1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/type.hpp"
  42 
  43 // Portions of code courtesy of Clifford Click
  44 
  45 // Optimization - Graph Style
  46 
  47 // Dictionary of types shared among compilations.
  48 Dict* Type::_shared_type_dict = NULL;
  49 
  50 // Array which maps compiler types to Basic Types
  51 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  52   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  53   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  54   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  55   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  56   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  57   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  58   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  59   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  60   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  61   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  62 
  63 #ifdef SPARC
  64   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  65   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  66   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  67   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  68   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  69 #elif defined(PPC64)
  70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  72   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  73   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  74   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  75 #elif defined(S390)
  76   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  77   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  78   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  79   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  80   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  81 #else // all other
  82   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  83   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  84   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  85   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  86   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  87 #endif
  88   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  89   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  90   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  91   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  92   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  93   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  94   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  95   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  96   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  97   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  98   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  99   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 100   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 101   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 102   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 103   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 104   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 105   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 106 };
 107 
 108 // Map ideal registers (machine types) to ideal types
 109 const Type *Type::mreg2type[_last_machine_leaf];
 110 
 111 // Map basic types to canonical Type* pointers.
 112 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 113 
 114 // Map basic types to constant-zero Types.
 115 const Type* Type::            _zero_type[T_CONFLICT+1];
 116 
 117 // Map basic types to array-body alias types.
 118 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 119 
 120 //=============================================================================
 121 // Convenience common pre-built types.
 122 const Type *Type::ABIO;         // State-of-machine only
 123 const Type *Type::BOTTOM;       // All values
 124 const Type *Type::CONTROL;      // Control only
 125 const Type *Type::DOUBLE;       // All doubles
 126 const Type *Type::FLOAT;        // All floats
 127 const Type *Type::HALF;         // Placeholder half of doublewide type
 128 const Type *Type::MEMORY;       // Abstract store only
 129 const Type *Type::RETURN_ADDRESS;
 130 const Type *Type::TOP;          // No values in set
 131 
 132 //------------------------------get_const_type---------------------------
 133 const Type* Type::get_const_type(ciType* type) {
 134   if (type == NULL) {
 135     return NULL;
 136   } else if (type->is_primitive_type()) {
 137     return get_const_basic_type(type->basic_type());
 138   } else {
 139     return TypeOopPtr::make_from_klass(type->as_klass());
 140   }
 141 }
 142 
 143 //---------------------------array_element_basic_type---------------------------------
 144 // Mapping to the array element's basic type.
 145 BasicType Type::array_element_basic_type() const {
 146   BasicType bt = basic_type();
 147   if (bt == T_INT) {
 148     if (this == TypeInt::INT)   return T_INT;
 149     if (this == TypeInt::CHAR)  return T_CHAR;
 150     if (this == TypeInt::BYTE)  return T_BYTE;
 151     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 152     if (this == TypeInt::SHORT) return T_SHORT;
 153     return T_VOID;
 154   }
 155   return bt;
 156 }
 157 
 158 // For two instance arrays of same dimension, return the base element types.
 159 // Otherwise or if the arrays have different dimensions, return NULL.
 160 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 161                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 162 
 163   if (e1) *e1 = NULL;
 164   if (e2) *e2 = NULL;
 165   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 166   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 167 
 168   if (a1tap != NULL && a2tap != NULL) {
 169     // Handle multidimensional arrays
 170     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 171     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 172     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 173       a1tap = a1tp->is_aryptr();
 174       a2tap = a2tp->is_aryptr();
 175       a1tp = a1tap->elem()->make_ptr();
 176       a2tp = a2tap->elem()->make_ptr();
 177     }
 178     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 179       if (e1) *e1 = a1tp->is_instptr();
 180       if (e2) *e2 = a2tp->is_instptr();
 181     }
 182   }
 183 }
 184 
 185 //---------------------------get_typeflow_type---------------------------------
 186 // Import a type produced by ciTypeFlow.
