< prev index next >

src/java.desktop/share/classes/sun/java2d/marlin/Dasher.java

Print this page


   1 /*
   2  * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d.marlin;
  27 
  28 import java.util.Arrays;
  29 import sun.awt.geom.PathConsumer2D;


  30 
  31 /**
  32  * The <code>Dasher</code> class takes a series of linear commands
  33  * (<code>moveTo</code>, <code>lineTo</code>, <code>close</code> and
  34  * <code>end</code>) and breaks them into smaller segments according to a
  35  * dash pattern array and a starting dash phase.
  36  *
  37  * <p> Issues: in J2Se, a zero length dash segment as drawn as a very
  38  * short dash, whereas Pisces does not draw anything.  The PostScript
  39  * semantics are unclear.
  40  *
  41  */
  42 final class Dasher implements PathConsumer2D, MarlinConst {
  43 
  44     static final int REC_LIMIT = 4;
  45     static final float ERR = 0.01f;

  46     static final float MIN_T_INC = 1.0f / (1 << REC_LIMIT);
  47 
  48     // More than 24 bits of mantissa means we can no longer accurately
  49     // measure the number of times cycled through the dash array so we
  50     // punt and override the phase to just be 0 past that point.
  51     static final float MAX_CYCLES = 16000000.0f;
  52 
  53     private PathConsumer2D out;
  54     private float[] dash;
  55     private int dashLen;
  56     private float startPhase;
  57     private boolean startDashOn;
  58     private int startIdx;
  59 
  60     private boolean starting;
  61     private boolean needsMoveTo;
  62 
  63     private int idx;
  64     private boolean dashOn;
  65     private float phase;
  66 
  67     private float sx, sy;
  68     private float x0, y0;


  69 
  70     // temporary storage for the current curve
  71     private final float[] curCurvepts;
  72 
  73     // per-thread renderer context
  74     final RendererContext rdrCtx;
  75 
  76     // flag to recycle dash array copy
  77     boolean recycleDashes;
  78 







  79     // dashes ref (dirty)
  80     final FloatArrayCache.Reference dashes_ref;
  81     // firstSegmentsBuffer ref (dirty)
  82     final FloatArrayCache.Reference firstSegmentsBuffer_ref;
  83 
















  84     /**
  85      * Constructs a <code>Dasher</code>.
  86      * @param rdrCtx per-thread renderer context
  87      */
  88     Dasher(final RendererContext rdrCtx) {
  89         this.rdrCtx = rdrCtx;
  90 
  91         dashes_ref = rdrCtx.newDirtyFloatArrayRef(INITIAL_ARRAY); // 1K
  92 
  93         firstSegmentsBuffer_ref = rdrCtx.newDirtyFloatArrayRef(INITIAL_ARRAY); // 1K
  94         firstSegmentsBuffer     = firstSegmentsBuffer_ref.initial;
  95 
  96         // we need curCurvepts to be able to contain 2 curves because when
  97         // dashing curves, we need to subdivide it
  98         curCurvepts = new float[8 * 2];


  99     }
 100 
 101     /**
 102      * Initialize the <code>Dasher</code>.
 103      *
 104      * @param out an output <code>PathConsumer2D</code>.
 105      * @param dash an array of <code>float</code>s containing the dash pattern
 106      * @param dashLen length of the given dash array
 107      * @param phase a <code>float</code> containing the dash phase
 108      * @param recycleDashes true to indicate to recycle the given dash array
 109      * @return this instance
 110      */
 111     Dasher init(final PathConsumer2D out, float[] dash, int dashLen,
 112                 float phase, boolean recycleDashes)
 113     {
 114         this.out = out;
 115 
 116         // Normalize so 0 <= phase < dash[0]
 117         int sidx = 0;
 118         dashOn = true;

 119         float sum = 0.0f;
 120         for (float d : dash) {
 121             sum += d;
 122         }


 123         float cycles = phase / sum;
 124         if (phase < 0.0f) {
 125             if (-cycles >= MAX_CYCLES) {
 126                 phase = 0.0f;
 127             } else {
 128                 int fullcycles = FloatMath.floor_int(-cycles);
 129                 if ((fullcycles & dash.length & 1) != 0) {
 130                     dashOn = !dashOn;
 131                 }
 132                 phase += fullcycles * sum;
 133                 while (phase < 0.0f) {
 134                     if (--sidx < 0) {
 135                         sidx = dash.length - 1;
 136                     }
 137                     phase += dash[sidx];
 138                     dashOn = !dashOn;
 139                 }
 140             }
 141         } else if (phase > 0.0f) {
 142             if (cycles >= MAX_CYCLES) {


 151                 while (phase >= (d = dash[sidx])) {
 152                     phase -= d;
 153                     sidx = (sidx + 1) % dash.length;
 154                     dashOn = !dashOn;
 155                 }
 156             }
 157         }
 158 
 159         this.dash = dash;
 160         this.dashLen = dashLen;
 161         this.phase = phase;
 162         this.startPhase = phase;
 163         this.startDashOn = dashOn;
 164         this.startIdx = sidx;
 165         this.starting = true;
 166         this.needsMoveTo = false;
 167         this.firstSegidx = 0;
 168 
 169         this.recycleDashes = recycleDashes;
 170 






 171         return this; // fluent API
 172     }
 173 
 174     /**
 175      * Disposes this dasher:
 176      * clean up before reusing this instance
 177      */
 178     void dispose() {
 179         if (DO_CLEAN_DIRTY) {
 180             // Force zero-fill dirty arrays:
 181             Arrays.fill(curCurvepts, 0.0f);
 182         }
 183         // Return arrays:
 184         if (recycleDashes) {
 185             dash = dashes_ref.putArray(dash);
 186         }
 187         firstSegmentsBuffer = firstSegmentsBuffer_ref.putArray(firstSegmentsBuffer);
 188     }
 189 
 190     float[] copyDashArray(final float[] dashes) {
 191         final int len = dashes.length;
 192         final float[] newDashes;
 193         if (len <= MarlinConst.INITIAL_ARRAY) {
 194             newDashes = dashes_ref.initial;
 195         } else {
 196             if (DO_STATS) {
 197                 rdrCtx.stats.stat_array_dasher_dasher.add(len);
 198             }
 199             newDashes = dashes_ref.getArray(len);
 200         }
 201         System.arraycopy(dashes, 0, newDashes, 0, len);
 202         return newDashes;
 203     }
 204 
 205     @Override
 206     public void moveTo(final float x0, final float y0) {
 207         if (firstSegidx != 0) {
 208             out.moveTo(sx, sy);
 209             emitFirstSegments();
 210         }
 211         needsMoveTo = true;
 212         this.idx = startIdx;
 213         this.dashOn = this.startDashOn;
 214         this.phase = this.startPhase;
 215         this.sx = x0;
 216         this.sy = y0;
 217         this.x0 = x0;
 218         this.y0 = y0;


 219         this.starting = true;







