< prev index next >

src/java.desktop/share/classes/sun/java2d/marlin/DStroker.java

Print this page


   1 /*
   2  * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d.marlin;
  27 
  28 import java.util.Arrays;
  29 import sun.java2d.marlin.DHelpers.PolyStack;


  30 
  31 // TODO: some of the arithmetic here is too verbose and prone to hard to
  32 // debug typos. We should consider making a small Point/Vector class that
  33 // has methods like plus(Point), minus(Point), dot(Point), cross(Point)and such
  34 final class DStroker implements DPathConsumer2D, MarlinConst {
  35 
  36     private static final int MOVE_TO = 0;
  37     private static final int DRAWING_OP_TO = 1; // ie. curve, line, or quad
  38     private static final int CLOSE = 2;
  39 
  40     // pisces used to use fixed point arithmetic with 16 decimal digits. I
  41     // didn't want to change the values of the constant below when I converted
  42     // it to floating point, so that's why the divisions by 2^16 are there.
  43     private static final double ROUND_JOIN_THRESHOLD = 1000.0d/65536.0d;
  44 
  45     // kappa = (4/3) * (SQRT(2) - 1)
  46     private static final double C = (4.0d * (Math.sqrt(2.0d) - 1.0d) / 3.0d);
  47 
  48     // SQRT(2)
  49     private static final double SQRT_2 = Math.sqrt(2.0d);
  50 
  51     private static final int MAX_N_CURVES = 11;
  52 
  53     private DPathConsumer2D out;
  54 
  55     private int capStyle;
  56     private int joinStyle;
  57 
  58     private double lineWidth2;
  59     private double invHalfLineWidth2Sq;
  60 
  61     private final double[] offset0 = new double[2];
  62     private final double[] offset1 = new double[2];
  63     private final double[] offset2 = new double[2];
  64     private final double[] miter = new double[2];
  65     private double miterLimitSq;
  66 
  67     private int prev;
  68 
  69     // The starting point of the path, and the slope there.
  70     private double sx0, sy0, sdx, sdy;
  71     // the current point and the slope there.
  72     private double cx0, cy0, cdx, cdy; // c stands for current
  73     // vectors that when added to (sx0,sy0) and (cx0,cy0) respectively yield the
  74     // first and last points on the left parallel path. Since this path is
  75     // parallel, it's slope at any point is parallel to the slope of the
  76     // original path (thought they may have different directions), so these
  77     // could be computed from sdx,sdy and cdx,cdy (and vice versa), but that
  78     // would be error prone and hard to read, so we keep these anyway.
  79     private double smx, smy, cmx, cmy;
  80 
  81     private final PolyStack reverse;
  82 
  83     // This is where the curve to be processed is put. We give it
  84     // enough room to store all curves.
  85     private final double[] middle = new double[MAX_N_CURVES * 6 + 2];
  86     private final double[] lp = new double[8];
  87     private final double[] rp = new double[8];
  88     private final double[] subdivTs = new double[MAX_N_CURVES - 1];
  89 
  90     // per-thread renderer context
  91     final DRendererContext rdrCtx;
  92 
  93     // dirty curve
  94     final DCurve curve;
  95 
  96     // Bounds of the drawing region, at pixel precision.
  97     private double[] clipRect;
  98 
  99     // the outcode of the current point
 100     private int cOutCode = 0;
 101 
 102     // the outcode of the starting point
 103     private int sOutCode = 0;
 104 
 105     // flag indicating if the path is opened (clipped)
 106     private boolean opened = false;
 107     // flag indicating if the starting point's cap is done
 108     private boolean capStart = false;





 109 
 110     /**
 111      * Constructs a <code>DStroker</code>.
 112      * @param rdrCtx per-thread renderer context
 113      */
 114     DStroker(final DRendererContext rdrCtx) {
 115         this.rdrCtx = rdrCtx;
 116 
 117         this.reverse = (rdrCtx.stats != null) ?
 118             new PolyStack(rdrCtx,
 119                     rdrCtx.stats.stat_str_polystack_types,
 120                     rdrCtx.stats.stat_str_polystack_curves,
 121                     rdrCtx.stats.hist_str_polystack_curves,
 122                     rdrCtx.stats.stat_array_str_polystack_curves,
 123                     rdrCtx.stats.stat_array_str_polystack_types)
 124             : new PolyStack(rdrCtx);
 125 
 126         this.curve = rdrCtx.curve;

 127     }
 128 
 129     /**
 130      * Inits the <code>DStroker</code>.
 131      *
 132      * @param pc2d an output <code>DPathConsumer2D</code>.
 133      * @param lineWidth the desired line width in pixels
 134      * @param capStyle the desired end cap style, one of
 135      * <code>CAP_BUTT</code>, <code>CAP_ROUND</code> or
 136      * <code>CAP_SQUARE</code>.
 137      * @param joinStyle the desired line join style, one of
 138      * <code>JOIN_MITER</code>, <code>JOIN_ROUND</code> or
 139      * <code>JOIN_BEVEL</code>.
 140      * @param miterLimit the desired miter limit
 141      * @param scale scaling factor applied to clip boundaries

 142      * @return this instance
 143      */
 144     DStroker init(final DPathConsumer2D pc2d,
 145                   final double lineWidth,
 146                   final int capStyle,
 147                   final int joinStyle,
 148                   final double miterLimit,
 149                   final double scale)

 150     {
 151         this.out = pc2d;
 152 
 153         this.lineWidth2 = lineWidth / 2.0d;
 154         this.invHalfLineWidth2Sq = 1.0d / (2.0d * lineWidth2 * lineWidth2);


 155         this.capStyle = capStyle;
 156         this.joinStyle = joinStyle;
 157 
 158         final double limit = miterLimit * lineWidth2;
 159         this.miterLimitSq = limit * limit;
 160 
 161         this.prev = CLOSE;
 162 
 163         rdrCtx.stroking = 1;
 164 
 165         if (rdrCtx.doClip) {
 166             // Adjust the clipping rectangle with the stroker margin (miter limit, width)
 167             double rdrOffX = 0.0d, rdrOffY = 0.0d;
 168             double margin = lineWidth2;
 169 
 170             if (capStyle == CAP_SQUARE) {
 171                 margin *= SQRT_2;
 172             }
 173             if ((joinStyle == JOIN_MITER) && (margin < limit)) {
 174                 margin = limit;
 175             }
 176             if (scale != 1.0d) {
 177                 margin *= scale;
 178                 rdrOffX = scale * DRenderer.RDR_OFFSET_X;
 179                 rdrOffY = scale * DRenderer.RDR_OFFSET_Y;
 180             }
 181             // add a small rounding error:
 182             margin += 1e-3d;
 183 
 184             // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
 185             // adjust clip rectangle (ymin, ymax, xmin, xmax):
 186             final double[] _clipRect = rdrCtx.clipRect;
 187             _clipRect[0] -= margin - rdrOffY;
 188             _clipRect[1] += margin + rdrOffY;
 189             _clipRect[2] -= margin - rdrOffX;
 190             _clipRect[3] += margin + rdrOffX;
 191             this.clipRect = _clipRect;









 192         } else {
 193             this.clipRect = null;
 194             this.cOutCode = 0;
 195             this.sOutCode = 0;
 196         }
 197         return this; // fluent API
 198     }
 199 






 200     /**
 201      * Disposes this stroker:
 202      * clean up before reusing this instance
 203      */
 204     void dispose() {
 205         reverse.dispose();
 206 
 207         opened   = false;
 208         capStart = false;
 209 
 210         if (DO_CLEAN_DIRTY) {
 211             // Force zero-fill dirty arrays:
 212             Arrays.fill(offset0, 0.0d);
 213             Arrays.fill(offset1, 0.0d);
 214             Arrays.fill(offset2, 0.0d);
 215             Arrays.fill(miter, 0.0d);
 216             Arrays.fill(middle, 0.0d);
 217             Arrays.fill(lp, 0.0d);
 218             Arrays.fill(rp, 0.0d);
 219             Arrays.fill(subdivTs, 0.0d);
 220         }
 221     }
 222 
 223     private static void computeOffset(final double lx, final double ly,
 224                                       final double w, final double[] m)
 225     {
 226         double len = lx*lx + ly*ly;
 227         if (len == 0.0d) {
 228             m[0] = 0.0d;
 229             m[1] = 0.0d;
 230         } else {
 231             len = Math.sqrt(len);
 232             m[0] =  (ly * w) / len;
 233             m[1] = -(lx * w) / len;
 234         }
 235     }
 236 
 237     // Returns true if the vectors (dx1, dy1) and (dx2, dy2) are
 238     // clockwise (if dx1,dy1 needs to be rotated clockwise to close
 239     // the smallest angle between it and dx2,dy2).
 240     // This is equivalent to detecting whether a point q is on the right side
 241     // of a line passing through points p1, p2 where p2 = p1+(dx1,dy1) and
 242     // q = p2+(dx2,dy2), which is the same as saying p1, p2, q are in a
 243     // clockwise order.
 244     // NOTE: "clockwise" here assumes coordinates with 0,0 at the bottom left.
 245     private static boolean isCW(final double dx1, final double dy1,
 246                                 final double dx2, final double dy2)
 247     {
 248         return dx1 * dy2 <= dy1 * dx2;
 249     }
 250 
 251     private void drawRoundJoin(double x, double y,
 252                                double omx, double omy, double mx, double my,
 253                                boolean rev,
 254                                double threshold)
 255     {
 256         if ((omx == 0.0d && omy == 0.0d) || (mx == 0.0d && my == 0.0d)) {
 257             return;
 258         }
 259 
 260         double domx = omx - mx;
 261         double domy = omy - my;
 262         double len = domx*domx + domy*domy;
 263         if (len < threshold) {

