1 /*
   2  * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.marlin;
  27 
  28 import static com.sun.marlin.OffHeapArray.SIZE_INT;
  29 import sun.misc.Unsafe;
  30 
  31 public final class Renderer implements MarlinRenderer, MarlinConst {
  32 
  33     static final boolean DISABLE_RENDER = false;
  34 
  35     private static final int ALL_BUT_LSB = 0xFFFFFFFE;
  36     private static final int ERR_STEP_MAX = 0x7FFFFFFF; // = 2^31 - 1
  37 
  38     private static final double POWER_2_TO_32 = 0x1.0p32d;
  39 
  40     // use float to make tosubpix methods faster (no int to float conversion)
  41     static final float SUBPIXEL_SCALE_X = (float) SUBPIXEL_POSITIONS_X;
  42     static final float SUBPIXEL_SCALE_Y = (float) SUBPIXEL_POSITIONS_Y;
  43     static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
  44     static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;
  45 
  46     private static final float RDR_OFFSET_X = 0.5f / SUBPIXEL_SCALE_X;
  47     private static final float RDR_OFFSET_Y = 0.5f / SUBPIXEL_SCALE_Y;
  48 
  49     // common to all types of input path segments.
  50     // OFFSET as bytes
  51     // only integer values:
  52     public static final long OFF_CURX_OR  = 0;
  53     public static final long OFF_ERROR    = OFF_CURX_OR  + SIZE_INT;
  54     public static final long OFF_BUMP_X   = OFF_ERROR    + SIZE_INT;
  55     public static final long OFF_BUMP_ERR = OFF_BUMP_X   + SIZE_INT;
  56     public static final long OFF_NEXT     = OFF_BUMP_ERR + SIZE_INT;
  57     public static final long OFF_YMAX     = OFF_NEXT     + SIZE_INT;
  58 
  59     // size of one edge in bytes
  60     public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT);
  61 
  62     // curve break into lines
  63     // cubic error in subpixels to decrement step
  64     private static final float CUB_DEC_ERR_SUBPIX
  65         = MarlinProperties.getCubicDecD2() * (SUBPIXEL_POSITIONS_X / 8.0f); // 1.0 / 8th pixel
  66     // cubic error in subpixels to increment step
  67     private static final float CUB_INC_ERR_SUBPIX
  68         = MarlinProperties.getCubicIncD1() * (SUBPIXEL_POSITIONS_X / 8.0f); // 0.4 / 8th pixel
  69     // scale factor for Y-axis contribution to quad / cubic errors:
  70     public static final float SCALE_DY = ((float) SUBPIXEL_POSITIONS_X) / SUBPIXEL_POSITIONS_Y;
  71 
  72     // TestNonAARasterization (JDK-8170879): cubics
  73     // bad paths (59294/100000 == 59,29%, 94335 bad pixels (avg = 1,59), 3966 warnings (avg = 0,07)
  74 // 2018
  75     // 1.0 / 0.2: bad paths (67194/100000 == 67,19%, 117394 bad pixels (avg = 1,75 - max =  9), 4042 warnings (avg = 0,06)
  76 
  77     // cubic bind length to decrement step
  78     public static final float CUB_DEC_BND
  79         = 8.0f * CUB_DEC_ERR_SUBPIX;
  80     // cubic bind length to increment step
  81     public static final float CUB_INC_BND
  82         = 8.0f * CUB_INC_ERR_SUBPIX;
  83 
  84     // cubic countlg
  85     public static final int CUB_COUNT_LG = 2;
  86     // cubic count = 2^countlg
  87     private static final int CUB_COUNT = 1 << CUB_COUNT_LG;
  88     // cubic count^2 = 4^countlg
  89     private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG);
  90     // cubic count^3 = 8^countlg
  91     private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG);
  92     // cubic dt = 1 / count
  93     private static final float CUB_INV_COUNT = 1.0f / CUB_COUNT;
  94     // cubic dt^2 = 1 / count^2 = 1 / 4^countlg
  95     private static final float CUB_INV_COUNT_2 = 1.0f / CUB_COUNT_2;
  96     // cubic dt^3 = 1 / count^3 = 1 / 8^countlg
  97     private static final float CUB_INV_COUNT_3 = 1.0f / CUB_COUNT_3;
  98 
  99     // quad break into lines
 100     // quadratic error in subpixels
 101     private static final float QUAD_DEC_ERR_SUBPIX
 102         = MarlinProperties.getQuadDecD2() * (SUBPIXEL_POSITIONS_X / 8.0f); // 0.5 / 8th pixel
 103 
 104     // TestNonAARasterization (JDK-8170879): quads
 105     // bad paths (62916/100000 == 62,92%, 103818 bad pixels (avg = 1,65), 6514 warnings (avg = 0,10)
 106 // 2018
 107     // 0.50px  = bad paths (62915/100000 == 62,92%, 103810 bad pixels (avg = 1,65), 6512 warnings (avg = 0,10)
 108 
 109     // quadratic bind length to decrement step
 110     public static final float QUAD_DEC_BND
 111         = 8.0f * QUAD_DEC_ERR_SUBPIX;
 112 
 113 //////////////////////////////////////////////////////////////////////////////
 114 //  SCAN LINE
 115 //////////////////////////////////////////////////////////////////////////////
 116     // crossings ie subpixel edge x coordinates
 117     private int[] crossings;
 118     // auxiliary storage for crossings (merge sort)
 119     private int[] aux_crossings;
 120 
 121     // indices into the segment pointer lists. They indicate the "active"
 122     // sublist in the segment lists (the portion of the list that contains
 123     // all the segments that cross the next scan line).
 124     private int edgeCount;
 125     private int[] edgePtrs;
 126     // auxiliary storage for edge pointers (merge sort)
 127     private int[] aux_edgePtrs;
 128 
 129     // max used for both edgePtrs and crossings (stats only)
 130     private int activeEdgeMaxUsed;
 131 
 132     // crossings ref (dirty)
 133     private final IntArrayCache.Reference crossings_ref;
 134     // edgePtrs ref (dirty)
 135     private final IntArrayCache.Reference edgePtrs_ref;
 136     // merge sort initial arrays (large enough to satisfy most usages) (1024)
 137     // aux_crossings ref (dirty)
 138     private final IntArrayCache.Reference aux_crossings_ref;
 139     // aux_edgePtrs ref (dirty)
 140     private final IntArrayCache.Reference aux_edgePtrs_ref;
 141 
 142 //////////////////////////////////////////////////////////////////////////////
 143 //  EDGE LIST
 144 //////////////////////////////////////////////////////////////////////////////
 145     private int edgeMinY = Integer.MAX_VALUE;
 146     private int edgeMaxY = Integer.MIN_VALUE;
 147     private float edgeMinX = Float.POSITIVE_INFINITY;
 148     private float edgeMaxX = Float.NEGATIVE_INFINITY;
 149 
 150     // edges [ints] stored in off-heap memory
 151     private final OffHeapArray edges;
 152 
 153     private int[] edgeBuckets;
 154     private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed)
 155     // used range for edgeBuckets / edgeBucketCounts
 156     private int buckets_minY;
 157     private int buckets_maxY;
 158 
 159     // edgeBuckets ref (clean)
 160     private final IntArrayCache.Reference edgeBuckets_ref;
 161     // edgeBucketCounts ref (clean)
 162     private final IntArrayCache.Reference edgeBucketCounts_ref;
 163 
 164     boolean useRLE = false;
 165 
 166     // Flattens using adaptive forward differencing. This only carries out
 167     // one iteration of the AFD loop. All it does is update AFD variables (i.e.
