< prev index next >

src/java.desktop/share/classes/sun/java2d/marlin/DHelpers.java

Print this page

        

*** 1,7 **** /* ! * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this --- 1,7 ---- /* ! * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this
*** 23,33 **** * questions. */ package sun.java2d.marlin; - import static java.lang.Math.PI; import java.util.Arrays; import sun.java2d.marlin.stats.Histogram; import sun.java2d.marlin.stats.StatLong; final class DHelpers implements MarlinConst { --- 23,32 ----
*** 39,55 **** static boolean within(final double x, final double y, final double err) { final double d = y - x; return (d <= err && d >= -err); } ! static int quadraticRoots(final double a, final double b, ! final double c, double[] zeroes, final int off) { int ret = off; - double t; if (a != 0.0d) { ! final double dis = b*b - 4*a*c; if (dis > 0.0d) { final double sqrtDis = Math.sqrt(dis); // depending on the sign of b we use a slightly different // algorithm than the traditional one to find one of the roots // so we can avoid adding numbers of different signs (which --- 38,66 ---- static boolean within(final double x, final double y, final double err) { final double d = y - x; return (d <= err && d >= -err); } ! static double evalCubic(final double a, final double b, ! final double c, final double d, ! final double t) ! { ! return t * (t * (t * a + b) + c) + d; ! } ! ! static double evalQuad(final double a, final double b, ! final double c, final double t) ! { ! return t * (t * a + b) + c; ! } ! ! static int quadraticRoots(final double a, final double b, final double c, ! final double[] zeroes, final int off) { int ret = off; if (a != 0.0d) { ! final double dis = b*b - 4.0d * a * c; if (dis > 0.0d) { final double sqrtDis = Math.sqrt(dis); // depending on the sign of b we use a slightly different // algorithm than the traditional one to find one of the roots // so we can avoid adding numbers of different signs (which
*** 60,97 **** } else { zeroes[ret++] = (-b + sqrtDis) / (2.0d * a); zeroes[ret++] = (2.0d * c) / (-b + sqrtDis); } } else if (dis == 0.0d) { ! t = (-b) / (2.0d * a); ! zeroes[ret++] = t; ! } ! } else { ! if (b != 0.0d) { ! t = (-c) / b; ! zeroes[ret++] = t; } } return ret - off; } // find the roots of g(t) = d*t^3 + a*t^2 + b*t + c in [A,B) ! static int cubicRootsInAB(double d, double a, double b, double c, ! double[] pts, final int off, final double A, final double B) { if (d == 0.0d) { ! int num = quadraticRoots(a, b, c, pts, off); return filterOutNotInAB(pts, off, num, A, B) - off; } // From Graphics Gems: ! // http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c // (also from awt.geom.CubicCurve2D. But here we don't need as // much accuracy and we don't want to create arrays so we use // our own customized version). // normal form: x^3 + ax^2 + bx + c = 0 a /= d; b /= d; c /= d; // substitute x = y - A/3 to eliminate quadratic term: --- 71,108 ---- } else { zeroes[ret++] = (-b + sqrtDis) / (2.0d * a); zeroes[ret++] = (2.0d * c) / (-b + sqrtDis); } } else if (dis == 0.0d) { ! zeroes[ret++] = -b / (2.0d * a); } + } else if (b != 0.0d) { + zeroes[ret++] = -c / b; } return ret - off; } // find the roots of g(t) = d*t^3 + a*t^2 + b*t + c in [A,B) ! static int cubicRootsInAB(final double d, double a, double b, double c, ! final double[] pts, final int off, final double A, final double B) { if (d == 0.0d) { ! final int num = quadraticRoots(a, b, c, pts, off); return filterOutNotInAB(pts, off, num, A, B) - off; } // From Graphics Gems: ! // https://github.com/erich666/GraphicsGems/blob/master/gems/Roots3And4.c // (also from awt.geom.CubicCurve2D. But here we don't need as // much accuracy and we don't want to create arrays so we use // our own customized version). // normal form: x^3 + ax^2 + bx + c = 0 + + /* + * TODO: cleanup all that code after reading Roots3And4.c + */ a /= d; b /= d; c /= d; // substitute x = y - A/3 to eliminate quadratic term:
*** 100,166 **** // Since we actually need P/3 and Q/2 for all of the // calculations that follow, we will calculate // p = P/3 // q = Q/2 // instead and use those values for simplicity of the code. ! double sq_A = a * a; ! double p = (1.0d/3.0d) * ((-1.0d/3.0d) * sq_A + b); ! double q = (1.0d/2.0d) * ((2.0d/27.0d) * a * sq_A - (1.0d/3.0d) * a * b + c); // use Cardano's formula ! double cb_p = p * p * p; ! double D = q * q + cb_p; int num; if (D < 0.0d) { // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method ! final double phi = (1.0d/3.0d) * Math.acos(-q / Math.sqrt(-cb_p)); final double t = 2.0d * Math.sqrt(-p); ! pts[ off+0 ] = ( t * Math.cos(phi)); ! pts[ off+1 ] = (-t * Math.cos(phi + (PI / 3.0d))); ! pts[ off+2 ] = (-t * Math.cos(phi - (PI / 3.0d))); num = 3; } else { final double sqrt_D = Math.sqrt(D); final double u = Math.cbrt(sqrt_D - q); final double v = - Math.cbrt(sqrt_D + q); ! pts[ off ] = (u + v); num = 1; if (within(D, 0.0d, 1e-8d)) { ! pts[off+1] = -(pts[off] / 2.0d); num = 2; } } - final double sub = (1.0d/3.0d) * a; - - for (int i = 0; i < num; ++i) { - pts[ off+i ] -= sub; - } - return filterOutNotInAB(pts, off, num, A, B) - off; } - static double evalCubic(final double a, final double b, - final double c, final double d, - final double t) - { - return t * (t * (t * a + b) + c) + d; - } - - static double evalQuad(final double a, final double b, - final double c, final double t) - { - return t * (t * a + b) + c; - } - // returns the index 1 past the last valid element remaining after filtering ! static int filterOutNotInAB(double[] nums, final int off, final int len, final double a, final double b) { int ret = off; for (int i = off, end = off + len; i < end; i++) { if (nums[i] >= a && nums[i] < b) { --- 111,159 ---- // Since we actually need P/3 and Q/2 for all of the // calculations that follow, we will calculate // p = P/3 // q = Q/2 // instead and use those values for simplicity of the code. ! final double sub = (1.0d / 3.0d) * a; ! final double sq_A = a * a; ! final double p = (1.0d / 3.0d) * ((-1.0d / 3.0d) * sq_A + b); ! final double q = (1.0d / 2.0d) * ((2.0d / 27.0d) * a * sq_A - sub * b + c); // use Cardano's formula ! final double cb_p = p * p * p; ! final double D = q * q + cb_p; int num; if (D < 0.0d) { // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method ! final double phi = (1.0d / 3.0d) * Math.acos(-q / Math.sqrt(-cb_p)); final double t = 2.0d * Math.sqrt(-p); ! pts[off ] = ( t * Math.cos(phi) - sub); ! pts[off + 1] = (-t * Math.cos(phi + (Math.PI / 3.0d)) - sub); ! pts[off + 2] = (-t * Math.cos(phi - (Math.PI / 3.0d)) - sub); num = 3; } else { final double sqrt_D = Math.sqrt(D); final double u = Math.cbrt(sqrt_D - q); final double v = - Math.cbrt(sqrt_D + q); ! pts[off ] = (u + v - sub); num = 1; if (within(D, 0.0d, 1e-8d)) { ! pts[off + 1] = ((-1.0d / 2.0d) * (u + v) - sub); num = 2; } } return filterOutNotInAB(pts, off, num, A, B) - off; } // returns the index 1 past the last valid element remaining after filtering ! static int filterOutNotInAB(final double[] nums, final int off, final int len, final double a, final double b) { int ret = off; for (int i = off, end = off + len; i < end; i++) { if (nums[i] >= a && nums[i] < b) {
*** 168,206 **** } } return ret; } ! static double linelen(double x1, double y1, double x2, double y2) { ! final double dx = x2 - x1; ! final double dy = y2 - y1; ! return Math.sqrt(dx*dx + dy*dy); } ! static void subdivide(double[] src, int srcoff, double[] left, int leftoff, ! double[] right, int rightoff, int type) { switch(type) { - case 6: - DHelpers.subdivideQuad(src, srcoff, left, leftoff, right, rightoff); - return; case 8: ! DHelpers.subdivideCubic(src, srcoff, left, leftoff, right, rightoff); return; default: throw new InternalError("Unsupported curve type"); } } ! static void isort(double[] a, int off, int len) { ! for (int i = off + 1, end = off + len; i < end; i++) { ! double ai = a[i]; ! int j = i - 1; ! for (; j >= off && a[j] > ai; j--) { ! a[j+1] = a[j]; } ! a[j+1] = ai; } } // Most of these are copied from classes in java.awt.geom because we need // both single and double precision variants of these functions, and Line2D, --- 161,353 ---- } } return ret; } ! static double fastLineLen(final double x0, final double y0, ! final double x1, final double y1) ! { ! final double dx = x1 - x0; ! final double dy = y1 - y0; ! ! // use manhattan norm: ! return Math.abs(dx) + Math.abs(dy); ! } ! ! static double linelen(final double x0, final double y0, ! final double x1, final double y1) ! { ! final double dx = x1 - x0; ! final double dy = y1 - y0; ! return Math.sqrt(dx * dx + dy * dy); ! } ! ! static double fastQuadLen(final double x0, final double y0, ! final double x1, final double y1, ! final double x2, final double y2) ! { ! final double dx1 = x1 - x0; ! final double dx2 = x2 - x1; ! final double dy1 = y1 - y0; ! final double dy2 = y2 - y1; ! ! // use manhattan norm: ! return Math.abs(dx1) + Math.abs(dx2) ! + Math.abs(dy1) + Math.abs(dy2); ! } ! ! static double quadlen(final double x0, final double y0, ! final double x1, final double y1, ! final double x2, final double y2) ! { ! return (linelen(x0, y0, x1, y1) ! + linelen(x1, y1, x2, y2) ! + linelen(x0, y0, x2, y2)) / 2.0d; ! } ! ! static double fastCurvelen(final double x0, final double y0, ! final double x1, final double y1, ! final double x2, final double y2, ! final double x3, final double y3) ! { ! final double dx1 = x1 - x0; ! final double dx2 = x2 - x1; ! final double dx3 = x3 - x2; ! final double dy1 = y1 - y0; ! final double dy2 = y2 - y1; ! final double dy3 = y3 - y2; ! ! // use manhattan norm: ! return