 264             return;
 265         }
 266 
 267         if (rev) {
 268             omx = -omx;
 269             omy = -omy;
 270             mx  = -mx;
 271             my  = -my;
 272         }
 273         drawRoundJoin(x, y, omx, omy, mx, my, rev);
 274     }
 275 
 276     private void drawRoundJoin(double cx, double cy,
 277                                double omx, double omy,
 278                                double mx, double my,
 279                                boolean rev)
 280     {
 281         // The sign of the dot product of mx,my and omx,omy is equal to the
 282         // the sign of the cosine of ext
 283         // (ext is the angle between omx,omy and mx,my).
 284         final double cosext = omx * mx + omy * my;
 285         // If it is >=0, we know that abs(ext) is <= 90 degrees, so we only
 286         // need 1 curve to approximate the circle section that joins omx,omy
 287         // and mx,my.
 288         final int numCurves = (cosext >= 0.0d) ? 1 : 2;
 289 
 290         switch (numCurves) {
 291         case 1:
 292             drawBezApproxForArc(cx, cy, omx, omy, mx, my, rev);
 293             break;


 364         emitCurveTo(x1, y1, x2, y2, x3, y3, x4, y4, rev);
 365     }
 366 
 367     private void drawRoundCap(double cx, double cy, double mx, double my) {
 368         final double Cmx = C * mx;
 369         final double Cmy = C * my;
 370         emitCurveTo(cx + mx - Cmy, cy + my + Cmx,
 371                     cx - my + Cmx, cy + mx + Cmy,
 372                     cx - my,       cy + mx);
 373         emitCurveTo(cx - my - Cmx, cy + mx - Cmy,
 374                     cx - mx - Cmy, cy - my + Cmx,
 375                     cx - mx,       cy - my);
 376     }
 377 
 378     // Return the intersection point of the lines (x0, y0) -> (x1, y1)
 379     // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1]
 380     private static void computeMiter(final double x0, final double y0,
 381                                      final double x1, final double y1,
 382                                      final double x0p, final double y0p,
 383                                      final double x1p, final double y1p,
 384                                      final double[] m, int off)
 385     {
 386         double x10 = x1 - x0;
 387         double y10 = y1 - y0;
 388         double x10p = x1p - x0p;
 389         double y10p = y1p - y0p;
 390 
 391         // if this is 0, the lines are parallel. If they go in the
 392         // same direction, there is no intersection so m[off] and
 393         // m[off+1] will contain infinity, so no miter will be drawn.
 394         // If they go in the same direction that means that the start of the
 395         // current segment and the end of the previous segment have the same
 396         // tangent, in which case this method won't even be involved in
 397         // miter drawing because it won't be called by drawMiter (because
 398         // (mx == omx && my == omy) will be true, and drawMiter will return
 399         // immediately).
 400         double den = x10*y10p - x10p*y10;
 401         double t = x10p*(y0-y0p) - y10p*(x0-x0p);
 402         t /= den;
 403         m[off++] = x0 + t*x10;
 404         m[off]   = y0 + t*y10;
 405     }
 406 
 407     // Return the intersection point of the lines (x0, y0) -> (x1, y1)
 408     // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1]
 409     private static void safeComputeMiter(final double x0, final double y0,
 410                                          final double x1, final double y1,
 411                                          final double x0p, final double y0p,
 412                                          final double x1p, final double y1p,
 413                                          final double[] m, int off)
 414     {
 415         double x10 = x1 - x0;
 416         double y10 = y1 - y0;
 417         double x10p = x1p - x0p;
 418         double y10p = y1p - y0p;
 419 
 420         // if this is 0, the lines are parallel. If they go in the
 421         // same direction, there is no intersection so m[off] and
 422         // m[off+1] will contain infinity, so no miter will be drawn.
 423         // If they go in the same direction that means that the start of the
 424         // current segment and the end of the previous segment have the same
 425         // tangent, in which case this method won't even be involved in
 426         // miter drawing because it won't be called by drawMiter (because
 427         // (mx == omx && my == omy) will be true, and drawMiter will return
 428         // immediately).
 429         double den = x10*y10p - x10p*y10;
 430         if (den == 0.0d) {
 431             m[off++] = (x0 + x0p) / 2.0d;
 432             m[off]   = (y0 + y0p) / 2.0d;
 433             return;




 434         }
 435         double t = x10p*(y0-y0p) - y10p*(x0-x0p);
 436         t /= den;
 437         m[off++] = x0 + t*x10;
 438         m[off] = y0 + t*y10;
 439     }
 440 
 441     private void drawMiter(final double pdx, final double pdy,
 442                            final double x0, final double y0,
 443                            final double dx, final double dy,
 444                            double omx, double omy, double mx, double my,

 445                            boolean rev)
 446     {
 447         if ((mx == omx && my == omy) ||
 448             (pdx == 0.0d && pdy == 0.0d) ||
 449             (dx == 0.0d && dy == 0.0d))
 450         {
 451             return;
 452         }
 453 
 454         if (rev) {
 455             omx = -omx;
 456             omy = -omy;
 457             mx  = -mx;
 458             my  = -my;
 459         }
 460 
 461         computeMiter((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
 462                      (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my,
 463                      miter, 0);
 464 
 465         final double miterX = miter[0];
 466         final double miterY = miter[1];
 467         double lenSq = (miterX-x0)*(miterX-x0) + (miterY-y0)*(miterY-y0);
 468 
 469         // If the lines are parallel, lenSq will be either NaN or +inf
 470         // (actually, I'm not sure if the latter is possible. The important
 471         // thing is that -inf is not possible, because lenSq is a square).
 472         // For both of those values, the comparison below will fail and
 473         // no miter will be drawn, which is correct.
 474         if (lenSq < miterLimitSq) {
 475             emitLineTo(miterX, miterY, rev);
 476         }
 477     }
 478 
 479     @Override
 480     public void moveTo(final double x0, final double y0) {
 481         moveTo(x0, y0, cOutCode);
 482         // update starting point:
 483         this.sx0 = x0;
 484         this.sy0 = y0;
 485         this.sdx = 1.0d;
 486         this.sdy = 0.0d;
 487         this.opened   = false;
 488         this.capStart = false;
 489 
 490         if (clipRect != null) {
 491             final int outcode = DHelpers.outcode(x0, y0, clipRect);
 492             this.cOutCode = outcode;
 493             this.sOutCode = outcode;
 494         }
 495     }
 496 
 497     private void moveTo(final double x0, final double y0,
 498                         final int outcode)
 499     {
 500         if (prev == MOVE_TO) {
 501             this.cx0 = x0;
 502             this.cy0 = y0;
 503         } else {
 504             if (prev == DRAWING_OP_TO) {
 505                 finish(outcode);
 506             }
 507             this.prev = MOVE_TO;
 508             this.cx0 = x0;
 509             this.cy0 = y0;
 510             this.cdx = 1.0d;
 511             this.cdy = 0.0d;
 512         }
 513     }
 514 
 515     @Override
 516     public void lineTo(final double x1, final double y1) {
 517         lineTo(x1, y1, false);
 518     }
 519 
 520     private void lineTo(final double x1, final double y1,
 521                         final boolean force)
 522     {
 523         final int outcode0 = this.cOutCode;

 524         if (!force && clipRect != null) {
 525             final int outcode1 = DHelpers.outcode(x1, y1, clipRect);
 526             this.cOutCode = outcode1;
 527 
 528             // basic rejection criteria
 529             if ((outcode0 & outcode1) != 0) {
 530                 moveTo(x1, y1, outcode0);
 531                 opened = true;
 532                 return;






















 533             }


 534         }
 535 
 536         double dx = x1 - cx0;
 537         double dy = y1 - cy0;
 538         if (dx == 0.0d && dy == 0.0d) {
 539             dx = 1.0d;
 540         }
 541         computeOffset(dx, dy, lineWidth2, offset0);
 542         final double mx = offset0[0];
 543         final double my = offset0[1];
 544 
 545         drawJoin(cdx, cdy, cx0, cy0, dx, dy, cmx, cmy, mx, my, outcode0);
 546 
 547         emitLineTo(cx0 + mx, cy0 + my);
 548         emitLineTo( x1 + mx,  y1 + my);
 549 
 550         emitLineToRev(cx0 - mx, cy0 - my);
 551         emitLineToRev( x1 - mx,  y1 - my);
 552 
 553         this.prev = DRAWING_OP_TO;


 735                           double x0, double y0,
 736                           double dx, double dy,
 737                           double omx, double omy,
 738                           double mx, double my,
 739                           final int outcode)
 740     {
 741         if (prev != DRAWING_OP_TO) {
 742             emitMoveTo(x0 + mx, y0 + my);
 743             if (!opened) {
 744                 this.sdx = dx;
 745                 this.sdy = dy;
 746                 this.smx = mx;
 747                 this.smy = my;
 748             }
 749         } else {
 750             final boolean cw = isCW(pdx, pdy, dx, dy);
 751             if (outcode == 0) {
 752                 if (joinStyle == JOIN_MITER) {
 753                     drawMiter(pdx, pdy, x0, y0, dx, dy, omx, omy, mx, my, cw);
 754                 } else if (joinStyle == JOIN_ROUND) {
 755                     drawRoundJoin(x0, y0,
 756                                   omx, omy,
 757                                   mx, my, cw,
 758                                   ROUND_JOIN_THRESHOLD);
 759                 }
 760             }
 761             emitLineTo(x0, y0, !cw);
 762         }
 763         prev = DRAWING_OP_TO;
 764     }
 765 
 766     private static boolean within(final double x1, final double y1,
 767                                   final double x2, final double y2,
 768                                   final double ERR)
 769     {
 770         assert ERR > 0 : "";
 771         // compare taxicab distance. ERR will always be small, so using
 772         // true distance won't give much benefit
 773         return (DHelpers.within(x1, x2, ERR) &&  // we want to avoid calling Math.abs
 774                 DHelpers.within(y1, y2, ERR)); // this is just as good.
 775     }
 776 
 777     private void getLineOffsets(double x1, double y1,
 778                                 double x2, double y2,
 779                                 double[] left, double[] right) {