 168     // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
 169     private void quadBreakIntoLinesAndAdd(float x0, float y0,
 170                                           final Curve c,
 171                                           final float x2, final float y2)
 172     {
 173         int count = 1; // dt = 1 / count
 174 
 175         // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1)
 176         float maxDD = Math.abs(c.dbx) + Math.abs(c.dby) * SCALE_DY;
 177 
 178         final float _DEC_BND = QUAD_DEC_BND;
 179 
 180         while (maxDD >= _DEC_BND) {
 181             // divide step by half:
 182             maxDD /= 4.0f; // error divided by 2^2 = 4
 183 
 184             count <<= 1;
 185             if (DO_STATS) {
 186                 rdrCtx.stats.stat_rdr_quadBreak_dec.add(count);
 187             }
 188         }
 189 
 190         final int nL = count; // line count
 191 
 192         if (count > 1) {
 193             final float icount = 1.0f / count; // dt
 194             final float icount2 = icount * icount; // dt^2
 195 
 196             final float ddx = c.dbx * icount2;
 197             final float ddy = c.dby * icount2;
 198             float dx = c.bx * icount2 + c.cx * icount;
 199             float dy = c.by * icount2 + c.cy * icount;
 200 
 201             // we use x0, y0 to walk the line
 202             for (float x1 = x0, y1 = y0; --count > 0; dx += ddx, dy += ddy) {
 203                 x1 += dx;
 204                 y1 += dy;
 205 
 206                 addLine(x0, y0, x1, y1);
 207                 x0 = x1;
 208                 y0 = y1;
 209             }
 210         }
 211         addLine(x0, y0, x2, y2);
 212 
 213         if (DO_STATS) {
 214             rdrCtx.stats.stat_rdr_quadBreak.add(nL);
 215         }
 216     }
 217 
 218     // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
 219     // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
 220     // numerical errors, and our callers already have the exact values.
 221     // Another alternative would be to pass all the control points, and call
 222     // c.set here, but then too many numbers are passed around.
 223     private void curveBreakIntoLinesAndAdd(float x0, float y0,
 224                                            final Curve c,
 225                                            final float x3, final float y3)
 226     {
 227         int count           = CUB_COUNT;
 228         final float icount  = CUB_INV_COUNT;   // dt
 229         final float icount2 = CUB_INV_COUNT_2; // dt^2
 230         final float icount3 = CUB_INV_COUNT_3; // dt^3
 231 
 232         // the dx and dy refer to forward differencing variables, not the last
 233         // coefficients of the "points" polynomial
 234         float dddx, dddy, ddx, ddy, dx, dy;
 235         dddx = 2.0f * c.dax * icount3;
 236         dddy = 2.0f * c.day * icount3;
 237         ddx = dddx + c.dbx * icount2;
 238         ddy = dddy + c.dby * icount2;
 239         dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount;
 240         dy = c.ay * icount3 + c.by * icount2 + c.cy * icount;
 241 
 242         int nL = 0; // line count
 243 
 244         final float _DEC_BND = CUB_DEC_BND;
 245         final float _INC_BND = CUB_INC_BND;
 246         final float _SCALE_DY = SCALE_DY;
 247 
 248         // we use x0, y0 to walk the line
 249         for (float x1 = x0, y1 = y0; count > 0; ) {
 250             // inc / dec => ratio ~ 5 to minimize upscale / downscale but minimize edges
 251 
 252             // float step:
 253             // can only do this on even "count" values, because we must divide count by 2
 254             while ((count % 2 == 0)
 255                     && ((Math.abs(ddx) + Math.abs(ddy) * _SCALE_DY) <= _INC_BND)) {
 256                 dx = 2.0f * dx + ddx;
 257                 dy = 2.0f * dy + ddy;
 258                 ddx = 4.0f * (ddx + dddx);
 259                 ddy = 4.0f * (ddy + dddy);
 260                 dddx *= 8.0f;
 261                 dddy *= 8.0f;
 262 
 263                 count >>= 1;
 264                 if (DO_STATS) {
 265                     rdrCtx.stats.stat_rdr_curveBreak_inc.add(count);
 266                 }
 267             }
 268 
 269             // divide step by half:
 270             while ((Math.abs(ddx) + Math.abs(ddy) * _SCALE_DY) >= _DEC_BND) {
 271                 dddx /= 8.0f;
 272                 dddy /= 8.0f;
 273                 ddx = ddx / 4.0f - dddx;
 274                 ddy = ddy / 4.0f - dddy;
 275                 dx = (dx - ddx) / 2.0f;
 276                 dy = (dy - ddy) / 2.0f;
 277 
 278                 count <<= 1;
 279                 if (DO_STATS) {
 280                     rdrCtx.stats.stat_rdr_curveBreak_dec.add(count);
 281                 }
 282             }
 283             if (--count == 0) {
 284                 break;
 285             }
 286 
 287             x1 += dx;
 288             y1 += dy;
 289             dx += ddx;
 290             dy += ddy;
 291             ddx += dddx;
 292             ddy += dddy;
 293 
 294             addLine(x0, y0, x1, y1);
 295             x0 = x1;
 296             y0 = y1;
 297         }
 298         addLine(x0, y0, x3, y3);
 299 
 300         if (DO_STATS) {
 301             rdrCtx.stats.stat_rdr_curveBreak.add(nL + 1);
 302         }
 303     }
 304 
 305     private void addLine(float x1, float y1, float x2, float y2) {
 306         if (DO_MONITORS) {
 307             rdrCtx.stats.mon_rdr_addLine.start();
 308         }
 309         if (DO_STATS) {
 310             rdrCtx.stats.stat_rdr_addLine.add(1);
 311         }
 312         int or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
 313         if (y2 < y1) {
 314             or = 0;
 315             float tmp = y2;
 316             y2 = y1;
 317             y1 = tmp;
 318             tmp = x2;
 319             x2 = x1;
 320             x1 = tmp;
 321         }
 322 
 323         // convert subpixel coordinates [float] into pixel positions [int]
 324 
 325         // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5)
 326         // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply
 327         // ceil(y1) or ceil(y2)
 328         // upper integer (inclusive)
 329         final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY);
 330 
 331         // note: use boundsMaxY (last Y exclusive) to compute correct coverage
 332         // upper integer (exclusive)
 333         final int lastCrossing  = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY);
 334 
 335         /* skip horizontal lines in pixel space and clip edges
 336            out of y range [boundsMinY; boundsMaxY] */
 337         if (firstCrossing >= lastCrossing) {
 338             if (DO_MONITORS) {
 339                 rdrCtx.stats.mon_rdr_addLine.stop();
 340             }
 341             if (DO_STATS) {
 342                 rdrCtx.stats.stat_rdr_addLine_skip.add(1);
 343             }
 344             return;
 345         }
 346 
 347         // edge min/max X/Y are in subpixel space (half-open interval):
 348         // note: Use integer crossings to ensure consistent range within
 349         // edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0)
 350         if (firstCrossing < edgeMinY) {
 351             edgeMinY = firstCrossing;
 352         }
 353         if (lastCrossing > edgeMaxY) {
 354             edgeMaxY = lastCrossing;
 355         }
 356 
 357         // Use double-precision for improved accuracy:
 358         final double x1d   = x1;
 359         final double y1d   = y1;
 360         final double slope = (x1d - x2) / (y1d - y2);
 361 
 362         if (slope >= 0.0d) { // <==> x1 < x2
 363             if (x1 < edgeMinX) {
 364                 edgeMinX = x1;
 365             }
 366             if (x2 > edgeMaxX) {
 367                 edgeMaxX = x2;
 368             }
 369         } else {
 370             if (x2 < edgeMinX) {
 371                 edgeMinX = x2;
 372             }
 373             if (x1 > edgeMaxX) {
 374                 edgeMaxX = x1;
 375             }
 376         }
 377 
 378         // local variables for performance:
 379         final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES;
 380 
 381         final OffHeapArray _edges = edges;
 382 
 383         // get free pointer (ie length in bytes)
 384         final int edgePtr = _edges.used;
 385 
 386         // use substraction to avoid integer overflow:
 387         if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) {
 388             // suppose _edges.length > _SIZEOF_EDGE_BYTES
 389             // so doubling size is enough to add needed bytes
 390             // note: throw IOOB if neededSize > 2Gb:
 391             final long edgeNewSize = ArrayCacheConst.getNewLargeSize(
 392                                         _edges.length,
 393                                         edgePtr + _SIZEOF_EDGE_BYTES);
 394 
 395             if (DO_STATS) {
 396                 rdrCtx.stats.stat_rdr_edges_resizes.add(edgeNewSize);
 397             }
 398             _edges.resize(edgeNewSize);
 399         }
 400 
 401 
 402         final Unsafe _unsafe = OffHeapArray.UNSAFE;
 403         final long SIZE_INT = 4L;
 404         long addr   = _edges.address + edgePtr;
 405 
 406         // The x value must be bumped up to its position at the next HPC we will evaluate.