 187 const Type* Type::get_typeflow_type(ciType* type) {
 188   switch (type->basic_type()) {
 189 
 190   case ciTypeFlow::StateVector::T_BOTTOM:
 191     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 192     return Type::BOTTOM;
 193 
 194   case ciTypeFlow::StateVector::T_TOP:
 195     assert(type == ciTypeFlow::StateVector::top_type(), "");
 196     return Type::TOP;
 197 
 198   case ciTypeFlow::StateVector::T_NULL:
 199     assert(type == ciTypeFlow::StateVector::null_type(), "");
 200     return TypePtr::NULL_PTR;
 201 
 202   case ciTypeFlow::StateVector::T_LONG2:
 203     // The ciTypeFlow pass pushes a long, then the half.
 204     // We do the same.
 205     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 206     return TypeInt::TOP;
 207 
 208   case ciTypeFlow::StateVector::T_DOUBLE2:
 209     // The ciTypeFlow pass pushes double, then the half.
 210     // Our convention is the same.
 211     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 212     return Type::TOP;
 213 
 214   case T_ADDRESS:
 215     assert(type->is_return_address(), "");
 216     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 217 
 218   default:
 219     // make sure we did not mix up the cases:
 220     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 221     assert(type != ciTypeFlow::StateVector::top_type(), "");
 222     assert(type != ciTypeFlow::StateVector::null_type(), "");
 223     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 224     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 225     assert(!type->is_return_address(), "");
 226 
 227     return Type::get_const_type(type);
 228   }
 229 }
 230 
 231 
 232 //-----------------------make_from_constant------------------------------------
 233 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 234                                      int stable_dimension, bool is_narrow_oop,
 235                                      bool is_autobox_cache) {
 236   switch (constant.basic_type()) {
 237     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 238     case T_CHAR:     return TypeInt::make(constant.as_char());
 239     case T_BYTE:     return TypeInt::make(constant.as_byte());
 240     case T_SHORT:    return TypeInt::make(constant.as_short());
 241     case T_INT:      return TypeInt::make(constant.as_int());
 242     case T_LONG:     return TypeLong::make(constant.as_long());
 243     case T_FLOAT:    return TypeF::make(constant.as_float());
 244     case T_DOUBLE:   return TypeD::make(constant.as_double());
 245     case T_ARRAY:
 246     case T_OBJECT: {
 247         const Type* con_type = NULL;
 248         ciObject* oop_constant = constant.as_object();
 249         if (oop_constant->is_null_object()) {
 250           con_type = Type::get_zero_type(T_OBJECT);
 251         } else {
 252           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 253           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 254           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 255             con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 256           }
 257           if (stable_dimension > 0) {
 258             assert(FoldStableValues, "sanity");
 259             assert(!con_type->is_zero_type(), "default value for stable field");
 260             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 261           }
 262         }
 263         if (is_narrow_oop) {
 264           con_type = con_type->make_narrowoop();
 265         }
 266         return con_type;
 267       }
 268     case T_ILLEGAL:
 269       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 270       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 271       return NULL;
 272     default:
 273       // Fall through to failure
 274       return NULL;
 275   }
 276 }
 277 
 278 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 279   BasicType conbt = con.basic_type();
 280   switch (conbt) {
 281     case T_BOOLEAN: conbt = T_BYTE;   break;
 282     case T_ARRAY:   conbt = T_OBJECT; break;
 283     default:                          break;
 284   }
 285   switch (loadbt) {
 286     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 287     case T_NARROWOOP: loadbt = T_OBJECT; break;
 288     case T_ARRAY:     loadbt = T_OBJECT; break;
 289     case T_ADDRESS:   loadbt = T_OBJECT; break;
 290     default:                             break;
 291   }
 292   if (conbt == loadbt) {
 293     if (is_unsigned && conbt == T_BYTE) {
 294       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 295       return ciConstant(T_INT, con.as_int() & 0xFF);
 296     } else {
 297       return con;
 298     }
 299   }
 300   if (conbt == T_SHORT && loadbt == T_CHAR) {
 301     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 302     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 303   }
 304   return ciConstant(); // T_ILLEGAL
 305 }
 306 
 307 // Try to constant-fold a stable array element.
 308 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 309                                                    BasicType loadbt, bool is_unsigned_load) {
 310   // Decode the results of GraphKit::array_element_address.
