/* * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package sun.java2d.marlin; import java.util.Arrays; import sun.awt.geom.PathConsumer2D; import sun.java2d.marlin.stats.Histogram; import sun.java2d.marlin.stats.StatLong; final class Helpers implements MarlinConst { private Helpers() { throw new Error("This is a non instantiable class"); } static boolean within(final float x, final float y, final float err) { final float d = y - x; return (d <= err && d >= -err); } static boolean within(final double x, final double y, final double err) { final double d = y - x; return (d <= err && d >= -err); } static float evalCubic(final float a, final float b, final float c, final float d, final float t) { return t * (t * (t * a + b) + c) + d; } static float evalQuad(final float a, final float b, final float c, final float t) { return t * (t * a + b) + c; } static int quadraticRoots(final float a, final float b, final float c, final float[] zeroes, final int off) { int ret = off; if (a != 0.0f) { final float dis = b*b - 4.0f * a * c; if (dis > 0.0f) { final float sqrtDis = (float) Math.sqrt(dis); // depending on the sign of b we use a slightly different // algorithm than the traditional one to find one of the roots // so we can avoid adding numbers of different signs (which // might result in loss of precision). if (b >= 0.0f) { zeroes[ret++] = (2.0f * c) / (-b - sqrtDis); zeroes[ret++] = (-b - sqrtDis) / (2.0f * a); } else { zeroes[ret++] = (-b + sqrtDis) / (2.0f * a); zeroes[ret++] = (2.0f * c) / (-b + sqrtDis); } } else if (dis == 0.0f) { zeroes[ret++] = -b / (2.0f * a); } } else if (b != 0.0f) { zeroes[ret++] = -c / b; } return ret - off; } // find the roots of g(t) = d*t^3 + a*t^2 + b*t + c in [A,B) static int cubicRootsInAB(final float d0, float a0, float b0, float c0, final float[] pts, final int off, final float A, final float B) { if (d0 == 0.0f) { final int num = quadraticRoots(a0, b0, c0, pts, off); return filterOutNotInAB(pts, off, num, A, B) - off; } // From Graphics Gems: // https://github.com/erich666/GraphicsGems/blob/master/gems/Roots3And4.c // (also from awt.geom.CubicCurve2D. But here we don't need as // much accuracy and we don't want to create arrays so we use // our own customized version). // normal form: x^3 + ax^2 + bx + c = 0 // 2018.1: Need double precision if d is very small (flat curve) ! /* * TODO: cleanup all that code after reading Roots3And4.c */ final double a = ((double)a0) / d0; final double b = ((double)b0) / d0; final double c = ((double)c0) / d0; // substitute x = y - A/3 to eliminate quadratic term: // x^3 +Px + Q = 0 // // Since we actually need P/3 and Q/2 for all of the // calculations that follow, we will calculate // p = P/3 // q = Q/2 // instead and use those values for simplicity of the code. final double sub = (1.0d / 3.0d) * a; final double sq_A = a * a; final double p = (1.0d / 3.0d) * ((-1.0d / 3.0d) * sq_A + b); final double q = (1.0d / 2.0d) * ((2.0d / 27.0d) * a * sq_A - sub * b + c); // use Cardano's formula final double cb_p = p * p * p; final double D = q * q + cb_p; int num; if (D < 0.0d) { // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method final double phi = (1.0d / 3.0d) * Math.acos(-q / Math.sqrt(-cb_p)); final double t = 2.0d * Math.sqrt(-p); pts[off ] = (float) ( t * Math.cos(phi) - sub); pts[off + 1] = (float) (-t * Math.cos(phi + (Math.PI / 3.0d)) - sub); pts[off + 2] = (float) (-t * Math.cos(phi - (Math.PI / 3.0d)) - sub); num = 3; } else { final double sqrt_D = Math.sqrt(D); final double u = Math.cbrt(sqrt_D - q); final double v = - Math.cbrt(sqrt_D + q); pts[off ] = (float) (u + v - sub); num = 1; if (within(D, 