< prev index next >

modules/javafx.graphics/src/main/java/com/sun/marlin/DCurve.java

Print this page

        

*** 1,7 **** /* ! * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this --- 1,7 ---- /* ! * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this
*** 31,143 **** double dax, day, dbx, dby; DCurve() { } ! void set(double[] points, int type) { ! switch(type) { ! case 8: set(points[0], points[1], points[2], points[3], points[4], points[5], points[6], points[7]); ! return; ! case 6: set(points[0], points[1], points[2], points[3], points[4], points[5]); - return; - default: - throw new InternalError("Curves can only be cubic or quadratic"); } } ! void set(double x1, double y1, ! double x2, double y2, ! double x3, double y3, ! double x4, double y4) { final double dx32 = 3.0d * (x3 - x2); final double dy32 = 3.0d * (y3 - y2); final double dx21 = 3.0d * (x2 - x1); final double dy21 = 3.0d * (y2 - y1); ! ax = (x4 - x1) - dx32; ay = (y4 - y1) - dy32; ! bx = (dx32 - dx21); by = (dy32 - dy21); ! cx = dx21; cy = dy21; ! dx = x1; dy = y1; ! dax = 3.0d * ax; day = 3.0d * ay; ! dbx = 2.0d * bx; dby = 2.0d * by; } ! void set(double x1, double y1, ! double x2, double y2, ! double x3, double y3) { final double dx21 = (x2 - x1); final double dy21 = (y2 - y1); ! ax = 0.0d; ay = 0.0d; ! bx = (x3 - x2) - dx21; by = (y3 - y2) - dy21; ! cx = 2.0d * dx21; cy = 2.0d * dy21; ! dx = x1; dy = y1; ! dax = 0.0d; day = 0.0d; ! dbx = 2.0d * bx; dby = 2.0d * by; ! } ! ! double xat(double t) { ! return t * (t * (t * ax + bx) + cx) + dx; ! } ! double yat(double t) { ! return t * (t * (t * ay + by) + cy) + dy; ! } ! ! double dxat(double t) { ! return t * (t * dax + dbx) + cx; } ! double dyat(double t) { ! return t * (t * day + dby) + cy; } ! int dxRoots(double[] roots, int off) { return DHelpers.quadraticRoots(dax, dbx, cx, roots, off); } ! int dyRoots(double[] roots, int off) { return DHelpers.quadraticRoots(day, dby, cy, roots, off); } ! int infPoints(double[] pts, int off) { // inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0 // Fortunately, this turns out to be quadratic, so there are at // most 2 inflection points. final double a = dax * dby - dbx * day; final double b = 2.0d * (cy * dax - day * cx); final double c = cy * dbx - cx * dby; return DHelpers.quadraticRoots(a, b, c, pts, off); } // finds points where the first and second derivative are // perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where // * is a dot product). Unfortunately, we have to solve a cubic. ! private int perpendiculardfddf(double[] pts, int off) { assert pts.length >= off + 4; // these are the coefficients of some multiple of g(t) (not g(t), // because the roots of a polynomial are not changed after multiplication // by a constant, and this way we save a few multiplications). ! final double a = 2.0d * (dax*dax + day*day); ! final double b = 3.0d * (dax*dbx + day*dby); ! final double c = 2.0d * (dax*cx + day*cy) + dbx*dbx + dby*dby; ! final double d = dbx*cx + dby*cy; return DHelpers.cubicRootsInAB(a, b, c, d, pts, off, 0.0d, 1.0d); } // Tries to find the roots of the function ROC(t)-w in [0, 1). It uses // a variant of the false position algorithm to find the roots. False --- 31,162 ---- double dax, day, dbx, dby; DCurve() { } ! void set(final double[] points, final int type) { ! // if instead of switch (perf + most probable cases first) ! if (type == 8) { set(points[0], points[1], points[2], points[3], points[4], points[5], points[6], points[7]); ! } else if (type == 4) { ! set(points[0], points[1], ! points[2], points[3]); ! } else { set(points[0], points[1], points[2], points[3], points[4], points[5]); } } ! void set(final double x1, final double y1, ! final double x2, final double y2, ! final double x3, final double y3, ! final double x4, final double y4) { final double dx32 = 3.0d * (x3 - x2); final double dy32 = 3.0d * (y3 - y2); final double dx21 = 3.0d * (x2 - x1); final double dy21 = 3.0d * (y2 - y1); ! ax = (x4 - x1) - dx32; // A = P3 - P0 - 3 (P2 - P1) = (P3 - P0) + 3 (P1 - P2) ay = (y4 - y1) - dy32; ! bx = (dx32 - dx21); // B = 3 (P2 - P1) - 3(P1 - P0) = 3 (P2 + P0) - 6 P1 by = (dy32 - dy21); ! cx = dx21; // C = 3 (P1 - P0) cy = dy21; ! dx = x1; // D = P0 dy = y1; ! dax = 3.0d * ax; ! day = 3.0d * ay; ! dbx = 2.0d * bx; ! dby = 2.0d * by; } ! void set(final double x1, final double y1, ! final double x2, final double y2, ! final