 780         computeOffset(x2 - x1, y2 - y1, lineWidth2, offset0);
 781         final double mx = offset0[0];
 782         final double my = offset0[1];
 783         left[0] = x1 + mx;
 784         left[1] = y1 + my;
 785         left[2] = x2 + mx;
 786         left[3] = y2 + my;

 787         right[0] = x1 - mx;
 788         right[1] = y1 - my;
 789         right[2] = x2 - mx;
 790         right[3] = y2 - my;
 791     }
 792 
 793     private int computeOffsetCubic(double[] pts, final int off,
 794                                    double[] leftOff, double[] rightOff)

 795     {
 796         // if p1=p2 or p3=p4 it means that the derivative at the endpoint
 797         // vanishes, which creates problems with computeOffset. Usually
 798         // this happens when this stroker object is trying to widen
 799         // a curve with a cusp. What happens is that curveTo splits
 800         // the input curve at the cusp, and passes it to this function.
 801         // because of inaccuracies in the splitting, we consider points
 802         // equal if they're very close to each other.
 803         final double x1 = pts[off + 0], y1 = pts[off + 1];
 804         final double x2 = pts[off + 2], y2 = pts[off + 3];
 805         final double x3 = pts[off + 4], y3 = pts[off + 5];
 806         final double x4 = pts[off + 6], y4 = pts[off + 7];
 807 
 808         double dx4 = x4 - x3;
 809         double dy4 = y4 - y3;
 810         double dx1 = x2 - x1;
 811         double dy1 = y2 - y1;
 812 
 813         // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
 814         // in which case ignore if p1 == p2
 815         final boolean p1eqp2 = within(x1, y1, x2, y2, 6.0d * Math.ulp(y2));
 816         final boolean p3eqp4 = within(x3, y3, x4, y4, 6.0d * Math.ulp(y4));

 817         if (p1eqp2 && p3eqp4) {
 818             getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
 819             return 4;
 820         } else if (p1eqp2) {
 821             dx1 = x3 - x1;
 822             dy1 = y3 - y1;
 823         } else if (p3eqp4) {
 824             dx4 = x4 - x2;
 825             dy4 = y4 - y2;
 826         }
 827 
 828         // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
 829         double dotsq = (dx1 * dx4 + dy1 * dy4);
 830         dotsq *= dotsq;
 831         double l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4;

 832         if (DHelpers.within(dotsq, l1sq * l4sq, 4.0d * Math.ulp(dotsq))) {
 833             getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
 834             return 4;
 835         }
 836 
 837 //      What we're trying to do in this function is to approximate an ideal
 838 //      offset curve (call it I) of the input curve B using a bezier curve Bp.
 839 //      The constraints I use to get the equations are:
 840 //
 841 //      1. The computed curve Bp should go through I(0) and I(1). These are
 842 //      x1p, y1p, x4p, y4p, which are p1p and p4p. We still need to find
 843 //      4 variables: the x and y components of p2p and p3p (i.e. x2p, y2p, x3p, y3p).
 844 //
 845 //      2. Bp should have slope equal in absolute value to I at the endpoints. So,
 846 //      (by the way, the operator || in the comments below means "aligned with".
 847 //      It is defined on vectors, so when we say I'(0) || Bp'(0) we mean that
 848 //      vectors I'(0) and Bp'(0) are aligned, which is the same as saying
 849 //      that the tangent lines of I and Bp at 0 are parallel. Mathematically
 850 //      this means (I'(t) || Bp'(t)) <==> (I'(t) = c * Bp'(t)) where c is some
 851 //      nonzero constant.)


 925         two_pi_m_p1_m_p4x = 2.0d * xi - x1p - x4p;
 926         two_pi_m_p1_m_p4y = 2.0d * yi - y1p - y4p;
 927         c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
 928         c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);
 929 
 930         x2p = x1p + c1*dx1;
 931         y2p = y1p + c1*dy1;
 932         x3p = x4p + c2*dx4;
 933         y3p = y4p + c2*dy4;
 934 
 935         rightOff[0] = x1p; rightOff[1] = y1p;
 936         rightOff[2] = x2p; rightOff[3] = y2p;
 937         rightOff[4] = x3p; rightOff[5] = y3p;
 938         rightOff[6] = x4p; rightOff[7] = y4p;
 939         return 8;
 940     }
 941 
 942     // compute offset curves using bezier spline through t=0.5 (i.e.
 943     // ComputedCurve(0.5) == IdealParallelCurve(0.5))
 944     // return the kind of curve in the right and left arrays.
 945     private int computeOffsetQuad(double[] pts, final int off,
 946                                   double[] leftOff, double[] rightOff)

 947     {
 948         final double x1 = pts[off + 0], y1 = pts[off + 1];
 949         final double x2 = pts[off + 2], y2 = pts[off + 3];
 950         final double x3 = pts[off + 4], y3 = pts[off + 5];
 951 
 952         final double dx3 = x3 - x2;
 953         final double dy3 = y3 - y2;
 954         final double dx1 = x2 - x1;
 955         final double dy1 = y2 - y1;
 956 
 957         // if p1=p2 or p3=p4 it means that the derivative at the endpoint
 958         // vanishes, which creates problems with computeOffset. Usually
 959         // this happens when this stroker object is trying to widen
 960         // a curve with a cusp. What happens is that curveTo splits
 961         // the input curve at the cusp, and passes it to this function.
 962         // because of inaccuracies in the splitting, we consider points
 963         // equal if they're very close to each other.
 964 
 965         // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
 966         // in which case ignore.
 967         final boolean p1eqp2 = within(x1, y1, x2, y2, 6.0d * Math.ulp(y2));
 968         final boolean p2eqp3 = within(x2, y2, x3, y3, 6.0d * Math.ulp(y3));

 969         if (p1eqp2 || p2eqp3) {
 970             getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
 971             return 4;
 972         }
 973 
 974         // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
 975         double dotsq = (dx1 * dx3 + dy1 * dy3);
 976         dotsq *= dotsq;
 977         double l1sq = dx1 * dx1 + dy1 * dy1, l3sq = dx3 * dx3 + dy3 * dy3;

 978         if (DHelpers.within(dotsq, l1sq * l3sq, 4.0d * Math.ulp(dotsq))) {
 979             getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
 980             return 4;
 981         }
 982 
 983         // this computes the offsets at t=0, 0.5, 1, using the property that
 984         // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to
 985         // the (dx/dt, dy/dt) vectors at the endpoints.
 986         computeOffset(dx1, dy1, lineWidth2, offset0);
 987         computeOffset(dx3, dy3, lineWidth2, offset1);
 988 
 989         double x1p = x1 + offset0[0]; // start
 990         double y1p = y1 + offset0[1]; // point
 991         double x3p = x3 + offset1[0]; // end
 992         double y3p = y3 + offset1[1]; // point
 993         safeComputeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);
 994         leftOff[0] = x1p; leftOff[1] = y1p;
 995         leftOff[4] = x3p; leftOff[5] = y3p;
 996 
 997         x1p = x1 - offset0[0]; y1p = y1 - offset0[1];
 998         x3p = x3 - offset1[0]; y3p = y3 - offset1[1];
 999         safeComputeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2);
1000         rightOff[0] = x1p; rightOff[1] = y1p;
1001         rightOff[4] = x3p; rightOff[5] = y3p;
1002         return 6;
1003     }
1004 
1005     // finds values of t where the curve in pts should be subdivided in order
1006     // to get good offset curves a distance of w away from the middle curve.
1007     // Stores the points in ts, and returns how many of them there were.
1008     private static int findSubdivPoints(final DCurve c, double[] pts, double[] ts,
1009                                         final int type, final double w)
1010     {
1011         final double x12 = pts[2] - pts[0];
1012         final double y12 = pts[3] - pts[1];
1013         // if the curve is already parallel to either axis we gain nothing
1014         // from rotating it.
1015         if (y12 != 0.0d && x12 != 0.0d) {
1016             // we rotate it so that the first vector in the control polygon is
1017             // parallel to the x-axis. This will ensure that rotated quarter
1018             // circles won't be subdivided.
1019             final double hypot = Math.sqrt(x12 * x12 + y12 * y12);
1020             final double cos = x12 / hypot;
1021             final double sin = y12 / hypot;
1022             final double x1 = cos * pts[0] + sin * pts[1];
1023             final double y1 = cos * pts[1] - sin * pts[0];
1024             final double x2 = cos * pts[2] + sin * pts[3];
1025             final double y2 = cos * pts[3] - sin * pts[2];
1026             final double x3 = cos * pts[4] + sin * pts[5];
1027             final double y3 = cos * pts[5] - sin * pts[4];
1028 
1029             switch(type) {
1030             case 8:
1031                 final double x4 = cos * pts[6] + sin * pts[7];
1032                 final double y4 = cos * pts[7] - sin * pts[6];
1033                 c.set(x1, y1, x2, y2, x3, y3, x4, y4);
1034                 break;
1035             case 6:
1036                 c.set(x1, y1, x2, y2, x3, y3);
1037                 break;
1038             default:
1039             }
1040         } else {
1041             c.set(pts, type);
1042         }
1043 
1044         int ret = 0;
1045         // we subdivide at values of t such that the remaining rotated
1046         // curves are monotonic in x and y.
1047         ret += c.dxRoots(ts, ret);
1048         ret += c.dyRoots(ts, ret);
1049         // subdivide at inflection points.
1050         if (type == 8) {
1051             // quadratic curves can't have inflection points
1052             ret += c.infPoints(ts, ret);
1053         }
1054 
1055         // now we must subdivide at points where one of the offset curves will have
1056         // a cusp. This happens at ts where the radius of curvature is equal to w.
1057         ret += c.rootsOfROCMinusW(ts, ret, w, 0.0001d);
1058 
1059         ret = DHelpers.filterOutNotInAB(ts, 0, ret, 0.0001d, 0.9999d);
1060         DHelpers.isort(ts, 0, ret);
1061         return ret;
1062     }
1063 
1064     @Override
1065     public void curveTo(final double x1, final double y1,
1066                         final double x2, final double y2,
1067                         final double x3, final double y3)
1068     {
1069         final int outcode0 = this.cOutCode;