 220     }
 221 
 222     private void emitSeg(float[] buf, int off, int type) {
 223         switch (type) {
 224         case 8:
 225             out.curveTo(buf[off+0], buf[off+1],
 226                         buf[off+2], buf[off+3],
 227                         buf[off+4], buf[off+5]);
 228             return;
 229         case 6:
 230             out.quadTo(buf[off+0], buf[off+1],
 231                        buf[off+2], buf[off+3]);
 232             return;
 233         case 4:
 234             out.lineTo(buf[off], buf[off+1]);
 235             return;
 236         default:
 237         }
 238     }
 239 
 240     private void emitFirstSegments() {
 241         final float[] fSegBuf = firstSegmentsBuffer;
 242 
 243         for (int i = 0, len = firstSegidx; i < len; ) {
 244             int type = (int)fSegBuf[i];
 245             emitSeg(fSegBuf, i + 1, type);
 246             i += (type - 1);
 247         }
 248         firstSegidx = 0;
 249     }
 250     // We don't emit the first dash right away. If we did, caps would be
 251     // drawn on it, but we need joins to be drawn if there's a closePath()
 252     // So, we store the path elements that make up the first dash in the
 253     // buffer below.
 254     private float[] firstSegmentsBuffer; // dynamic array
 255     private int firstSegidx;
 256 
 257     // precondition: pts must be in relative coordinates (relative to x0,y0)
 258     private void goTo(final float[] pts, final int off, final int type,
 259                       final boolean on)
 260     {
 261         final int index = off + type;
 262         final float x = pts[index - 4];
 263         final float y = pts[index - 3];
 264 
 265         if (on) {
 266             if (starting) {
 267                 goTo_starting(pts, off, type);
 268             } else {
 269                 if (needsMoveTo) {
 270                     needsMoveTo = false;
 271                     out.moveTo(x0, y0);
 272                 }
 273                 emitSeg(pts, off, type);
 274             }
 275         } else {
 276             if (starting) {
 277                 // low probability test (hotspot)
 278                 starting = false;
 279             }
 280             needsMoveTo = true;
 281         }
 282         this.x0 = x;
 283         this.y0 = y;
 284     }
 285 
 286     private void goTo_starting(final float[] pts, final int off, final int type) {
 287         int len = type - 1; // - 2 + 1
 288         int segIdx = firstSegidx;
 289         float[] buf = firstSegmentsBuffer;
 290 
 291         if (segIdx + len  > buf.length) {
 292             if (DO_STATS) {
 293                 rdrCtx.stats.stat_array_dasher_firstSegmentsBuffer
 294                     .add(segIdx + len);
 295             }
 296             firstSegmentsBuffer = buf
 297                 = firstSegmentsBuffer_ref.widenArray(buf, segIdx,
 298                                                      segIdx + len);
 299         }
 300         buf[segIdx++] = type;
 301         len--;
 302         // small arraycopy (2, 4 or 6) but with offset:
 303         System.arraycopy(pts, off, buf, segIdx, len);
 304         firstSegidx = segIdx + len;
 305     }
 306 
 307     @Override
 308     public void lineTo(final float x1, final float y1) {
 309         final float dx = x1 - x0;
 310         final float dy = y1 - y0;





 311 
 312         float len = dx*dx + dy*dy;









































 313         if (len == 0.0f) {
 314             return;
 315         }
 316         len = (float) Math.sqrt(len);
 317 
 318         // The scaling factors needed to get the dx and dy of the
 319         // transformed dash segments.
 320         final float cx = dx / len;
 321         final float cy = dy / len;
 322 
 323         final float[] _curCurvepts = curCurvepts;
 324         final float[] _dash = dash;
 325         final int _dashLen = this.dashLen;
 326 
 327         int _idx = idx;
 328         boolean _dashOn = dashOn;
 329         float _phase = phase;
 330 
 331         float leftInThisDashSegment;
 332         float d, dashdx, dashdy, p;
 333 
 334         while (true) {
 335             d = _dash[_idx];
 336             leftInThisDashSegment = d - _phase;
 337 
 338             if (len <= leftInThisDashSegment) {
 339                 _curCurvepts[0] = x1;
 340                 _curCurvepts[1] = y1;
 341 
 342                 goTo(_curCurvepts, 0, 4, _dashOn);
 343 
 344                 // Advance phase within current dash segment
 345                 _phase += len;
 346 
 347                 // TODO: compare float values using epsilon:
 348                 if (len == leftInThisDashSegment) {
 349                     _phase = 0.0f;
 350                     _idx = (_idx + 1) % _dashLen;
 351                     _dashOn = !_dashOn;
 352                 }
 353 
 354                 // Save local state:
 355                 idx = _idx;
 356                 dashOn = _dashOn;
 357                 phase = _phase;
 358                 return;
 359             }
 360 
 361             dashdx = d * cx;
 362             dashdy = d * cy;
 363 
 364             if (_phase == 0.0f) {
 365                 _curCurvepts[0] = x0 + dashdx;
 366                 _curCurvepts[1] = y0 + dashdy;
 367             } else {
 368                 p = leftInThisDashSegment / d;
 369                 _curCurvepts[0] = x0 + p * dashdx;
 370                 _curCurvepts[1] = y0 + p * dashdy;
 371             }
 372 
 373             goTo(_curCurvepts, 0, 4, _dashOn);
 374 
 375             len -= leftInThisDashSegment;
 376             // Advance to next dash segment
 377             _idx = (_idx + 1) % _dashLen;
 378             _dashOn = !_dashOn;
 379             _phase = 0.0f;
 380         }




 381     }
 382 
 383     // shared instance in Dasher
 384     private final LengthIterator li = new LengthIterator();








































































 385 
 386     // preconditions: curCurvepts must be an array of length at least 2 * type,
 387     // that contains the curve we want to dash in the first type elements
 388     private void somethingTo(final int type) {
 389         if (pointCurve(curCurvepts, type)) {

 390             return;
 391         }
 392         final LengthIterator _li = li;
 393         final float[] _curCurvepts = curCurvepts;
 394         final float[] _dash = dash;
 395         final int _dashLen = this.dashLen;
 396 
 397         _li.initializeIterationOnCurve(_curCurvepts, type);
 398 
 399         int _idx = idx;
 400         boolean _dashOn = dashOn;
 401         float _phase = phase;
 402 
 403         // initially the current curve is at curCurvepts[0...type]
 404         int curCurveoff = 0;
 405         float lastSplitT = 0.0f;
 406         float t;
 407         float leftInThisDashSegment = _dash[_idx] - _phase;
 408 
 409         while ((t = _li.next(leftInThisDashSegment)) < 1.0f) {
 410             if (t != 0.0f) {
 411                 Helpers.subdivideAt((t - lastSplitT) / (1.0f - lastSplitT),
 412                                     _curCurvepts, curCurveoff,
 413                                     _curCurvepts, 0,
 414                                     _curCurvepts, type, type);
 415                 lastSplitT = t;
 416                 goTo(_curCurvepts, 2, type, _dashOn);
 417                 curCurveoff = type;
 418             }
 419             // Advance to next dash segment
 420             _idx = (_idx + 1) % _dashLen;
 421             _dashOn = !_dashOn;
 422             _phase = 0.0f;
 423             leftInThisDashSegment = _dash[_idx];
 424         }
 425 
 426         goTo(_curCurvepts, curCurveoff + 2, type, _dashOn);
 427 
 428         _phase += _li.lastSegLen();
 429         if (_phase >= _dash[_idx]) {
 430             _phase = 0.0f;
 431             _idx = (_idx + 1) % _dashLen;
 432             _dashOn = !_dashOn;
 433         }
 434         // Save local state:
 435         idx = _idx;
 436         dashOn = _dashOn;
 437         phase = _phase;
 438 
 439         // reset LengthIterator:
 440         _li.reset();
 441     }
 442 
 443     private static boolean pointCurve(float[] curve, int type) {






