 407         // "firstcrossing" is the (sub)pixel number where the next crossing occurs
 408         // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5"
 409         // so the Y distance we cover is "firstcrossing + 0.5 - trueY".
 410         // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have
 411         // y1 = trueY - 0.5
 412         // trueY = y1 + 0.5
 413         // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5)
 414         //                             = firstcrossing - y1
 415         // The x coordinate at that HPC is then:
 416         // x1_intercept = x1 + (firstcrossing - y1) * slope
 417         // The next VPC is then given by:
 418         // VPC index = ceil(x1_intercept - 0.5), or alternately
 419         // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon)
 420         // epsilon is hard to pin down in floating point, but easy in fixed point, so if
 421         // we convert to fixed point then these operations get easier:
 422         // long x1_fixed = x1_intercept * 2^32;  (fixed point 32.32 format)
 423         // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1)
 424         //                 = fixed_floor(x1_fixed + 2^31 - 1)
 425         //                 = fixed_floor(x1_fixed + 0x7FFFFFFF)
 426         // and error       = fixed_fract(x1_fixed + 0x7FFFFFFF)
 427         final double x1_intercept = x1d + (firstCrossing - y1d) * slope;
 428 
 429         // inlined scalb(x1_intercept, 32):
 430         final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept))
 431                                      + 0x7FFFFFFFL;
 432         // curx:
 433         // last bit corresponds to the orientation
 434         _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or);
 435         addr += SIZE_INT;
 436         _unsafe.putInt(addr,  ((int)  x1_fixed_biased) >>> 1);
 437         addr += SIZE_INT;
 438 
 439         // inlined scalb(slope, 32):
 440         final long slope_fixed = (long) (POWER_2_TO_32 * slope);
 441 
 442         // last bit set to 0 to keep orientation:
 443         _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB));
 444         addr += SIZE_INT;
 445         _unsafe.putInt(addr,  ((int)  slope_fixed) >>> 1);
 446         addr += SIZE_INT;
 447 
 448         final int[] _edgeBuckets      = edgeBuckets;
 449         final int[] _edgeBucketCounts = edgeBucketCounts;
 450 
 451         final int _boundsMinY = boundsMinY;
 452 
 453         // each bucket is a linked list. this method adds ptr to the
 454         // start of the "bucket"th linked list.
 455         final int bucketIdx = firstCrossing - _boundsMinY;
 456 
 457         // pointer from bucket
 458         _unsafe.putInt(addr, _edgeBuckets[bucketIdx]);
 459         addr += SIZE_INT;
 460         // y max (exclusive)
 461         _unsafe.putInt(addr,  lastCrossing);
 462 
 463         // Update buckets:
 464         // directly the edge struct "pointer"
 465         _edgeBuckets[bucketIdx]       = edgePtr;
 466         _edgeBucketCounts[bucketIdx] += 2; // 1 << 1
 467         // last bit means edge end
 468         _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1;
 469 
 470         // update free pointer (ie length in bytes)
 471         _edges.used += _SIZEOF_EDGE_BYTES;
 472 
 473         if (DO_MONITORS) {
 474             rdrCtx.stats.mon_rdr_addLine.stop();
 475         }
 476     }
 477 
 478 // END EDGE LIST
 479 //////////////////////////////////////////////////////////////////////////////
 480 
 481     // Bounds of the drawing region, at subpixel precision.
 482     private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY;
 483 
 484     // Current winding rule
 485     private int windingRule;
 486 
 487     // Current drawing position, i.e., final point of last segment
 488     private float x0, y0;
 489 
 490     // Position of most recent 'moveTo' command
 491     private float sx0, sy0;
 492 
 493     // per-thread renderer context
 494     final RendererContext rdrCtx;
 495     // dirty curve
 496     private final Curve curve;
 497 
 498     // clean alpha array (zero filled)
 499     private int[] alphaLine;
 500 
 501     // alphaLine ref (clean)
 502     private final IntArrayCache.Reference alphaLine_ref;
 503 
 504     private boolean enableBlkFlags = false;
 505     private boolean prevUseBlkFlags = false;
 506 
 507     /* block flags (0|1) */
 508     private int[] blkFlags;
 509 
 510     // blkFlags ref (clean)
 511     private final IntArrayCache.Reference blkFlags_ref;
 512 
 513     Renderer(final RendererContext rdrCtx) {
 514         this.rdrCtx = rdrCtx;
 515         this.curve = rdrCtx.curve;
 516 
 517         this.edges = rdrCtx.rdrMem.edges;
 518 
 519         edgeBuckets_ref      = rdrCtx.rdrMem.edgeBuckets_ref;
 520         edgeBucketCounts_ref = rdrCtx.rdrMem.edgeBucketCounts_ref;
 521 
 522         edgeBuckets      = edgeBuckets_ref.initial;
 523         edgeBucketCounts = edgeBucketCounts_ref.initial;
 524 
 525         alphaLine_ref = rdrCtx.rdrMem.alphaLine_ref;
 526         alphaLine     = alphaLine_ref.initial;
 527 
 528         crossings_ref     = rdrCtx.rdrMem.crossings_ref;
 529         aux_crossings_ref = rdrCtx.rdrMem.aux_crossings_ref;
 530         edgePtrs_ref      = rdrCtx.rdrMem.edgePtrs_ref;
 531         aux_edgePtrs_ref  = rdrCtx.rdrMem.aux_edgePtrs_ref;
 532 
 533         crossings     = crossings_ref.initial;
 534         aux_crossings = aux_crossings_ref.initial;
 535         edgePtrs      = edgePtrs_ref.initial;
 536         aux_edgePtrs  = aux_edgePtrs_ref.initial;
 537 
 538         blkFlags_ref = rdrCtx.rdrMem.blkFlags_ref;
 539         blkFlags     = blkFlags_ref.initial;
 540     }
 541 
 542     public Renderer init(final int pix_boundsX, final int pix_boundsY,
 543                   final int pix_boundsWidth, final int pix_boundsHeight,
 544                   final int windingRule)
 545     {
 546         this.windingRule = windingRule;
 547 
 548         // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
 549         this.boundsMinX =  pix_boundsX << SUBPIXEL_LG_POSITIONS_X;
 550         this.boundsMaxX =
 551             (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X;
 552         this.boundsMinY =  pix_boundsY << SUBPIXEL_LG_POSITIONS_Y;
 553         this.boundsMaxY =
 554             (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y;
 555 
 556         if (DO_LOG_BOUNDS) {
 557             MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... "
 558                                 + boundsMaxX + "[ [" + boundsMinY + " ... "
 559                                 + boundsMaxY + "[");
 560         }
 561 
 562         // see addLine: ceil(boundsMaxY) => boundsMaxY + 1
 563         // +1 for edgeBucketCounts
 564         final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1;
 565 
 566         if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) {
 567             if (DO_STATS) {
 568                 rdrCtx.stats.stat_array_renderer_edgeBuckets
 569                     .add(edgeBucketsLength);
 570                 rdrCtx.stats.stat_array_renderer_edgeBucketCounts
 571                     .add(edgeBucketsLength);
 572             }
 573             edgeBuckets = edgeBuckets_ref.getArray(edgeBucketsLength);
 574             edgeBucketCounts = edgeBucketCounts_ref.getArray(edgeBucketsLength);
 575         }
 576 
 577         edgeMinY = Integer.MAX_VALUE;
 578         edgeMaxY = Integer.MIN_VALUE;
 579         edgeMinX = Float.POSITIVE_INFINITY;
 580         edgeMaxX = Float.NEGATIVE_INFINITY;
 581 
 582         // reset used mark:
 583         edgeCount = 0;
 584         activeEdgeMaxUsed = 0;
 585         edges.used = 0;