1070         if (clipRect != null) {


1071             final int outcode3 = DHelpers.outcode(x3, y3, clipRect);
1072             this.cOutCode = outcode3;
1073 
1074             if ((outcode0 & outcode3) != 0) {
1075                 final int outcode1 = DHelpers.outcode(x1, y1, clipRect);
1076                 final int outcode2 = DHelpers.outcode(x2, y2, clipRect);
1077 
1078                 // basic rejection criteria
1079                 if ((outcode0 & outcode1 & outcode2 & outcode3) != 0) {
1080                     moveTo(x3, y3, outcode0);


















1081                     opened = true;
1082                     return;
1083                 }
1084             }
1085         }
1086 
1087         final double[] mid = middle;
1088 
1089         mid[0] = cx0; mid[1] = cy0;
1090         mid[2] = x1;  mid[3] = y1;
1091         mid[4] = x2;  mid[5] = y2;
1092         mid[6] = x3;  mid[7] = y3;
1093 





1094         // need these so we can update the state at the end of this method
1095         final double xf = x3, yf = y3;
1096         double dxs = mid[2] - mid[0];
1097         double dys = mid[3] - mid[1];
1098         double dxf = mid[6] - mid[4];
1099         double dyf = mid[7] - mid[5];
1100 
1101         boolean p1eqp2 = (dxs == 0.0d && dys == 0.0d);
1102         boolean p3eqp4 = (dxf == 0.0d && dyf == 0.0d);
1103         if (p1eqp2) {
1104             dxs = mid[4] - mid[0];
1105             dys = mid[5] - mid[1];
1106             if (dxs == 0.0d && dys == 0.0d) {
1107                 dxs = mid[6] - mid[0];
1108                 dys = mid[7] - mid[1];
1109             }
1110         }
1111         if (p3eqp4) {
1112             dxf = mid[6] - mid[2];
1113             dyf = mid[7] - mid[3];
1114             if (dxf == 0.0d && dyf == 0.0d) {
1115                 dxf = mid[6] - mid[0];
1116                 dyf = mid[7] - mid[1];
1117             }
1118         }
1119         if (dxs == 0.0d && dys == 0.0d) {
1120             // this happens if the "curve" is just a point
1121             // fix outcode0 for lineTo() call:
1122             if (clipRect != null) {
1123                 this.cOutCode = outcode0;
1124             }
1125             lineTo(mid[0], mid[1]);
1126             return;
1127         }
1128 
1129         // if these vectors are too small, normalize them, to avoid future
1130         // precision problems.
1131         if (Math.abs(dxs) < 0.1d && Math.abs(dys) < 0.1d) {
1132             double len = Math.sqrt(dxs*dxs + dys*dys);
1133             dxs /= len;
1134             dys /= len;
1135         }
1136         if (Math.abs(dxf) < 0.1d && Math.abs(dyf) < 0.1d) {
1137             double len = Math.sqrt(dxf*dxf + dyf*dyf);
1138             dxf /= len;
1139             dyf /= len;
1140         }
1141 
1142         computeOffset(dxs, dys, lineWidth2, offset0);
1143         drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1], outcode0);
1144 
1145         final int nSplits = findSubdivPoints(curve, mid, subdivTs, 8, lineWidth2);


1146 
1147         double prevT = 0.0d;
1148         for (int i = 0, off = 0; i < nSplits; i++, off += 6) {
1149             final double t = subdivTs[i];
1150             DHelpers.subdivideCubicAt((t - prevT) / (1.0d - prevT),
1151                                      mid, off, mid, off, mid, off + 6);
1152             prevT = t;
1153         }
1154 
1155         final double[] l = lp;









1156         final double[] r = rp;
1157 
1158         int kind = 0;
1159         for (int i = 0, off = 0; i <= nSplits; i++, off += 6) {
1160             kind = computeOffsetCubic(mid, off, l, r);
1161 
1162             emitLineTo(l[0], l[1]);
1163 
1164             switch(kind) {
1165             case 8:
1166                 emitCurveTo(l[2], l[3], l[4], l[5], l[6], l[7]);
1167                 emitCurveToRev(r[0], r[1], r[2], r[3], r[4], r[5]);
1168                 break;
1169             case 4:
1170                 emitLineTo(l[2], l[3]);
1171                 emitLineToRev(r[0], r[1]);
1172                 break;
1173             default:
1174             }
1175             emitLineToRev(r[kind - 2], r[kind - 1]);
1176         }
1177 
1178         this.prev = DRAWING_OP_TO;
1179         this.cx0 = xf;
1180         this.cy0 = yf;
1181         this.cdx = dxf;
1182         this.cdy = dyf;
1183         this.cmx = (l[kind - 2] - r[kind - 2]) / 2.0d;
1184         this.cmy = (l[kind - 1] - r[kind - 1]) / 2.0d;
1185     }
1186 
1187     @Override
1188     public void quadTo(final double x1, final double y1,
1189                        final double x2, final double y2)
1190     {
1191         final int outcode0 = this.cOutCode;

1192         if (clipRect != null) {

1193             final int outcode2 = DHelpers.outcode(x2, y2, clipRect);
1194             this.cOutCode = outcode2;
1195 
1196             if ((outcode0 & outcode2) != 0) {
1197                 final int outcode1 = DHelpers.outcode(x1, y1, clipRect);
1198 
1199                 // basic rejection criteria
1200                 if ((outcode0 & outcode1 & outcode2) != 0) {
1201                     moveTo(x2, y2, outcode0);





















1202                     opened = true;
1203                     return;
1204                 }
1205             }
1206         }
1207 
1208         final double[] mid = middle;
1209 
1210         mid[0] = cx0; mid[1] = cy0;
1211         mid[2] = x1;  mid[3] = y1;
1212         mid[4] = x2;  mid[5] = y2;
1213 




1214         // need these so we can update the state at the end of this method
1215         final double xf = x2, yf = y2;
1216         double dxs = mid[2] - mid[0];
1217         double dys = mid[3] - mid[1];
1218         double dxf = mid[4] - mid[2];
1219         double dyf = mid[5] - mid[3];
1220         if ((dxs == 0.0d && dys == 0.0d) || (dxf == 0.0d && dyf == 0.0d)) {
1221             dxs = dxf = mid[4] - mid[0];
1222             dys = dyf = mid[5] - mid[1];
1223         }
1224         if (dxs == 0.0d && dys == 0.0d) {
1225             // this happens if the "curve" is just a point
1226             // fix outcode0 for lineTo() call:
1227             if (clipRect != null) {
1228                 this.cOutCode = outcode0;
1229             }
1230             lineTo(mid[0], mid[1]);
1231             return;
1232         }
1233         // if these vectors are too small, normalize them, to avoid future
1234         // precision problems.
1235         if (Math.abs(dxs) < 0.1d && Math.abs(dys) < 0.1d) {
1236             double len = Math.sqrt(dxs*dxs + dys*dys);
1237             dxs /= len;
1238             dys /= len;
1239         }
1240         if (Math.abs(dxf) < 0.1d && Math.abs(dyf) < 0.1d) {
1241             double len = Math.sqrt(dxf*dxf + dyf*dyf);
1242             dxf /= len;
1243             dyf /= len;
1244         }
1245 
1246         computeOffset(dxs, dys, lineWidth2, offset0);
1247         drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1], outcode0);
1248 
1249         int nSplits = findSubdivPoints(curve, mid, subdivTs, 6, lineWidth2);


1250 
1251         double prevt = 0.0d;
1252         for (int i = 0, off = 0; i < nSplits; i++, off += 4) {
1253             final double t = subdivTs[i];
1254             DHelpers.subdivideQuadAt((t - prevt) / (1.0d - prevt),
1255                                     mid, off, mid, off, mid, off + 4);
1256             prevt = t;
1257         }
1258 
1259         final double[] l = lp;








1260         final double[] r = rp;
1261 
1262         int kind = 0;
1263         for (int i = 0, off = 0; i <= nSplits; i++, off += 4) {
1264             kind = computeOffsetQuad(mid, off, l, r);
1265 
1266             emitLineTo(l[0], l[1]);
1267 
1268             switch(kind) {
1269             case 6:
1270                 emitQuadTo(l[2], l[3], l[4], l[5]);
1271                 emitQuadToRev(r[0], r[1], r[2], r[3]);
1272                 break;
1273             case 4:
1274                 emitLineTo(l[2], l[3]);
1275                 emitLineToRev(r[0], r[1]);
1276                 break;
1277             default:
1278             }
1279             emitLineToRev(r[kind - 2], r[kind - 1]);
1280         }
1281 
1282         this.prev = DRAWING_OP_TO;
1283         this.cx0 = xf;
1284         this.cy0 = yf;
1285         this.cdx = dxf;
1286         this.cdy = dyf;
1287         this.cmx = (l[kind - 2] - r[kind - 2]) / 2.0d;
1288         this.cmy = (l[kind - 1] - r[kind - 1]) / 2.0d;
1289     }
1290 
1291     @Override public long getNativeConsumer() {
1292         throw new InternalError("Stroker doesn't use a native consumer");
1293     }
1294 }
   1 /*
   2  * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d.marlin;
  27 
  28 import java.util.Arrays;
  29 import sun.java2d.marlin.DHelpers.PolyStack;
  30 import sun.java2d.marlin.DTransformingPathConsumer2D.CurveBasicMonotonizer;
  31 import sun.java2d.marlin.DTransformingPathConsumer2D.CurveClipSplitter;
  32 
  33 // TODO: some of the arithmetic here is too verbose and prone to hard to
  34 // debug typos. We should consider making a small Point/Vector class that
  35 // has methods like plus(Point), minus(Point), dot(Point), cross(Point)and such
  36 final class DStroker implements DPathConsumer2D, MarlinConst {
  37 
  38     private static final int MOVE_TO = 0;
  39     private static final int DRAWING_OP_TO = 1; // ie. curve, line, or quad
  40     private static final int CLOSE = 2;
  41 
  42     // round join threshold = 1 subpixel
  43     private static final double ERR_JOIN = (1.0f / MIN_SUBPIXELS);
  44     private static final double ROUND_JOIN_THRESHOLD = ERR_JOIN * ERR_JOIN;