 444         for (int i = 2; i < type; i++) {
 445             if (curve[i] != curve[i-2]) {
 446                 return false;
 447             }
 448         }
 449         return true;
 450     }
 451 
 452     // Objects of this class are used to iterate through curves. They return
 453     // t values where the left side of the curve has a specified length.
 454     // It does this by subdividing the input curve until a certain error
 455     // condition has been met. A recursive subdivision procedure would
 456     // return as many as 1<<limit curves, but this is an iterator and we
 457     // don't need all the curves all at once, so what we carry out a
 458     // lazy inorder traversal of the recursion tree (meaning we only move
 459     // through the tree when we need the next subdivided curve). This saves
 460     // us a lot of memory because at any one time we only need to store
 461     // limit+1 curves - one for each level of the tree + 1.
 462     // NOTE: the way we do things here is not enough to traverse a general
 463     // tree; however, the trees we are interested in have the property that
 464     // every non leaf node has exactly 2 children
 465     static final class LengthIterator {
 466         private enum Side {LEFT, RIGHT}
 467         // Holds the curves at various levels of the recursion. The root
 468         // (i.e. the original curve) is at recCurveStack[0] (but then it
 469         // gets subdivided, the left half is put at 1, so most of the time
 470         // only the right half of the original curve is at 0)
 471         private final float[][] recCurveStack; // dirty
 472         // sides[i] indicates whether the node at level i+1 in the path from
 473         // the root to the current leaf is a left or right child of its parent.
 474         private final Side[] sides; // dirty
 475         private int curveType;
 476         // lastT and nextT delimit the current leaf.
 477         private float nextT;
 478         private float lenAtNextT;
 479         private float lastT;
 480         private float lenAtLastT;
 481         private float lenAtLastSplit;
 482         private float lastSegLen;
 483         // the current level in the recursion tree. 0 is the root. limit
 484         // is the deepest possible leaf.
 485         private int recLevel;
 486         private boolean done;
 487 
 488         // the lengths of the lines of the control polygon. Only its first
 489         // curveType/2 - 1 elements are valid. This is an optimization. See
 490         // next() for more detail.
 491         private final float[] curLeafCtrlPolyLengths = new float[3];
 492 
 493         LengthIterator() {
 494             this.recCurveStack = new float[REC_LIMIT + 1][8];
 495             this.sides = new Side[REC_LIMIT];
 496             // if any methods are called without first initializing this object
 497             // on a curve, we want it to fail ASAP.
 498             this.nextT = Float.MAX_VALUE;
 499             this.lenAtNextT = Float.MAX_VALUE;
 500             this.lenAtLastSplit = Float.MIN_VALUE;
 501             this.recLevel = Integer.MIN_VALUE;
 502             this.lastSegLen = Float.MAX_VALUE;
 503             this.done = true;
 504         }
 505 
 506         /**
 507          * Reset this LengthIterator.
 508          */
 509         void reset() {
 510             // keep data dirty
 511             // as it appears not useful to reset data:
 512             if (DO_CLEAN_DIRTY) {
 513                 final int recLimit = recCurveStack.length - 1;
 514                 for (int i = recLimit; i >= 0; i--) {
 515                     Arrays.fill(recCurveStack[i], 0.0f);
 516                 }
 517                 Arrays.fill(sides, Side.LEFT);
 518                 Arrays.fill(curLeafCtrlPolyLengths, 0.0f);
 519                 Arrays.fill(nextRoots, 0.0f);
 520                 Arrays.fill(flatLeafCoefCache, 0.0f);
 521                 flatLeafCoefCache[2] = -1.0f;
 522             }
 523         }
 524 
 525         void initializeIterationOnCurve(float[] pts, int type) {
 526             // optimize arraycopy (8 values faster than 6 = type):
 527             System.arraycopy(pts, 0, recCurveStack[0], 0, 8);
 528             this.curveType = type;
 529             this.recLevel = 0;
 530             this.lastT = 0.0f;
 531             this.lenAtLastT = 0.0f;
 532             this.nextT = 0.0f;
 533             this.lenAtNextT = 0.0f;
 534             goLeft(); // initializes nextT and lenAtNextT properly
 535             this.lenAtLastSplit = 0.0f;
 536             if (recLevel > 0) {
 537                 this.sides[0] = Side.LEFT;
 538                 this.done = false;
 539             } else {
 540                 // the root of the tree is a leaf so we're done.
 541                 this.sides[0] = Side.RIGHT;
 542                 this.done = true;
 543             }
 544             this.lastSegLen = 0.0f;
 545         }
 546 
 547         // 0 == false, 1 == true, -1 == invalid cached value.
 548         private int cachedHaveLowAcceleration = -1;
 549 
 550         private boolean haveLowAcceleration(float err) {
 551             if (cachedHaveLowAcceleration == -1) {
 552                 final float len1 = curLeafCtrlPolyLengths[0];
 553                 final float len2 = curLeafCtrlPolyLengths[1];
 554                 // the test below is equivalent to !within(len1/len2, 1, err).
 555                 // It is using a multiplication instead of a division, so it
 556                 // should be a bit faster.
 557                 if (!Helpers.within(len1, len2, err * len2)) {
 558                     cachedHaveLowAcceleration = 0;
 559                     return false;
 560                 }
 561                 if (curveType == 8) {
 562                     final float len3 = curLeafCtrlPolyLengths[2];
 563                     // if len1 is close to 2 and 2 is close to 3, that probably
 564                     // means 1 is close to 3 so the second part of this test might
 565                     // not be needed, but it doesn't hurt to include it.
 566                     final float errLen3 = err * len3;
 567                     if (!(Helpers.within(len2, len3, errLen3) &&
 568                           Helpers.within(len1, len3, errLen3))) {
 569                         cachedHaveLowAcceleration = 0;
 570                         return false;


 619                         float z = y + curLeafCtrlPolyLengths[2];
 620                         _flatLeafCoefCache[0] = 3.0f * (x - y) + z;
 621                         _flatLeafCoefCache[1] = 3.0f * (y - 2.0f * x);
 622                         _flatLeafCoefCache[2] = 3.0f * x;
 623                         _flatLeafCoefCache[3] = -z;
 624                     } else if (curveType == 6) {
 625                         _flatLeafCoefCache[0] = 0.0f;
 626                         _flatLeafCoefCache[1] = y - 2.0f * x;
 627                         _flatLeafCoefCache[2] = 2.0f * x;
 628                         _flatLeafCoefCache[3] = -y;
 629                     }
 630                 }
 631                 float a = _flatLeafCoefCache[0];
 632                 float b = _flatLeafCoefCache[1];
 633                 float c = _flatLeafCoefCache[2];
 634                 float d = t * _flatLeafCoefCache[3];
 635 
 636                 // we use cubicRootsInAB here, because we want only roots in 0, 1,
 637                 // and our quadratic root finder doesn't filter, so it's just a
 638                 // matter of convenience.
 639                 int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0.0f, 1.0f);

 640                 if (n == 1 && !Float.isNaN(nextRoots[0])) {
 641                     t = nextRoots[0];
 642                 }
 643             }
 644             // t is relative to the current leaf, so we must make it a valid parameter
 645             // of the original curve.
 646             t = t * (nextT - lastT) + lastT;
 647             if (t >= 1.0f) {
 648                 t = 1.0f;
 649                 done = true;
 650             }
 651             // even if done = true, if we're here, that means targetLength
 652             // is equal to, or very, very close to the total length of the
 653             // curve, so lastSegLen won't be too high. In cases where len
 654             // overshoots the curve, this method will exit in the while
 655             // loop, and lastSegLen will still be set to the right value.
 656             lastSegLen = len;
 657             return t;
 658         }
 659 










 660         float lastSegLen() {
 661             return lastSegLen;
 662         }
 663 
 664         // go to the next leaf (in an inorder traversal) in the recursion tree
 665         // preconditions: must be on a leaf, and that leaf must not be the root.
 666         private void goToNextLeaf() {
 667             // We must go to the first ancestor node that has an unvisited
 668             // right child.

 669             int _recLevel = recLevel;
 670             final Side[] _sides = sides;
 671 
 672             _recLevel--;
 673             while(_sides[_recLevel] == Side.RIGHT) {

 674                 if (_recLevel == 0) {
 675                     recLevel = 0;
 676                     done = true;
 677                     return;
 678                 }
 679                 _recLevel--;
 680             }
 681 
 682             _sides[_recLevel] = Side.RIGHT;
 683             // optimize arraycopy (8 values faster than 6 = type):
 684             System.arraycopy(recCurveStack[_recLevel], 0,
 685                              recCurveStack[_recLevel+1], 0, 8);
 686             _recLevel++;
 687 
 688             recLevel = _recLevel;
 689             goLeft();
 690         }
 691 
 692         // go to the leftmost node from the current node. Return its length.
 693         private void goLeft() {
 694             float len = onLeaf();
 695             if (len >= 0.0f) {
 696                 lastT = nextT;
 697                 lenAtLastT = lenAtNextT;
 698                 nextT += (1 << (REC_LIMIT - recLevel)) * MIN_T_INC;
 699                 lenAtNextT += len;
 700                 // invalidate caches
 701                 flatLeafCoefCache[2] = -1.0f;
 702                 cachedHaveLowAcceleration = -1;
 703             } else {
 704                 Helpers.subdivide(recCurveStack[recLevel], 0,
 705                                   recCurveStack[recLevel+1], 0,
 706                                   recCurveStack[recLevel], 0, curveType);
 707                 sides[recLevel] = Side.LEFT;

