/* * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package com.sun.marlin; import static com.sun.marlin.OffHeapArray.SIZE_INT; import sun.misc.Unsafe; public final class DRenderer implements DMarlinRenderer, MarlinConst { static final boolean DISABLE_RENDER = false; private static final int ALL_BUT_LSB = 0xFFFFFFFE; private static final int ERR_STEP_MAX = 0x7FFFFFFF; // = 2^31 - 1 private static final double POWER_2_TO_32 = 0x1.0p32d; // use double to make tosubpix methods faster (no int to double conversion) static final double SUBPIXEL_SCALE_X = SUBPIXEL_POSITIONS_X; static final double SUBPIXEL_SCALE_Y = SUBPIXEL_POSITIONS_Y; static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1; static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1; private static final double RDR_OFFSET_X = 0.5d / SUBPIXEL_SCALE_X; private static final double RDR_OFFSET_Y = 0.5d / SUBPIXEL_SCALE_Y; // common to all types of input path segments. // OFFSET as bytes // only integer values: public static final long OFF_CURX_OR = 0; public static final long OFF_ERROR = OFF_CURX_OR + SIZE_INT; public static final long OFF_BUMP_X = OFF_ERROR + SIZE_INT; public static final long OFF_BUMP_ERR = OFF_BUMP_X + SIZE_INT; public static final long OFF_NEXT = OFF_BUMP_ERR + SIZE_INT; public static final long OFF_YMAX = OFF_NEXT + SIZE_INT; // size of one edge in bytes public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT); // curve break into lines // cubic error in subpixels to decrement step private static final double CUB_DEC_ERR_SUBPIX = MarlinProperties.getCubicDecD2() * (SUBPIXEL_POSITIONS_X / 8.0d); // 1.0 / 8th pixel // cubic error in subpixels to increment step private static final double CUB_INC_ERR_SUBPIX = MarlinProperties.getCubicIncD1() * (SUBPIXEL_POSITIONS_X / 8.0d); // 0.4 / 8th pixel // scale factor for Y-axis contribution to quad / cubic errors: public static final double SCALE_DY = ((double) SUBPIXEL_POSITIONS_X) / SUBPIXEL_POSITIONS_Y; // TestNonAARasterization (JDK-8170879): cubics // bad paths (59294/100000 == 59,29%, 94335 bad pixels (avg = 1,59), 3966 warnings (avg = 0,07) // 2018 // 1.0 / 0.2: bad paths (67194/100000 == 67,19%, 117394 bad pixels (avg = 1,75 - max = 9), 4042 warnings (avg = 0,06) // cubic bind length to decrement step public static final double CUB_DEC_BND = 8.0d * CUB_DEC_ERR_SUBPIX; // cubic bind length to increment step public static final double CUB_INC_BND = 8.0d * CUB_INC_ERR_SUBPIX; // cubic countlg public static final int CUB_COUNT_LG = 2; // cubic count = 2^countlg private static final int CUB_COUNT = 1 << CUB_COUNT_LG; // cubic count^2 = 4^countlg private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG); // cubic count^3 = 8^countlg private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG); // cubic dt = 1 / count private static final double CUB_INV_COUNT = 1.0d / CUB_COUNT; // cubic dt^2 = 1 / count^2 = 1 / 4^countlg private static final double CUB_INV_COUNT_2 = 1.0d / CUB_COUNT_2; // cubic dt^3 = 1 / count^3 = 1 / 8^countlg private static final double CUB_INV_COUNT_3 = 1.0d / CUB_COUNT_3; // quad break into lines // quadratic error in subpixels private static final double QUAD_DEC_ERR_SUBPIX = MarlinProperties.getQuadDecD2() * (SUBPIXEL_POSITIONS_X / 8.0d); // 0.5 / 8th pixel // TestNonAARasterization (JDK-8170879): quads // bad paths (62916/100000 == 62,92%, 103818 bad pixels (avg = 1,65), 6514 warnings (avg = 0,10) // 2018 // 0.50px = bad paths (62915/100000 == 62,92%, 103810 bad pixels (avg = 1,65), 6512 warnings (avg = 0,10) // quadratic bind length to decrement step public static final double QUAD_DEC_BND = 8.0d * QUAD_DEC_ERR_SUBPIX; ////////////////////////////////////////////////////////////////////////////// // SCAN LINE ////////////////////////////////////////////////////////////////////////////// // crossings ie subpixel edge x coordinates private int[] crossings; // auxiliary storage for crossings (merge sort) private int[] aux_crossings; // indices into the segment pointer lists. They indicate the "active" // sublist in the segment lists (the portion of the list that contains // all the segments that cross the next scan line). private int edgeCount; private int[] edgePtrs; // auxiliary storage for edge pointers (merge sort) private int[] aux_edgePtrs; // max used for both edgePtrs and crossings (stats only) private int activeEdgeMaxUsed; // crossings ref (dirty) private final IntArrayCache.Reference crossings_ref; // edgePtrs ref (dirty) private final IntArrayCache.Reference edgePtrs_ref; // merge sort initial arrays (large enough to satisfy most usages) (1024) // aux_crossings ref (dirty) private final IntArrayCache.Reference aux_crossings_ref; // aux_edgePtrs ref (dirty) private final IntArrayCache.Reference aux_edgePtrs_ref; ////////////////////////////////////////////////////////////////////////////// // EDGE LIST ////////////////////////////////////////////////////////////////////////////// private int edgeMinY = Integer.MAX_VALUE; private int edgeMaxY = Integer.MIN_VALUE; private double edgeMinX = Double.POSITIVE_INFINITY; private double edgeMaxX = Double.NEGATIVE_INFINITY; // edges [ints] stored in off-heap memory private final OffHeapArray edges; private int[] edgeBuckets; private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed) // used range for edgeBuckets / edgeBucketCounts private int buckets_minY; private int buckets_maxY; // edgeBuckets ref (clean) private final IntArrayCache.Reference edgeBuckets_ref; // edgeBucketCounts ref (clean) private final IntArrayCache.Reference edgeBucketCounts_ref; boolean useRLE = false; // Flattens using adaptive forward differencing. This only carries out // one iteration of the AFD loop. All it does is update AFD variables (i.e. // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings). private void quadBreakIntoLinesAndAdd(double x0, double y0, final DCurve c, final double x2, final double y2) { int count = 1; // dt = 1 / count // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1) double maxDD = Math.abs(c.dbx) + Math.abs(c.dby) * SCALE_DY; final double _DEC_BND = QUAD_DEC_BND; while (maxDD >= _DEC_BND) { // divide step by half: maxDD /= 4.0d; // error divided by 2^2 = 4 count <<= 1; if (DO_STATS) { rdrCtx.stats.stat_rdr_quadBreak_dec.add(count); } } final int nL = count; // line count if (count > 1) { final double icount = 1.0d / count; // dt final double icount2 = icount * icount; // dt^2 final double ddx = c.dbx * icount2; final double ddy = c.dby * icount2; double dx = c.bx * icount2 + c.cx * icount; double dy = c.by * icount2 + c.cy * icount; // we use x0, y0 to walk the line for (double x1 = x0, y1 = y0; --count > 0; dx += ddx, dy += ddy) { x1 += dx; y1 += dy; addLine(x0, y0, x1, y1); x0 = x1; y0 = y1; } } addLine(x0, y0, x2, y2); if (DO_STATS) { rdrCtx.stats.stat_rdr_quadBreak.add(nL); } } // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce // numerical errors, and our callers already have the exact values. // Another alternative would be to pass all the control points, and call // c.set here, but then too many numbers are passed around. private void curveBreakIntoLinesAndAdd(double x0, double y0, final DCurve c, final double x3, final double y3) { int count = CUB_COUNT; final double icount = CUB_INV_COUNT; // dt final double icount2 = CUB_INV_COUNT_2; // dt^2 final double icount3 = CUB_INV_COUNT_3; // dt^3 // the dx and dy refer to forward differencing variables, not the last // coefficients of the "points" polynomial double dddx, dddy, ddx, ddy, dx, dy; dddx = 2.0d * c.dax * icount3; dddy = 2.0d * c.day * icount3; ddx = dddx + c.dbx * icount2; ddy = dddy + c.dby * icount2; dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount; dy = c.ay * icount3 + c.by * icount2 + c.cy * icount; int nL = 0; // line count final double _DEC_BND = CUB_DEC_BND; final double _INC_BND = CUB_INC_BND; final double _SCALE_DY = SCALE_DY; // we use x0, y0 to walk the line for (double x1 = x0, y1 = y0; count > 0; ) { // inc / dec => ratio ~ 5 to minimize upscale / downscale but minimize edges // double step: // can only do this on even "count" values, because we must divide count by 2 while ((count % 2 == 0) && ((Math.abs(ddx) + Math.abs(ddy) * _SCALE_DY) <= _INC_BND)) { dx = 2.0d * dx + ddx; dy = 2.0d * dy + ddy; ddx = 4.0d * (ddx + dddx); ddy = 4.0d * (ddy + dddy); dddx *= 8.0d; dddy *= 8.0d; count >>= 1; if (DO_STATS) { rdrCtx.stats.stat_rdr_curveBreak_inc.add(count); } } // divide step by half: while ((Math.abs(ddx) + Math.abs(ddy) * _SCALE_DY) >= _DEC_BND) { dddx /= 8.0d; dddy /= 8.0d; ddx = ddx / 4.0d - dddx; ddy = ddy / 4.0d - dddy; dx = (dx - ddx) / 2.0d; dy = (dy - ddy) / 2.0d; count <<= 1; if (DO_STATS) { rdrCtx.stats.stat_rdr_curveBreak_dec.add(count); } } if (--count == 0) { break; } x1 += dx; y1 += dy; dx += ddx; dy += ddy; ddx += dddx; ddy += dddy; addLine(x0, y0, x1, y1); x0 = x1; y0 = y1; } addLine(x0, y0, x3, y3); if (DO_STATS) { rdrCtx.stats.stat_rdr_curveBreak.add(nL + 1); } } private void addLine(double x1, double y1, double x2, double y2) { if (DO_MONITORS) { rdrCtx.stats.mon_rdr_addLine.start(); } if (DO_STATS) { rdrCtx.stats.stat_rdr_addLine.add(1); } int or = 1; // orientation of the line. 1 if y increases, 0 otherwise. if (y2 < y1) { or = 0; double tmp = y2; y2 = y1; y1 = tmp; tmp = x2; x2 = x1; x1 = tmp; } // convert subpixel coordinates [double] into pixel positions [int] // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5) // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply // ceil(y1) or ceil(y2) // upper integer (inclusive) final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY); // note: use boundsMaxY (last Y exclusive) to compute correct coverage // upper integer (exclusive) final int lastCrossing = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY); /* skip horizontal lines in pixel space and clip edges out of y range [boundsMinY; boundsMaxY] */ if (firstCrossing >= lastCrossing) { if (DO_MONITORS) { rdrCtx.stats.mon_rdr_addLine.stop(); } if (DO_STATS) { rdrCtx.stats.stat_rdr_addLine_skip.add(1); } return; } // edge min/max X/Y are in subpixel space (half-open interval): // note: Use integer crossings to ensure consistent range within // edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0) if (firstCrossing < edgeMinY) { edgeMinY = firstCrossing; } if (lastCrossing > edgeMaxY) { edgeMaxY = lastCrossing; } final double slope = (x1 - x2) / (y1 - y2); if (slope >= 0.0d) { // <==> x1 < x2 if (x1 < edgeMinX) { edgeMinX = x1; } if (x2 > edgeMaxX) { edgeMaxX = x2; } } else { if (x2 < edgeMinX) { edgeMinX = x2; } if (x1 > edgeMaxX) { edgeMaxX = x1; } } // local variables for performance: final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES; final OffHeapArray _edges = edges; // get free pointer (ie length in bytes) final int edgePtr = _edges.used; // use substraction to avoid integer overflow: if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) { // suppose _edges.length > _SIZEOF_EDGE_BYTES // so doubling size is enough to add needed bytes // note: throw IOOB if neededSize > 2Gb: final long edgeNewSize = ArrayCacheConst.getNewLargeSize( _edges.length, edgePtr + _SIZEOF_EDGE_BYTES); if (DO_STATS) { rdrCtx.stats.stat_rdr_edges_resizes.add(edgeNewSize); } _edges.resize(edgeNewSize); } final Unsafe _unsafe = OffHeapArray.UNSAFE; final long SIZE_INT = 4L; long addr = _edges.address + edgePtr; // The x value must be bumped up to its position at the next HPC we will evaluate. // "firstcrossing" is the (sub)pixel number where the next crossing occurs // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5" // so the Y distance we cover is "firstcrossing + 0.5 - trueY". // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have // y1 = trueY - 0.5 // trueY = y1 + 0.5 // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5) // = firstcrossing - y1 // The x coordinate at that HPC is then: // x1_intercept = x1 + (firstcrossing - y1) * slope // The next VPC is then given by: // VPC index = ceil(x1_intercept - 0.5), or alternately // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon) // epsilon is hard to pin down in floating point, but easy in fixed point, so if // we convert to fixed point then these operations get easier: // long x1_fixed = x1_intercept * 2^32; (fixed point 32.32 format) // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1) // = fixed_floor(x1_fixed + 2^31 - 1) // = fixed_floor(x1_fixed + 0x7FFFFFFF) // and error = fixed_fract(x1_fixed + 0x7FFFFFFF) final double x1_intercept = x1 + (firstCrossing - y1) * slope; // inlined scalb(x1_intercept, 32): final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept)) + 0x7FFFFFFFL; // curx: // last bit corresponds to the orientation _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or); addr += SIZE_INT; _unsafe.putInt(addr, ((int) x1_fixed_biased) >>> 1); addr += SIZE_INT; // inlined scalb(slope, 32): final long slope_fixed = (long) (POWER_2_TO_32 * slope); // last bit set to 0 to keep orientation: _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB)); addr += SIZE_INT; _unsafe.putInt(addr, ((int) slope_fixed) >>> 1); addr += SIZE_INT; final int[] _edgeBuckets = edgeBuckets; final int[] _edgeBucketCounts = edgeBucketCounts; final int _boundsMinY = boundsMinY; // each bucket is a linked list. this method adds ptr to the // start of the "bucket"th linked list. final int bucketIdx = firstCrossing - _boundsMinY; // pointer from bucket _unsafe.putInt(addr, _edgeBuckets[bucketIdx]); addr += SIZE_INT; // y max (exclusive) _unsafe.putInt(addr, lastCrossing); // Update buckets: // directly the edge struct "pointer" _edgeBuckets[bucketIdx] = edgePtr; _edgeBucketCounts[bucketIdx] += 2; // 1 << 1 // last bit means edge end _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1; // update free pointer (ie length in bytes) _edges.used += _SIZEOF_EDGE_BYTES; if (DO_MONITORS) { rdrCtx.stats.mon_rdr_addLine.stop(); } } // END EDGE LIST ////////////////////////////////////////////////////////////////////////////// // Bounds of the drawing region, at subpixel precision. private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY; // Current winding rule private int windingRule; // Current drawing position, i.e., final point of last segment private double x0, y0; // Position of most recent 'moveTo' command private double sx0, sy0; // per-thread renderer context final DRendererContext rdrCtx; // dirty curve private final DCurve curve; // clean alpha array (zero filled) private int[] alphaLine; // alphaLine ref (clean) private final IntArrayCache.Reference alphaLine_ref; private boolean enableBlkFlags = false; private boolean prevUseBlkFlags = false; /* block flags (0|1) */ private int[] blkFlags; // blkFlags ref (clean) private final IntArrayCache.Reference blkFlags_ref; DRenderer(final DRendererContext rdrCtx) { this.rdrCtx = rdrCtx; this.curve = rdrCtx.curve; this.edges = rdrCtx.rdrMem.edges; edgeBuckets_ref = rdrCtx.rdrMem.edgeBuckets_ref; edgeBucketCounts_ref = rdrCtx.rdrMem.edgeBucketCounts_ref; edgeBuckets = edgeBuckets_ref.initial; edgeBucketCounts = edgeBucketCounts_ref.initial; alphaLine_ref = rdrCtx.rdrMem.alphaLine_ref; alphaLine = alphaLine_ref.initial; crossings_ref = rdrCtx.rdrMem.crossings_ref; aux_crossings_ref = rdrCtx.rdrMem.aux_crossings_ref; edgePtrs_ref = rdrCtx.rdrMem.edgePtrs_ref; aux_edgePtrs_ref = rdrCtx.rdrMem.aux_edgePtrs_ref; crossings = crossings_ref.initial; aux_crossings = aux_crossings_ref.initial; edgePtrs = edgePtrs_ref.initial; aux_edgePtrs = aux_edgePtrs_ref.initial; blkFlags_ref = rdrCtx.rdrMem.blkFlags_ref; blkFlags = blkFlags_ref.initial; } public DRenderer init(final int pix_boundsX, final int pix_boundsY, final int pix_boundsWidth, final int pix_boundsHeight, final int windingRule) { this.windingRule = windingRule; // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY this.boundsMinX = pix_boundsX << SUBPIXEL_LG_POSITIONS_X; this.boundsMaxX = (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X; this.boundsMinY = pix_boundsY << SUBPIXEL_LG_POSITIONS_Y; this.boundsMaxY = (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y; if (DO_LOG_BOUNDS) { MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... " + boundsMaxX + "[ [" + boundsMinY + " ... " + boundsMaxY + "["); } // see addLine: ceil(boundsMaxY) => boundsMaxY + 1 // +1 for edgeBucketCounts final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1; if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) { if (DO_STATS) { rdrCtx.stats.stat_array_renderer_edgeBuckets .add(edgeBucketsLength); rdrCtx.stats.stat_array_renderer_edgeBucketCounts .add(edgeBucketsLength); } edgeBuckets = edgeBuckets_ref.getArray(edgeBucketsLength); edgeBucketCounts = edgeBucketCounts_ref.getArray(edgeBucketsLength); } edgeMinY = Integer.MAX_VALUE; edgeMaxY = Integer.MIN_VALUE; edgeMinX = Double.POSITIVE_INFINITY; edgeMaxX = Double.NEGATIVE_INFINITY; // reset used mark: edgeCount = 0; activeEdgeMaxUsed = 0; edges.used = 0; // reset bbox: bboxX0 = 0; bboxX1 = 0; return this; // fluent API } /** * Disposes this renderer and recycle it clean up before reusing this instance */ public void dispose() { if (DO_STATS) { rdrCtx.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed); rdrCtx.stats.stat_rdr_edges.add(edges.used); rdrCtx.stats.stat_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES); rdrCtx.stats.hist_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES); rdrCtx.stats.totalOffHeap += edges.length; } // Return arrays: crossings = crossings_ref.putArray(crossings); aux_crossings = aux_crossings_ref.putArray(aux_crossings); edgePtrs = edgePtrs_ref.putArray(edgePtrs); aux_edgePtrs = aux_edgePtrs_ref.putArray(aux_edgePtrs); alphaLine = alphaLine_ref.putArray(alphaLine, 0, 0); // already zero filled blkFlags = blkFlags_ref.putArray(blkFlags, 0, 0); // already zero filled if (edgeMinY != Integer.MAX_VALUE) { // if context is maked as DIRTY: if (rdrCtx.dirty) { // may happen if an exception if thrown in the pipeline processing: // clear completely buckets arrays: buckets_minY = 0; buckets_maxY = boundsMaxY - boundsMinY; } // clear only used part edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, buckets_minY, buckets_maxY); edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, buckets_minY, buckets_maxY + 1); } else { // unused arrays edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, 0, 0); edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 0, 0); } // At last: resize back off-heap edges to initial size if (edges.length != INITIAL_EDGES_CAPACITY) { // note: may throw OOME: edges.resize(INITIAL_EDGES_CAPACITY); } if (DO_CLEAN_DIRTY) { // Force zero-fill dirty arrays: edges.fill(BYTE_0); } if (DO_MONITORS) { rdrCtx.stats.mon_rdr_endRendering.stop(); } } private static double tosubpixx(final double pix_x) { return SUBPIXEL_SCALE_X * pix_x; } private static double tosubpixy(final double pix_y) { // shift y by -0.5 for fast ceil(y - 0.5): return SUBPIXEL_SCALE_Y * pix_y - 0.5d; } @Override public void moveTo(final double pix_x0, final double pix_y0) { closePath(); final double sx = tosubpixx(pix_x0); final double sy = tosubpixy(pix_y0); this.sx0 = sx; this.sy0 = sy; this.x0 = sx; this.y0 = sy; } @Override public void lineTo(final double pix_x1, final double pix_y1) { final double x1 = tosubpixx(pix_x1); final double y1 = tosubpixy(pix_y1); addLine(x0, y0, x1, y1); x0 = x1; y0 = y1; } @Override public void curveTo(final double pix_x1, final double pix_y1, final double pix_x2, final double pix_y2, final double pix_x3, final double pix_y3) { final double xe = tosubpixx(pix_x3); final double ye = tosubpixy(pix_y3); curve.set(x0, y0, tosubpixx(pix_x1), tosubpixy(pix_y1), tosubpixx(pix_x2), tosubpixy(pix_y2), xe, ye); curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye); x0 = xe; y0 = ye; } @Override public void quadTo(final double pix_x1, final double pix_y1, final double pix_x2, final double pix_y2) { final double xe = tosubpixx(pix_x2); final double ye = tosubpixy(pix_y2); curve.set(x0, y0, tosubpixx(pix_x1), tosubpixy(pix_y1), xe, ye); quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye); x0 = xe; y0 = ye; } @Override public void closePath() { if (x0 != sx0 || y0 != sy0) { addLine(x0, y0, sx0, sy0); x0 = sx0; y0 = sy0; } } @Override public void pathDone() { closePath(); // call endRendering() to determine the boundaries: endRendering(); } private void _endRendering(final int ymin, final int ymax, final MarlinAlphaConsumer ac) { if (DISABLE_RENDER) { return; } // Get X bounds as true pixel boundaries to compute correct pixel coverage: final int bboxx0 = bbox_spminX; final int bboxx1 = bbox_spmaxX; final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD); // Useful when processing tile line by tile line final int[] _alpha = alphaLine; // local vars (performance): final OffHeapArray _edges = edges; final int[] _edgeBuckets = edgeBuckets; final int[] _edgeBucketCounts = edgeBucketCounts; int[] _crossings = this.crossings; int[] _edgePtrs = this.edgePtrs; // merge sort auxiliary storage: int[] _aux_crossings = this.aux_crossings; int[] _aux_edgePtrs = this.aux_edgePtrs; // copy constants: final long _OFF_ERROR = OFF_ERROR; final long _OFF_BUMP_X = OFF_BUMP_X; final long _OFF_BUMP_ERR = OFF_BUMP_ERR; final long _OFF_NEXT = OFF_NEXT; final long _OFF_YMAX = OFF_YMAX; final int _ALL_BUT_LSB = ALL_BUT_LSB; final int _ERR_STEP_MAX = ERR_STEP_MAX; // unsafe I/O: final Unsafe _unsafe = OffHeapArray.UNSAFE; final long addr0 = _edges.address; long addr; final int _SUBPIXEL_LG_POSITIONS_X = SUBPIXEL_LG_POSITIONS_X; final int _SUBPIXEL_LG_POSITIONS_Y = SUBPIXEL_LG_POSITIONS_Y; final int _SUBPIXEL_MASK_X = SUBPIXEL_MASK_X; final int _SUBPIXEL_MASK_Y = SUBPIXEL_MASK_Y; final int _SUBPIXEL_POSITIONS_X = SUBPIXEL_POSITIONS_X; final int _MIN_VALUE = Integer.MIN_VALUE; final int _MAX_VALUE = Integer.MAX_VALUE; // Now we iterate through the scanlines. We must tell emitRow the coord // of the first non-transparent pixel, so we must keep accumulators for // the first and last pixels of the section of the current pixel row // that we will emit. // We also need to accumulate pix_bbox, but the iterator does it // for us. We will just get the values from it once this loop is done int minX = _MAX_VALUE; int maxX = _MIN_VALUE; int y = ymin; int bucket = y - boundsMinY; int numCrossings = this.edgeCount; int edgePtrsLen = _edgePtrs.length; int crossingsLen = _crossings.length; int _arrayMaxUsed = activeEdgeMaxUsed; int ptrLen = 0, newCount, ptrEnd; int bucketcount, i, j, ecur; int cross, lastCross; int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err; int pix_x, pix_xmaxm1, pix_xmax; int low, high, mid, prevNumCrossings; boolean useBinarySearch; final int[] _blkFlags = blkFlags; final int _BLK_SIZE_LG = BLOCK_SIZE_LG; final int _BLK_SIZE = BLOCK_SIZE; final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags; // Use block flags if large pixel span and few crossings: // ie mean(distance between crossings) is high boolean useBlkFlags = this.prevUseBlkFlags; final int stroking = rdrCtx.stroking; int lastY = -1; // last emited row // Iteration on scanlines for (; y < ymax; y++, bucket++) { // --- from former ScanLineIterator.next() bucketcount = _edgeBucketCounts[bucket]; // marker on previously sorted edges: prevNumCrossings = numCrossings; // bucketCount indicates new edge / edge end: if (bucketcount != 0) { if (DO_STATS) { rdrCtx.stats.stat_rdr_activeEdges_updates.add(numCrossings); } // last bit set to 1 means that edges ends if ((bucketcount & 0x1) != 0) { // eviction in active edge list // cache edges[] address + offset addr = addr0 + _OFF_YMAX; for (i = 0, newCount = 0; i < numCrossings; i++) { // get the pointer to the edge ecur = _edgePtrs[i]; // random access so use unsafe: if (_unsafe.getInt(addr + ecur) > y) { _edgePtrs[newCount++] = ecur; } } // update marker on sorted edges minus removed edges: prevNumCrossings = numCrossings = newCount; } ptrLen = bucketcount >> 1; // number of new edge if (ptrLen != 0) { if (DO_STATS) { rdrCtx.stats.stat_rdr_activeEdges_adds.add(ptrLen); if (ptrLen > 10) { rdrCtx.stats.stat_rdr_activeEdges_adds_high.add(ptrLen); } } ptrEnd = numCrossings + ptrLen; if (edgePtrsLen < ptrEnd) { if (DO_STATS) { rdrCtx.stats.stat_array_renderer_edgePtrs.add(ptrEnd); } this.edgePtrs = _edgePtrs = edgePtrs_ref.widenArray(_edgePtrs, numCrossings, ptrEnd); edgePtrsLen = _edgePtrs.length; // Get larger auxiliary storage: aux_edgePtrs_ref.putArray(_aux_edgePtrs); // use ArrayCache.getNewSize() to use the same growing // factor than widenArray(): if (DO_STATS) { rdrCtx.stats.stat_array_renderer_aux_edgePtrs.add(ptrEnd); } this.aux_edgePtrs = _aux_edgePtrs = aux_edgePtrs_ref.getArray( ArrayCacheConst.getNewSize(numCrossings, ptrEnd) ); } // cache edges[] address + offset addr = addr0 + _OFF_NEXT; // add new edges to active edge list: for (ecur = _edgeBuckets[bucket]; numCrossings < ptrEnd; numCrossings++) { // store the pointer to the edge _edgePtrs[numCrossings] = ecur; // random access so use unsafe: ecur = _unsafe.getInt(addr + ecur); } if (crossingsLen < numCrossings) { // Get larger array: crossings_ref.putArray(_crossings); if (DO_STATS) { rdrCtx.stats.stat_array_renderer_crossings .add(numCrossings); } this.crossings = _crossings = crossings_ref.getArray(numCrossings); // Get larger auxiliary storage: aux_crossings_ref.putArray(_aux_crossings); if (DO_STATS) { rdrCtx.stats.stat_array_renderer_aux_crossings .add(numCrossings); } this.aux_crossings = _aux_crossings = aux_crossings_ref.getArray(numCrossings); crossingsLen = _crossings.length; } if (DO_STATS) { // update max used mark if (numCrossings > _arrayMaxUsed) { _arrayMaxUsed = numCrossings; } } } // ptrLen != 0 } // bucketCount != 0 if (numCrossings != 0) { /* * thresholds to switch to optimized merge sort * for newly added edges + final merge pass. */ if ((ptrLen < 10) || (numCrossings < 40)) { if (DO_STATS) { rdrCtx.stats.hist_rdr_crossings.add(numCrossings); rdrCtx.stats.hist_rdr_crossings_adds.add(ptrLen); } /* * threshold to use binary insertion sort instead of * straight insertion sort (to reduce minimize comparisons). */ useBinarySearch = (numCrossings >= 20); // if small enough: lastCross = _MIN_VALUE; for (i = 0; i < numCrossings; i++) { // get the pointer to the edge ecur = _edgePtrs[i]; /* convert subpixel coordinates into pixel positions for coming scanline */ /* note: it is faster to always update edges even if it is removed from AEL for coming or last scanline */ // random access so use unsafe: addr = addr0 + ecur; // ecur + OFF_F_CURX // get current crossing: curx = _unsafe.getInt(addr); // update crossing with orientation at last bit: cross = curx; // Increment x using DDA (fixed point): curx += _unsafe.getInt(addr + _OFF_BUMP_X); // Increment error: err = _unsafe.getInt(addr + _OFF_ERROR) + _unsafe.getInt(addr + _OFF_BUMP_ERR); // Manual carry handling: // keep sign and carry bit only and ignore last bit (preserve orientation): _unsafe.putInt(addr, curx - ((err >> 30) & _ALL_BUT_LSB)); _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX)); if (DO_STATS) { rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings); } // insertion sort of crossings: if (cross < lastCross) { if (DO_STATS) { rdrCtx.stats.stat_rdr_crossings_sorts.add(i); } /* use binary search for newly added edges in crossings if arrays are large enough */ if (useBinarySearch && (i >= prevNumCrossings)) { if (DO_STATS) { rdrCtx.stats.stat_rdr_crossings_bsearch.add(i); } low = 0; high = i - 1; do { // note: use signed shift (not >>>) for performance // as indices are small enough to exceed Integer.MAX_VALUE mid = (low + high) >> 1; if (_crossings[mid] < cross) { low = mid + 1; } else { high = mid - 1; } } while (low <= high); for (j = i - 1; j >= low; j--) { _crossings[j + 1] = _crossings[j]; _edgePtrs [j + 1] = _edgePtrs[j]; } _crossings[low] = cross; _edgePtrs [low] = ecur; } else { j = i - 1; _crossings[i] = _crossings[j]; _edgePtrs[i] = _edgePtrs[j]; while ((--j >= 0) && (_crossings[j] > cross)) { _crossings[j + 1] = _crossings[j]; _edgePtrs [j + 1] = _edgePtrs[j]; } _crossings[j + 1] = cross; _edgePtrs [j + 1] = ecur; } } else { _crossings[i] = lastCross = cross; } } } else { if (DO_STATS) { rdrCtx.stats.stat_rdr_crossings_msorts.add(numCrossings); rdrCtx.stats.hist_rdr_crossings_ratio .add((1000 * ptrLen) / numCrossings); rdrCtx.stats.hist_rdr_crossings_msorts.add(numCrossings); rdrCtx.stats.hist_rdr_crossings_msorts_adds.add(ptrLen); } // Copy sorted data in auxiliary arrays // and perform insertion sort on almost sorted data // (ie i < prevNumCrossings): lastCross = _MIN_VALUE; for (i = 0; i < numCrossings; i++) { // get the pointer to the edge ecur = _edgePtrs[i]; /* convert subpixel coordinates into pixel positions for coming scanline */ /* note: it is faster to always update edges even if it is removed from AEL for coming or last scanline */ // random access so use unsafe: addr = addr0 + ecur; // ecur + OFF_F_CURX // get current crossing: curx = _unsafe.getInt(addr); // update crossing with orientation at last bit: cross = curx; // Increment x using DDA (fixed point): curx += _unsafe.getInt(addr + _OFF_BUMP_X); // Increment error: err = _unsafe.getInt(addr + _OFF_ERROR) + _unsafe.getInt(addr + _OFF_BUMP_ERR); // Manual carry handling: // keep sign and carry bit only and ignore last bit (preserve orientation): _unsafe.putInt(addr, curx - ((err >> 30) & _ALL_BUT_LSB)); _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX)); if (DO_STATS) { rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings); } if (i >= prevNumCrossings) { // simply store crossing as edgePtrs is in-place: // will be copied and sorted efficiently by mergesort later: _crossings[i] = cross; } else if (cross < lastCross) { if (DO_STATS) { rdrCtx.stats.stat_rdr_crossings_sorts.add(i); } // (straight) insertion sort of crossings: j = i - 1; _aux_crossings[i] = _aux_crossings[j]; _aux_edgePtrs[i] = _aux_edgePtrs[j]; while ((--j >= 0) && (_aux_crossings[j] > cross)) { _aux_crossings[j + 1] = _aux_crossings[j]; _aux_edgePtrs [j + 1] = _aux_edgePtrs[j]; } _aux_crossings[j + 1] = cross; _aux_edgePtrs [j + 1] = ecur; } else { // auxiliary storage: _aux_crossings[i] = lastCross = cross; _aux_edgePtrs [i] = ecur; } } // use Mergesort using auxiliary arrays (sort only right part) MergeSort.mergeSortNoCopy(_crossings, _edgePtrs, _aux_crossings, _aux_edgePtrs, numCrossings, prevNumCrossings); } // reset ptrLen ptrLen = 0; // --- from former ScanLineIterator.next() /* note: bboxx0 and bboxx1 must be pixel boundaries to have correct coverage computation */ // right shift on crossings to get the x-coordinate: curxo = _crossings[0]; x0 = curxo >> 1; if (x0 < minX) { minX = x0; // subpixel coordinate } x1 = _crossings[numCrossings - 1] >> 1; if (x1 > maxX) { maxX = x1; // subpixel coordinate } // compute pixel