 311   ciConstant element_value = array->element_value_by_offset(off);
 312   if (element_value.basic_type() == T_ILLEGAL) {
 313     return NULL; // wrong offset
 314   }
 315   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 316 
 317   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 318          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 319 
 320   if (con.is_valid() &&          // not a mismatched access
 321       !con.is_null_or_zero()) {  // not a default value
 322     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 323     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 324   }
 325   return NULL;
 326 }
 327 
 328 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 329   ciField* field;
 330   ciType* type = holder->java_mirror_type();
 331   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 332     // Static field
 333     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 334   } else {
 335     // Instance field
 336     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 337   }
 338   if (field == NULL) {
 339     return NULL; // Wrong offset
 340   }
 341   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 342 }
 343 
 344 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 345                                            BasicType loadbt, bool is_unsigned_load) {
 346   if (!field->is_constant()) {
 347     return NULL; // Non-constant field
 348   }
 349   ciConstant field_value;
 350   if (field->is_static()) {
 351     // final static field
 352     field_value = field->constant_value();
 353   } else if (holder != NULL) {
 354     // final or stable non-static field
 355     // Treat final non-static fields of trusted classes (classes in
 356     // java.lang.invoke and sun.invoke packages and subpackages) as
 357     // compile time constants.
 358     field_value = field->constant_value_of(holder);
 359   }
 360   if (!field_value.is_valid()) {
 361     return NULL; // Not a constant
 362   }
 363 
 364   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 365 
 366   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 367          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 368 
 369   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 370   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 371   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 372 
 373   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 374                                             stable_dimension, is_narrow_oop,
 375                                             field->is_autobox_cache());
 376   if (con_type != NULL && field->is_call_site_target()) {
 377     ciCallSite* call_site = holder->as_call_site();
 378     if (!call_site->is_constant_call_site()) {
 379       ciMethodHandle* target = con.as_object()->as_method_handle();
 380       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 381     }
 382   }
 383   return con_type;
 384 }
 385 
 386 //------------------------------make-------------------------------------------
 387 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 388 // and look for an existing copy in the type dictionary.
 389 const Type *Type::make( enum TYPES t ) {
 390   return (new Type(t))->hashcons();
 391 }
 392 
 393 //------------------------------cmp--------------------------------------------
 394 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 395   if( t1->_base != t2->_base )
 396     return 1;                   // Missed badly
 397   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 398   return !t1->eq(t2);           // Return ZERO if equal
 399 }
 400 
 401 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 402   if (!include_speculative) {
 403     return remove_speculative();
 404   }
 405   return this;
 406 }
 407 
 408 //------------------------------hash-------------------------------------------
 409 int Type::uhash( const Type *const t ) {
 410   return t->hash();
 411 }
 412 
 413 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 414 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
 415 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
 416 
 417 //--------------------------Initialize_shared----------------------------------
 418 void Type::Initialize_shared(Compile* current) {
 419   // This method does not need to be locked because the first system
 420   // compilations (stub compilations) occur serially.  If they are
 421   // changed to proceed in parallel, then this section will need
 422   // locking.
 423 
 424   Arena* save = current->type_arena();
 425   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 426 
 427   current->set_type_arena(shared_type_arena);
 428   _shared_type_dict =
 429     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 430                                   shared_type_arena, 128 );
 431   current->set_type_dict(_shared_type_dict);
 432 
 433   // Make shared pre-built types.
 434   CONTROL = make(Control);      // Control only
 435   TOP     = make(Top);          // No values in set
 436   MEMORY  = make(Memory);       // Abstract store only
 437   ABIO    = make(Abio);         // State-of-machine only
 438   RETURN_ADDRESS=make(Return_Address);
 439   FLOAT   = make(FloatBot);     // All floats
 440   DOUBLE  = make(DoubleBot);    // All doubles
 441   BOTTOM  = make(Bottom);       // Everything
 442   HALF    = make(Half);         // Placeholder half of doublewide type
 443 
 444   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 445   TypeF::ONE  = TypeF::make(1.0); // Float 1
 446   TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
 447   TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
 448 
 449   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 450   TypeD::ONE  = TypeD::make(1.0); // Double 1
 451   TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
 452   TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
 453 
 454   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 455   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 456   TypeInt::ONE     = TypeInt::make( 1);  //  1
 457   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 458   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 459   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 460   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 461   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 462   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 463   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 464   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 465   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 466   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 467   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 468   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 469   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 470   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 471   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 472   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 473   // CmpL is overloaded both as the bytecode computation returning
 474   // a trinary (-1,0,+1) integer result AND as an efficient long
 475   // compare returning optimizer ideal-type flags.