Math.abs(dx1) + Math.abs(dx2) + Math.abs(dx3) ! + Math.abs(dy1) + Math.abs(dy2) + Math.abs(dy3); ! } ! ! static double curvelen(final double x0, final double y0, ! final double x1, final double y1, ! final double x2, final double y2, ! final double x3, final double y3) ! { ! return (linelen(x0, y0, x1, y1) ! + linelen(x1, y1, x2, y2) ! + linelen(x2, y2, x3, y3) ! + linelen(x0, y0, x3, y3)) / 2.0d; ! } ! ! // finds values of t where the curve in pts should be subdivided in order ! // to get good offset curves a distance of w away from the middle curve. ! // Stores the points in ts, and returns how many of them there were. ! static int findSubdivPoints(final DCurve c, final double[] pts, ! final double[] ts, final int type, ! final double w2) ! { ! final double x12 = pts[2] - pts[0]; ! final double y12 = pts[3] - pts[1]; ! // if the curve is already parallel to either axis we gain nothing ! // from rotating it. ! if ((y12 != 0.0d && x12 != 0.0d)) { ! // we rotate it so that the first vector in the control polygon is ! // parallel to the x-axis. This will ensure that rotated quarter ! // circles won't be subdivided. ! final double hypot = Math.sqrt(x12 * x12 + y12 * y12); ! final double cos = x12 / hypot; ! final double sin = y12 / hypot; ! final double x1 = cos * pts[0] + sin * pts[1]; ! final double y1 = cos * pts[1] - sin * pts[0]; ! final double x2 = cos * pts[2] + sin * pts[3]; ! final double y2 = cos * pts[3] - sin * pts[2]; ! final double x3 = cos * pts[4] + sin * pts[5]; ! final double y3 = cos * pts[5] - sin * pts[4]; ! ! switch(type) { ! case 8: ! final double x4 = cos * pts[6] + sin * pts[7]; ! final double y4 = cos * pts[7] - sin * pts[6]; ! c.set(x1, y1, x2, y2, x3, y3, x4, y4); ! break; ! case 6: ! c.set(x1, y1, x2, y2, x3, y3); ! break; ! default: ! } ! } else { ! c.set(pts, type); ! } ! ! int ret = 0; ! // we subdivide at values of t such that the remaining rotated ! // curves are monotonic in x and y. ! ret += c.dxRoots(ts, ret); ! ret += c.dyRoots(ts, ret); ! ! // subdivide at inflection points. ! if (type == 8) { ! // quadratic curves can't have inflection points ! ret += c.infPoints(ts, ret); ! } ! ! // now we must subdivide at points where one of the offset curves will have ! // a cusp. This happens at ts where the radius of curvature is equal to w. ! ret += c.rootsOfROCMinusW(ts, ret, w2, 0.0001d); ! ! ret = filterOutNotInAB(ts, 0, ret, 0.0001d, 0.9999d); ! isort(ts, ret); ! return ret; ! } ! ! // finds values of t where the curve in pts should be subdivided in order ! // to get intersections with the given clip rectangle. ! // Stores the points in ts, and returns how many of them there were. ! static int findClipPoints(final DCurve curve, final double[] pts, ! final double[] ts, final int type, ! final int outCodeOR, ! final double[] clipRect) ! { ! curve.set(pts, type); ! ! // clip rectangle (ymin, ymax, xmin, xmax) ! int ret = 0; ! ! if ((outCodeOR & OUTCODE_LEFT) != 0) { ! ret += curve.xPoints(ts, ret, clipRect[2]); ! } ! if ((outCodeOR & OUTCODE_RIGHT) != 0) { ! ret += curve.xPoints(ts, ret, clipRect[3]); ! } ! if ((outCodeOR & OUTCODE_TOP) != 0) { ! ret += curve.yPoints(ts, ret, clipRect[0]); ! } ! if ((outCodeOR & OUTCODE_BOTTOM) != 0) { ! ret += curve.yPoints(ts, ret, clipRect[1]); ! } ! isort(ts, ret); ! return ret; } ! static void subdivide(final double[] src, ! final double[] left, final double[] right, ! final int type) { switch(type) { case 8: ! subdivideCubic(src, left, right); ! return; ! case 6: ! subdivideQuad(src, left, right); return; default: throw new InternalError("Unsupported curve type"); } } ! static void isort(final double[] a, final int len) { ! for (int i = 1, j; i < len; i++) { ! final double ai = a[i]; ! j = i - 1; ! for (; j >= 0 && a[j] > ai; j--) { ! a[j + 1] = a[j]; } ! a[j + 1] = ai; } } // Most of these are copied from classes in java.awt.geom because we need // both single and double precision variants of these functions, and Line2D,
*** 219,428 **** * it is possible to pass the same array for <code>left</code> * and <code>right</code> and to use offsets, such as <code>rightoff</code> * equals (<code>leftoff</code> + 6), in order * to avoid allocating extra storage for this common point. * @param src the array holding the coordinates for the source curve - * @param srcoff the offset into the array of the beginning of the - * the 6 source coordinates * @param left the array for storing the coordinates for the first * half of the subdivided curve - * @param leftoff the offset into the array of the beginning of the - * the 6 left coordinates * @param right the array for storing the coordinates for the second * half of the subdivided curve - * @param rightoff the offset into the array of the beginning of the - * the 6 right coordinates * @since 1.7 */ ! static void subdivideCubic(double[] src, int srcoff, ! double[] left, int leftoff, ! double[] right, int rightoff) ! { ! double x1 = src[srcoff + 0]; ! double y1 = src[srcoff + 1]; ! double ctrlx1 = src[srcoff + 2]; ! double ctrly1 = src[srcoff + 3]; ! double ctrlx2 = src[srcoff + 4]; ! double ctrly2 = src[srcoff + 5]; ! double x2 = src[srcoff + 6]; ! double y2 = src[srcoff + 7]; ! if (left != null) { ! left[leftoff + 0] = x1; ! left[leftoff + 1] = y1; ! } ! if (right != null) { ! right[rightoff + 6] = x2; ! right[rightoff + 7] = y2; ! } ! x1 = (x1 + ctrlx1) / 2.0d; ! y1 = (y1 + ctrly1) / 2.0d; ! x2 = (x2 + ctrlx2) / 2.0d; ! y2 = (y2 + ctrly2) / 2.0d; ! double centerx = (ctrlx1 + ctrlx2) / 2.0d; ! double centery = (ctrly1 + ctrly2) / 2.0d; ! ctrlx1 = (x1 + centerx) / 2.0d; ! ctrly1 = (y1 + centery) / 2.0d; ! ctrlx2 = (x2 + centerx) / 2.0d; ! ctrly2 = (y2 + centery) / 2.0d; ! centerx = (ctrlx1 + ctrlx2) / 2.0d; ! centery = (ctrly1 + ctrly2) / 2.0d; ! if (left != null) { ! left[leftoff + 2] = x1; ! left[leftoff + 3] = y1; ! left[leftoff + 4] = ctrlx1; ! left[leftoff + 5] = ctrly1; ! left[leftoff + 6] = centerx; ! left[leftoff + 7] = centery; ! } ! if (right != null) { ! right[rightoff + 0] = centerx; ! right[rightoff + 1] = centery; ! right[rightoff + 2] = ctrlx2; ! right[rightoff + 3] = ctrly2; ! right[rightoff + 4] = x2; ! right[rightoff + 5] = y2; ! } ! } ! ! ! static void subdivideCubicAt(double t, double[] src, int srcoff, ! double[] left, int leftoff, ! double[] right, int rightoff) ! { ! double x1 = src[srcoff + 0]; ! double y1 = src[srcoff + 1]; ! double ctrlx1 = src[srcoff + 2]; ! double ctrly1 = src[srcoff + 3]; ! double