  45 
  46     // kappa = (4/3) * (SQRT(2) - 1)
  47     private static final double C = (4.0d * (Math.sqrt(2.0d) - 1.0d) / 3.0d);
  48 
  49     // SQRT(2)
  50     private static final double SQRT_2 = Math.sqrt(2.0d);
  51 


  52     private DPathConsumer2D out;
  53 
  54     private int capStyle;
  55     private int joinStyle;
  56 
  57     private double lineWidth2;
  58     private double invHalfLineWidth2Sq;
  59 
  60     private final double[] offset0 = new double[2];
  61     private final double[] offset1 = new double[2];
  62     private final double[] offset2 = new double[2];
  63     private final double[] miter = new double[2];
  64     private double miterLimitSq;
  65 
  66     private int prev;
  67 
  68     // The starting point of the path, and the slope there.
  69     private double sx0, sy0, sdx, sdy;
  70     // the current point and the slope there.
  71     private double cx0, cy0, cdx, cdy; // c stands for current
  72     // vectors that when added to (sx0,sy0) and (cx0,cy0) respectively yield the
  73     // first and last points on the left parallel path. Since this path is
  74     // parallel, it's slope at any point is parallel to the slope of the
  75     // original path (thought they may have different directions), so these
  76     // could be computed from sdx,sdy and cdx,cdy (and vice versa), but that
  77     // would be error prone and hard to read, so we keep these anyway.
  78     private double smx, smy, cmx, cmy;
  79 
  80     private final PolyStack reverse;
  81 



  82     private final double[] lp = new double[8];
  83     private final double[] rp = new double[8];

  84 
  85     // per-thread renderer context
  86     final DRendererContext rdrCtx;
  87 
  88     // dirty curve
  89     final DCurve curve;
  90 
  91     // Bounds of the drawing region, at pixel precision.
  92     private double[] clipRect;
  93 
  94     // the outcode of the current point
  95     private int cOutCode = 0;
  96 
  97     // the outcode of the starting point
  98     private int sOutCode = 0;
  99 
 100     // flag indicating if the path is opened (clipped)
 101     private boolean opened = false;
 102     // flag indicating if the starting point's cap is done
 103     private boolean capStart = false;
 104     // flag indicating to monotonize curves
 105     private boolean monotonize;
 106 
 107     private boolean subdivide = false;
 108     private final CurveClipSplitter curveSplitter;
 109 
 110     /**
 111      * Constructs a <code>DStroker</code>.
 112      * @param rdrCtx per-thread renderer context
 113      */
 114     DStroker(final DRendererContext rdrCtx) {
 115         this.rdrCtx = rdrCtx;
 116 
 117         this.reverse = (rdrCtx.stats != null) ?
 118             new PolyStack(rdrCtx,
 119                     rdrCtx.stats.stat_str_polystack_types,
 120                     rdrCtx.stats.stat_str_polystack_curves,
 121                     rdrCtx.stats.hist_str_polystack_curves,
 122                     rdrCtx.stats.stat_array_str_polystack_curves,
 123                     rdrCtx.stats.stat_array_str_polystack_types)
 124             : new PolyStack(rdrCtx);
 125 
 126         this.curve = rdrCtx.curve;
 127         this.curveSplitter = rdrCtx.curveClipSplitter;
 128     }
 129 
 130     /**
 131      * Inits the <code>DStroker</code>.
 132      *
 133      * @param pc2d an output <code>DPathConsumer2D</code>.
 134      * @param lineWidth the desired line width in pixels
 135      * @param capStyle the desired end cap style, one of
 136      * <code>CAP_BUTT</code>, <code>CAP_ROUND</code> or
 137      * <code>CAP_SQUARE</code>.
 138      * @param joinStyle the desired line join style, one of
 139      * <code>JOIN_MITER</code>, <code>JOIN_ROUND</code> or
 140      * <code>JOIN_BEVEL</code>.
 141      * @param miterLimit the desired miter limit
 142      * @param scale scaling factor applied to clip boundaries
 143      * @param subdivideCurves true to indicate to subdivide curves, false if dasher does
 144      * @return this instance
 145      */
 146     DStroker init(final DPathConsumer2D pc2d,
 147                   final double lineWidth,
 148                   final int capStyle,
 149                   final int joinStyle,
 150                   final double miterLimit,
 151                   final double scale,
 152                   final boolean subdivideCurves)
 153     {
 154         this.out = pc2d;
 155 
 156         this.lineWidth2 = lineWidth / 2.0d;
 157         this.invHalfLineWidth2Sq = 1.0d / (2.0d * lineWidth2 * lineWidth2);
 158         this.monotonize = subdivideCurves;
 159 
 160         this.capStyle = capStyle;
 161         this.joinStyle = joinStyle;
 162 
 163         final double limit = miterLimit * lineWidth2;
 164         this.miterLimitSq = limit * limit;
 165 
 166         this.prev = CLOSE;
 167 
 168         rdrCtx.stroking = 1;
 169 
 170         if (rdrCtx.doClip) {
 171             // Adjust the clipping rectangle with the stroker margin (miter limit, width)
 172             double rdrOffX = 0.0d, rdrOffY = 0.0d;
 173             double margin = lineWidth2;
 174 
 175             if (capStyle == CAP_SQUARE) {
 176                 margin *= SQRT_2;
 177             }
 178             if ((joinStyle == JOIN_MITER) && (margin < limit)) {
 179                 margin = limit;
 180             }
 181             if (scale != 1.0d) {
 182                 margin *= scale;
 183                 rdrOffX = scale * DRenderer.RDR_OFFSET_X;
 184                 rdrOffY = scale * DRenderer.RDR_OFFSET_Y;
 185             }
 186             // add a small rounding error:
 187             margin += 1e-3d;
 188 
 189             // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
 190             // adjust clip rectangle (ymin, ymax, xmin, xmax):
 191             final double[] _clipRect = rdrCtx.clipRect;
 192             _clipRect[0] -= margin - rdrOffY;
 193             _clipRect[1] += margin + rdrOffY;
 194             _clipRect[2] -= margin - rdrOffX;
 195             _clipRect[3] += margin + rdrOffX;
 196             this.clipRect = _clipRect;
 197 
 198             // initialize curve splitter here for stroker & dasher:
 199             if (DO_CLIP_SUBDIVIDER) {
 200                 subdivide = subdivideCurves;
 201                 // adjust padded clip rectangle:
 202                 curveSplitter.init();
 203             } else {
 204                 subdivide = false;
 205             }
 206         } else {
 207             this.clipRect = null;
 208             this.cOutCode = 0;
 209             this.sOutCode = 0;
 210         }
 211         return this; // fluent API
 212     }
 213 
 214     void disableClipping() {
 215         this.clipRect = null;
 216         this.cOutCode = 0;
 217         this.sOutCode = 0;
 218     }
 219 
 220     /**
 221      * Disposes this stroker:
 222      * clean up before reusing this instance
 223      */
 224     void dispose() {
 225         reverse.dispose();
 226 
 227         opened   = false;
 228         capStart = false;
 229 
 230         if (DO_CLEAN_DIRTY) {
 231             // Force zero-fill dirty arrays:
 232             Arrays.fill(offset0, 0.0d);
 233             Arrays.fill(offset1, 0.0d);
 234             Arrays.fill(offset2, 0.0d);
 235             Arrays.fill(miter, 0.0d);

