3]; ! ! if (on) { if (starting) { ! goTo_starting(pts, off, type); } else { if (needsMoveTo) { needsMoveTo = false; + out.moveTo(x0, y0); } emitSeg(pts, off, type); } } else { ! if (starting) { ! // low probability test (hotspot) ! starting = false; ! } needsMoveTo = true; } this.x0 = x; this.y0 = y; } + private void goTo_starting(final double[] pts, final int off, final int type) { + int len = type - 1; // - 2 + 1 + int segIdx = firstSegidx; + double[] buf = firstSegmentsBuffer; + + if (segIdx + len > buf.length) { + if (DO_STATS) { + rdrCtx.stats.stat_array_dasher_firstSegmentsBuffer + .add(segIdx + len); + } + firstSegmentsBuffer = buf + = firstSegmentsBuffer_ref.widenArray(buf, segIdx, + segIdx + len); + } + buf[segIdx++] = type; + len--; + // small arraycopy (2, 4 or 6) but with offset: + System.arraycopy(pts, off, buf, segIdx, len); + firstSegidx = segIdx + len; + } + @Override public void lineTo(double x1, double y1) { ! final double dx = x1 - x0; ! final double dy = y1 - y0; double len = dx*dx + dy*dy; if (len == 0.0d) { return; }
*** 305,356 **** final double cx = dx / len; final double cy = dy / len; final double[] _curCurvepts = curCurvepts; final double[] _dash = dash; double leftInThisDashSegment; ! double dashdx, dashdy, p; while (true) { ! leftInThisDashSegment = _dash[idx] - phase; if (len <= leftInThisDashSegment) { _curCurvepts[0] = x1; _curCurvepts[1] = y1; ! goTo(_curCurvepts, 0, 4); // Advance phase within current dash segment ! phase += len; // TODO: compare double values using epsilon: if (len == leftInThisDashSegment) { ! phase = 0.0d; ! idx = (idx + 1) % dashLen; ! dashOn = !dashOn; } return; } ! dashdx = _dash[idx] * cx; ! dashdy = _dash[idx] * cy; ! if (phase == 0.0d) { _curCurvepts[0] = x0 + dashdx; _curCurvepts[1] = y0 + dashdy; } else { ! p = leftInThisDashSegment / _dash[idx]; _curCurvepts[0] = x0 + p * dashdx; _curCurvepts[1] = y0 + p * dashdy; } ! goTo(_curCurvepts, 0, 4); len -= leftInThisDashSegment; // Advance to next dash segment ! idx = (idx + 1) % dashLen; ! dashOn = !dashOn; ! phase = 0.0d; } } // shared instance in DDasher private final LengthIterator li = new LengthIterator(); --- 317,381 ---- final double cx = dx / len; final double cy = dy / len; final double[] _curCurvepts = curCurvepts; final double[] _dash = dash; + final int _dashLen = this.dashLen; + + int _idx = idx; + boolean _dashOn = dashOn; + double _phase = phase; double leftInThisDashSegment; ! double d, dashdx, dashdy, p; while (true) { ! d = _dash[_idx]; ! leftInThisDashSegment = d - _phase; if (len <= leftInThisDashSegment) { _curCurvepts[0] = x1; _curCurvepts[1] = y1; ! ! goTo(_curCurvepts, 0, 4, _dashOn); // Advance phase within current dash segment ! _phase += len; ! // TODO: compare double values using epsilon: if (len == leftInThisDashSegment) { ! _phase = 0.0d; ! _idx = (_idx + 1) % _dashLen; ! _dashOn = !_dashOn; } + + // Save local state: + idx = _idx; + dashOn = _dashOn; + phase = _phase; return; } ! dashdx = d * cx; ! dashdy = d * cy; ! if (_phase == 0.0d) { _curCurvepts[0] = x0 + dashdx; _curCurvepts[1] = y0 + dashdy; } else { ! p = leftInThisDashSegment / d; _curCurvepts[0] = x0 + p * dashdx; _curCurvepts[1] = y0 + p * dashdy; } ! goTo(_curCurvepts, 0, 4, _dashOn); len -= leftInThisDashSegment; // Advance to next dash segment ! _idx = (_idx + 1) % _dashLen; ! _dashOn = !_dashOn; ! _phase = 0.0d; } } // shared instance in DDasher private final LengthIterator li = new LengthIterator();
*** 359,401 **** // that contains the curve we want to dash in the first type elements private void somethingTo(int type) { if (pointCurve(curCurvepts, type)) { return; } ! li.initializeIterationOnCurve(curCurvepts, type); // initially the current curve is at curCurvepts[0...type] int curCurveoff = 0; double lastSplitT = 0.0d; double t; ! double leftInThisDashSegment = dash[idx] - phase; ! while ((t = li.next(leftInThisDashSegment)) < 1.0d) { if (t != 0.0d) { DHelpers.subdivideAt((t - lastSplitT) / (1.0d - lastSplitT), ! curCurvepts, curCurveoff, ! curCurvepts, 0, ! curCurvepts, type, type); lastSplitT = t; ! goTo(curCurvepts, 2, type); curCurveoff = type; } // Advance to next dash segment ! idx = (idx + 1) % dashLen; ! dashOn = !dashOn; ! phase = 0.0d; ! leftInThisDashSegment = dash[idx]; ! } ! goTo(curCurvepts, curCurveoff+2, type); ! phase += li.lastSegLen(); ! if (phase >= dash[idx]) { ! phase = 0.0d; ! idx = (idx + 1) % dashLen; ! dashOn = !dashOn; ! } // reset LengthIterator: ! li.reset(); } private static boolean pointCurve(double[] curve, int type) { for (int i = 2; i < type; i++) { if (curve[i] != curve[i-2]) { --- 384,439 ---- // that contains the curve we want to dash in the first type elements private void somethingTo(int