coverages prev = curx = x0; // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1. // last bit contains orientation (0 or 1) crorientation = ((curxo & 0x1) << 1) - 1; if (windingRuleEvenOdd) { sum = crorientation; // Even Odd winding rule: take care of mask ie sum(orientations) for (i = 1; i < numCrossings; i++) { curxo = _crossings[i]; curx = curxo >> 1; // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1. // last bit contains orientation (0 or 1) crorientation = ((curxo & 0x1) << 1) - 1; if ((sum & 0x1) != 0) { // TODO: perform line clipping on left-right sides // to avoid such bound checks: x0 = (prev > bboxx0) ? prev : bboxx0; if (curx < bboxx1) { x1 = curx; } else { x1 = bboxx1; // skip right side (fast exit loop): i = numCrossings; } if (x0 < x1) { x0 -= bboxx0; // turn x0, x1 from coords to indices x1 -= bboxx0; // in the alpha array. pix_x = x0 >> _SUBPIXEL_LG_POSITIONS_X; pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X; if (pix_x == pix_xmaxm1) { // Start and end in same pixel tmp = (x1 - x0); // number of subpixels _alpha[pix_x ] += tmp; _alpha[pix_x + 1] -= tmp; if (useBlkFlags) { // flag used blocks: // note: block processing handles extra pixel: _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; } } else { tmp = (x0 & _SUBPIXEL_MASK_X); _alpha[pix_x ] += (_SUBPIXEL_POSITIONS_X - tmp); _alpha[pix_x + 1] += tmp; pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X; tmp = (x1 & _SUBPIXEL_MASK_X); _alpha[pix_xmax ] -= (_SUBPIXEL_POSITIONS_X - tmp); _alpha[pix_xmax + 1] -= tmp; if (useBlkFlags) { // flag used blocks: // note: block processing handles extra pixel: _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1; } } } } sum += crorientation; prev = curx; } } else { // Non-zero winding rule: optimize that case (default) // and avoid processing intermediate crossings for (i = 1, sum = 0;; i++) { sum += crorientation; if (sum != 0) { // prev = min(curx) if (prev > curx) { prev = curx; } } else { // TODO: perform line clipping on left-right sides // to avoid such bound checks: x0 = (prev > bboxx0) ? prev : bboxx0; if (curx < bboxx1) { x1 = curx; } else { x1 = bboxx1; // skip right side (fast exit loop): i = numCrossings; } if (x0 < x1) { x0 -= bboxx0; // turn x0, x1 from coords to indices x1 -= bboxx0; // in the alpha array. pix_x = x0 >> _SUBPIXEL_LG_POSITIONS_X; pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X; if (pix_x == pix_xmaxm1) { // Start and end in same pixel tmp = (x1 - x0); // number of subpixels _alpha[pix_x ] += tmp; _alpha[pix_x + 1] -= tmp; if (useBlkFlags) { // flag used blocks: // note: block processing handles extra pixel: _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; } } else { tmp = (x0 & _SUBPIXEL_MASK_X); _alpha[pix_x ] += (_SUBPIXEL_POSITIONS_X - tmp); _alpha[pix_x + 1] += tmp; pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X; tmp = (x1 & _SUBPIXEL_MASK_X); _alpha[pix_xmax ] -= (_SUBPIXEL_POSITIONS_X - tmp); _alpha[pix_xmax + 1] -= tmp; if (useBlkFlags) { // flag used blocks: // note: block processing handles extra pixel: _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1; } } } prev = _MAX_VALUE; } if (i == numCrossings) { break; } curxo = _crossings[i]; curx = curxo >> 1; // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1. // last bit contains orientation (0 or 1) crorientation = ((curxo & 0x1) << 1) - 1; } } } // numCrossings > 0 // even if this last row had no crossings, alpha will be zeroed // from the last emitRow call. But this doesn't matter because // maxX < minX, so no row will be emitted to the AlphaConsumer. if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) { lastY = y >> _SUBPIXEL_LG_POSITIONS_Y; // convert subpixel to pixel coordinate within boundaries: minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X; maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X; if (maxX >= minX) { // note: alpha array will be zeroed by copyAARow() // +1 because alpha [pix_minX; pix_maxX[ // fix range [x0; x1[ // note: if x1=bboxx1, then alpha is written up to bboxx1+1 // inclusive: alpha[bboxx1] ignored, alpha[bboxx1+1] == 0 // (normally so never cleared below) copyAARow(_alpha, lastY, minX, maxX + 1, useBlkFlags, ac); // speculative for next pixel row (scanline coherence): if (_enableBlkFlagsHeuristics) { // Use block flags if large pixel span and few crossings: // ie mean(distance between crossings) is larger than // 1 block size; // fast check width: maxX -= minX; // if stroking: numCrossings /= 2 // => shift numCrossings by 1 // condition = (width / (numCrossings - 1)) > blockSize useBlkFlags = (maxX > _BLK_SIZE) && (maxX > (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG)); if (DO_STATS) { tmp = FloatMath.max(1, ((numCrossings >> stroking) - 1)); rdrCtx.stats.hist_tile_generator_encoding_dist .add(maxX / tmp); } } } else { ac.clearAlphas(lastY); } minX = _MAX_VALUE; maxX = _MIN_VALUE; } } // scan line iterator // Emit final row y--; y >>= _SUBPIXEL_LG_POSITIONS_Y; // convert subpixel to pixel coordinate within boundaries: minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X; maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X; if (maxX >= minX) { // note: alpha array will be zeroed by copyAARow() // +1 because alpha [pix_minX; pix_maxX[ // fix range [x0; x1[ // note: if x1=bboxx1, then alpha is written up to bboxx1+1 // inclusive: alpha[bboxx1] ignored then cleared and // alpha[bboxx1+1] == 0 (normally so never cleared after) copyAARow(_alpha, y, minX, maxX + 1, useBlkFlags, ac); } else if (y != lastY) { ac.clearAlphas(y); } // update member: edgeCount = numCrossings; prevUseBlkFlags = useBlkFlags; if (DO_STATS) { // update max used mark activeEdgeMaxUsed = _arrayMaxUsed; } } void endRendering() { if (DO_MONITORS) { rdrCtx.stats.mon_rdr_endRendering.start(); } if (edgeMinY == Integer.MAX_VALUE) { return; // undefined edges bounds } // bounds as half-open intervals final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5d), boundsMinX); final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5d), boundsMaxX); // edge Min/Max Y are already rounded to subpixels within bounds: final int spminY = edgeMinY; final int spmaxY = edgeMaxY; buckets_minY = spminY - boundsMinY; buckets_maxY = spmaxY - boundsMinY; if (DO_LOG_BOUNDS) { MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX + "[ [" + edgeMinY + " ... " + edgeMaxY + "["); MarlinUtils.logInfo("spXY = [" + spminX + " ... " + spmaxX + "[ [" + spminY + " ... " + spmaxY + "["); } // test clipping for shapes out of bounds if ((spminX >= spmaxX) || (spminY >= spmaxY)) { return; } // half open intervals // inclusive: final int pminX = spminX >> SUBPIXEL_LG_POSITIONS_X; // exclusive: final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X; // inclusive: final int pminY = spminY >> SUBPIXEL_LG_POSITIONS_Y; // exclusive: final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y; // store BBox to answer ptg.getBBox(): initConsumer(pminX, pminY, pmaxX, pmaxY); // Heuristics for using block flags: if (ENABLE_BLOCK_FLAGS) { enableBlkFlags = this.useRLE; prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS; if (enableBlkFlags) { // ensure blockFlags array is large enough: // note: +2 to ensure enough space left at end final int blkLen = ((pmaxX - pminX) >> BLOCK_SIZE_LG) + 2; if (blkLen > INITIAL_ARRAY) { blkFlags = blkFlags_ref.getArray(blkLen); } } } // memorize the rendering bounding box: /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries to have correct coverage computation */ // inclusive: bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X; // exclusive: bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X; // inclusive: bbox_spminY = spminY; // exclusive: bbox_spmaxY = spmaxY; if (DO_LOG_BOUNDS) { MarlinUtils.logInfo("pXY = [" + pminX + " ... " + pmaxX + "[ [" + pminY + " ... " + pmaxY + "["); MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... " + bbox_spmaxX + "[ [" + bbox_spminY + " ... " + bbox_spmaxY + "["); } // Prepare alpha line: // add 2 to better deal with the last pixel in a pixel row. final int width = (pmaxX - pminX) + 2; // Useful when processing tile line by tile line if (width > INITIAL_AA_ARRAY) { if (DO_STATS) { rdrCtx.stats.stat_array_renderer_alphaline.add(width); } alphaLine = alphaLine_ref.getArray(width); } } void initConsumer(int minx, int miny, int maxx, int maxy) { // assert maxy >= miny && maxx >= minx; bboxX0 = minx; bboxX1 = maxx; bboxY0 = miny; bboxY1 = maxy; final int width = (maxx - minx); if (FORCE_NO_RLE) { useRLE = false; } else if (FORCE_RLE) { useRLE = true; } else { // heuristics: use both bbox area and complexity // ie number of primitives: // fast check min width: useRLE = (width > RLE_MIN_WIDTH); } } private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY; public void produceAlphas(final MarlinAlphaConsumer ac) { ac.setMaxAlpha(MAX_AA_ALPHA); if (enableBlkFlags && !ac.supportBlockFlags()) { // consumer does not support block flag optimization: enableBlkFlags = false; prevUseBlkFlags = false; } if (DO_MONITORS) { rdrCtx.stats.mon_rdr_endRendering_Y.start(); } // Process all scan lines: _endRendering(bbox_spminY, bbox_spmaxY, ac); if (DO_MONITORS) { rdrCtx.stats.mon_rdr_endRendering_Y.stop(); } } void copyAARow(final int[] alphaRow, final int pix_y, final int pix_from, final int pix_to, final boolean useBlockFlags, final MarlinAlphaConsumer ac) { if (DO_MONITORS) { rdrCtx.stats.mon_rdr_copyAARow.start(); } if (DO_STATS) { rdrCtx.stats.stat_cache_rowAA.add(pix_to - pix_from); } if (useBlockFlags) { if (DO_STATS) { rdrCtx.stats.hist_tile_generator_encoding.add(1); } ac.setAndClearRelativeAlphas(blkFlags, alphaRow, pix_y, pix_from, pix_to); } else { if (DO_STATS) { rdrCtx.stats.hist_tile_generator_encoding.add(0); } ac.setAndClearRelativeAlphas(alphaRow, pix_y, pix_from, pix_to); } if (DO_MONITORS) { rdrCtx.stats.mon_rdr_copyAARow.stop(); } } // output pixel bounding box: int bboxX0, bboxX1, bboxY0, bboxY1; @Override public int getOutpixMinX() { return bboxX0; } @Override public int getOutpixMaxX() { return bboxX1; } @Override public int getOutpixMinY() { return bboxY0; } @Override public int getOutpixMaxY() { return bboxY1; } @Override public double getOffsetX() { return RDR_OFFSET_X; } @Override public double getOffsetY() { return RDR_OFFSET_Y; } }