 708                 recLevel++;
 709                 goLeft();
 710             }
 711         }
 712 
 713         // this is a bit of a hack. It returns -1 if we're not on a leaf, and
 714         // the length of the leaf if we are on a leaf.
 715         private float onLeaf() {
 716             final float[] curve = recCurveStack[recLevel];
 717             final int _curveType = curveType;
 718             float polyLen = 0.0f;
 719 
 720             float x0 = curve[0], y0 = curve[1];
 721             for (int i = 2; i < _curveType; i += 2) {
 722                 final float x1 = curve[i], y1 = curve[i+1];
 723                 final float len = Helpers.linelen(x0, y0, x1, y1);
 724                 polyLen += len;
 725                 curLeafCtrlPolyLengths[(i >> 1) - 1] = len;
 726                 x0 = x1;
 727                 y0 = y1;
 728             }
 729 
 730             final float lineLen = Helpers.linelen(curve[0], curve[1],
 731                                                   curve[_curveType-2],
 732                                                   curve[_curveType-1]);
 733             if ((polyLen - lineLen) < ERR || recLevel == REC_LIMIT) {
 734                 return (polyLen + lineLen) / 2.0f;
 735             }
 736             return -1.0f;
 737         }
 738     }
 739 
 740     @Override
 741     public void curveTo(final float x1, final float y1,
 742                         final float x2, final float y2,
 743                         final float x3, final float y3)
 744     {


















































 745         final float[] _curCurvepts = curCurvepts;
 746         _curCurvepts[0] = x0;        _curCurvepts[1] = y0;
 747         _curCurvepts[2] = x1;        _curCurvepts[3] = y1;
 748         _curCurvepts[4] = x2;        _curCurvepts[5] = y2;
 749         _curCurvepts[6] = x3;        _curCurvepts[7] = y3;
 750         somethingTo(8);

























 751     }
 752 
 753     @Override
 754     public void quadTo(final float x1, final float y1,
 755                        final float x2, final float y2)
 756     {




































































 757         final float[] _curCurvepts = curCurvepts;
 758         _curCurvepts[0] = x0;        _curCurvepts[1] = y0;
 759         _curCurvepts[2] = x1;        _curCurvepts[3] = y1;
 760         _curCurvepts[4] = x2;        _curCurvepts[5] = y2;
 761         somethingTo(6);




 762     }
 763 
 764     @Override
 765     public void closePath() {
 766         lineTo(sx, sy);


 767         if (firstSegidx != 0) {
 768             if (!dashOn || needsMoveTo) {
 769                 out.moveTo(sx, sy);
 770             }
 771             emitFirstSegments();
 772         }
 773         moveTo(sx, sy);
 774     }
 775 
 776     @Override
 777     public void pathDone() {
 778         if (firstSegidx != 0) {
 779             out.moveTo(sx, sy);
 780             emitFirstSegments();
 781         }
 782         out.pathDone();
 783 
 784         // Dispose this instance:
 785         dispose();
 786     }
 787 
 788     @Override
 789     public long getNativeConsumer() {
 790         throw new InternalError("Dasher does not use a native consumer");
 791     }
 792 }
 793 
   1 /*
   2  * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d.marlin;
  27 
  28 import java.util.Arrays;
  29 import sun.awt.geom.PathConsumer2D;
  30 import sun.java2d.marlin.TransformingPathConsumer2D.CurveBasicMonotonizer;
  31 import sun.java2d.marlin.TransformingPathConsumer2D.CurveClipSplitter;
  32 
  33 /**
  34  * The <code>Dasher</code> class takes a series of linear commands
  35  * (<code>moveTo</code>, <code>lineTo</code>, <code>close</code> and
  36  * <code>end</code>) and breaks them into smaller segments according to a
  37  * dash pattern array and a starting dash phase.
  38  *
  39  * <p> Issues: in J2Se, a zero length dash segment as drawn as a very
  40  * short dash, whereas Pisces does not draw anything.  The PostScript
  41  * semantics are unclear.
  42  *
  43  */
  44 final class Dasher implements PathConsumer2D, MarlinConst {
  45 
  46     /* huge circle with radius ~ 2E9 only needs 12 subdivision levels */
  47     static final int REC_LIMIT = 16;
  48     static final float CURVE_LEN_ERR = MarlinProperties.getCurveLengthError(); // 0.01
  49     static final float MIN_T_INC = 1.0f / (1 << REC_LIMIT);
  50 
  51     // More than 24 bits of mantissa means we can no longer accurately
  52     // measure the number of times cycled through the dash array so we
  53     // punt and override the phase to just be 0 past that point.
  54     static final float MAX_CYCLES = 16000000.0f;
  55 
  56     private PathConsumer2D out;
  57     private float[] dash;
  58     private int dashLen;
  59     private float startPhase;
  60     private boolean startDashOn;
  61     private int startIdx;
  62 
  63     private boolean starting;
  64     private boolean needsMoveTo;
  65 
  66     private int idx;
  67     private boolean dashOn;
  68     private float phase;
  69 
  70     // The starting point of the path
  71     private float sx0, sy0;
  72     // the current point
  73     private float cx0, cy0;
  74 
  75     // temporary storage for the current curve
  76     private final float[] curCurvepts;
  77 
  78     // per-thread renderer context
  79     final RendererContext rdrCtx;
  80 
  81     // flag to recycle dash array copy
  82     boolean recycleDashes;
  83 
  84     // We don't emit the first dash right away. If we did, caps would be
  85     // drawn on it, but we need joins to be drawn if there's a closePath()
  86     // So, we store the path elements that make up the first dash in the
  87     // buffer below.
  88     private float[] firstSegmentsBuffer; // dynamic array
  89     private int firstSegidx;
  90 
  91     // dashes ref (dirty)
  92     final FloatArrayCache.Reference dashes_ref;
  93     // firstSegmentsBuffer ref (dirty)
  94     final FloatArrayCache.Reference firstSegmentsBuffer_ref;
  95 
  96     // Bounds of the drawing region, at pixel precision.
  97     private float[] clipRect;
  98 
  99     // the outcode of the current point
 100     private int cOutCode = 0;
 101 
 102     private boolean subdivide = DO_CLIP_SUBDIVIDER;
 103 
 104     private final LengthIterator li = new LengthIterator();
 105 
 106     private final CurveClipSplitter curveSplitter;
 107 
 108     private float cycleLen;
 109     private boolean outside;
 110     private float totalSkipLen;
 111 
 112     /**
 113      * Constructs a <code>Dasher</code>.
 114      * @param rdrCtx per-thread renderer context
 115      */
 116     Dasher(final RendererContext rdrCtx) {
 117         this.rdrCtx = rdrCtx;
 118 
 119         dashes_ref = rdrCtx.newDirtyFloatArrayRef(INITIAL_ARRAY); // 1K
 120 
 121         firstSegmentsBuffer_ref = rdrCtx.newDirtyFloatArrayRef(INITIAL_ARRAY); // 1K
 122         firstSegmentsBuffer     = firstSegmentsBuffer_ref.initial;
 123 
 124         // we need curCurvepts to be able to contain 2 curves because when
 125         // dashing curves, we need to subdivide it
 126         curCurvepts = new float[8 * 2];
 127 
 128         this.curveSplitter = rdrCtx.curveClipSplitter;
 129     }
 130 
 131     /**
 132      * Initialize the <code>Dasher</code>.
 133      *
 134      * @param out an output <code>PathConsumer2D</code>.
 135      * @param dash an array of <code>float</code>s containing the dash pattern
 136      * @param dashLen length of the given dash array
 137      * @param phase a <code>float</code> containing the dash phase
 138      * @param recycleDashes true to indicate to recycle the given dash array
 139      * @return this instance
 140      */
 141     Dasher init(final PathConsumer2D out, float[] dash, int dashLen,
 142                 float phase, boolean recycleDashes)
 143     {
 144         this.out = out;
 145 
 146         // Normalize so 0 <= phase < dash[0]
 147         int sidx = 0;
 148         dashOn = true;
 149 
 150         float sum = 0.0f;
 151         for (float d : dash) {
 152             sum += d;
 153         }
 154         this.cycleLen = sum;
 155 
 156         float cycles = phase / sum;
 157         if (phase < 0.0f) {
 158             if (-cycles >= MAX_CYCLES) {
 159                 phase = 0.0f;
 160             } else {
 161                 int fullcycles = FloatMath.floor_int(-cycles);
 162                 if ((fullcycles & dash.length & 1) != 0) {
 163                     dashOn = !dashOn;
 164                 }
 165                 phase += fullcycles * sum;
 166                 while (phase < 0.0f) {
 167                     if (--sidx < 0) {
 168                         sidx = dash.length - 1;
 169                     }
 170                     phase += dash[sidx];
 171                     dashOn = !dashOn;
 172                 }
 173             }
 174         } else if (phase > 0.0f) {
 175             if (cycles >= MAX_CYCLES) {