 476   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 477   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 478   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 479   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 480   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 481 
 482   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 483   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 484   TypeLong::ONE     = TypeLong::make( 1);        //  1
 485   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 486   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 487   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 488   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 489   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 490 
 491   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 492   fboth[0] = Type::CONTROL;
 493   fboth[1] = Type::CONTROL;
 494   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 495 
 496   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 497   ffalse[0] = Type::CONTROL;
 498   ffalse[1] = Type::TOP;
 499   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 500 
 501   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 502   fneither[0] = Type::TOP;
 503   fneither[1] = Type::TOP;
 504   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 505 
 506   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 507   ftrue[0] = Type::TOP;
 508   ftrue[1] = Type::CONTROL;
 509   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 510 
 511   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 512   floop[0] = Type::CONTROL;
 513   floop[1] = TypeInt::INT;
 514   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 515 
 516   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 517   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 518   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 519 
 520   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 521   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 522 
 523   const Type **fmembar = TypeTuple::fields(0);
 524   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 525 
 526   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 527   fsc[0] = TypeInt::CC;
 528   fsc[1] = Type::MEMORY;
 529   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 530 
 531   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 532   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 533   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 534   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 535                                            false, 0, oopDesc::mark_offset_in_bytes());
 536   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 537                                            false, 0, oopDesc::klass_offset_in_bytes());
 538   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 539 
 540   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 541 
 542   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 543   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 544 
 545   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 546 
 547   mreg2type[Op_Node] = Type::BOTTOM;
 548   mreg2type[Op_Set ] = 0;
 549   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 550   mreg2type[Op_RegI] = TypeInt::INT;
 551   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 552   mreg2type[Op_RegF] = Type::FLOAT;
 553   mreg2type[Op_RegD] = Type::DOUBLE;
 554   mreg2type[Op_RegL] = TypeLong::LONG;
 555   mreg2type[Op_RegFlags] = TypeInt::CC;
 556 
 557   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 558 
 559   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 560 
 561 #ifdef _LP64
 562   if (UseCompressedOops) {
 563     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 564     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 565   } else
 566 #endif
 567   {
 568     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 569     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 570   }
 571   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 572   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 573   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 574   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 575   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 576   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 577   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 578 
 579   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 580   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 581   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 582   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 583   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 584   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 585   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 586   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 587   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 588   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 589   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 590   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 591 
 592   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 593   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 594 
 595   const Type **fi2c = TypeTuple::fields(2);
 596   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 597   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 598   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 599 
 600   const Type **intpair = TypeTuple::fields(2);
 601   intpair[0] = TypeInt::INT;
 602   intpair[1] = TypeInt::INT;
 603   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 604 
 605   const Type **longpair = TypeTuple::fields(2);
 606   longpair[0] = TypeLong::LONG;
 607   longpair[1] = TypeLong::LONG;
 608   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 609 
 610   const Type **intccpair = TypeTuple::fields(2);
 611   intccpair[0] = TypeInt::INT;
 612   intccpair[1] = TypeInt::CC;
 613   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 614 
 615   const Type **longccpair = TypeTuple::fields(2);
 616   longccpair[0] = TypeLong::LONG;
 617   longccpair[1] = TypeInt::CC;
 618   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 619 
 620   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 621   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 622   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 623   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 624   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 625   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 626   _const_basic_type[T_INT]         = TypeInt::INT;
 627   _const_basic_type[T_LONG]        = TypeLong::LONG;
 628   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 629   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 630   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 631   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 632   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 633   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 634   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 635 
 636   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 637   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 638   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 639   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 640   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 641   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 642   _zero_type[T_INT]         = TypeInt::ZERO;
 643   _zero_type[T_LONG]        = TypeLong::ZERO;
 644   _zero_type[T_FLOAT]       = TypeF::ZERO;
 645   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 646   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 647   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 648   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 649   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 650 
 651   // get_zero_type() should not happen for T_CONFLICT
 652   _zero_type[T_CONFLICT]= NULL;
 653 
 654   // Vector predefined types, it needs initialized _const_basic_type[].