double x3, final double y3) { final double dx21 = (x2 - x1); final double dy21 = (y2 - y1); ! ax = 0.0d; // A = 0 ! ay = 0.0d; ! bx = (x3 - x2) - dx21; // B = P3 - P0 - 2 P2 by = (y3 - y2) - dy21; ! cx = 2.0d * dx21; // C = 2 (P2 - P1) cy = 2.0d * dy21; ! dx = x1; // D = P1 dy = y1; ! dax = 0.0d; ! day = 0.0d; ! dbx = 2.0d * bx; ! dby = 2.0d * by; } ! void set(final double x1, final double y1, ! final double x2, final double y2) ! { ! final double dx21 = (x2 - x1); ! final double dy21 = (y2 - y1); ! ax = 0.0d; // A = 0 ! ay = 0.0d; ! bx = 0.0d; // B = 0 ! by = 0.0d; ! cx = dx21; // C = (P2 - P1) ! cy = dy21; ! dx = x1; // D = P1 ! dy = y1; ! dax = 0.0d; ! day = 0.0d; ! dbx = 0.0d; ! dby = 0.0d; } ! int dxRoots(final double[] roots, final int off) { return DHelpers.quadraticRoots(dax, dbx, cx, roots, off); } ! int dyRoots(final double[] roots, final int off) { return DHelpers.quadraticRoots(day, dby, cy, roots, off); } ! int infPoints(final double[] pts, final int off) { // inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0 // Fortunately, this turns out to be quadratic, so there are at // most 2 inflection points. final double a = dax * dby - dbx * day; final double b = 2.0d * (cy * dax - day * cx); final double c = cy * dbx - cx * dby; return DHelpers.quadraticRoots(a, b, c, pts, off); } + int xPoints(final double[] ts, final int off, final double x) + { + return DHelpers.cubicRootsInAB(ax, bx, cx, dx - x, ts, off, 0.0d, 1.0d); + } + + int yPoints(final double[] ts, final int off, final double y) + { + return DHelpers.cubicRootsInAB(ay, by, cy, dy - y, ts, off, 0.0d, 1.0d); + } + // finds points where the first and second derivative are // perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where // * is a dot product). Unfortunately, we have to solve a cubic. ! private int perpendiculardfddf(final double[] pts, final int off) { assert pts.length >= off + 4; // these are the coefficients of some multiple of g(t) (not g(t), // because the roots of a polynomial are not changed after multiplication // by a constant, and this way we save a few multiplications). ! final double a = 2.0d * (dax * dax + day * day); ! final double b = 3.0d * (dax * dbx + day * dby); ! final double c = 2.0d * (dax * cx + day * cy) + dbx * dbx + dby * dby; ! final double d = dbx * cx + dby * cy; ! return DHelpers.cubicRootsInAB(a, b, c, d, pts, off, 0.0d, 1.0d); } // Tries to find the roots of the function ROC(t)-w in [0, 1). It uses // a variant of the false position algorithm to find the roots. False
*** 150,215 **** // first and second derivative are perpendicular, and we pretend these // are our local extrema. There are at most 3 of these, so we will check // at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection // points, so roc-w can have at least 6 roots. This shouldn't be a // problem for what we're trying to do (draw a nice looking curve). ! int rootsOfROCMinusW(double[] roots, int off, final double w, final double err) { // no OOB exception, because by now off<=6, and roots.length >= 10 assert off <= 6 && roots.length >= 10; int ret = off; ! int numPerpdfddf = perpendiculardfddf(roots, off); ! double t0 = 0.0d, ft0 = ROCsq(t0) - w*w; ! roots[off + numPerpdfddf] = 1.0d; // always check interval end points ! numPerpdfddf++; ! for (int i = off; i < off + numPerpdfddf; i++) { ! double t1 = roots[i], ft1 = ROCsq(t1) - w*w; if (ft0 == 0.0d) { roots[ret++] = t0; } else if (ft1 * ft0 < 0.0d) { // have opposite signs // (ROC(t)^2 == w^2) == (ROC(t) == w) is true because // ROC(t) >= 0 for all t. ! roots[ret++] = falsePositionROCsqMinusX(t0, t1, w*w, err); } t0 = t1; ft0 = ft1; } return ret - off; } ! private static double eliminateInf(double x) { return (x == Double.POSITIVE_INFINITY ? Double.MAX_VALUE : ! (x == Double.NEGATIVE_INFINITY ? Double.MIN_VALUE : x)); } // A slight modification of the false position algorithm on wikipedia. // This only works for the ROCsq-x functions. It might be nice to have // the function as an argument, but that would be awkward in java6. // TODO: It is something to consider for java8 (or whenever lambda // expressions make it into the language), depending on how closures // and turn out. Same goes for the newton's method // algorithm in DHelpers.java ! private double falsePositionROCsqMinusX(double x0, double x1, ! final double x, final double err) { final int iterLimit = 100; int side = 0; ! double