 236             Arrays.fill(lp, 0.0d);
 237             Arrays.fill(rp, 0.0d);

 238         }
 239     }
 240 
 241     private static void computeOffset(final double lx, final double ly,
 242                                       final double w, final double[] m)
 243     {
 244         double len = lx*lx + ly*ly;
 245         if (len == 0.0d) {
 246             m[0] = 0.0d;
 247             m[1] = 0.0d;
 248         } else {
 249             len = Math.sqrt(len);
 250             m[0] =  (ly * w) / len;
 251             m[1] = -(lx * w) / len;
 252         }
 253     }
 254 
 255     // Returns true if the vectors (dx1, dy1) and (dx2, dy2) are
 256     // clockwise (if dx1,dy1 needs to be rotated clockwise to close
 257     // the smallest angle between it and dx2,dy2).
 258     // This is equivalent to detecting whether a point q is on the right side
 259     // of a line passing through points p1, p2 where p2 = p1+(dx1,dy1) and
 260     // q = p2+(dx2,dy2), which is the same as saying p1, p2, q are in a
 261     // clockwise order.
 262     // NOTE: "clockwise" here assumes coordinates with 0,0 at the bottom left.
 263     private static boolean isCW(final double dx1, final double dy1,
 264                                 final double dx2, final double dy2)
 265     {
 266         return dx1 * dy2 <= dy1 * dx2;
 267     }
 268 
 269     private void mayDrawRoundJoin(double cx, double cy,
 270                                   double omx, double omy,
 271                                   double mx, double my,
 272                                   boolean rev)
 273     {
 274         if ((omx == 0.0d && omy == 0.0d) || (mx == 0.0d && my == 0.0d)) {
 275             return;
 276         }
 277 
 278         final double domx = omx - mx;
 279         final double domy = omy - my;
 280         final double lenSq = domx*domx + domy*domy;
 281 
 282         if (lenSq < ROUND_JOIN_THRESHOLD) {
 283             return;
 284         }
 285 
 286         if (rev) {
 287             omx = -omx;
 288             omy = -omy;
 289             mx  = -mx;
 290             my  = -my;
 291         }
 292         drawRoundJoin(cx, cy, omx, omy, mx, my, rev);
 293     }
 294 
 295     private void drawRoundJoin(double cx, double cy,
 296                                double omx, double omy,
 297                                double mx, double my,
 298                                boolean rev)
 299     {
 300         // The sign of the dot product of mx,my and omx,omy is equal to the
 301         // the sign of the cosine of ext
 302         // (ext is the angle between omx,omy and mx,my).
 303         final double cosext = omx * mx + omy * my;
 304         // If it is >=0, we know that abs(ext) is <= 90 degrees, so we only
 305         // need 1 curve to approximate the circle section that joins omx,omy
 306         // and mx,my.
 307         final int numCurves = (cosext >= 0.0d) ? 1 : 2;
 308 
 309         switch (numCurves) {
 310         case 1:
 311             drawBezApproxForArc(cx, cy, omx, omy, mx, my, rev);
 312             break;


 383         emitCurveTo(x1, y1, x2, y2, x3, y3, x4, y4, rev);
 384     }
 385 
 386     private void drawRoundCap(double cx, double cy, double mx, double my) {
 387         final double Cmx = C * mx;
 388         final double Cmy = C * my;
 389         emitCurveTo(cx + mx - Cmy, cy + my + Cmx,
 390                     cx - my + Cmx, cy + mx + Cmy,
 391                     cx - my,       cy + mx);
 392         emitCurveTo(cx - my - Cmx, cy + mx - Cmy,
 393                     cx - mx - Cmy, cy - my + Cmx,
 394                     cx - mx,       cy - my);
 395     }
 396 
 397     // Return the intersection point of the lines (x0, y0) -> (x1, y1)
 398     // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1]
 399     private static void computeMiter(final double x0, final double y0,
 400                                      final double x1, final double y1,
 401                                      final double x0p, final double y0p,
 402                                      final double x1p, final double y1p,
 403                                      final double[] m)
 404     {
 405         double x10 = x1 - x0;
 406         double y10 = y1 - y0;
 407         double x10p = x1p - x0p;
 408         double y10p = y1p - y0p;
 409 
 410         // if this is 0, the lines are parallel. If they go in the
 411         // same direction, there is no intersection so m[off] and
 412         // m[off+1] will contain infinity, so no miter will be drawn.
 413         // If they go in the same direction that means that the start of the
 414         // current segment and the end of the previous segment have the same
 415         // tangent, in which case this method won't even be involved in
 416         // miter drawing because it won't be called by drawMiter (because
 417         // (mx == omx && my == omy) will be true, and drawMiter will return
 418         // immediately).
 419         double den = x10*y10p - x10p*y10;
 420         double t = x10p*(y0-y0p) - y10p*(x0-x0p);
 421         t /= den;
 422         m[0] = x0 + t*x10;
 423         m[1] = y0 + t*y10;
 424     }
 425 
 426     // Return the intersection point of the lines (x0, y0) -> (x1, y1)
 427     // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1]
 428     private static void safeComputeMiter(final double x0, final double y0,
 429                                          final double x1, final double y1,
 430                                          final double x0p, final double y0p,
 431                                          final double x1p, final double y1p,
 432                                          final double[] m)
 433     {
 434         double x10 = x1 - x0;
 435         double y10 = y1 - y0;
 436         double x10p = x1p - x0p;
 437         double y10p = y1p - y0p;
 438 
 439         // if this is 0, the lines are parallel. If they go in the
 440         // same direction, there is no intersection so m[off] and
 441         // m[off+1] will contain infinity, so no miter will be drawn.
 442         // If they go in the same direction that means that the start of the
 443         // current segment and the end of the previous segment have the same
 444         // tangent, in which case this method won't even be involved in
 445         // miter drawing because it won't be called by drawMiter (because
 446         // (mx == omx && my == omy) will be true, and drawMiter will return
 447         // immediately).
 448         double den = x10*y10p - x10p*y10;
 449         if (den == 0.0d) {
 450             m[2] = (x0 + x0p) / 2.0d;
 451             m[3] = (y0 + y0p) / 2.0d;
 452         } else {
 453             double t = x10p*(y0-y0p) - y10p*(x0-x0p);
 454             t /= den;
 455             m[2] = x0 + t*x10;
 456             m[3] = y0 + t*y10;
 457         }




 458     }
 459 
 460     private void drawMiter(final double pdx, final double pdy,
 461                            final double x0, final double y0,
 462                            final double dx, final double dy,
 463                            double omx, double omy,
 464                            double mx, double my,
 465                            boolean rev)
 466     {
 467         if ((mx == omx && my == omy) ||
 468             (pdx == 0.0d && pdy == 0.0d) ||
 469             (dx == 0.0d && dy == 0.0d))
 470         {
 471             return;
 472         }
 473 
 474         if (rev) {
 475             omx = -omx;
 476             omy = -omy;
 477             mx  = -mx;
 478             my  = -my;
 479         }
 480 
 481         computeMiter((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
 482                      (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my, miter);

 483 
 484         final double miterX = miter[0];
 485         final double miterY = miter[1];
 486         double lenSq = (miterX-x0)*(miterX-x0) + (miterY-y0)*(miterY-y0);
 487 
 488         // If the lines are parallel, lenSq will be either NaN or +inf
 489         // (actually, I'm not sure if the latter is possible. The important
 490         // thing is that -inf is not possible, because lenSq is a square).
 491         // For both of those values, the comparison below will fail and
 492         // no miter will be drawn, which is correct.
 493         if (lenSq < miterLimitSq) {
 494             emitLineTo(miterX, miterY, rev);
 495         }
 496     }
 497 
 498     @Override
 499     public void moveTo(final double x0, final double y0) {
 500         _moveTo(x0, y0, cOutCode);
 501         // update starting point:
 502         this.sx0 = x0;
 503         this.sy0 = y0;
 504         this.sdx = 1.0d;
 505         this.sdy = 0.0d;
 506         this.opened   = false;
 507         this.capStart = false;
 508 
 509         if (clipRect != null) {
 510             final int outcode = DHelpers.outcode(x0, y0, clipRect);
 511             this.cOutCode = outcode;
 512             this.sOutCode = outcode;
 513         }
 514     }
 515 
 516     private void _moveTo(final double x0, final double y0,
 517                         final int outcode)
 518     {
 519         if (prev == MOVE_TO) {
 520             this.cx0 = x0;
 521             this.cy0 = y0;
 522         } else {
 523             if (prev == DRAWING_OP_TO) {
 524                 finish(outcode);
 525             }
 526             this.prev = MOVE_TO;
 527             this.cx0 = x0;
 528             this.cy0 = y0;
 529             this.cdx = 1.0d;
 530             this.cdy = 0.0d;
 531         }
 532     }
 533 
 534     @Override
 535     public void lineTo(final double x1, final double y1) {
 536         lineTo(x1, y1, false);
 537     }
 538 
 539     private void lineTo(final double x1, final double y1,
 540                         final boolean force)
 541     {
 542         final int outcode0 = this.cOutCode;
 543 
 544         if (!force && clipRect != null) {
 545             final int outcode1 = DHelpers.outcode(x1, y1, clipRect);

 546 
 547             // Should clip
 548             final int orCode = (outcode0 | outcode1);
 549             if (orCode != 0) {
 550                 final int sideCode = outcode0 & outcode1;
 551 
 552                 // basic rejection criteria:
 553                 if (sideCode == 0) {
 554                     // ovelap clip:
 555                     if (subdivide) {
 556                         // avoid reentrance
 557                         subdivide = false;
 558                         // subdivide curve => callback with subdivided parts:
 559                         boolean ret = curveSplitter.splitLine(cx0, cy0, x1, y1,
 560                                                               orCode, this);
 561                         // reentrance is done:
 562                         subdivide = true;
 563                         if (ret) {
 564                             return;
 565                         }
 566                     }
 567                     // already subdivided so render it
 568                 } else {
 569                     this.cOutCode = outcode1;
 570                     _moveTo(x1, y1, outcode0);
 571                     opened = true;
 572                     return;
 573                 }
 574             }
 575 
 576             this.cOutCode = outcode1;
 577         }
 578 
 579         double dx = x1 - cx0;
 580         double dy = y1 - cy0;
 581         if (dx == 0.0d && dy == 0.0d) {
 582             dx = 1.0d;
 583         }
 584         computeOffset(dx, dy, lineWidth2, offset0);
 585         final double mx = offset0[0];
 586         final double my = offset0[1];
 587 
 588         drawJoin(cdx, cdy, cx0, cy0, dx, dy, cmx, cmy, mx, my, outcode0);
 589 
 590         emitLineTo(cx0 + mx, cy0 + my);
 591         emitLineTo( x1 + mx,  y1 + my);
 592 
 593         emitLineToRev(cx0 - mx, cy0 - my);
 594         emitLineToRev( x1 - mx,  y1 - my);
 595 
 596         this.prev = DRAWING_OP_TO;