0.0d, 1e-8d)) { pts[off + 1] = (float)((-1.0d / 2.0d) * (u + v) - sub); num = 2; } } return filterOutNotInAB(pts, off, num, A, B) - off; } // returns the index 1 past the last valid element remaining after filtering static int filterOutNotInAB(final float[] nums, final int off, final int len, final float a, final float b) { int ret = off; for (int i = off, end = off + len; i < end; i++) { if (nums[i] >= a && nums[i] < b) { nums[ret++] = nums[i]; } } return ret; } static float fastLineLen(final float x0, final float y0, final float x1, final float y1) { final float dx = x1 - x0; final float dy = y1 - y0; // use manhattan norm: return Math.abs(dx) + Math.abs(dy); } static float linelen(final float x0, final float y0, final float x1, final float y1) { final float dx = x1 - x0; final float dy = y1 - y0; return (float) Math.sqrt(dx * dx + dy * dy); } static float fastQuadLen(final float x0, final float y0, final float x1, final float y1, final float x2, final float y2) { final float dx1 = x1 - x0; final float dx2 = x2 - x1; final float dy1 = y1 - y0; final float dy2 = y2 - y1; // use manhattan norm: return Math.abs(dx1) + Math.abs(dx2) + Math.abs(dy1) + Math.abs(dy2); } static float quadlen(final float x0, final float y0, final float x1, final float y1, final float x2, final float y2) { return (linelen(x0, y0, x1, y1) + linelen(x1, y1, x2, y2) + linelen(x0, y0, x2, y2)) / 2.0f; } static float fastCurvelen(final float x0, final float y0, final float x1, final float y1, final float x2, final float y2, final float x3, final float y3) { final float dx1 = x1 - x0; final float dx2 = x2 - x1; final float dx3 = x3 - x2; final float dy1 = y1 - y0; final float dy2 = y2 - y1; final float dy3 = y3 - y2; // use manhattan norm: return Math.abs(dx1) + Math.abs(dx2) + Math.abs(dx3) + Math.abs(dy1) + Math.abs(dy2) + Math.abs(dy3); } static float curvelen(final float x0, final float y0, final float x1, final float y1, final float x2, final float y2, final float x3, final float y3) { return (linelen(x0, y0, x1, y1) + linelen(x1, y1, x2, y2) + linelen(x2, y2, x3, y3) + linelen(x0, y0, x3, y3)) / 2.0f; } // finds values of t where the curve in pts should be subdivided in order // to get good offset curves a distance of w away from the middle curve. // Stores the points in ts, and returns how many of them there were. static int findSubdivPoints(final Curve c, final float[] pts, final float[] ts, final int type, final float w2) { final float x12 = pts[2] - pts[0]; final float y12 = pts[3] - pts[1]; // if the curve is already parallel to either axis we gain nothing // from rotating it. if ((y12 != 0.0f && x12 != 0.0f)) { // we rotate it so that the first vector in the control polygon is // parallel to the x-axis. This will ensure that rotated quarter // circles won't be subdivided. final float hypot = (float)Math.sqrt(x12 * x12 + y12 * y12); final float cos = x12 / hypot; final float sin = y12 / hypot; final float x1 = cos * pts[0] + sin * pts[1]; final float y1 = cos * pts[1] - sin * pts[0]; final float x2 = cos * pts[2] + sin * pts[3]; final float y2 = cos * pts[3] - sin * pts[2]; final float x3 = cos * pts[4] + sin * pts[5]; final float y3 = cos * pts[5] - sin * pts[4]; switch(type) { case 8: final float x4 = cos * pts[6] + sin * pts[7]; final float y4 = cos * pts[7] - sin * pts[6]; c.set(x1, y1, x2, y2, x3, y3, x4, y4); break; case 6: c.set(x1, y1, x2, y2, x3, y3); break; default: } } else { c.set(pts, type); } int ret = 0; // we subdivide at values of t such that the remaining rotated // curves are monotonic in x and y. ret += c.dxRoots(ts, ret); ret += c.dyRoots(ts, ret); // subdivide at inflection