 586 
 587         // reset bbox:
 588         bboxX0 = 0;
 589         bboxX1 = 0;
 590 
 591         return this; // fluent API
 592     }
 593 
 594     /**
 595      * Disposes this renderer and recycle it clean up before reusing this instance
 596      */
 597     public void dispose() {
 598         if (DO_STATS) {
 599             rdrCtx.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed);
 600             rdrCtx.stats.stat_rdr_edges.add(edges.used);
 601             rdrCtx.stats.stat_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
 602             rdrCtx.stats.hist_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
 603             rdrCtx.stats.totalOffHeap += edges.length;
 604         }
 605         // Return arrays:
 606         crossings = crossings_ref.putArray(crossings);
 607         aux_crossings = aux_crossings_ref.putArray(aux_crossings);
 608 
 609         edgePtrs = edgePtrs_ref.putArray(edgePtrs);
 610         aux_edgePtrs = aux_edgePtrs_ref.putArray(aux_edgePtrs);
 611 
 612         alphaLine = alphaLine_ref.putArray(alphaLine, 0, 0); // already zero filled
 613         blkFlags  = blkFlags_ref.putArray(blkFlags, 0, 0); // already zero filled
 614 
 615         if (edgeMinY != Integer.MAX_VALUE) {
 616             // if context is maked as DIRTY:
 617             if (rdrCtx.dirty) {
 618                 // may happen if an exception if thrown in the pipeline processing:
 619                 // clear completely buckets arrays:
 620                 buckets_minY = 0;
 621                 buckets_maxY = boundsMaxY - boundsMinY;
 622             }
 623             // clear only used part
 624             edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, buckets_minY,
 625                                                                 buckets_maxY);
 626             edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts,
 627                                                              buckets_minY,
 628                                                              buckets_maxY + 1);
 629         } else {
 630             // unused arrays
 631             edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, 0, 0);
 632             edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 0, 0);
 633         }
 634 
 635         // At last: resize back off-heap edges to initial size
 636         if (edges.length != INITIAL_EDGES_CAPACITY) {
 637             // note: may throw OOME:
 638             edges.resize(INITIAL_EDGES_CAPACITY);
 639         }
 640         if (DO_CLEAN_DIRTY) {
 641             // Force zero-fill dirty arrays:
 642             edges.fill(BYTE_0);
 643         }
 644         if (DO_MONITORS) {
 645             rdrCtx.stats.mon_rdr_endRendering.stop();
 646         }
 647     }
 648 
 649     private static float tosubpixx(final float pix_x) {
 650         return SUBPIXEL_SCALE_X * pix_x;
 651     }
 652 
 653     private static float tosubpixy(final float pix_y) {
 654         // shift y by -0.5 for fast ceil(y - 0.5):
 655         return SUBPIXEL_SCALE_Y * pix_y - 0.5f;
 656     }
 657 
 658     @Override
 659     public void moveTo(final float pix_x0, final float pix_y0) {
 660         closePath();
 661         final float sx = tosubpixx(pix_x0);
 662         final float sy = tosubpixy(pix_y0);
 663         this.sx0 = sx;
 664         this.sy0 = sy;
 665         this.x0 = sx;
 666         this.y0 = sy;
 667     }
 668 
 669     @Override
 670     public void lineTo(final float pix_x1, final float pix_y1) {
 671         final float x1 = tosubpixx(pix_x1);
 672         final float y1 = tosubpixy(pix_y1);
 673         addLine(x0, y0, x1, y1);
 674         x0 = x1;
 675         y0 = y1;
 676     }
 677 
 678     @Override
 679     public void curveTo(final float pix_x1, final float pix_y1,
 680                         final float pix_x2, final float pix_y2,
 681                         final float pix_x3, final float pix_y3)
 682     {
 683         final float xe = tosubpixx(pix_x3);
 684         final float ye = tosubpixy(pix_y3);
 685         curve.set(x0, y0,
 686                 tosubpixx(pix_x1), tosubpixy(pix_y1),
 687                 tosubpixx(pix_x2), tosubpixy(pix_y2),
 688                 xe, ye);
 689         curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
 690         x0 = xe;
 691         y0 = ye;
 692     }
 693 
 694     @Override
 695     public void quadTo(final float pix_x1, final float pix_y1,
 696                        final float pix_x2, final float pix_y2)
 697     {
 698         final float xe = tosubpixx(pix_x2);
 699         final float ye = tosubpixy(pix_y2);
 700         curve.set(x0, y0,
 701                 tosubpixx(pix_x1), tosubpixy(pix_y1),
 702                 xe, ye);
 703         quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
 704         x0 = xe;
 705         y0 = ye;
 706     }
 707 
 708     @Override
 709     public void closePath() {
 710         if (x0 != sx0 || y0 != sy0) {
 711             addLine(x0, y0, sx0, sy0);
 712             x0 = sx0;
 713             y0 = sy0;
 714         }
 715     }
 716 
 717     @Override
 718     public void pathDone() {
 719         closePath();
 720 
 721         // call endRendering() to determine the boundaries:
 722         endRendering();
 723     }
 724 
 725     private void _endRendering(final int ymin, final int ymax,
 726                                final MarlinAlphaConsumer ac)
 727     {
 728         if (DISABLE_RENDER) {
 729             return;
 730         }
 731 
 732         // Get X bounds as true pixel boundaries to compute correct pixel coverage:
 733         final int bboxx0 = bbox_spminX;
 734         final int bboxx1 = bbox_spmaxX;
 735 
 736         final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD);
 737 
 738         // Useful when processing tile line by tile line
 739         final int[] _alpha = alphaLine;
 740 
 741         // local vars (performance):
 742         final OffHeapArray _edges = edges;
 743         final int[] _edgeBuckets = edgeBuckets;
 744         final int[] _edgeBucketCounts = edgeBucketCounts;
 745 
 746         int[] _crossings = this.crossings;
 747         int[] _edgePtrs  = this.edgePtrs;
 748 
 749         // merge sort auxiliary storage:
 750         int[] _aux_crossings = this.aux_crossings;
 751         int[] _aux_edgePtrs  = this.aux_edgePtrs;
 752 
 753         // copy constants:
 754         final long _OFF_ERROR    = OFF_ERROR;
 755         final long _OFF_BUMP_X   = OFF_BUMP_X;
 756         final long _OFF_BUMP_ERR = OFF_BUMP_ERR;
 757 
 758         final long _OFF_NEXT     = OFF_NEXT;
 759         final long _OFF_YMAX     = OFF_YMAX;
 760 
 761         final int _ALL_BUT_LSB   = ALL_BUT_LSB;
 762         final int _ERR_STEP_MAX  = ERR_STEP_MAX;
 763 
 764         // unsafe I/O:
 765         final Unsafe _unsafe = OffHeapArray.UNSAFE;
 766         final long    addr0  = _edges.address;
 767         long addr;
 768         final int _SUBPIXEL_LG_POSITIONS_X = SUBPIXEL_LG_POSITIONS_X;
 769         final int _SUBPIXEL_LG_POSITIONS_Y = SUBPIXEL_LG_POSITIONS_Y;
 770         final int _SUBPIXEL_MASK_X = SUBPIXEL_MASK_X;
 771         final int _SUBPIXEL_MASK_Y = SUBPIXEL_MASK_Y;
 772         final int _SUBPIXEL_POSITIONS_X = SUBPIXEL_POSITIONS_X;
 773 
 774         final int _MIN_VALUE = Integer.MIN_VALUE;
 775         final int _MAX_VALUE = Integer.MAX_VALUE;
 776 
 777         // Now we iterate through the scanlines. We must tell emitRow the coord
 778         // of the first non-transparent pixel, so we must keep accumulators for
 779         // the first and last pixels of the section of the current pixel row
 780         // that we will emit.