 184                 while (phase >= (d = dash[sidx])) {
 185                     phase -= d;
 186                     sidx = (sidx + 1) % dash.length;
 187                     dashOn = !dashOn;
 188                 }
 189             }
 190         }
 191 
 192         this.dash = dash;
 193         this.dashLen = dashLen;
 194         this.phase = phase;
 195         this.startPhase = phase;
 196         this.startDashOn = dashOn;
 197         this.startIdx = sidx;
 198         this.starting = true;
 199         this.needsMoveTo = false;
 200         this.firstSegidx = 0;
 201 
 202         this.recycleDashes = recycleDashes;
 203 
 204         if (rdrCtx.doClip) {
 205             this.clipRect = rdrCtx.clipRect;
 206         } else {
 207             this.clipRect = null;
 208             this.cOutCode = 0;
 209         }
 210         return this; // fluent API
 211     }
 212 
 213     /**
 214      * Disposes this dasher:
 215      * clean up before reusing this instance
 216      */
 217     void dispose() {
 218         if (DO_CLEAN_DIRTY) {
 219             // Force zero-fill dirty arrays:
 220             Arrays.fill(curCurvepts, 0.0f);
 221         }
 222         // Return arrays:
 223         if (recycleDashes) {
 224             dash = dashes_ref.putArray(dash);
 225         }
 226         firstSegmentsBuffer = firstSegmentsBuffer_ref.putArray(firstSegmentsBuffer);
 227     }
 228 
 229     float[] copyDashArray(final float[] dashes) {
 230         final int len = dashes.length;
 231         final float[] newDashes;
 232         if (len <= MarlinConst.INITIAL_ARRAY) {
 233             newDashes = dashes_ref.initial;
 234         } else {
 235             if (DO_STATS) {
 236                 rdrCtx.stats.stat_array_dasher_dasher.add(len);
 237             }
 238             newDashes = dashes_ref.getArray(len);
 239         }
 240         System.arraycopy(dashes, 0, newDashes, 0, len);
 241         return newDashes;
 242     }
 243 
 244     @Override
 245     public void moveTo(final float x0, final float y0) {
 246         if (firstSegidx != 0) {
 247             out.moveTo(sx0, sy0);
 248             emitFirstSegments();
 249         }
 250         this.needsMoveTo = true;
 251         this.idx = startIdx;
 252         this.dashOn = this.startDashOn;
 253         this.phase = this.startPhase;
 254         this.cx0 = x0;
 255         this.cy0 = y0;
 256 
 257         // update starting point:
 258         this.sx0 = x0;
 259         this.sy0 = y0;
 260         this.starting = true;
 261 
 262         if (clipRect != null) {
 263             final int outcode = Helpers.outcode(x0, y0, clipRect);
 264             this.cOutCode = outcode;
 265             this.outside = false;
 266             this.totalSkipLen = 0.0f;
 267         }
 268     }
 269 
 270     private void emitSeg(float[] buf, int off, int type) {
 271         switch (type) {
 272         case 8:
 273             out.curveTo(buf[off    ], buf[off + 1],
 274                         buf[off + 2], buf[off + 3],
 275                         buf[off + 4], buf[off + 5]);
 276             return;
 277         case 6:
 278             out.quadTo(buf[off    ], buf[off + 1],
 279                        buf[off + 2], buf[off + 3]);
 280             return;
 281         case 4:
 282             out.lineTo(buf[off], buf[off + 1]);
 283             return;
 284         default:
 285         }
 286     }
 287 
 288     private void emitFirstSegments() {
 289         final float[] fSegBuf = firstSegmentsBuffer;
 290 
 291         for (int i = 0, len = firstSegidx; i < len; ) {
 292             int type = (int)fSegBuf[i];
 293             emitSeg(fSegBuf, i + 1, type);
 294             i += (type - 1);
 295         }
 296         firstSegidx = 0;
 297     }






 298 
 299     // precondition: pts must be in relative coordinates (relative to x0,y0)
 300     private void goTo(final float[] pts, final int off, final int type,
 301                       final boolean on)
 302     {
 303         final int index = off + type;
 304         final float x = pts[index - 4];
 305         final float y = pts[index - 3];
 306 
 307         if (on) {
 308             if (starting) {
 309                 goTo_starting(pts, off, type);
 310             } else {
 311                 if (needsMoveTo) {
 312                     needsMoveTo = false;
 313                     out.moveTo(cx0, cy0);
 314                 }
 315                 emitSeg(pts, off, type);
 316             }
 317         } else {
 318             if (starting) {
 319                 // low probability test (hotspot)
 320                 starting = false;
 321             }
 322             needsMoveTo = true;
 323         }
 324         this.cx0 = x;
 325         this.cy0 = y;
 326     }
 327 
 328     private void goTo_starting(final float[] pts, final int off, final int type) {
 329         int len = type - 1; // - 2 + 1
 330         int segIdx = firstSegidx;
 331         float[] buf = firstSegmentsBuffer;
 332 
 333         if (segIdx + len  > buf.length) {
 334             if (DO_STATS) {
 335                 rdrCtx.stats.stat_array_dasher_firstSegmentsBuffer
 336                     .add(segIdx + len);
 337             }
 338             firstSegmentsBuffer = buf
 339                 = firstSegmentsBuffer_ref.widenArray(buf, segIdx,
 340                                                      segIdx + len);
 341         }
 342         buf[segIdx++] = type;
 343         len--;
 344         // small arraycopy (2, 4 or 6) but with offset:
 345         System.arraycopy(pts, off, buf, segIdx, len);
 346         firstSegidx = segIdx + len;
 347     }
 348 
 349     @Override
 350     public void lineTo(final float x1, final float y1) {
 351         final int outcode0 = this.cOutCode;
 352 
 353         if (clipRect != null) {
 354             final int outcode1 = Helpers.outcode(x1, y1, clipRect);
 355 
 356             // Should clip
 357             final int orCode = (outcode0 | outcode1);
 358 
 359             if (orCode != 0) {
 360                 final int sideCode = outcode0 & outcode1;
 361 
 362                 // basic rejection criteria:
 363                 if (sideCode == 0) {
 364                     // ovelap clip:
 365                     if (subdivide) {
 366                         // avoid reentrance
 367                         subdivide = false;
 368                         // subdivide curve => callback with subdivided parts:
 369                         boolean ret = curveSplitter.splitLine(cx0, cy0, x1, y1,
 370                                                               orCode, this);
 371                         // reentrance is done:
 372                         subdivide = true;
 373                         if (ret) {
 374                             return;
 375                         }
 376                     }
 377                     // already subdivided so render it
 378                 } else {
 379                     this.cOutCode = outcode1;
 380                     skipLineTo(x1, y1);
 381                     return;
 382                 }
 383             }
 384 
 385             this.cOutCode = outcode1;
 386 
 387             if (this.outside) {
 388                 this.outside = false;
 389                 // Adjust current index, phase & dash:
 390                 skipLen();
 391             }
 392         }
 393         _lineTo(x1, y1);
 394     }
 395 
 396     private void _lineTo(final float x1, final float y1) {
 397         final float dx = x1 - cx0;
 398         final float dy = y1 - cy0;
 399 
 400         float len = dx * dx + dy * dy;
 401         if (len == 0.0f) {
 402             return;
 403         }
 404         len = (float) Math.sqrt(len);
 405 
 406         // The scaling factors needed to get the dx and dy of the
 407         // transformed dash segments.
 408         final float cx = dx / len;
 409         final float cy = dy / len;
 410 
 411         final float[] _curCurvepts = curCurvepts;
 412         final float[] _dash = dash;
 413         final int _dashLen = this.dashLen;
 414 
 415         int _idx = idx;
 416         boolean _dashOn = dashOn;
 417         float _phase = phase;
 418 
 419         float leftInThisDashSegment, d;