points. if (type == 8) { // quadratic curves can't have inflection points ret += c.infPoints(ts, ret); } // now we must subdivide at points where one of the offset curves will have // a cusp. This happens at ts where the radius of curvature is equal to w. ret += c.rootsOfROCMinusW(ts, ret, w2, 0.0001f); ret = filterOutNotInAB(ts, 0, ret, 0.0001f, 0.9999f); isort(ts, ret); return ret; } // finds values of t where the curve in pts should be subdivided in order // to get intersections with the given clip rectangle. // Stores the points in ts, and returns how many of them there were. static int findClipPoints(final Curve curve, final float[] pts, final float[] ts, final int type, final int outCodeOR, final float[] clipRect) { curve.set(pts, type); // clip rectangle (ymin, ymax, xmin, xmax) int ret = 0; if ((outCodeOR & OUTCODE_LEFT) != 0) { ret += curve.xPoints(ts, ret, clipRect[2]); } if ((outCodeOR & OUTCODE_RIGHT) != 0) { ret += curve.xPoints(ts, ret, clipRect[3]); } if ((outCodeOR & OUTCODE_TOP) != 0) { ret += curve.yPoints(ts, ret, clipRect[0]); } if ((outCodeOR & OUTCODE_BOTTOM) != 0) { ret += curve.yPoints(ts, ret, clipRect[1]); } isort(ts, ret); return ret; } static void subdivide(final float[] src, final float[] left, final float[] right, final int type) { switch(type) { case 8: subdivideCubic(src, left, right); return; case 6: subdivideQuad(src, left, right); return; default: throw new InternalError("Unsupported curve type"); } } static void isort(final float[] a, final int len) { for (int i = 1, j; i < len; i++) { final float ai = a[i]; j = i - 1; for (; j >= 0 && a[j] > ai; j--) { a[j + 1] = a[j]; } a[j + 1] = ai; } } // Most of these are copied from classes in java.awt.geom because we need // both single and double precision variants of these functions, and Line2D, // CubicCurve2D, QuadCurve2D don't provide them. /** * Subdivides the cubic curve specified by the coordinates * stored in the src array at indices srcoff * through (srcoff + 7) and stores the * resulting two subdivided curves into the two result arrays at the * corresponding indices. * Either or both of the left and right * arrays may be null or a reference to the same array * as the src array. * Note that the last point in the first subdivided curve is the * same as the first point in the second subdivided curve. Thus, * it is possible to pass the same array for left * and right and to use offsets, such as rightoff * equals (leftoff + 6), in order * to avoid allocating extra storage for this common point. * @param src the array holding the coordinates for the source curve * @param left the array for storing the coordinates for the first * half of the subdivided curve * @param right the array for storing the coordinates for the second * half of the subdivided curve * @since 1.7 */ static void subdivideCubic(final float[] src, final float[] left, final float[] right) { float x1 = src[0]; float y1 = src[1]; float cx1 = src[2]; float cy1 = src[3]; float cx2 = src[4]; float cy2 = src[5]; float x2 = src[6]; float y2 = src[7]; left[0] = x1; left[1] = y1; right[6] = x2; right[7] = y2; x1 = (x1 + cx1) / 2.0f; y1 = (y1 + cy1) / 2.0f; x2 = (x2 + cx2) / 2.0f; y2 = (y2 + cy2) / 2.0f; float cx = (cx1 + cx2) / 2.0f; float cy = (cy1 + cy2) / 2.0f; cx1 = (x1 + cx) / 2.0f; cy1 = (y1 + cy) / 2.0f; cx2 = (x2 + cx) / 2.0f; cy2 = (y2 + cy) / 2.0f; cx = (cx1 + cx2) / 2.0f; cy = (cy1 + cy2) / 2.0f; left[2] = x1; left[3] = y1; left[4] = cx1; left[5] = cy1; left[6] = cx; left[7] = cy; right[0] = cx; right[1] = cy; right[2] = cx2; right[3] = cy2; right[4] = x2; right[5] = y2; } static void subdivideCubicAt(final float t, final