 655   if (Matcher::vector_size_supported(T_BYTE,4)) {
 656     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 657   }
 658   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 659     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 660   }
 661   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 662     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 663   }
 664   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 665     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 666   }
 667   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 668     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 669   }
 670   mreg2type[Op_VecS] = TypeVect::VECTS;
 671   mreg2type[Op_VecD] = TypeVect::VECTD;
 672   mreg2type[Op_VecX] = TypeVect::VECTX;
 673   mreg2type[Op_VecY] = TypeVect::VECTY;
 674   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 675 
 676   // Restore working type arena.
 677   current->set_type_arena(save);
 678   current->set_type_dict(NULL);
 679 }
 680 
 681 //------------------------------Initialize-------------------------------------
 682 void Type::Initialize(Compile* current) {
 683   assert(current->type_arena() != NULL, "must have created type arena");
 684 
 685   if (_shared_type_dict == NULL) {
 686     Initialize_shared(current);
 687   }
 688 
 689   Arena* type_arena = current->type_arena();
 690 
 691   // Create the hash-cons'ing dictionary with top-level storage allocation
 692   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 693   current->set_type_dict(tdic);
 694 
 695   // Transfer the shared types.
 696   DictI i(_shared_type_dict);
 697   for( ; i.test(); ++i ) {
 698     Type* t = (Type*)i._value;
 699     tdic->Insert(t,t);  // New Type, insert into Type table
 700   }
 701 }
 702 
 703 //------------------------------hashcons---------------------------------------
 704 // Do the hash-cons trick.  If the Type already exists in the type table,
 705 // delete the current Type and return the existing Type.  Otherwise stick the
 706 // current Type in the Type table.
 707 const Type *Type::hashcons(void) {
 708   debug_only(base());           // Check the assertion in Type::base().
 709   // Look up the Type in the Type dictionary
 710   Dict *tdic = type_dict();
 711   Type* old = (Type*)(tdic->Insert(this, this, false));
 712   if( old ) {                   // Pre-existing Type?
 713     if( old != this )           // Yes, this guy is not the pre-existing?
 714       delete this;              // Yes, Nuke this guy
 715     assert( old->_dual, "" );
 716     return old;                 // Return pre-existing
 717   }
 718 
 719   // Every type has a dual (to make my lattice symmetric).
 720   // Since we just discovered a new Type, compute its dual right now.
 721   assert( !_dual, "" );         // No dual yet
 722   _dual = xdual();              // Compute the dual
 723   if (cmp(this, _dual) == 0) {  // Handle self-symmetric
 724     if (_dual != this) {
 725       delete _dual;
 726       _dual = this;
 727     }
 728     return this;
 729   }
 730   assert( !_dual->_dual, "" );  // No reverse dual yet
 731   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 732   // New Type, insert into Type table
 733   tdic->Insert((void*)_dual,(void*)_dual);
 734   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 735 #ifdef ASSERT
 736   Type *dual_dual = (Type*)_dual->xdual();
 737   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 738   delete dual_dual;
 739 #endif
 740   return this;                  // Return new Type
 741 }
 742 
 743 //------------------------------eq---------------------------------------------
 744 // Structural equality check for Type representations
 745 bool Type::eq( const Type * ) const {
 746   return true;                  // Nothing else can go wrong
 747 }
 748 
 749 //------------------------------hash-------------------------------------------
 750 // Type-specific hashing function.