 778                           double x0, double y0,
 779                           double dx, double dy,
 780                           double omx, double omy,
 781                           double mx, double my,
 782                           final int outcode)
 783     {
 784         if (prev != DRAWING_OP_TO) {
 785             emitMoveTo(x0 + mx, y0 + my);
 786             if (!opened) {
 787                 this.sdx = dx;
 788                 this.sdy = dy;
 789                 this.smx = mx;
 790                 this.smy = my;
 791             }
 792         } else {
 793             final boolean cw = isCW(pdx, pdy, dx, dy);
 794             if (outcode == 0) {
 795                 if (joinStyle == JOIN_MITER) {
 796                     drawMiter(pdx, pdy, x0, y0, dx, dy, omx, omy, mx, my, cw);
 797                 } else if (joinStyle == JOIN_ROUND) {
 798                     mayDrawRoundJoin(x0, y0, omx, omy, mx, my, cw);



 799                 }
 800             }
 801             emitLineTo(x0, y0, !cw);
 802         }
 803         prev = DRAWING_OP_TO;
 804     }
 805 
 806     private static boolean within(final double x1, final double y1,
 807                                   final double x2, final double y2,
 808                                   final double err)
 809     {
 810         assert err > 0 : "";
 811         // compare taxicab distance. ERR will always be small, so using
 812         // true distance won't give much benefit
 813         return (DHelpers.within(x1, x2, err) && // we want to avoid calling Math.abs
 814                 DHelpers.within(y1, y2, err));  // this is just as good.
 815     }
 816 
 817     private void getLineOffsets(final double x1, final double y1,
 818                                 final double x2, final double y2,
 819                                 final double[] left, final double[] right)
 820     {
 821         computeOffset(x2 - x1, y2 - y1, lineWidth2, offset0);
 822         final double mx = offset0[0];
 823         final double my = offset0[1];
 824         left[0] = x1 + mx;
 825         left[1] = y1 + my;
 826         left[2] = x2 + mx;
 827         left[3] = y2 + my;
 828 
 829         right[0] = x1 - mx;
 830         right[1] = y1 - my;
 831         right[2] = x2 - mx;
 832         right[3] = y2 - my;
 833     }
 834 
 835     private int computeOffsetCubic(final double[] pts, final int off,
 836                                    final double[] leftOff,
 837                                    final double[] rightOff)
 838     {
 839         // if p1=p2 or p3=p4 it means that the derivative at the endpoint
 840         // vanishes, which creates problems with computeOffset. Usually
 841         // this happens when this stroker object is trying to widen
 842         // a curve with a cusp. What happens is that curveTo splits
 843         // the input curve at the cusp, and passes it to this function.
 844         // because of inaccuracies in the splitting, we consider points
 845         // equal if they're very close to each other.
 846         final double x1 = pts[off    ], y1 = pts[off + 1];
 847         final double x2 = pts[off + 2], y2 = pts[off + 3];
 848         final double x3 = pts[off + 4], y3 = pts[off + 5];
 849         final double x4 = pts[off + 6], y4 = pts[off + 7];
 850 
 851         double dx4 = x4 - x3;
 852         double dy4 = y4 - y3;
 853         double dx1 = x2 - x1;
 854         double dy1 = y2 - y1;
 855 
 856         // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
 857         // in which case ignore if p1 == p2
 858         final boolean p1eqp2 = within(x1, y1, x2, y2, 6.0d * Math.ulp(y2));
 859         final boolean p3eqp4 = within(x3, y3, x4, y4, 6.0d * Math.ulp(y4));
 860 
 861         if (p1eqp2 && p3eqp4) {
 862             getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
 863             return 4;
 864         } else if (p1eqp2) {
 865             dx1 = x3 - x1;
 866             dy1 = y3 - y1;
 867         } else if (p3eqp4) {
 868             dx4 = x4 - x2;
 869             dy4 = y4 - y2;
 870         }
 871 
 872         // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
 873         double dotsq = (dx1 * dx4 + dy1 * dy4);
 874         dotsq *= dotsq;
 875         double l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4;
 876 
 877         if (DHelpers.within(dotsq, l1sq * l4sq, 4.0d * Math.ulp(dotsq))) {
 878             getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
 879             return 4;
 880         }
 881 
 882 //      What we're trying to do in this function is to approximate an ideal
 883 //      offset curve (call it I) of the input curve B using a bezier curve Bp.
 884 //      The constraints I use to get the equations are:
 885 //
 886 //      1. The computed curve Bp should go through I(0) and I(1). These are
 887 //      x1p, y1p, x4p, y4p, which are p1p and p4p. We still need to find
 888 //      4 variables: the x and y components of p2p and p3p (i.e. x2p, y2p, x3p, y3p).
 889 //
 890 //      2. Bp should have slope equal in absolute value to I at the endpoints. So,
 891 //      (by the way, the operator || in the comments below means "aligned with".
 892 //      It is defined on vectors, so when we say I'(0) || Bp'(0) we mean that
 893 //      vectors I'(0) and Bp'(0) are aligned, which is the same as saying
 894 //      that the tangent lines of I and Bp at 0 are parallel. Mathematically
 895 //      this means (I'(t) || Bp'(t)) <==> (I'(t) = c * Bp'(t)) where c is some
 896 //      nonzero constant.)


 970         two_pi_m_p1_m_p4x = 2.0d * xi - x1p - x4p;
 971         two_pi_m_p1_m_p4y = 2.0d * yi - y1p - y4p;
 972         c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
 973         c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);
 974 
 975         x2p = x1p + c1*dx1;
 976         y2p = y1p + c1*dy1;
 977         x3p = x4p + c2*dx4;
 978         y3p = y4p + c2*dy4;
 979 
 980         rightOff[0] = x1p; rightOff[1] = y1p;
 981         rightOff[2] = x2p; rightOff[3] = y2p;
 982         rightOff[4] = x3p; rightOff[5] = y3p;
 983         rightOff[6] = x4p; rightOff[7] = y4p;
 984         return 8;
 985     }
 986 
 987     // compute offset curves using bezier spline through t=0.5 (i.e.
 988     // ComputedCurve(0.5) == IdealParallelCurve(0.5))
 989     // return the kind of curve in the right and left arrays.
 990     private int computeOffsetQuad(final double[] pts, final int off,
 991                                   final double[] leftOff,
 992                                   final double[] rightOff)
 993     {
 994         final double x1 = pts[off    ], y1 = pts[off + 1];
 995         final double x2 = pts[off + 2], y2 = pts[off + 3];
 996         final double x3 = pts[off + 4], y3 = pts[off + 5];
 997 
 998         final double dx3 = x3 - x2;
 999         final double dy3 = y3 - y2;
1000         final double dx1 = x2 - x1;
1001         final double dy1 = y2 - y1;
1002 
1003         // if p1=p2 or p3=p4 it means that the derivative at the endpoint
1004         // vanishes, which creates problems with computeOffset. Usually
1005         // this happens when this stroker object is trying to widen
1006         // a curve with a cusp. What happens is that curveTo splits
1007         // the input curve at the cusp, and passes it to this function.
1008         // because of inaccuracies in the splitting, we consider points
1009         // equal if they're very close to each other.
1010 
1011         // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
1012         // in which case ignore.
1013         final boolean p1eqp2 = within(x1, y1, x2, y2, 6.0d * Math.ulp(y2));
1014         final boolean p2eqp3 = within(x2, y2, x3, y3, 6.0d * Math.ulp(y3));
1015 
1016         if (p1eqp2 || p2eqp3) {
1017             getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
1018             return 4;
1019         }
1020 
1021         // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
1022         double dotsq = (dx1 * dx3 + dy1 * dy3);
1023         dotsq *= dotsq;
1024         double l1sq = dx1 * dx1 + dy1 * dy1, l3sq = dx3 * dx3 + dy3 * dy3;
1025 
1026         if (DHelpers.within(dotsq, l1sq * l3sq, 4.0d * Math.ulp(dotsq))) {
1027             getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
1028             return 4;
1029         }
1030 
1031         // this computes the offsets at t=0, 0.5, 1, using the property that
1032         // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to
1033         // the (dx/dt, dy/dt) vectors at the endpoints.
1034         computeOffset(dx1, dy1, lineWidth2, offset0);
1035         computeOffset(dx3, dy3, lineWidth2, offset1);
1036 
1037         double x1p = x1 + offset0[0]; // start
1038         double y1p = y1 + offset0[1]; // point
1039         double x3p = x3 + offset1[0]; // end
1040         double y3p = y3 + offset1[1]; // point
1041         safeComputeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff);
1042         leftOff[0] = x1p; leftOff[1] = y1p;
1043         leftOff[4] = x3p; leftOff[5] = y3p;
1044 
1045         x1p = x1 - offset0[0]; y1p = y1 - offset0[1];
1046         x3p = x3 - offset1[0]; y3p = y3 - offset1[1];
1047         safeComputeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff);
1048         rightOff[0] = x1p; rightOff[1] = y1p;
1049         rightOff[4] = x3p; rightOff[5] = y3p;
1050         return 6;
1051     }
1052 



























































1053     @Override
1054     public void curveTo(final double x1, final double y1,
1055                         final double x2, final double y2,
1056                         final double x3, final double y3)
1057     {
1058         final int outcode0 = this.cOutCode;
1059 
1060         if (clipRect != null) {
1061             final int outcode1 = DHelpers.outcode(x1, y1, clipRect);
1062             final int outcode2 = DHelpers.outcode(x2, y2, clipRect);
1063             final int outcode3 = DHelpers.outcode(x3, y3, clipRect);

1064 
1065             // Should clip
1066             final int orCode = (outcode0 | outcode1 | outcode2 | outcode3);
1067             if (orCode != 0) {
1068                 final int sideCode = outcode0 & outcode1 & outcode2 & outcode3;
1069 
1070                 // basic rejection criteria:
1071                 if (sideCode == 0) {
1072                     // ovelap clip:
1073                     if (subdivide) {
1074                         // avoid reentrance
1075                         subdivide = false;
1076                         // subdivide curve => callback with subdivided parts:
1077                         boolean ret = curveSplitter.splitCurve(cx0, cy0, x1, y1,
1078                                                                x2, y2, x3, y3,
1079                                                                orCode, this);
1080                         // reentrance is done:
1081                         subdivide = true;
1082                         if (ret) {
1083                             return;
1084                         }
1085                     }
1086                     // already subdivided so render it
1087                 } else {
1088                     this.cOutCode = outcode3;
1089                     _moveTo(x3, y3, outcode0);
1090                     opened = true;
1091                     return;
1092                 }
1093             }