t = x1, ft = eliminateInf(ROCsq(t) - x); ! double s = x0, fs = eliminateInf(ROCsq(s) - x); double r = s, fr; for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) { r = (fs * t - ft * s) / (fs - ft); ! fr = ROCsq(r) - x; if (sameSign(fr, ft)) { ft = fr; t = r; if (side < 0) { fs /= (1 << (-side)); side--; } else { side = -1; } ! } else if (fr * fs > 0) { fs = fr; s = r; if (side > 0) { ft /= (1 << side); side++; } else { --- 169,237 ---- // first and second derivative are perpendicular, and we pretend these // are our local extrema. There are at most 3 of these, so we will check // at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection // points, so roc-w can have at least 6 roots. This shouldn't be a // problem for what we're trying to do (draw a nice looking curve). ! int rootsOfROCMinusW(final double[] roots, final int off, final double w2, final double err) { // no OOB exception, because by now off<=6, and roots.length >= 10 assert off <= 6 && roots.length >= 10; + int ret = off; ! final int end = off + perpendiculardfddf(roots, off); ! roots[end] = 1.0d; // always check interval end points ! ! double t0 = 0.0d, ft0 = ROCsq(t0) - w2; ! ! for (int i = off; i <= end; i++) { ! double t1 = roots[i], ft1 = ROCsq(t1) - w2; if (ft0 == 0.0d) { roots[ret++] = t0; } else if (ft1 * ft0 < 0.0d) { // have opposite signs // (ROC(t)^2 == w^2) == (ROC(t) == w) is true because // ROC(t) >= 0 for all t. ! roots[ret++] = falsePositionROCsqMinusX(t0, t1, w2, err); } t0 = t1; ft0 = ft1; } return ret - off; } ! private static double eliminateInf(final double x) { return (x == Double.POSITIVE_INFINITY ? Double.MAX_VALUE : ! (x == Double.NEGATIVE_INFINITY ? Double.MIN_VALUE : x)); } // A slight modification of the false position algorithm on wikipedia. // This only works for the ROCsq-x functions. It might be nice to have // the function as an argument, but that would be awkward in java6. // TODO: It is something to consider for java8 (or whenever lambda // expressions make it into the language), depending on how closures // and turn out. Same goes for the newton's method // algorithm in DHelpers.java ! private double falsePositionROCsqMinusX(final double t0, final double t1, ! final double w2, final double err) { final int iterLimit = 100; int side = 0; ! double t = t1, ft = eliminateInf(ROCsq(t) - w2); ! double s = t0, fs = eliminateInf(ROCsq(s) - w2); double r = s, fr; + for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) { r = (fs * t - ft * s) / (fs - ft); ! fr = ROCsq(r) - w2; if (sameSign(fr, ft)) { ft = fr; t = r; if (side < 0) { fs /= (1 << (-side)); side--; } else { side = -1; } ! } else if (fr * fs > 0.0d) { fs = fr; s = r; if (side > 0) { ft /= (1 << side); side++; } else {
*** 220,243 **** } } return r; } ! private static boolean sameSign(double x, double y) { // another way is to test if x*y > 0. This is bad for small x, y. return (x < 0.0d && y < 0.0d) || (x > 0.0d && y > 0.0d); } // returns the radius of curvature squared at t of this curve // see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications) private double ROCsq(final double t) { - // dx=xat(t) and dy=yat(t). These calls have been inlined for efficiency final double dx = t * (t * dax + dbx) + cx; final double dy = t * (t * day + dby) + cy; final double ddx = 2.0d * dax * t + dbx; final double ddy = 2.0d * day * t + dby; ! final double dx2dy2 = dx*dx + dy*dy; ! final double ddx2ddy2 = ddx*ddx + ddy*ddy; ! final double ddxdxddydy = ddx*dx + ddy*dy; ! return dx2dy2*((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy)); } } --- 242,264 ---- } } return r; } ! private static boolean sameSign(final double x, final double y) { // another way is to test if x*y > 0. This is bad for small x, y. return (x < 0.0d && y < 0.0d) || (x > 0.0d && y > 0.0d); } // returns the radius of curvature squared at t of this curve // see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications) private double ROCsq(final double t) { final double dx = t * (t * dax + dbx) + cx; final double dy = t * (t * day + dby) + cy; final double ddx = 2.0d * dax * t + dbx; final double ddy = 2.0d * day * t + dby; ! final double dx2dy2 = dx * dx + dy * dy; ! final double ddx2ddy2 = ddx * ddx + ddy * ddy; ! final double ddxdxddydy = ddx * dx + ddy * dy; ! return dx2dy2 * ((dx2dy2 * dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy * ddxdxddydy)); } }
< prev index next >