 751 int Type::hash(void) const {
 752   return _base;
 753 }
 754 
 755 //------------------------------is_finite--------------------------------------
 756 // Has a finite value
 757 bool Type::is_finite() const {
 758   return false;
 759 }
 760 
 761 //------------------------------is_nan-----------------------------------------
 762 // Is not a number (NaN)
 763 bool Type::is_nan()    const {
 764   return false;
 765 }
 766 
 767 //----------------------interface_vs_oop---------------------------------------
 768 #ifdef ASSERT
 769 bool Type::interface_vs_oop_helper(const Type *t) const {
 770   bool result = false;
 771 
 772   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 773   const TypePtr*    t_ptr =    t->make_ptr();
 774   if( this_ptr == NULL || t_ptr == NULL )
 775     return result;
 776 
 777   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 778   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 779   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 780     bool this_interface = this_inst->klass()->is_interface();
 781     bool    t_interface =    t_inst->klass()->is_interface();
 782     result = this_interface ^ t_interface;
 783   }
 784 
 785   return result;
 786 }
 787 
 788 bool Type::interface_vs_oop(const Type *t) const {
 789   if (interface_vs_oop_helper(t)) {
 790     return true;
 791   }
 792   // Now check the speculative parts as well
 793   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 794   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 795   if (this_spec != NULL && t_spec != NULL) {
 796     if (this_spec->interface_vs_oop_helper(t_spec)) {
 797       return true;
 798     }
 799     return false;
 800   }
 801   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 802     return true;
 803   }
 804   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 805     return true;
 806   }
 807   return false;
 808 }
 809 
 810 #endif
 811 
 812 //------------------------------meet-------------------------------------------
 813 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 814 // commutative and the lattice is symmetric.
 815 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 816   if (isa_narrowoop() && t->isa_narrowoop()) {
 817     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 818     return result->make_narrowoop();
 819   }
 820   if (isa_narrowklass() && t->isa_narrowklass()) {
 821     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 822     return result->make_narrowklass();
 823   }
 824 
 825   const Type *this_t = maybe_remove_speculative(include_speculative);
 826   t = t->maybe_remove_speculative(include_speculative);
 827 
 828   const Type *mt = this_t->xmeet(t);
 829   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 830   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 831 #ifdef ASSERT
 832   assert(mt == t->xmeet(this_t), "meet not commutative");
 833   const Type* dual_join = mt->_dual;
 834   const Type *t2t    = dual_join->xmeet(t->_dual);
 835   const Type *t2this = dual_join->xmeet(this_t->_dual);
 836 
 837   // Interface meet Oop is Not Symmetric:
 838   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 839   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 840 
 841   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 842     tty->print_cr("=== Meet Not Symmetric ===");
 843     tty->print("t   =                   ");              t->dump(); tty->cr();
 844     tty->print("this=                   ");         this_t->dump(); tty->cr();
 845     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 846 
 847     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 848     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 849     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 850 
 851     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 852     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 853 
 854     fatal("meet not symmetric" );
 855   }
 856 #endif
 857   return mt;
 858 }
 859 
 860 //------------------------------xmeet------------------------------------------
 861 // Compute the MEET of two types.  It returns a new Type object.
 862 const Type *Type::xmeet( const Type *t ) const {
 863   // Perform a fast test for common case; meeting the same types together.
 864   if( this == t ) return this;  // Meeting same type-rep?
 865 
 866   // Meeting TOP with anything?
 867   if( _base == Top ) return t;
 868 
 869   // Meeting BOTTOM with anything?
 870   if( _base == Bottom ) return BOTTOM;
 871 
 872   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 873   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 874   switch (t->base()) {  // Switch on original type
 875 
 876   // Cut in half the number of cases I must handle.  Only need cases for when
 877   // the given enum "t->type" is less than or equal to the local enum "type".