 781         // We also need to accumulate pix_bbox, but the iterator does it
 782         // for us. We will just get the values from it once this loop is done
 783         int minX = _MAX_VALUE;
 784         int maxX = _MIN_VALUE;
 785 
 786         int y = ymin;
 787         int bucket = y - boundsMinY;
 788 
 789         int numCrossings = this.edgeCount;
 790         int edgePtrsLen = _edgePtrs.length;
 791         int crossingsLen = _crossings.length;
 792         int _arrayMaxUsed = activeEdgeMaxUsed;
 793         int ptrLen = 0, newCount, ptrEnd;
 794 
 795         int bucketcount, i, j, ecur;
 796         int cross, lastCross;
 797         int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err;
 798         int pix_x, pix_xmaxm1, pix_xmax;
 799 
 800         int low, high, mid, prevNumCrossings;
 801         boolean useBinarySearch;
 802 
 803         final int[] _blkFlags = blkFlags;
 804         final int _BLK_SIZE_LG = BLOCK_SIZE_LG;
 805         final int _BLK_SIZE = BLOCK_SIZE;
 806 
 807         final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags;
 808 
 809         // Use block flags if large pixel span and few crossings:
 810         // ie mean(distance between crossings) is high
 811         boolean useBlkFlags = this.prevUseBlkFlags;
 812 
 813         final int stroking = rdrCtx.stroking;
 814 
 815         int lastY = -1; // last emited row
 816 
 817 
 818         // Iteration on scanlines
 819         for (; y < ymax; y++, bucket++) {
 820             // --- from former ScanLineIterator.next()
 821             bucketcount = _edgeBucketCounts[bucket];
 822 
 823             // marker on previously sorted edges:
 824             prevNumCrossings = numCrossings;
 825 
 826             // bucketCount indicates new edge / edge end:
 827             if (bucketcount != 0) {
 828                 if (DO_STATS) {
 829                     rdrCtx.stats.stat_rdr_activeEdges_updates.add(numCrossings);
 830                 }
 831 
 832                 // last bit set to 1 means that edges ends
 833                 if ((bucketcount & 0x1) != 0) {
 834                     // eviction in active edge list
 835                     // cache edges[] address + offset
 836                     addr = addr0 + _OFF_YMAX;
 837 
 838                     for (i = 0, newCount = 0; i < numCrossings; i++) {
 839                         // get the pointer to the edge
 840                         ecur = _edgePtrs[i];
 841                         // random access so use unsafe:
 842                         if (_unsafe.getInt(addr + ecur) > y) {
 843                             _edgePtrs[newCount++] = ecur;
 844                         }
 845                     }
 846                     // update marker on sorted edges minus removed edges:
 847                     prevNumCrossings = numCrossings = newCount;
 848                 }
 849 
 850                 ptrLen = bucketcount >> 1; // number of new edge
 851 
 852                 if (ptrLen != 0) {
 853                     if (DO_STATS) {
 854                         rdrCtx.stats.stat_rdr_activeEdges_adds.add(ptrLen);
 855                         if (ptrLen > 10) {
 856                             rdrCtx.stats.stat_rdr_activeEdges_adds_high.add(ptrLen);
 857                         }
 858                     }
 859                     ptrEnd = numCrossings + ptrLen;
 860 
 861                     if (edgePtrsLen < ptrEnd) {
 862                         if (DO_STATS) {
 863                             rdrCtx.stats.stat_array_renderer_edgePtrs.add(ptrEnd);
 864                         }
 865                         this.edgePtrs = _edgePtrs
 866                             = edgePtrs_ref.widenArray(_edgePtrs, numCrossings,
 867                                                       ptrEnd);
 868 
 869                         edgePtrsLen = _edgePtrs.length;
 870                         // Get larger auxiliary storage:
 871                         aux_edgePtrs_ref.putArray(_aux_edgePtrs);
 872 
 873                         // use ArrayCache.getNewSize() to use the same growing
 874                         // factor than widenArray():
 875                         if (DO_STATS) {
 876                             rdrCtx.stats.stat_array_renderer_aux_edgePtrs.add(ptrEnd);
 877                         }
 878                         this.aux_edgePtrs = _aux_edgePtrs
 879                             = aux_edgePtrs_ref.getArray(
 880                                 ArrayCacheConst.getNewSize(numCrossings, ptrEnd)
 881                             );
 882                     }
 883 
 884                     // cache edges[] address + offset
 885                     addr = addr0 + _OFF_NEXT;
 886 
 887                     // add new edges to active edge list:
 888                     for (ecur = _edgeBuckets[bucket];
 889                          numCrossings < ptrEnd; numCrossings++)
 890                     {
 891                         // store the pointer to the edge
 892                         _edgePtrs[numCrossings] = ecur;
 893                         // random access so use unsafe:
 894                         ecur = _unsafe.getInt(addr + ecur);
 895                     }
 896 
 897                     if (crossingsLen < numCrossings) {
 898                         // Get larger array:
 899                         crossings_ref.putArray(_crossings);
 900 
 901                         if (DO_STATS) {
 902                             rdrCtx.stats.stat_array_renderer_crossings
 903                                 .add(numCrossings);
 904                         }
 905                         this.crossings = _crossings
 906                             = crossings_ref.getArray(numCrossings);
 907 
 908                         // Get larger auxiliary storage:
 909                         aux_crossings_ref.putArray(_aux_crossings);
 910 
 911                         if (DO_STATS) {
 912                             rdrCtx.stats.stat_array_renderer_aux_crossings
 913                                 .add(numCrossings);
 914                         }
 915                         this.aux_crossings = _aux_crossings
 916                             = aux_crossings_ref.getArray(numCrossings);
 917 
 918                         crossingsLen = _crossings.length;
 919                     }
 920                     if (DO_STATS) {
 921                         // update max used mark
 922                         if (numCrossings > _arrayMaxUsed) {
 923                             _arrayMaxUsed = numCrossings;
 924                         }
 925                     }
 926                 } // ptrLen != 0
 927             } // bucketCount != 0
 928 
 929 
 930             if (numCrossings != 0) {
 931                 /*
 932                  * thresholds to switch to optimized merge sort
 933                  * for newly added edges + final merge pass.