type) { if (pointCurve(curCurvepts, type)) { return; } ! final LengthIterator _li = li; ! final double[] _curCurvepts = curCurvepts; ! final double[] _dash = dash; ! final int _dashLen = this.dashLen; ! ! _li.initializeIterationOnCurve(_curCurvepts, type); ! ! int _idx = idx; ! boolean _dashOn = dashOn; ! double _phase = phase; // initially the current curve is at curCurvepts[0...type] int curCurveoff = 0; double lastSplitT = 0.0d; double t; ! double leftInThisDashSegment = _dash[_idx] - _phase; ! while ((t = _li.next(leftInThisDashSegment)) < 1.0d) { if (t != 0.0d) { DHelpers.subdivideAt((t - lastSplitT) / (1.0d - lastSplitT), ! _curCurvepts, curCurveoff, ! _curCurvepts, 0, ! _curCurvepts, type, type); lastSplitT = t; ! goTo(_curCurvepts, 2, type, _dashOn); curCurveoff = type; } // Advance to next dash segment ! _idx = (_idx + 1) % _dashLen; ! _dashOn = !_dashOn; ! _phase = 0.0d; ! leftInThisDashSegment = _dash[_idx]; ! } ! goTo(_curCurvepts, curCurveoff + 2, type, _dashOn); ! _phase += _li.lastSegLen(); ! if (_phase >= _dash[_idx]) { ! _phase = 0.0d; ! _idx = (_idx + 1) % _dashLen; ! _dashOn = !_dashOn; ! } ! // Save local state: ! idx = _idx; ! dashOn = _dashOn; ! phase = _phase; // reset LengthIterator: ! _li.reset(); } private static boolean pointCurve(double[] curve, int type) { for (int i = 2; i < type; i++) { if (curve[i] != curve[i-2]) {
*** 417,427 **** // limit+1 curves - one for each level of the tree + 1. // NOTE: the way we do things here is not enough to traverse a general // tree; however, the trees we are interested in have the property that // every non leaf node has exactly 2 children static final class LengthIterator { ! private enum Side {LEFT, RIGHT}; // Holds the curves at various levels of the recursion. The root // (i.e. the original curve) is at recCurveStack[0] (but then it // gets subdivided, the left half is put at 1, so most of the time // only the right half of the original curve is at 0) private final double[][] recCurveStack; // dirty --- 455,465 ---- // limit+1 curves - one for each level of the tree + 1. // NOTE: the way we do things here is not enough to traverse a general // tree; however, the trees we are interested in have the property that // every non leaf node has exactly 2 children static final class LengthIterator { ! private enum Side {LEFT, RIGHT} // Holds the curves at various levels of the recursion. The root // (i.e. the original curve) is at recCurveStack[0] (but then it // gets subdivided, the left half is put at 1, so most of the time // only the right half of the original curve is at 0) private final double[][] recCurveStack; // dirty
*** 667,692 **** } // this is a bit of a hack. It returns -1 if we're not on a leaf, and // the length of the leaf if we are on a leaf. private double onLeaf() { ! double[] curve = recCurveStack[recLevel]; double polyLen = 0.0d; double x0 = curve[0], y0 = curve[1]; ! for (int i = 2; i < curveType; i += 2) { final double x1 = curve[i], y1 = curve[i+1]; final double len = DHelpers.linelen(x0, y0, x1, y1); polyLen += len; curLeafCtrlPolyLengths[i/2 - 1] = len; x0 = x1; y0 = y1; } final double lineLen = DHelpers.linelen(curve[0], curve[1], ! curve[curveType-2], ! curve[curveType-1]); if ((polyLen - lineLen) < ERR || recLevel == REC_LIMIT) { return (polyLen + lineLen) / 2.0d; } return -1.0d; } --- 705,731 ---- } // this is a bit of a hack. It returns -1 if we're not on a leaf, and // the length of the leaf if we are on a leaf. private double onLeaf() { ! final double[] curve = recCurveStack[recLevel]; ! final int _curveType = curveType; double polyLen = 0.0d; double x0 = curve[0], y0 = curve[1]; ! for (int i = 2; i < _curveType; i += 2) { final double x1 = curve[i], y1 = curve[i+1]; final double len = DHelpers.linelen(x0, y0, x1, y1); polyLen += len; curLeafCtrlPolyLengths[i/2 - 1] = len; x0 = x1; y0 = y1; } final double lineLen = DHelpers.linelen(curve[0], curve[1], ! curve[_curveType-2], ! curve[_curveType-1]); if ((polyLen - lineLen) < ERR || recLevel == REC_LIMIT) { return (polyLen + lineLen) / 2.0d; } return -1.0d; }
*** 715,736 **** } @Override public void closePath() { lineTo(sx, sy); ! if (firstSegidx > 0) { if (!dashOn || needsMoveTo) { out.moveTo(sx, sy); } emitFirstSegments(); } moveTo(sx, sy); } @Override public void pathDone() { ! if (firstSegidx > 0) { out.moveTo(sx, sy); emitFirstSegments(); } out.pathDone(); --- 754,775 ---- } @Override public void closePath() { lineTo(sx, sy); ! if (firstSegidx != 0) { if (!dashOn || needsMoveTo) { out.moveTo(sx, sy); } emitFirstSegments(); } moveTo(sx, sy); } @Override public void pathDone() { ! if (firstSegidx != 0) { out.moveTo(sx, sy); emitFirstSegments(); } out.pathDone();
< prev index next >