 878   case FloatCon:
 879   case DoubleCon:
 880   case Int:
 881   case Long:
 882     return t->xmeet(this);
 883 
 884   case OopPtr:
 885     return t->xmeet(this);
 886 
 887   case InstPtr:
 888     return t->xmeet(this);
 889 
 890   case MetadataPtr:
 891   case KlassPtr:
 892     return t->xmeet(this);
 893 
 894   case AryPtr:
 895     return t->xmeet(this);
 896 
 897   case NarrowOop:
 898     return t->xmeet(this);
 899 
 900   case NarrowKlass:
 901     return t->xmeet(this);
 902 
 903   case Bad:                     // Type check
 904   default:                      // Bogus type not in lattice
 905     typerr(t);
 906     return Type::BOTTOM;
 907 
 908   case Bottom:                  // Ye Olde Default
 909     return t;
 910 
 911   case FloatTop:
 912     if( _base == FloatTop ) return this;
 913   case FloatBot:                // Float
 914     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 915     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 916     typerr(t);
 917     return Type::BOTTOM;
 918 
 919   case DoubleTop:
 920     if( _base == DoubleTop ) return this;
 921   case DoubleBot:               // Double
 922     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 923     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 924     typerr(t);
 925     return Type::BOTTOM;
 926 
 927   // These next few cases must match exactly or it is a compile-time error.
 928   case Control:                 // Control of code
 929   case Abio:                    // State of world outside of program
 930   case Memory:
 931     if( _base == t->_base )  return this;
 932     typerr(t);
 933     return Type::BOTTOM;
 934 
 935   case Top:                     // Top of the lattice
 936     return this;
 937   }
 938 
 939   // The type is unchanged
 940   return this;
 941 }
 942 
 943 //-----------------------------filter------------------------------------------
 944 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 945   const Type* ft = join_helper(kills, include_speculative);
 946   if (ft->empty())
 947     return Type::TOP;           // Canonical empty value
 948   return ft;
 949 }
 950 
 951 //------------------------------xdual------------------------------------------
 952 // Compute dual right now.
 953 const Type::TYPES Type::dual_type[Type::lastype] = {
 954   Bad,          // Bad
 955   Control,      // Control
 956   Bottom,       // Top
 957   Bad,          // Int - handled in v-call
 958   Bad,          // Long - handled in v-call
 959   Half,         // Half
 960   Bad,          // NarrowOop - handled in v-call
 961   Bad,          // NarrowKlass - handled in v-call
 962 
 963   Bad,          // Tuple - handled in v-call
 964   Bad,          // Array - handled in v-call
 965   Bad,          // VectorS - handled in v-call
 966   Bad,          // VectorD - handled in v-call
 967   Bad,          // VectorX - handled in v-call
 968   Bad,          // VectorY - handled in v-call
 969   Bad,          // VectorZ - handled in v-call
 970 
 971   Bad,          // AnyPtr - handled in v-call
 972   Bad,          // RawPtr - handled in v-call
 973   Bad,          // OopPtr - handled in v-call
 974   Bad,          // InstPtr - handled in v-call
 975   Bad,          // AryPtr - handled in v-call
 976 
 977   Bad,          //  MetadataPtr - handled in v-call
 978   Bad,          // KlassPtr - handled in v-call
 979 
 980   Bad,          // Function - handled in v-call
 981   Abio,         // Abio
 982   Return_Address,// Return_Address
 983   Memory,       // Memory
 984   FloatBot,     // FloatTop
 985   FloatCon,     // FloatCon
 986   FloatTop,     // FloatBot
 987   DoubleBot,    // DoubleTop
 988   DoubleCon,    // DoubleCon
 989   DoubleTop,    // DoubleBot
 990   Top           // Bottom
 991 };
 992 
 993 const Type *Type::xdual() const {
 994   // Note: the base() accessor asserts the sanity of _base.
 995   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 996   return new Type(_type_info[_base].dual_type);
 997 }
 998 
 999 //------------------------------has_memory-------------------------------------
1000 bool Type::has_memory() const {
1001   Type::TYPES tx = base();
1002   if (tx == Memory) return true;
1003   if (tx == Tuple) {
1004     const TypeTuple *t = is_tuple();
1005     for (uint i=0; i < t->cnt(); i++) {
1006       tx = t->field_at(i)->base();
1007       if (tx == Memory)  return true;
1008     }
1009   }
1010   return false;
1011 }
1012 
1013 #ifndef PRODUCT
1014 //------------------------------dump2------------------------------------------
1015 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1016   st->print("%s", _type_info[_base].msg);
1017 }
1018 
1019 //------------------------------dump-------------------------------------------
1020 void Type::dump_on(outputStream *st) const {
1021   ResourceMark rm;
1022   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1023   dump2(d,1, st);
1024   if (is_ptr_to_narrowoop()) {
1025     st->print(" [narrow]");
1026   } else if (is_ptr_to_narrowklass()) {
1027     st->print(" [narrowklass]");
1028   }
1029 }
1030 
1031 //-----------------------------------------------------------------------------
1032 const char* Type::str(const Type* t) {
1033   stringStream ss;
1034   t->dump_on(&ss);
1035   return ss.as_string();
1036 }
1037 #endif
1038 
1039 //------------------------------singleton--------------------------------------
1040 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1041 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1042 bool Type::singleton(void) const {
1043   return _base == Top || _base == Half;
1044 }
1045 
1046 //------------------------------empty------------------------------------------
1047 // TRUE if Type is a type with no values, FALSE otherwise.