1094 
1095             this.cOutCode = outcode3;
1096         }
1097         _curveTo(x1, y1, x2, y2, x3, y3, outcode0);
1098     }


1099 
1100     private void _curveTo(final double x1, final double y1,
1101                           final double x2, final double y2,
1102                           final double x3, final double y3,
1103                           final int outcode0)
1104     {
1105         // need these so we can update the state at the end of this method
1106         double dxs = x1 - cx0;
1107         double dys = y1 - cy0;
1108         double dxf = x3 - x2;
1109         double dyf = y3 - y2;
1110 
1111         if ((dxs == 0.0d) && (dys == 0.0d)) {
1112             dxs = x2 - cx0;
1113             dys = y2 - cy0;
1114             if ((dxs == 0.0d) && (dys == 0.0d)) {
1115                 dxs = x3 - cx0;
1116                 dys = y3 - cy0;
1117             }
1118         }
1119         if ((dxf == 0.0d) && (dyf == 0.0d)) {
1120             dxf = x3 - x1;
1121             dyf = y3 - y1;
1122             if ((dxf == 0.0d) && (dyf == 0.0d)) {
1123                 dxf = x3 - cx0;
1124                 dyf = y3 - cy0;



1125             }
1126         }
1127         if ((dxs == 0.0d) && (dys == 0.0d)) {
1128             // this happens if the "curve" is just a point
1129             // fix outcode0 for lineTo() call:
1130             if (clipRect != null) {
1131                 this.cOutCode = outcode0;
1132             }
1133             lineTo(cx0, cy0);
1134             return;
1135         }
1136 
1137         // if these vectors are too small, normalize them, to avoid future
1138         // precision problems.
1139         if (Math.abs(dxs) < 0.1d && Math.abs(dys) < 0.1d) {
1140             final double len = Math.sqrt(dxs * dxs + dys * dys);
1141             dxs /= len;
1142             dys /= len;
1143         }
1144         if (Math.abs(dxf) < 0.1d && Math.abs(dyf) < 0.1d) {
1145             final double len = Math.sqrt(dxf * dxf + dyf * dyf);
1146             dxf /= len;
1147             dyf /= len;
1148         }
1149 
1150         computeOffset(dxs, dys, lineWidth2, offset0);
1151         drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1], outcode0);
1152 
1153         int nSplits = 0;
1154         final double[] mid;
1155         final double[] l = lp;
1156 
1157         if (monotonize) {
1158             // monotonize curve:
1159             final CurveBasicMonotonizer monotonizer
1160                 = rdrCtx.monotonizer.curve(cx0, cy0, x1, y1, x2, y2, x3, y3);



1161 
1162             nSplits = monotonizer.nbSplits;
1163             mid = monotonizer.middle;
1164         } else {
1165             // use left instead:
1166             mid = l;
1167             mid[0] = cx0; mid[1] = cy0;
1168             mid[2] = x1;  mid[3] = y1;
1169             mid[4] = x2;  mid[5] = y2;
1170             mid[6] = x3;  mid[7] = y3;
1171         }
1172         final double[] r = rp;
1173 
1174         int kind = 0;
1175         for (int i = 0, off = 0; i <= nSplits; i++, off += 6) {
1176             kind = computeOffsetCubic(mid, off, l, r);
1177 
1178             emitLineTo(l[0], l[1]);
1179 
1180             switch(kind) {
1181             case 8:
1182                 emitCurveTo(l[2], l[3], l[4], l[5], l[6], l[7]);
1183                 emitCurveToRev(r[0], r[1], r[2], r[3], r[4], r[5]);
1184                 break;
1185             case 4:
1186                 emitLineTo(l[2], l[3]);
1187                 emitLineToRev(r[0], r[1]);
1188                 break;
1189             default:
1190             }
1191             emitLineToRev(r[kind - 2], r[kind - 1]);
1192         }
1193 
1194         this.prev = DRAWING_OP_TO;
1195         this.cx0 = x3;
1196         this.cy0 = y3;
1197         this.cdx = dxf;
1198         this.cdy = dyf;
1199         this.cmx = (l[kind - 2] - r[kind - 2]) / 2.0d;
1200         this.cmy = (l[kind - 1] - r[kind - 1]) / 2.0d;
1201     }
1202 
1203     @Override
1204     public void quadTo(final double x1, final double y1,
1205                        final double x2, final double y2)
1206     {
1207         final int outcode0 = this.cOutCode;
1208 
1209         if (clipRect != null) {
1210             final int outcode1 = DHelpers.outcode(x1, y1, clipRect);
1211             final int outcode2 = DHelpers.outcode(x2, y2, clipRect);




1212 
1213             // Should clip
1214             final int orCode = (outcode0 | outcode1 | outcode2);
1215             if (orCode != 0) {
1216                 final int sideCode = outcode0 & outcode1 & outcode2;
1217 
1218                 // basic rejection criteria:
1219                 if (sideCode == 0) {
1220                     // ovelap clip:
1221                     if (subdivide) {
1222                         // avoid reentrance
1223                         subdivide = false;
1224                         // subdivide curve => call lineTo() with subdivided curves:
1225                         boolean ret = curveSplitter.splitQuad(cx0, cy0, x1, y1,
1226                                                               x2, y2, orCode, this);
1227                         // reentrance is done:
1228                         subdivide = true;
1229                         if (ret) {
1230                             return;
1231                         }
1232                     }
1233                     // already subdivided so render it
1234                 } else {
1235                     this.cOutCode = outcode2;
1236                     _moveTo(x2, y2, outcode0);
1237                     opened = true;
1238                     return;
1239                 }
1240             }

1241 
1242             this.cOutCode = outcode2;
1243         }
1244         _quadTo(x1, y1, x2, y2, outcode0);
1245     }

1246 
1247     private void _quadTo(final double x1, final double y1,
1248                          final double x2, final double y2,
1249                          final int outcode0)
1250     {
1251         // need these so we can update the state at the end of this method
1252         double dxs = x1 - cx0;
1253         double dys = y1 - cy0;
1254         double dxf = x2 - x1;
1255         double dyf = y2 - y1;
1256 
1257         if (((dxs == 0.0d) && (dys == 0.0d)) || ((dxf == 0.0d) && (dyf == 0.0d))) {
1258             dxs = dxf = x2 - cx0;
1259             dys = dyf = y2 - cy0;
1260         }
1261         if ((dxs == 0.0d) && (dys == 0.0d)) {
1262             // this happens if the "curve" is just a point
1263             // fix outcode0 for lineTo() call:
1264             if (clipRect != null) {
1265                 this.cOutCode = outcode0;
1266             }
1267             lineTo(cx0, cy0);
1268             return;
1269         }
1270         // if these vectors are too small, normalize them, to avoid future
1271         // precision problems.
1272         if (Math.abs(dxs) < 0.1d && Math.abs(dys) < 0.1d) {
1273             final double len = Math.sqrt(dxs * dxs + dys * dys);
1274             dxs /= len;
1275             dys /= len;
1276         }
1277         if (Math.abs(dxf) < 0.1d && Math.abs(dyf) < 0.1d) {
1278             final double len = Math.sqrt(dxf * dxf + dyf * dyf);
1279             dxf /= len;
1280             dyf /= len;
1281         }

1282         computeOffset(dxs, dys, lineWidth2, offset0);
1283         drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1], outcode0);
1284 
1285         int nSplits = 0;
1286         final double[] mid;
1287         final double[] l = lp;
1288 
1289         if (monotonize) {
1290             // monotonize quad:
1291             final CurveBasicMonotonizer monotonizer
1292                 = rdrCtx.monotonizer.quad(cx0, cy0, x1, y1, x2, y2);



1293 
1294             nSplits = monotonizer.nbSplits;
1295             mid = monotonizer.middle;
1296         } else {
1297             // use left instead:
1298             mid = l;
1299             mid[0] = cx0; mid[1] = cy0;
1300             mid[2] = x1;  mid[3] = y1;
1301             mid[4] = x2;  mid[5] = y2;
1302         }
1303         final double[] r = rp;
1304 
1305         int kind = 0;
1306         for (int i = 0, off = 0; i <= nSplits; i++, off += 4) {
1307             kind = computeOffsetQuad(mid, off, l, r);
1308 
1309             emitLineTo(l[0], l[1]);
1310 
1311             switch(kind) {
1312             case 6:
1313                 emitQuadTo(l[2], l[3], l[4], l[5]);
1314                 emitQuadToRev(r[0], r[1], r[2], r[3]);
1315                 break;
1316             case 4:
1317                 emitLineTo(l[2], l[3]);
1318                 emitLineToRev(r[0], r[1]);
1319                 break;
1320             default:
1321             }
1322             emitLineToRev(r[kind - 2], r[kind - 1]);
1323         }
1324 
1325         this.prev = DRAWING_OP_TO;
1326         this.cx0 = x2;
1327         this.cy0 = y2;
1328         this.cdx = dxf;
1329         this.cdy = dyf;
1330         this.cmx = (l[kind - 2] - r[kind - 2]) / 2.0d;
1331         this.cmy = (l[kind - 1] - r[kind - 1]) / 2.0d;
1332     }
1333 
1334     @Override public long getNativeConsumer() {
1335         throw new InternalError("Stroker doesn't use a native consumer");
1336     }
1337 }
< prev index next >