float[] src, final int offS, final float[] pts, final int offL, final int offR) { float x1 = src[offS ]; float y1 = src[offS + 1]; float cx1 = src[offS + 2]; float cy1 = src[offS + 3]; float cx2 = src[offS + 4]; float cy2 = src[offS + 5]; float x2 = src[offS + 6]; float y2 = src[offS + 7]; pts[offL ] = x1; pts[offL + 1] = y1; pts[offR + 6] = x2; pts[offR + 7] = y2; x1 = x1 + t * (cx1 - x1); y1 = y1 + t * (cy1 - y1); x2 = cx2 + t * (x2 - cx2); y2 = cy2 + t * (y2 - cy2); float cx = cx1 + t * (cx2 - cx1); float cy = cy1 + t * (cy2 - cy1); cx1 = x1 + t * (cx - x1); cy1 = y1 + t * (cy - y1); cx2 = cx + t * (x2 - cx); cy2 = cy + t * (y2 - cy); cx = cx1 + t * (cx2 - cx1); cy = cy1 + t * (cy2 - cy1); pts[offL + 2] = x1; pts[offL + 3] = y1; pts[offL + 4] = cx1; pts[offL + 5] = cy1; pts[offL + 6] = cx; pts[offL + 7] = cy; pts[offR ] = cx; pts[offR + 1] = cy; pts[offR + 2] = cx2; pts[offR + 3] = cy2; pts[offR + 4] = x2; pts[offR + 5] = y2; } static void subdivideQuad(final float[] src, final float[] left, final float[] right) { float x1 = src[0]; float y1 = src[1]; float cx = src[2]; float cy = src[3]; float x2 = src[4]; float y2 = src[5]; left[0] = x1; left[1] = y1; right[4] = x2; right[5] = y2; x1 = (x1 + cx) / 2.0f; y1 = (y1 + cy) / 2.0f; x2 = (x2 + cx) / 2.0f; y2 = (y2 + cy) / 2.0f; cx = (x1 + x2) / 2.0f; cy = (y1 + y2) / 2.0f; left[2] = x1; left[3] = y1; left[4] = cx; left[5] = cy; right[0] = cx; right[1] = cy; right[2] = x2; right[3] = y2; } static void subdivideQuadAt(final float t, final float[] src, final int offS, final float[] pts, final int offL, final int offR) { float x1 = src[offS ]; float y1 = src[offS + 1]; float cx = src[offS + 2]; float cy = src[offS + 3]; float x2 = src[offS + 4]; float y2 = src[offS + 5]; pts[offL ] = x1; pts[offL + 1] = y1; pts[offR + 4] = x2; pts[offR + 5] = y2; x1 = x1 + t * (cx - x1); y1 = y1 + t * (cy - y1); x2 = cx + t * (x2 - cx); y2 = cy + t * (y2 - cy); cx = x1 + t * (x2 - x1); cy = y1 + t * (y2 - y1); pts[offL + 2] = x1; pts[offL + 3] = y1; pts[offL + 4] = cx; pts[offL + 5] = cy; pts[offR ] = cx; pts[offR + 1] = cy; pts[offR + 2] = x2; pts[offR + 3] = y2; } static void subdivideLineAt(final float t, final float[] src, final int offS, final float[] pts, final int offL, final int offR) { float x1 = src[offS ]; float y1 = src[offS + 1]; float x2 = src[offS + 2]; float y2 = src[offS + 3]; pts[offL ] = x1; pts[offL + 1] = y1; pts[offR + 2] = x2; pts[offR + 3] = y2; x1 = x1 + t * (x2 - x1); y1 = y1 + t * (y2 - y1); pts[offL + 2] = x1; pts[offL + 3] = y1; pts[offR ] = x1; pts[offR + 1] = y1; } static void subdivideAt(final float t, final float[] src, final int offS, final float[] pts, final int offL, final int type) { // if instead of switch (perf + most probable cases first) if (type == 8) { subdivideCubicAt(t, src, offS, pts, offL, offL + type); } else if (type == 4) { subdivideLineAt(t, src, offS, pts, offL, offL + type); } else { subdivideQuadAt(t, src, offS, pts, offL, offL + type); } } // From sun.java2d.loops.GeneralRenderer: static int outcode(final float x, final float y, final float[] clipRect) { int code; if (y < clipRect[0]) { code = OUTCODE_TOP; } else if (y >= clipRect[1]) { code = OUTCODE_BOTTOM; } else { code = 0; } if (x < clipRect[2]) { code |= OUTCODE_LEFT; } else if (x >= clipRect[3]) { code |= OUTCODE_RIGHT; } return code; } // a stack of polynomial curves where each curve shares endpoints with // adjacent ones. static final class PolyStack { private static final byte TYPE_LINETO = (byte) 0; private static final byte TYPE_QUADTO = (byte) 1; private static final byte TYPE_CUBICTO = (byte) 2; // curves capacity = edges count (8192) = edges x 2 (coords) private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT << 1; // types capacity = edges count (4096) private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT; float[] curves; int end; byte[] curveTypes; int numCurves; // curves ref (dirty) final FloatArrayCache.Reference curves_ref; // curveTypes ref (dirty) final ByteArrayCache.Reference curveTypes_ref; // used marks (stats only) int curveTypesUseMark; int curvesUseMark; private final StatLong stat_polystack_types; private final StatLong stat_polystack_curves; private final Histogram hist_polystack_curves; private final StatLong stat_array_polystack_curves; private final StatLong stat_array_polystack_curveTypes; PolyStack(final RendererContext rdrCtx) { this(rdrCtx, null, null, null, null, null); } PolyStack(final RendererContext rdrCtx, final StatLong stat_polystack_types, final StatLong stat_polystack_curves, final Histogram hist_polystack_curves, final StatLong stat_array_polystack_curves, final StatLong stat_array_polystack_curveTypes) { curves_ref = rdrCtx.newDirtyFloatArrayRef(INITIAL_CURVES_COUNT); // 32K curves = curves_ref.initial; curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 4K curveTypes = curveTypes_ref.initial; numCurves = 0; end = 0; if (DO_STATS) { curveTypesUseMark = 0; curvesUseMark = 0; } this.stat_polystack_types = stat_polystack_types; this.stat_polystack_curves = stat_polystack_curves; this.hist_polystack_curves = hist_polystack_curves; this.stat_array_polystack_curves = stat_array_polystack_curves; this.stat_array_polystack_curveTypes = stat_array_polystack_curveTypes; } /** * Disposes this PolyStack: * clean up before reusing this instance */ void dispose() { end = 0; numCurves = 0; if (DO_STATS) { stat_polystack_types.add(curveTypesUseMark); stat_polystack_curves.add(curvesUseMark); hist_polystack_curves.add(curvesUseMark); // reset marks curveTypesUseMark = 0; curvesUseMark = 0; } // Return arrays: // curves and curveTypes are kept dirty curves = curves_ref.putArray(curves); curveTypes = curveTypes_ref.putArray(curveTypes); } private void ensureSpace(final int n) { // use substraction to avoid integer overflow: if (curves.length - end < n) { if (DO_STATS) { stat_array_polystack_curves.add(end + n); } curves = curves_ref.widenArray(curves, end, end + n); } if (curveTypes.length <= numCurves) { if (DO_STATS) { stat_array_polystack_curveTypes.add(numCurves + 1); } curveTypes = curveTypes_ref.widenArray(curveTypes, numCurves, numCurves + 1); } } void pushCubic(float x0, float y0, float x1, float y1, float x2, float y2) { ensureSpace(6); curveTypes[numCurves++] = TYPE_CUBICTO; // we reverse the coordinate order to make popping easier final float[] _curves = curves; int e = end; _curves[e++] = x2; _curves[e++] = y2; _curves[e++] = x1; _curves[e++] = y1; _curves[e++] = x0; _curves[e++] = y0; end = e; } void pushQuad(float x0, float y0, float x1, float y1) { ensureSpace(4); curveTypes[numCurves++] = TYPE_QUADTO; final float[] _curves = curves; int e = end; _curves[e++] = x1; _curves[e++] = y1; _curves[e++] = x0; _curves[e++] = y0; end = e; } void pushLine(float x, float y) { ensureSpace(2); curveTypes[numCurves++] = TYPE_LINETO; curves[end++] = x; curves[end++] = y; } void pullAll(final PathConsumer2D io) { final int nc = numCurves; if (nc == 0) { return; } if (DO_STATS) { // update used marks: if (numCurves > curveTypesUseMark) { curveTypesUseMark = numCurves; } if (end > curvesUseMark) { curvesUseMark = end; } } final byte[] _curveTypes = curveTypes; final float[] _curves = curves; int e = 0; for (int i = 0; i < nc; i++) { switch(_curveTypes[i]) { case TYPE_LINETO: io.lineTo(_curves[e], _curves[e+1]); e += 2; continue; case TYPE_QUADTO: io.quadTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3]); e += 4; continue; case TYPE_CUBICTO: io.curveTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3], _curves[e+4], _curves[e+5]); e += 6; continue; default: } } numCurves = 0; end = 0; } void popAll(final PathConsumer2D io) { int nc = numCurves; if (nc == 0) { return; } if (DO_STATS) { // update used marks: if (numCurves > curveTypesUseMark) { curveTypesUseMark = numCurves; } if (end > curvesUseMark) { curvesUseMark = end; } } final byte[] _curveTypes = curveTypes; final float[] _curves = curves; int e = end; while (nc != 0) { switch(_curveTypes[--nc]) { case TYPE_LINETO: e -= 2; io.lineTo(_curves[e], _curves[e+1]); continue; case TYPE_QUADTO: e -= 4; io.quadTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3]); continue; case TYPE_CUBICTO: e -= 6; io.curveTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3], _curves[e+4], _curves[e+5]); continue; default: } } numCurves = 0; end = 0; } @Override public String toString() { String ret = ""; int nc = numCurves; int last = end; int len; while (nc != 0) { switch(curveTypes[--nc]) { case TYPE_LINETO: len = 2; ret += "line: "; break; case TYPE_QUADTO: len = 4; ret += "quad: "; break; case TYPE_CUBICTO: len = 6; ret += "cubic: "; break; default: len = 0; } last -= len; ret += Arrays.toString(Arrays.copyOfRange(curves, last, last+len)) + "\n"; } return ret; } } // a stack of integer indices static final class IndexStack { // integer capacity = edges count / 4 ~ 1024 private static final int INITIAL_COUNT = INITIAL_EDGES_COUNT >> 2; private int end; private int[] indices; // indices ref (dirty) private final IntArrayCache.Reference indices_ref; // used marks (stats only) private int indicesUseMark; private final StatLong stat_idxstack_indices; private final Histogram hist_idxstack_indices; private final StatLong stat_array_idxstack_indices; IndexStack(final RendererContext rdrCtx) { this(rdrCtx, null, null, null); } IndexStack(final RendererContext rdrCtx, final StatLong stat_idxstack_indices, final Histogram hist_idxstack_indices, final StatLong stat_array_idxstack_indices) { indices_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_COUNT); // 4K indices = indices_ref.initial; end = 0; if (DO_STATS) { indicesUseMark = 0; } this.stat_idxstack_indices = stat_idxstack_indices; this.hist_idxstack_indices = hist_idxstack_indices; this.stat_array_idxstack_indices = stat_array_idxstack_indices; } /** * Disposes this PolyStack: * clean up before reusing this instance */ void dispose() { end = 0; if (DO_STATS) { stat_idxstack_indices.add(indicesUseMark); hist_idxstack_indices.add(indicesUseMark); // reset marks indicesUseMark = 0; } // Return arrays: // values is kept dirty indices = indices_ref.putArray(indices); } boolean isEmpty() { return (end == 0); } void reset() { end = 0; } void push(final int v) { // remove redundant values (reverse order): int[] _values = indices; final int nc = end; if (nc != 0) { if (_values[nc - 1] == v) { // remove both duplicated values: end--; return; } } if (_values.length <= nc) { if (DO_STATS) { stat_array_idxstack_indices.add(nc + 1); } indices = _values = indices_ref.widenArray(_values, nc, nc + 1); } _values[end++] = v; if (DO_STATS) { // update used marks: if (end > indicesUseMark) { indicesUseMark = end; } } } void pullAll(final float[] points, final PathConsumer2D io) { final int nc = end; if (nc == 0) { return; } final int[] _values = indices; for (int i = 0, j; i < nc; i++) { j = _values[i] << 1; io.lineTo(points[j], points[j + 1]); } end = 0; } } }