 934                  */
 935                 if ((ptrLen < 10) || (numCrossings < 40)) {
 936                     if (DO_STATS) {
 937                         rdrCtx.stats.hist_rdr_crossings.add(numCrossings);
 938                         rdrCtx.stats.hist_rdr_crossings_adds.add(ptrLen);
 939                     }
 940 
 941                     /*
 942                      * threshold to use binary insertion sort instead of
 943                      * straight insertion sort (to reduce minimize comparisons).
 944                      */
 945                     useBinarySearch = (numCrossings >= 20);
 946 
 947                     // if small enough:
 948                     lastCross = _MIN_VALUE;
 949 
 950                     for (i = 0; i < numCrossings; i++) {
 951                         // get the pointer to the edge
 952                         ecur = _edgePtrs[i];
 953 
 954                         /* convert subpixel coordinates into pixel
 955                             positions for coming scanline */
 956                         /* note: it is faster to always update edges even
 957                            if it is removed from AEL for coming or last scanline */
 958 
 959                         // random access so use unsafe:
 960                         addr = addr0 + ecur; // ecur + OFF_F_CURX
 961 
 962                         // get current crossing:
 963                         curx = _unsafe.getInt(addr);
 964 
 965                         // update crossing with orientation at last bit:
 966                         cross = curx;
 967 
 968                         // Increment x using DDA (fixed point):
 969                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
 970 
 971                         // Increment error:
 972                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
 973                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
 974 
 975                         // Manual carry handling:
 976                         // keep sign and carry bit only and ignore last bit (preserve orientation):
 977                         _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
 978                         _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
 979 
 980                         if (DO_STATS) {
 981                             rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
 982                         }
 983 
 984                         // insertion sort of crossings:
 985                         if (cross < lastCross) {
 986                             if (DO_STATS) {
 987                                 rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
 988                             }
 989 
 990                             /* use binary search for newly added edges
 991                                in crossings if arrays are large enough */
 992                             if (useBinarySearch && (i >= prevNumCrossings)) {
 993                                 if (DO_STATS) {
 994                                     rdrCtx.stats.stat_rdr_crossings_bsearch.add(i);
 995                                 }
 996                                 low = 0;
 997                                 high = i - 1;
 998 
 999                                 do {
1000                                     // note: use signed shift (not >>>) for performance
1001                                     // as indices are small enough to exceed Integer.MAX_VALUE
1002                                     mid = (low + high) >> 1;
1003 
1004                                     if (_crossings[mid] < cross) {
1005                                         low = mid + 1;
1006                                     } else {
1007                                         high = mid - 1;
1008                                     }
1009                                 } while (low <= high);
1010 
1011                                 for (j = i - 1; j >= low; j--) {
1012                                     _crossings[j + 1] = _crossings[j];
1013                                     _edgePtrs [j + 1] = _edgePtrs[j];
1014                                 }
1015                                 _crossings[low] = cross;
1016                                 _edgePtrs [low] = ecur;
1017 
1018                             } else {
1019                                 j = i - 1;
1020                                 _crossings[i] = _crossings[j];
1021                                 _edgePtrs[i] = _edgePtrs[j];
1022 
1023                                 while ((--j >= 0) && (_crossings[j] > cross)) {
1024                                     _crossings[j + 1] = _crossings[j];
1025                                     _edgePtrs [j + 1] = _edgePtrs[j];
1026                                 }
1027                                 _crossings[j + 1] = cross;
1028                                 _edgePtrs [j + 1] = ecur;
1029                             }
1030 
1031                         } else {
1032                             _crossings[i] = lastCross = cross;
1033                         }
1034                     }
1035                 } else {
1036                     if (DO_STATS) {
1037                         rdrCtx.stats.stat_rdr_crossings_msorts.add(numCrossings);
1038                         rdrCtx.stats.hist_rdr_crossings_ratio
1039                             .add((1000 * ptrLen) / numCrossings);
1040                         rdrCtx.stats.hist_rdr_crossings_msorts.add(numCrossings);
1041                         rdrCtx.stats.hist_rdr_crossings_msorts_adds.add(ptrLen);
1042                     }
1043 
1044                     // Copy sorted data in auxiliary arrays
1045                     // and perform insertion sort on almost sorted data
1046                     // (ie i < prevNumCrossings):
1047 
1048                     lastCross = _MIN_VALUE;
1049 
1050                     for (i = 0; i < numCrossings; i++) {
1051                         // get the pointer to the edge
1052                         ecur = _edgePtrs[i];
1053 
1054                         /* convert subpixel coordinates into pixel
1055                             positions for coming scanline */
1056                         /* note: it is faster to always update edges even
1057                            if it is removed from AEL for coming or last scanline */
1058 
1059                         // random access so use unsafe:
1060                         addr = addr0 + ecur; // ecur + OFF_F_CURX
1061 
1062                         // get current crossing:
1063                         curx = _unsafe.getInt(addr);
1064 
1065                         // update crossing with orientation at last bit:
1066                         cross = curx;
1067 
1068                         // Increment x using DDA (fixed point):
1069                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
1070 
1071                         // Increment error:
1072                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
1073                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
1074 
1075                         // Manual carry handling:
1076                         // keep sign and carry bit only and ignore last bit (preserve orientation):
1077                         _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
1078                         _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
1079 
1080                         if (DO_STATS) {
1081                             rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
1082                         }
1083 
1084                         if (i >= prevNumCrossings) {
1085                             // simply store crossing as edgePtrs is in-place:
1086                             // will be copied and sorted efficiently by mergesort later:
1087                             _crossings[i]     = cross;
1088 
1089                         } else if (cross < lastCross) {
1090                             if (DO_STATS) {
1091                                 rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
1092                             }
1093 
1094                             // (straight) insertion sort of crossings:
1095                             j = i - 1;
1096                             _aux_crossings[i] = _aux_crossings[j];
1097                             _aux_edgePtrs[i] = _aux_edgePtrs[j];
1098 
1099                             while ((--j >= 0) && (_aux_crossings[j] > cross)) {
1100                                 _aux_crossings[j + 1] = _aux_crossings[j];
1101                                 _aux_edgePtrs [j + 1] = _aux_edgePtrs[j];
1102                             }
1103                             _aux_crossings[j + 1] = cross;
1104                             _aux_edgePtrs [j + 1] = ecur;
1105 
1106                         } else {
1107                             // auxiliary storage:
1108                             _aux_crossings[i] = lastCross = cross;
1109                             _aux_edgePtrs [i] = ecur;
1110                         }
1111                     }
1112 
1113                     // use Mergesort using auxiliary arrays (sort only right part)
1114                     MergeSort.mergeSortNoCopy(_crossings,     _edgePtrs,
1115                                               _aux_crossings, _aux_edgePtrs,
1116                                               numCrossings,   prevNumCrossings);
1117                 }
1118 
1119                 // reset ptrLen
1120                 ptrLen = 0;
1121                 // --- from former ScanLineIterator.next()
1122 
1123 
1124                 /* note: bboxx0 and bboxx1 must be pixel boundaries
1125                    to have correct coverage computation */
1126 
1127                 // right shift on crossings to get the x-coordinate:
1128                 curxo = _crossings[0];
1129                 x0    = curxo >> 1;
1130                 if (x0 < minX) {
1131                     minX = x0; // subpixel coordinate
1132                 }
1133 
1134                 x1 = _crossings[numCrossings - 1] >> 1;
1135                 if (x1 > maxX) {
1136                     maxX = x1; // subpixel coordinate
1137                 }
1138 
1139 
1140                 // compute pixel coverages
1141                 prev = curx = x0;
1142                 // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1143                 // last bit contains orientation (0 or 1)
1144                 crorientation = ((curxo & 0x1) << 1) - 1;
1145 
1146                 if (windingRuleEvenOdd) {
1147                     sum = crorientation;
1148 
1149                     // Even Odd winding rule: take care of mask ie sum(orientations)
1150                     for (i = 1; i < numCrossings; i++) {
1151                         curxo = _crossings[i];
1152                         curx  =  curxo >> 1;
1153                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1154                         // last bit contains orientation (0 or 1)
1155                         crorientation = ((curxo & 0x1) << 1) - 1;
1156 
1157                         if ((sum & 0x1) != 0) {
1158                             // TODO: perform line clipping on left-right sides
1159                             // to avoid such bound checks:
1160                             x0 = (prev > bboxx0) ? prev : bboxx0;
1161 
1162                             if (curx < bboxx1) {
1163                                 x1 = curx;
1164                             } else {
1165                                 x1 = bboxx1;
1166                                 // skip right side (fast exit loop):
1167                                 i = numCrossings;
1168                             }
1169 
1170                             if (x0 < x1) {
1171                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
1172                                 x1 -= bboxx0; // in the alpha array.