ctrlx2 = src[srcoff + 4]; ! double ctrly2 = src[srcoff + 5]; ! double x2 = src[srcoff + 6]; ! double y2 = src[srcoff + 7]; ! if (left != null) { ! left[leftoff + 0] = x1; ! left[leftoff + 1] = y1; ! } ! if (right != null) { ! right[rightoff + 6] = x2; ! right[rightoff + 7] = y2; ! } ! x1 = x1 + t * (ctrlx1 - x1); ! y1 = y1 + t * (ctrly1 - y1); ! x2 = ctrlx2 + t * (x2 - ctrlx2); ! y2 = ctrly2 + t * (y2 - ctrly2); ! double centerx = ctrlx1 + t * (ctrlx2 - ctrlx1); ! double centery = ctrly1 + t * (ctrly2 - ctrly1); ! ctrlx1 = x1 + t * (centerx - x1); ! ctrly1 = y1 + t * (centery - y1); ! ctrlx2 = centerx + t * (x2 - centerx); ! ctrly2 = centery + t * (y2 - centery); ! centerx = ctrlx1 + t * (ctrlx2 - ctrlx1); ! centery = ctrly1 + t * (ctrly2 - ctrly1); ! if (left != null) { ! left[leftoff + 2] = x1; ! left[leftoff + 3] = y1; ! left[leftoff + 4] = ctrlx1; ! left[leftoff + 5] = ctrly1; ! left[leftoff + 6] = centerx; ! left[leftoff + 7] = centery; ! } ! if (right != null) { ! right[rightoff + 0] = centerx; ! right[rightoff + 1] = centery; ! right[rightoff + 2] = ctrlx2; ! right[rightoff + 3] = ctrly2; ! right[rightoff + 4] = x2; ! right[rightoff + 5] = y2; ! } ! } ! ! static void subdivideQuad(double[] src, int srcoff, ! double[] left, int leftoff, ! double[] right, int rightoff) ! { ! double x1 = src[srcoff + 0]; ! double y1 = src[srcoff + 1]; ! double ctrlx = src[srcoff + 2]; ! double ctrly = src[srcoff + 3]; ! double x2 = src[srcoff + 4]; ! double y2 = src[srcoff + 5]; ! if (left != null) { ! left[leftoff + 0] = x1; ! left[leftoff + 1] = y1; ! } ! if (right != null) { ! right[rightoff + 4] = x2; ! right[rightoff + 5] = y2; ! } ! x1 = (x1 + ctrlx) / 2.0d; ! y1 = (y1 + ctrly) / 2.0d; ! x2 = (x2 + ctrlx) / 2.0d; ! y2 = (y2 + ctrly) / 2.0d; ! ctrlx = (x1 + x2) / 2.0d; ! ctrly = (y1 + y2) / 2.0d; ! if (left != null) { ! left[leftoff + 2] = x1; ! left[leftoff + 3] = y1; ! left[leftoff + 4] = ctrlx; ! left[leftoff + 5] = ctrly; ! } ! if (right != null) { ! right[rightoff + 0] = ctrlx; ! right[rightoff + 1] = ctrly; ! right[rightoff + 2] = x2; ! right[rightoff + 3] = y2; ! } ! } ! ! static void subdivideQuadAt(double t, double[] src, int srcoff, ! double[] left, int leftoff, ! double[] right, int rightoff) ! { ! double x1 = src[srcoff + 0]; ! double y1 = src[srcoff + 1]; ! double ctrlx = src[srcoff + 2]; ! double ctrly = src[srcoff + 3]; ! double x2 = src[srcoff + 4]; ! double y2 = src[srcoff + 5]; ! if (left != null) { ! left[leftoff + 0] = x1; ! left[leftoff + 1] = y1; ! } ! if (right != null) { ! right[rightoff + 4] = x2; ! right[rightoff + 5] = y2; ! } ! x1 = x1 + t * (ctrlx - x1); ! y1 = y1 + t * (ctrly - y1); ! x2 = ctrlx + t * (x2 - ctrlx); ! y2 = ctrly + t * (y2 - ctrly); ! ctrlx = x1 + t * (x2 - x1); ! ctrly = y1 + t * (y2 - y1); ! if (left != null) { ! left[leftoff + 2] = x1; ! left[leftoff + 3] = y1; ! left[leftoff + 4] = ctrlx; ! left[leftoff + 5] = ctrly; ! } ! if (right != null) { ! right[rightoff + 0] = ctrlx; ! right[rightoff + 1] = ctrly; ! right[rightoff + 2] = x2; ! right[rightoff + 3] = y2; ! } ! } ! ! static void subdivideAt(double t, double[] src, int srcoff, ! double[] left, int leftoff, ! double[] right, int rightoff, int