 420 
 421         while (true) {
 422             d = _dash[_idx];
 423             leftInThisDashSegment = d - _phase;
 424 
 425             if (len <= leftInThisDashSegment) {
 426                 _curCurvepts[0] = x1;
 427                 _curCurvepts[1] = y1;
 428 
 429                 goTo(_curCurvepts, 0, 4, _dashOn);
 430 
 431                 // Advance phase within current dash segment
 432                 _phase += len;
 433 
 434                 // TODO: compare float values using epsilon:
 435                 if (len == leftInThisDashSegment) {
 436                     _phase = 0.0f;
 437                     _idx = (_idx + 1) % _dashLen;
 438                     _dashOn = !_dashOn;
 439                 }
 440                 break;





 441             }
 442 



 443             if (_phase == 0.0f) {
 444                 _curCurvepts[0] = cx0 + d * cx;
 445                 _curCurvepts[1] = cy0 + d * cy;
 446             } else {
 447                 _curCurvepts[0] = cx0 + leftInThisDashSegment * cx;
 448                 _curCurvepts[1] = cy0 + leftInThisDashSegment * cy;

 449             }
 450 
 451             goTo(_curCurvepts, 0, 4, _dashOn);
 452 
 453             len -= leftInThisDashSegment;
 454             // Advance to next dash segment
 455             _idx = (_idx + 1) % _dashLen;
 456             _dashOn = !_dashOn;
 457             _phase = 0.0f;
 458         }
 459         // Save local state:
 460         idx = _idx;
 461         dashOn = _dashOn;
 462         phase = _phase;
 463     }
 464 
 465     private void skipLineTo(final float x1, final float y1) {
 466         final float dx = x1 - cx0;
 467         final float dy = y1 - cy0;
 468 
 469         float len = dx * dx + dy * dy;
 470         if (len != 0.0f) {
 471             len = (float)Math.sqrt(len);
 472         }
 473 
 474         // Accumulate skipped length:
 475         this.outside = true;
 476         this.totalSkipLen += len;
 477 
 478         // Fix initial move:
 479         this.needsMoveTo = true;
 480         this.starting = false;
 481 
 482         this.cx0 = x1;
 483         this.cy0 = y1;
 484     }
 485 
 486     public void skipLen() {
 487         float len = this.totalSkipLen;
 488         this.totalSkipLen = 0.0f;
 489 
 490         final float[] _dash = dash;
 491         final int _dashLen = this.dashLen;
 492 
 493         int _idx = idx;
 494         boolean _dashOn = dashOn;
 495         float _phase = phase;
 496 
 497         // -2 to ensure having 2 iterations of the post-loop
 498         // to compensate the remaining phase
 499         final long fullcycles = (long)Math.floor(len / cycleLen) - 2L;
 500 
 501         if (fullcycles > 0L) {
 502             len -= cycleLen * fullcycles;
 503 
 504             final long iterations = fullcycles * _dashLen;
 505             _idx = (int) (iterations + _idx) % _dashLen;
 506             _dashOn = (iterations + (_dashOn ? 1L : 0L) & 1L) == 1L;
 507         }
 508 
 509         float leftInThisDashSegment, d;
 510 
 511         while (true) {
 512             d = _dash[_idx];
 513             leftInThisDashSegment = d - _phase;
 514 
 515             if (len <= leftInThisDashSegment) {
 516                 // Advance phase within current dash segment
 517                 _phase += len;
 518 
 519                 // TODO: compare float values using epsilon:
 520                 if (len == leftInThisDashSegment) {
 521                     _phase = 0.0f;
 522                     _idx = (_idx + 1) % _dashLen;
 523                     _dashOn = !_dashOn;
 524                 }
 525                 break;
 526             }
 527 
 528             len -= leftInThisDashSegment;
 529             // Advance to next dash segment
 530             _idx = (_idx + 1) % _dashLen;
 531             _dashOn = !_dashOn;
 532             _phase = 0.0f;
 533         }
 534         // Save local state:
 535         idx = _idx;
 536         dashOn = _dashOn;
 537         phase = _phase;
 538     }
 539 
 540     // preconditions: curCurvepts must be an array of length at least 2 * type,
 541     // that contains the curve we want to dash in the first type elements
 542     private void somethingTo(final int type) {
 543         final float[] _curCurvepts = curCurvepts;
 544         if (pointCurve(_curCurvepts, type)) {
 545             return;
 546         }
 547         final LengthIterator _li = li;

 548         final float[] _dash = dash;
 549         final int _dashLen = this.dashLen;
 550 
 551         _li.initializeIterationOnCurve(_curCurvepts, type);
 552 
 553         int _idx = idx;
 554         boolean _dashOn = dashOn;
 555         float _phase = phase;
 556 
 557         // initially the current curve is at curCurvepts[0...type]
 558         int curCurveoff = 0;
 559         float prevT = 0.0f;
 560         float t;
 561         float leftInThisDashSegment = _dash[_idx] - _phase;
 562 
 563         while ((t = _li.next(leftInThisDashSegment)) < 1.0f) {
 564             if (t != 0.0f) {
 565                 Helpers.subdivideAt((t - prevT) / (1.0f - prevT),
 566                                     _curCurvepts, curCurveoff,
 567                                     _curCurvepts, 0, type);
 568                 prevT = t;

 569                 goTo(_curCurvepts, 2, type, _dashOn);
 570                 curCurveoff = type;
 571             }
 572             // Advance to next dash segment
 573             _idx = (_idx + 1) % _dashLen;
 574             _dashOn = !_dashOn;
 575             _phase = 0.0f;
 576             leftInThisDashSegment = _dash[_idx];
 577         }
 578 
 579         goTo(_curCurvepts, curCurveoff + 2, type, _dashOn);
 580 
 581         _phase += _li.lastSegLen();
 582         if (_phase >= _dash[_idx]) {
 583             _phase = 0.0f;
 584             _idx = (_idx + 1) % _dashLen;
 585             _dashOn = !_dashOn;
 586         }
 587         // Save local state:
 588         idx = _idx;
 589         dashOn = _dashOn;
 590         phase = _phase;
 591 
 592         // reset LengthIterator:
 593         _li.reset();
 594     }
 595 
 596     private void skipSomethingTo(final int type) {
 597         final float[] _curCurvepts = curCurvepts;
 598         if (pointCurve(_curCurvepts, type)) {
 599             return;
 600         }
 601         final LengthIterator _li = li;
 602 
 603         _li.initializeIterationOnCurve(_curCurvepts, type);
 604 
 605         // In contrary to somethingTo(),
 606         // just estimate properly the curve length:
 607         final float len = _li.totalLength();
 608 
 609         // Accumulate skipped length:
 610         this.outside = true;
 611         this.totalSkipLen += len;
 612 
 613         // Fix initial move:
 614         this.needsMoveTo = true;
 615         this.starting = false;
 616     }
 617 
 618     private static boolean pointCurve(final float[] curve, final int type) {
 619         for (int i = 2; i < type; i++) {
 620             if (curve[i] != curve[i-2]) {
 621                 return false;
 622             }
 623         }
 624         return true;
 625     }
 626 
 627     // Objects of this class are used to iterate through curves. They return
 628     // t values where the left side of the curve has a specified length.
 629     // It does this by subdividing the input curve until a certain error
 630     // condition has been met. A recursive subdivision procedure would
 631     // return as many as 1<<limit curves, but this is an iterator and we
 632     // don't need all the curves all at once, so what we carry out a
 633     // lazy inorder traversal of the recursion tree (meaning we only move
 634     // through the tree when we need the next subdivided curve). This saves
 635     // us a lot of memory because at any one time we only need to store
 636     // limit+1 curves - one for each level of the tree + 1.
 637     // NOTE: the way we do things here is not enough to traverse a general
 638     // tree; however, the trees we are interested in have the property that
 639     // every non leaf node has exactly 2 children
 640     static final class LengthIterator {