1173 
1174                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1175                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1176 
1177                                 if (pix_x == pix_xmaxm1) {
1178                                     // Start and end in same pixel
1179                                     tmp = (x1 - x0); // number of subpixels
1180                                     _alpha[pix_x    ] += tmp;
1181                                     _alpha[pix_x + 1] -= tmp;
1182 
1183                                     if (useBlkFlags) {
1184                                         // flag used blocks:
1185                                         // note: block processing handles extra pixel:
1186                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1187                                     }
1188                                 } else {
1189                                     tmp = (x0 & _SUBPIXEL_MASK_X);
1190                                     _alpha[pix_x    ]
1191                                         += (_SUBPIXEL_POSITIONS_X - tmp);
1192                                     _alpha[pix_x + 1]
1193                                         += tmp;
1194 
1195                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1196 
1197                                     tmp = (x1 & _SUBPIXEL_MASK_X);
1198                                     _alpha[pix_xmax    ]
1199                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
1200                                     _alpha[pix_xmax + 1]
1201                                         -= tmp;
1202 
1203                                     if (useBlkFlags) {
1204                                         // flag used blocks:
1205                                         // note: block processing handles extra pixel:
1206                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1207                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1208                                     }
1209                                 }
1210                             }
1211                         }
1212 
1213                         sum += crorientation;
1214                         prev = curx;
1215                     }
1216                 } else {
1217                     // Non-zero winding rule: optimize that case (default)
1218                     // and avoid processing intermediate crossings
1219                     for (i = 1, sum = 0;; i++) {
1220                         sum += crorientation;
1221 
1222                         if (sum != 0) {
1223                             // prev = min(curx)
1224                             if (prev > curx) {
1225                                 prev = curx;
1226                             }
1227                         } else {
1228                             // TODO: perform line clipping on left-right sides
1229                             // to avoid such bound checks:
1230                             x0 = (prev > bboxx0) ? prev : bboxx0;
1231 
1232                             if (curx < bboxx1) {
1233                                 x1 = curx;
1234                             } else {
1235                                 x1 = bboxx1;
1236                                 // skip right side (fast exit loop):
1237                                 i = numCrossings;
1238                             }
1239 
1240                             if (x0 < x1) {
1241                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
1242                                 x1 -= bboxx0; // in the alpha array.
1243 
1244                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1245                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1246 
1247                                 if (pix_x == pix_xmaxm1) {
1248                                     // Start and end in same pixel
1249                                     tmp = (x1 - x0); // number of subpixels
1250                                     _alpha[pix_x    ] += tmp;
1251                                     _alpha[pix_x + 1] -= tmp;
1252 
1253                                     if (useBlkFlags) {
1254                                         // flag used blocks:
1255                                         // note: block processing handles extra pixel:
1256                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1257                                     }
1258                                 } else {
1259                                     tmp = (x0 & _SUBPIXEL_MASK_X);
1260                                     _alpha[pix_x    ]
1261                                         += (_SUBPIXEL_POSITIONS_X - tmp);
1262                                     _alpha[pix_x + 1]
1263                                         += tmp;
1264 
1265                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1266 
1267                                     tmp = (x1 & _SUBPIXEL_MASK_X);
1268                                     _alpha[pix_xmax    ]
1269                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
1270                                     _alpha[pix_xmax + 1]
1271                                         -= tmp;
1272 
1273                                     if (useBlkFlags) {
1274                                         // flag used blocks:
1275                                         // note: block processing handles extra pixel:
1276                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1277                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1278                                     }
1279                                 }
1280                             }
1281                             prev = _MAX_VALUE;
1282                         }
1283 
1284                         if (i == numCrossings) {
1285                             break;
1286                         }
1287 
1288                         curxo = _crossings[i];
1289                         curx  =  curxo >> 1;
1290                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1291                         // last bit contains orientation (0 or 1)
1292                         crorientation = ((curxo & 0x1) << 1) - 1;
1293                     }
1294                 }
1295             } // numCrossings > 0
1296 
1297             // even if this last row had no crossings, alpha will be zeroed
1298             // from the last emitRow call. But this doesn't matter because
1299             // maxX < minX, so no row will be emitted to the AlphaConsumer.
1300             if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) {
1301                 lastY = y >> _SUBPIXEL_LG_POSITIONS_Y;
1302 
1303                 // convert subpixel to pixel coordinate within boundaries:
1304                 minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1305                 maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1306 
1307                 if (maxX >= minX) {
1308                     // note: alpha array will be zeroed by copyAARow()
1309                     // +1 because alpha [pix_minX; pix_maxX[
1310                     // fix range [x0; x1[
1311                     // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1312                     // inclusive: alpha[bboxx1] ignored, alpha[bboxx1+1] == 0
1313                     // (normally so never cleared below)
1314                     copyAARow(_alpha, lastY, minX, maxX + 1, useBlkFlags, ac);
1315 
1316                     // speculative for next pixel row (scanline coherence):
1317                     if (_enableBlkFlagsHeuristics) {
1318                         // Use block flags if large pixel span and few crossings:
1319                         // ie mean(distance between crossings) is larger than
1320                         // 1 block size;
1321 
1322                         // fast check width:
1323                         maxX -= minX;
1324 
1325                         // if stroking: numCrossings /= 2
1326                         // => shift numCrossings by 1
1327                         // condition = (width / (numCrossings - 1)) > blockSize
1328                         useBlkFlags = (maxX > _BLK_SIZE) && (maxX >
1329                             (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG));
1330 
1331                         if (DO_STATS) {
1332                             tmp = FloatMath.max(1,
1333                                     ((numCrossings >> stroking) - 1));
1334                             rdrCtx.stats.hist_tile_generator_encoding_dist
1335                                 .add(maxX / tmp);