size) ! { ! switch(size) { ! case 8: ! subdivideCubicAt(t, src, srcoff, left, leftoff, right, rightoff); ! return; ! case 6: ! subdivideQuadAt(t, src, srcoff, left, leftoff, right, rightoff); ! return; } } // From sun.java2d.loops.GeneralRenderer: --- 366,585 ---- * it is possible to pass the same array for <code>left</code> * and <code>right</code> and to use offsets, such as <code>rightoff</code> * equals (<code>leftoff</code> + 6), in order * to avoid allocating extra storage for this common point. * @param src the array holding the coordinates for the source curve * @param left the array for storing the coordinates for the first * half of the subdivided curve * @param right the array for storing the coordinates for the second * half of the subdivided curve * @since 1.7 */ ! static void subdivideCubic(final double[] src, ! final double[] left, ! final double[] right) ! { ! double x1 = src[0]; ! double y1 = src[1]; ! double cx1 = src[2]; ! double cy1 = src[3]; ! double cx2 = src[4]; ! double cy2 = src[5]; ! double x2 = src[6]; ! double y2 = src[7]; ! ! left[0] = x1; ! left[1] = y1; ! ! right[6] = x2; ! right[7] = y2; ! ! x1 = (x1 + cx1) / 2.0d; ! y1 = (y1 + cy1) / 2.0d; ! x2 = (x2 + cx2) / 2.0d; ! y2 = (y2 + cy2) / 2.0d; ! ! double cx = (cx1 + cx2) / 2.0d; ! double cy = (cy1 + cy2) / 2.0d; ! ! cx1 = (x1 + cx) / 2.0d; ! cy1 = (y1 + cy) / 2.0d; ! cx2 = (x2 + cx) / 2.0d; ! cy2 = (y2 + cy) / 2.0d; ! cx = (cx1 + cx2) / 2.0d; ! cy = (cy1 + cy2) / 2.0d; ! ! left[2] = x1; ! left[3] = y1; ! left[4] = cx1; ! left[5] = cy1; ! left[6] = cx; ! left[7] = cy; ! ! right[0] = cx; ! right[1] = cy; ! right[2] = cx2; ! right[3] = cy2; ! right[4] = x2; ! right[5] = y2; ! } ! ! static void subdivideCubicAt(final double t, ! final double[] src, final int offS, ! final double[] pts, final int offL, final int offR) ! { ! double x1 = src[offS ]; ! double y1 = src[offS + 1]; ! double cx1 = src[offS + 2]; ! double cy1 = src[offS + 3]; ! double cx2 = src[offS + 4]; ! double cy2 = src[offS + 5]; ! double x2 = src[offS + 6]; ! double y2 = src[offS + 7]; ! ! pts[offL ] = x1; ! pts[offL + 1] = y1; ! ! pts[offR + 6] = x2; ! pts[offR + 7] = y2; ! ! x1 = x1 + t * (cx1 - x1); ! y1 = y1 + t * (cy1 - y1); ! x2 = cx2 + t * (x2 - cx2); ! y2 = cy2 + t * (y2 - cy2); ! ! double cx = cx1 + t * (cx2 - cx1); ! double cy = cy1 + t * (cy2 - cy1); ! ! cx1 = x1 + t * (cx - x1); ! cy1 = y1 + t * (cy - y1); ! cx2 = cx + t * (x2 - cx); ! cy2 = cy + t * (y2 - cy); ! cx = cx1 + t * (cx2 - cx1); ! cy = cy1 + t * (cy2 - cy1); ! ! pts[offL + 2] = x1; ! pts[offL + 3] = y1; ! pts[offL + 4] = cx1; ! pts[offL + 5] = cy1; ! pts[offL + 6] = cx; ! pts[offL + 7] = cy; ! ! pts[offR ] = cx; ! pts[offR + 1] = cy; ! pts[offR + 2] = cx2; ! pts[offR + 3] = cy2; ! pts[offR + 4] = x2; ! pts[offR + 5] = y2; ! } ! ! static void subdivideQuad(final double[] src, ! final double[] left, ! final double[] right) ! { ! double x1 = src[0]; ! double y1 = src[1]; ! double cx = src[2]; ! double cy = src[3]; ! double x2 = src[4]; ! double y2 = src[5]; ! ! left[0] = x1; ! left[1] = y1; ! ! right[4] = x2; ! right[5] = y2; ! ! x1 = (x1 + cx) / 2.0d; ! y1 = (y1 + cy) / 2.0d; ! x2 = (x2 + cx) / 2.0d; ! y2 = (y2 + cy) / 2.0d; ! cx = (x1 + x2) / 2.0d; ! cy = (y1 + y2) / 2.0d; ! ! left[2] = x1; ! left[3] = y1; ! left[4] = cx; ! left[5] = cy; ! ! right[0] = cx; ! right[1] = cy; ! right[2] = x2; ! right[3] = y2; ! } ! ! static void subdivideQuadAt(final double t, ! final double[] src, final int offS, ! final double[] pts, final int offL, final int offR) ! { ! double x1 = src[offS ]; ! double y1 = src[offS + 1]; ! double cx = src[offS + 2]; ! double cy = src[offS + 3]; ! double x2 = src[offS + 4]; ! double y2 = src[offS + 5]; ! ! pts[offL ] = x1; ! pts[offL + 1] = y1; ! ! pts[offR + 4] = x2; ! pts[offR + 5] = y2; ! ! x1 = x1 + t * (cx - x1); ! y1 = y1 + t * (cy - y1); ! x2 = cx + t * (x2 - cx); ! y2 = cy + t * (y2 - cy); ! cx = x1 + t * (x2 - x1); ! cy = y1 + t * (y2 - y1); ! ! pts[offL + 2] = x1; ! pts[offL + 3] = y1; ! pts[offL + 4] = cx; ! pts[offL + 5] = cy; ! ! pts[offR ] = cx; ! pts[offR + 1] = cy; ! pts[offR + 2] = x2; ! pts[offR + 3] = y2; ! } ! ! static void subdivideLineAt(final double t, ! final double[] src, final int offS, ! final double[] pts, final int offL, final int offR) ! { ! double x1 = src[offS ]; ! double y1 = src[offS + 1]; ! double x2 = src[offS + 2]; ! double y2 = src[offS + 3]; ! ! pts[offL ] = x1; ! pts[offL + 1] = y1; ! ! pts[offR + 2] = x2; ! pts[offR + 3] = y2; ! ! x1 = x1 + t * (x2 - x1); ! y1 = y1 + t * (y2 - y1); ! ! pts[offL + 2] = x1; ! pts[offL + 3] = y1; ! ! pts[offR ] = x1; ! pts[offR + 1] = y1; ! } ! ! static void subdivideAt(final double t, ! final double[] src, final int offS, ! final double[] pts, final int offL, final int type) ! { ! // if instead of switch (perf + most probable cases first) ! if (type == 8) { ! subdivideCubicAt(t, src, offS, pts, offL, offL + type); ! } else if (type == 4) { ! subdivideLineAt(t, src, offS, pts, offL, offL + type); ! } else { ! subdivideQuadAt(t, src, offS, pts, offL, offL + type); } } // From sun.java2d.loops.GeneralRenderer:
*** 606,621 **** case TYPE_LINETO: io.lineTo(_curves[e], _curves[e+1]); e += 2; continue; case TYPE_QUADTO: ! io.quadTo(_curves[e+0], _curves[e+1], _curves[e+2], _curves[e+3]); e += 4; continue; case TYPE_CUBICTO: ! io.curveTo(_curves[e+0], _curves[e+1], _curves[e+2], _curves[e+3], _curves[e+4], _curves[e+5]); e += 6; continue; default: --- 763,778 ---- case TYPE_LINETO: io.lineTo(_curves[e], _curves[e+1]); e += 2; continue; case TYPE_QUADTO: ! io.quadTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3]); e += 4; continue; case TYPE_CUBICTO: ! io.curveTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3], _curves[e+4], _curves[e+5]); e += 6; continue; default:
*** 649,664 **** e -= 2; io.lineTo(_curves[e], _curves[e+1]); continue; case TYPE_QUADTO: e -= 4; ! io.quadTo(_curves[e+0], _curves[e+1], _curves[e+2], _curves[e+3]); continue; case TYPE_CUBICTO: e -= 6; ! io.curveTo(_curves[e+0], _curves[e+1], _curves[e+2], _curves[e+3], _curves[e+4], _curves[e+5]); continue; default: } --- 806,821 ---- e -= 2; io.lineTo(_curves[e], _curves[e+1]); continue; case TYPE_QUADTO: e -= 4; ! io.quadTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3]); continue; case TYPE_CUBICTO: e -= 6; ! io.curveTo(_curves[e], _curves[e+1], _curves[e+2], _curves[e+3], _curves[e+4], _curves[e+5]); continue; default: }
< prev index next >