 641         // Holds the curves at various levels of the recursion. The root
 642         // (i.e. the original curve) is at recCurveStack[0] (but then it
 643         // gets subdivided, the left half is put at 1, so most of the time
 644         // only the right half of the original curve is at 0)
 645         private final float[][] recCurveStack; // dirty
 646         // sidesRight[i] indicates whether the node at level i+1 in the path from
 647         // the root to the current leaf is a left or right child of its parent.
 648         private final boolean[] sidesRight; // dirty
 649         private int curveType;
 650         // lastT and nextT delimit the current leaf.
 651         private float nextT;
 652         private float lenAtNextT;
 653         private float lastT;
 654         private float lenAtLastT;
 655         private float lenAtLastSplit;
 656         private float lastSegLen;
 657         // the current level in the recursion tree. 0 is the root. limit
 658         // is the deepest possible leaf.
 659         private int recLevel;
 660         private boolean done;
 661 
 662         // the lengths of the lines of the control polygon. Only its first
 663         // curveType/2 - 1 elements are valid. This is an optimization. See
 664         // next() for more detail.
 665         private final float[] curLeafCtrlPolyLengths = new float[3];
 666 
 667         LengthIterator() {
 668             this.recCurveStack = new float[REC_LIMIT + 1][8];
 669             this.sidesRight = new boolean[REC_LIMIT];
 670             // if any methods are called without first initializing this object
 671             // on a curve, we want it to fail ASAP.
 672             this.nextT = Float.MAX_VALUE;
 673             this.lenAtNextT = Float.MAX_VALUE;
 674             this.lenAtLastSplit = Float.MIN_VALUE;
 675             this.recLevel = Integer.MIN_VALUE;
 676             this.lastSegLen = Float.MAX_VALUE;
 677             this.done = true;
 678         }
 679 
 680         /**
 681          * Reset this LengthIterator.
 682          */
 683         void reset() {
 684             // keep data dirty
 685             // as it appears not useful to reset data:
 686             if (DO_CLEAN_DIRTY) {
 687                 final int recLimit = recCurveStack.length - 1;
 688                 for (int i = recLimit; i >= 0; i--) {
 689                     Arrays.fill(recCurveStack[i], 0.0f);
 690                 }
 691                 Arrays.fill(sidesRight, false);
 692                 Arrays.fill(curLeafCtrlPolyLengths, 0.0f);
 693                 Arrays.fill(nextRoots, 0.0f);
 694                 Arrays.fill(flatLeafCoefCache, 0.0f);
 695                 flatLeafCoefCache[2] = -1.0f;
 696             }
 697         }
 698 
 699         void initializeIterationOnCurve(final float[] pts, final int type) {
 700             // optimize arraycopy (8 values faster than 6 = type):
 701             System.arraycopy(pts, 0, recCurveStack[0], 0, 8);
 702             this.curveType = type;
 703             this.recLevel = 0;
 704             this.lastT = 0.0f;
 705             this.lenAtLastT = 0.0f;
 706             this.nextT = 0.0f;
 707             this.lenAtNextT = 0.0f;
 708             goLeft(); // initializes nextT and lenAtNextT properly
 709             this.lenAtLastSplit = 0.0f;
 710             if (recLevel > 0) {
 711                 this.sidesRight[0] = false;
 712                 this.done = false;
 713             } else {
 714                 // the root of the tree is a leaf so we're done.
 715                 this.sidesRight[0] = true;
 716                 this.done = true;
 717             }
 718             this.lastSegLen = 0.0f;
 719         }
 720 
 721         // 0 == false, 1 == true, -1 == invalid cached value.
 722         private int cachedHaveLowAcceleration = -1;
 723 
 724         private boolean haveLowAcceleration(final float err) {
 725             if (cachedHaveLowAcceleration == -1) {
 726                 final float len1 = curLeafCtrlPolyLengths[0];
 727                 final float len2 = curLeafCtrlPolyLengths[1];
 728                 // the test below is equivalent to !within(len1/len2, 1, err).
 729                 // It is using a multiplication instead of a division, so it
 730                 // should be a bit faster.
 731                 if (!Helpers.within(len1, len2, err * len2)) {
 732                     cachedHaveLowAcceleration = 0;
 733                     return false;
 734                 }
 735                 if (curveType == 8) {
 736                     final float len3 = curLeafCtrlPolyLengths[2];
 737                     // if len1 is close to 2 and 2 is close to 3, that probably
 738                     // means 1 is close to 3 so the second part of this test might
 739                     // not be needed, but it doesn't hurt to include it.
 740                     final float errLen3 = err * len3;
 741                     if (!(Helpers.within(len2, len3, errLen3) &&
 742                           Helpers.within(len1, len3, errLen3))) {
 743                         cachedHaveLowAcceleration = 0;
 744                         return false;


 793                         float z = y + curLeafCtrlPolyLengths[2];
 794                         _flatLeafCoefCache[0] = 3.0f * (x - y) + z;
 795                         _flatLeafCoefCache[1] = 3.0f * (y - 2.0f * x);
 796                         _flatLeafCoefCache[2] = 3.0f * x;
 797                         _flatLeafCoefCache[3] = -z;
 798                     } else if (curveType == 6) {
 799                         _flatLeafCoefCache[0] = 0.0f;
 800                         _flatLeafCoefCache[1] = y - 2.0f * x;
 801                         _flatLeafCoefCache[2] = 2.0f * x;
 802                         _flatLeafCoefCache[3] = -y;
 803                     }
 804                 }
 805                 float a = _flatLeafCoefCache[0];
 806                 float b = _flatLeafCoefCache[1];
 807                 float c = _flatLeafCoefCache[2];
 808                 float d = t * _flatLeafCoefCache[3];
 809 
 810                 // we use cubicRootsInAB here, because we want only roots in 0, 1,
 811                 // and our quadratic root finder doesn't filter, so it's just a
 812                 // matter of convenience.
 813                 final int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0.0f, 1.0f);
 814 // TODO: check NaN is impossible
 815                 if (n == 1 && !Float.isNaN(nextRoots[0])) {
 816                     t = nextRoots[0];
 817                 }
 818             }
 819             // t is relative to the current leaf, so we must make it a valid parameter
 820             // of the original curve.
 821             t = t * (nextT - lastT) + lastT;
 822             if (t >= 1.0f) {
 823                 t = 1.0f;
 824                 done = true;
 825             }
 826             // even if done = true, if we're here, that means targetLength
 827             // is equal to, or very, very close to the total length of the
 828             // curve, so lastSegLen won't be too high. In cases where len
 829             // overshoots the curve, this method will exit in the while
 830             // loop, and lastSegLen will still be set to the right value.
 831             lastSegLen = len;
 832             return t;
 833         }
 834 
 835         float totalLength() {
 836             while (!done) {
 837                 goToNextLeaf();
 838             }
 839             // reset LengthIterator:
 840             reset();
 841 
 842             return lenAtNextT;
 843         }
 844 
 845         float lastSegLen() {
 846             return lastSegLen;
 847         }
 848 
 849         // go to the next leaf (in an inorder traversal) in the recursion tree
 850         // preconditions: must be on a leaf, and that leaf must not be the root.
 851         private void goToNextLeaf() {
 852             // We must go to the first ancestor node that has an unvisited
 853             // right child.
 854             final boolean[] _sides = sidesRight;
 855             int _recLevel = recLevel;


 856             _recLevel--;
 857 
 858             while(_sides[_recLevel]) {
 859                 if (_recLevel == 0) {
 860                     recLevel = 0;
 861                     done = true;
 862                     return;
 863                 }
 864                 _recLevel--;
 865             }
 866 
 867             _sides[_recLevel] = true;
 868             // optimize arraycopy (8 values faster than 6 = type):
 869             System.arraycopy(recCurveStack[_recLevel++], 0,
 870                              recCurveStack[_recLevel], 0, 8);


 871             recLevel = _recLevel;
 872             goLeft();
 873         }
 874 
 875         // go to the leftmost node from the current node. Return its length.
 876         private void goLeft() {
 877             final float len = onLeaf();
 878             if (len >= 0.0f) {
 879                 lastT = nextT;
 880                 lenAtLastT = lenAtNextT;
 881                 nextT += (1 << (REC_LIMIT - recLevel)) * MIN_T_INC;
 882                 lenAtNextT += len;
 883                 // invalidate caches
 884                 flatLeafCoefCache[2] = -1.0f;
 885                 cachedHaveLowAcceleration = -1;
 886             } else {
 887                 Helpers.subdivide(recCurveStack[recLevel],
 888                                   recCurveStack[recLevel + 1],
 889                                   recCurveStack[recLevel], curveType);
 890 
 891                 sidesRight[recLevel] = false;
 892                 recLevel++;
 893                 goLeft();
 894             }
 895         }
 896 
 897         // this is a bit of a hack. It returns -1 if we're not on a leaf, and
 898         // the length of the leaf if we are on a leaf.
 899         private float onLeaf() {
 900             final float[] curve = recCurveStack[recLevel];
 901             final int _curveType = curveType;
 902             float polyLen = 0.0f;
 903 
 904             float x0 = curve[0], y0 = curve[1];
 905             for (int i = 2; i < _curveType; i += 2) {
 906                 final float x1 = curve[i], y1 = curve[i + 1];
 907                 final float len = Helpers.linelen(x0, y0, x1, y1);
 908                 polyLen += len;
 909                 curLeafCtrlPolyLengths[(i >> 1) - 1] = len;
 910                 x0 = x1;
 911                 y0 = y1;
 912             }
 913 
 914             final float lineLen = Helpers.linelen(curve[0], curve[1], x0, y0);
 915 
 916             if ((polyLen - lineLen) < CURVE_LEN_ERR || recLevel == REC_LIMIT) {