1336                         }
1337                     }
1338                 } else {
1339                     ac.clearAlphas(lastY);
1340                 }
1341                 minX = _MAX_VALUE;
1342                 maxX = _MIN_VALUE;
1343             }
1344         } // scan line iterator
1345 
1346         // Emit final row
1347         y--;
1348         y >>= _SUBPIXEL_LG_POSITIONS_Y;
1349 
1350         // convert subpixel to pixel coordinate within boundaries:
1351         minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1352         maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1353 
1354         if (maxX >= minX) {
1355             // note: alpha array will be zeroed by copyAARow()
1356             // +1 because alpha [pix_minX; pix_maxX[
1357             // fix range [x0; x1[
1358             // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1359             // inclusive: alpha[bboxx1] ignored then cleared and
1360             // alpha[bboxx1+1] == 0 (normally so never cleared after)
1361             copyAARow(_alpha, y, minX, maxX + 1, useBlkFlags, ac);
1362         } else if (y != lastY) {
1363             ac.clearAlphas(y);
1364         }
1365 
1366         // update member:
1367         edgeCount = numCrossings;
1368         prevUseBlkFlags = useBlkFlags;
1369 
1370         if (DO_STATS) {
1371             // update max used mark
1372             activeEdgeMaxUsed = _arrayMaxUsed;
1373         }
1374     }
1375 
1376     void endRendering() {
1377         if (DO_MONITORS) {
1378             rdrCtx.stats.mon_rdr_endRendering.start();
1379         }
1380         if (edgeMinY == Integer.MAX_VALUE) {
1381             return; // undefined edges bounds
1382         }
1383 
1384         // bounds as half-open intervals
1385         final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5f), boundsMinX);
1386         final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5f), boundsMaxX);
1387 
1388         // edge Min/Max Y are already rounded to subpixels within bounds:
1389         final int spminY = edgeMinY;
1390         final int spmaxY = edgeMaxY;
1391 
1392         buckets_minY = spminY - boundsMinY;
1393         buckets_maxY = spmaxY - boundsMinY;
1394 
1395         if (DO_LOG_BOUNDS) {
1396             MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX
1397                                 + "[ [" + edgeMinY + " ... " + edgeMaxY + "[");
1398             MarlinUtils.logInfo("spXY    = [" + spminX + " ... " + spmaxX
1399                                 + "[ [" + spminY + " ... " + spmaxY + "[");
1400         }
1401 
1402         // test clipping for shapes out of bounds
1403         if ((spminX >= spmaxX) || (spminY >= spmaxY)) {
1404             return;
1405         }
1406 
1407         // half open intervals
1408         // inclusive:
1409         final int pminX =  spminX                    >> SUBPIXEL_LG_POSITIONS_X;
1410         // exclusive:
1411         final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
1412         // inclusive:
1413         final int pminY =  spminY                    >> SUBPIXEL_LG_POSITIONS_Y;
1414         // exclusive:
1415         final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
1416 
1417         // store BBox to answer ptg.getBBox():
1418         initConsumer(pminX, pminY, pmaxX, pmaxY);
1419 
1420         // Heuristics for using block flags:
1421         if (ENABLE_BLOCK_FLAGS) {
1422             enableBlkFlags = this.useRLE;
1423             prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS;
1424 
1425             if (enableBlkFlags) {
1426                 // ensure blockFlags array is large enough:
1427                 // note: +2 to ensure enough space left at end
1428                 final int blkLen = ((pmaxX - pminX) >> BLOCK_SIZE_LG) + 2;
1429                 if (blkLen > INITIAL_ARRAY) {
1430                     blkFlags = blkFlags_ref.getArray(blkLen);
1431                 }
1432             }
1433         }
1434 
1435         // memorize the rendering bounding box:
1436         /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries
1437            to have correct coverage computation */
1438         // inclusive:
1439         bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X;
1440         // exclusive:
1441         bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X;
1442         // inclusive:
1443         bbox_spminY = spminY;
1444         // exclusive:
1445         bbox_spmaxY = spmaxY;
1446 
1447         if (DO_LOG_BOUNDS) {
1448             MarlinUtils.logInfo("pXY       = [" + pminX + " ... " + pmaxX
1449                                 + "[ [" + pminY + " ... " + pmaxY + "[");
1450             MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... "
1451                                 + bbox_spmaxX + "[ [" + bbox_spminY + " ... "
1452                                 + bbox_spmaxY + "[");
1453         }
1454 
1455         // Prepare alpha line:
1456         // add 2 to better deal with the last pixel in a pixel row.
1457         final int width = (pmaxX - pminX) + 2;
1458 
1459         // Useful when processing tile line by tile line
1460         if (width > INITIAL_AA_ARRAY) {
1461             if (DO_STATS) {
1462                 rdrCtx.stats.stat_array_renderer_alphaline.add(width);
1463             }
1464             alphaLine = alphaLine_ref.getArray(width);
1465         }
1466     }
1467 
1468     void initConsumer(int minx, int miny, int maxx, int maxy)
1469     {
1470         // assert maxy >= miny && maxx >= minx;
1471         bboxX0 = minx;
1472         bboxX1 = maxx;
1473         bboxY0 = miny;
1474         bboxY1 = maxy;
1475 
1476         final int width = (maxx - minx);
1477 
1478         if (FORCE_NO_RLE) {
1479             useRLE = false;
1480         } else if (FORCE_RLE) {
1481             useRLE = true;
1482         } else {
1483             // heuristics: use both bbox area and complexity
1484             // ie number of primitives:
1485 
1486             // fast check min width:
1487             useRLE = (width > RLE_MIN_WIDTH);
1488         }
1489     }
1490 
1491     private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY;
1492 
1493     public void produceAlphas(final MarlinAlphaConsumer ac) {
1494         ac.setMaxAlpha(MAX_AA_ALPHA);
1495 
1496         if (enableBlkFlags && !ac.supportBlockFlags()) {
1497             // consumer does not support block flag optimization:
1498             enableBlkFlags = false;
1499             prevUseBlkFlags = false;
1500         }
1501 
1502         if (DO_MONITORS) {
1503             rdrCtx.stats.mon_rdr_endRendering_Y.start();
1504         }
1505 
1506         // Process all scan lines:
1507         _endRendering(bbox_spminY, bbox_spmaxY, ac);
1508 
1509         if (DO_MONITORS) {
1510             rdrCtx.stats.mon_rdr_endRendering_Y.stop();
1511         }
1512     }
1513 
1514     void copyAARow(final int[] alphaRow,
1515                    final int pix_y, final int pix_from, final int pix_to,
1516                    final boolean useBlockFlags,
1517                    final MarlinAlphaConsumer ac)
1518     {
1519         if (DO_MONITORS) {
1520             rdrCtx.stats.mon_rdr_copyAARow.start();
1521         }
1522         if (DO_STATS) {
1523             rdrCtx.stats.stat_cache_rowAA.add(pix_to - pix_from);
1524         }
1525 
1526         if (useBlockFlags) {
1527             if (DO_STATS) {
1528                 rdrCtx.stats.hist_tile_generator_encoding.add(1);
1529             }
1530             ac.setAndClearRelativeAlphas(blkFlags, alphaRow, pix_y, pix_from, pix_to);
1531         } else {
1532             if (DO_STATS) {
1533                 rdrCtx.stats.hist_tile_generator_encoding.add(0);
1534             }
1535             ac.setAndClearRelativeAlphas(alphaRow, pix_y, pix_from, pix_to);
1536         }
1537         if (DO_MONITORS) {
1538             rdrCtx.stats.mon_rdr_copyAARow.stop();
1539         }
1540     }
1541 
1542     // output pixel bounding box:
1543     int bboxX0, bboxX1, bboxY0, bboxY1;
1544 
1545     @Override
1546     public int getOutpixMinX() {
1547         return bboxX0;
1548     }
1549 
1550     @Override
1551     public int getOutpixMaxX() {
1552         return bboxX1;
1553     }
1554 
1555     @Override
1556     public int getOutpixMinY() {
1557         return bboxY0;
1558     }
1559 
1560     @Override
1561     public int getOutpixMaxY() {
1562         return bboxY1;
1563     }
1564 
1565     @Override
1566     public float getOffsetX() {
1567         return RDR_OFFSET_X;
1568     }
1569 
1570     @Override
1571     public float getOffsetY() {
1572         return RDR_OFFSET_Y;
1573     }
1574 }