 917                 return (polyLen + lineLen) / 2.0f;
 918             }
 919             return -1.0f;
 920         }
 921     }
 922 
 923     @Override
 924     public void curveTo(final float x1, final float y1,
 925                         final float x2, final float y2,
 926                         final float x3, final float y3)
 927     {
 928         final int outcode0 = this.cOutCode;
 929 
 930         if (clipRect != null) {
 931             final int outcode1 = Helpers.outcode(x1, y1, clipRect);
 932             final int outcode2 = Helpers.outcode(x2, y2, clipRect);
 933             final int outcode3 = Helpers.outcode(x3, y3, clipRect);
 934 
 935             // Should clip
 936             final int orCode = (outcode0 | outcode1 | outcode2 | outcode3);
 937             if (orCode != 0) {
 938                 final int sideCode = outcode0 & outcode1 & outcode2 & outcode3;
 939 
 940                 // basic rejection criteria:
 941                 if (sideCode == 0) {
 942                     // ovelap clip:
 943                     if (subdivide) {
 944                         // avoid reentrance
 945                         subdivide = false;
 946                         // subdivide curve => callback with subdivided parts:
 947                         boolean ret = curveSplitter.splitCurve(cx0, cy0, x1, y1, x2, y2, x3, y3,
 948                                                                orCode, this);
 949                         // reentrance is done:
 950                         subdivide = true;
 951                         if (ret) {
 952                             return;
 953                         }
 954                     }
 955                     // already subdivided so render it
 956                 } else {
 957                     this.cOutCode = outcode3;
 958                     skipCurveTo(x1, y1, x2, y2, x3, y3);
 959                     return;
 960                 }
 961             }
 962 
 963             this.cOutCode = outcode3;
 964 
 965             if (this.outside) {
 966                 this.outside = false;
 967                 // Adjust current index, phase & dash:
 968                 skipLen();
 969             }
 970         }
 971         _curveTo(x1, y1, x2, y2, x3, y3);
 972     }
 973 
 974     private void _curveTo(final float x1, final float y1,
 975                           final float x2, final float y2,
 976                           final float x3, final float y3)
 977     {
 978         final float[] _curCurvepts = curCurvepts;
 979 
 980         // monotonize curve:
 981         final CurveBasicMonotonizer monotonizer
 982             = rdrCtx.monotonizer.curve(cx0, cy0, x1, y1, x2, y2, x3, y3);
 983 
 984         final int nSplits = monotonizer.nbSplits;
 985         final float[] mid = monotonizer.middle;
 986 
 987         for (int i = 0, off = 0; i <= nSplits; i++, off += 6) {
 988             // optimize arraycopy (8 values faster than 6 = type):
 989             System.arraycopy(mid, off, _curCurvepts, 0, 8);
 990 
 991             somethingTo(8);
 992         }
 993     }
 994 
 995     private void skipCurveTo(final float x1, final float y1,
 996                              final float x2, final float y2,
 997                              final float x3, final float y3)
 998     {
 999         final float[] _curCurvepts = curCurvepts;
1000         _curCurvepts[0] = cx0; _curCurvepts[1] = cy0;
1001         _curCurvepts[2] = x1;  _curCurvepts[3] = y1;
1002         _curCurvepts[4] = x2;  _curCurvepts[5] = y2;
1003         _curCurvepts[6] = x3;  _curCurvepts[7] = y3;
1004 
1005         skipSomethingTo(8);
1006 
1007         this.cx0 = x3;
1008         this.cy0 = y3;
1009     }
1010 
1011     @Override
1012     public void quadTo(final float x1, final float y1,
1013                        final float x2, final float y2)
1014     {
1015         final int outcode0 = this.cOutCode;
1016 
1017         if (clipRect != null) {
1018             final int outcode1 = Helpers.outcode(x1, y1, clipRect);
1019             final int outcode2 = Helpers.outcode(x2, y2, clipRect);
1020 
1021             // Should clip
1022             final int orCode = (outcode0 | outcode1 | outcode2);
1023             if (orCode != 0) {
1024                 final int sideCode = outcode0 & outcode1 & outcode2;
1025 
1026                 // basic rejection criteria:
1027                 if (sideCode == 0) {
1028                     // ovelap clip:
1029                     if (subdivide) {
1030                         // avoid reentrance
1031                         subdivide = false;
1032                         // subdivide curve => call lineTo() with subdivided curves:
1033                         boolean ret = curveSplitter.splitQuad(cx0, cy0, x1, y1,
1034                                                               x2, y2, orCode, this);
1035                         // reentrance is done:
1036                         subdivide = true;
1037                         if (ret) {
1038                             return;
1039                         }
1040                     }
1041                     // already subdivided so render it
1042                 } else {
1043                     this.cOutCode = outcode2;
1044                     skipQuadTo(x1, y1, x2, y2);
1045                     return;
1046                 }
1047             }
1048 
1049             this.cOutCode = outcode2;
1050 
1051             if (this.outside) {
1052                 this.outside = false;
1053                 // Adjust current index, phase & dash:
1054                 skipLen();
1055             }
1056         }
1057         _quadTo(x1, y1, x2, y2);
1058     }
1059 
1060     private void _quadTo(final float x1, final float y1,
1061                          final float x2, final float y2)
1062     {
1063         final float[] _curCurvepts = curCurvepts;
1064 
1065         // monotonize quad:
1066         final CurveBasicMonotonizer monotonizer
1067             = rdrCtx.monotonizer.quad(cx0, cy0, x1, y1, x2, y2);
1068 
1069         final int nSplits = monotonizer.nbSplits;
1070         final float[] mid = monotonizer.middle;
1071 
1072         for (int i = 0, off = 0; i <= nSplits; i++, off += 4) {
1073             // optimize arraycopy (8 values faster than 6 = type):
1074             System.arraycopy(mid, off, _curCurvepts, 0, 8);
1075 
1076             somethingTo(6);
1077         }
1078     }
1079 
1080     private void skipQuadTo(final float x1, final float y1,
1081                             final float x2, final float y2)
1082     {
1083         final float[] _curCurvepts = curCurvepts;
1084         _curCurvepts[0] = cx0; _curCurvepts[1] = cy0;
1085         _curCurvepts[2] = x1;  _curCurvepts[3] = y1;
1086         _curCurvepts[4] = x2;  _curCurvepts[5] = y2;
1087 
1088         skipSomethingTo(6);
1089 
1090         this.cx0 = x2;
1091         this.cy0 = y2;
1092     }
1093 
1094     @Override
1095     public void closePath() {
1096         if (cx0 != sx0 || cy0 != sy0) {
1097             lineTo(sx0, sy0);
1098         }
1099         if (firstSegidx != 0) {
1100             if (!dashOn || needsMoveTo) {
1101                 out.moveTo(sx0, sy0);
1102             }
1103             emitFirstSegments();
1104         }
1105         moveTo(sx0, sy0);
1106     }
1107 
1108     @Override
1109     public void pathDone() {
1110         if (firstSegidx != 0) {
1111             out.moveTo(sx0, sy0);
1112             emitFirstSegments();
1113         }
1114         out.pathDone();
1115 
1116         // Dispose this instance:
1117         dispose();
1118     }
1119 
1120     @Override
1121     public long getNativeConsumer() {
1122         throw new InternalError("Dasher does not use a native consumer");
1123     }
1124 }
1125 
< prev index next >