1048 bool Type::empty(void) const {
1049   switch (_base) {
1050   case DoubleTop:
1051   case FloatTop:
1052   case Top:
1053     return true;
1054 
1055   case Half:
1056   case Abio:
1057   case Return_Address:
1058   case Memory:
1059   case Bottom:
1060   case FloatBot:
1061   case DoubleBot:
1062     return false;  // never a singleton, therefore never empty
1063 
1064   default:
1065     ShouldNotReachHere();
1066     return false;
1067   }
1068 }
1069 
1070 //------------------------------dump_stats-------------------------------------
1071 // Dump collected statistics to stderr
1072 #ifndef PRODUCT
1073 void Type::dump_stats() {
1074   tty->print("Types made: %d\n", type_dict()->Size());
1075 }
1076 #endif
1077 
1078 //------------------------------typerr-----------------------------------------
1079 void Type::typerr( const Type *t ) const {
1080 #ifndef PRODUCT
1081   tty->print("\nError mixing types: ");
1082   dump();
1083   tty->print(" and ");
1084   t->dump();
1085   tty->print("\n");
1086 #endif
1087   ShouldNotReachHere();
1088 }
1089 
1090 
1091 //=============================================================================
1092 // Convenience common pre-built types.
1093 const TypeF *TypeF::ZERO;       // Floating point zero
1094 const TypeF *TypeF::ONE;        // Floating point one
1095 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1096 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1097 
1098 //------------------------------make-------------------------------------------
1099 // Create a float constant
1100 const TypeF *TypeF::make(float f) {
1101   return (TypeF*)(new TypeF(f))->hashcons();
1102 }
1103 
1104 //------------------------------meet-------------------------------------------
1105 // Compute the MEET of two types.  It returns a new Type object.
1106 const Type *TypeF::xmeet( const Type *t ) const {
1107   // Perform a fast test for common case; meeting the same types together.
1108   if( this == t ) return this;  // Meeting same type-rep?
1109 
1110   // Current "this->_base" is FloatCon
1111   switch (t->base()) {          // Switch on original type
1112   case AnyPtr:                  // Mixing with oops happens when javac
1113   case RawPtr:                  // reuses local variables
1114   case OopPtr:
1115   case InstPtr:
1116   case AryPtr:
1117   case MetadataPtr:
1118   case KlassPtr:
1119   case NarrowOop:
1120   case NarrowKlass:
1121   case Int:
1122   case Long:
1123   case DoubleTop:
1124   case DoubleCon:
1125   case DoubleBot:
1126   case Bottom:                  // Ye Olde Default
1127     return Type::BOTTOM;
1128 
1129   case FloatBot:
1130     return t;
1131 
1132   default:                      // All else is a mistake
1133     typerr(t);
1134 
1135   case FloatCon:                // Float-constant vs Float-constant?
1136     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1137                                 // must compare bitwise as positive zero, negative zero and NaN have
1138                                 // all the same representation in C++
1139       return FLOAT;             // Return generic float
1140                                 // Equal constants
1141   case Top:
1142   case FloatTop:
1143     break;                      // Return the float constant
1144   }
1145   return this;                  // Return the float constant
1146 }
1147 
1148 //------------------------------xdual------------------------------------------
1149 // Dual: symmetric
1150 const Type *TypeF::xdual() const {
1151   return this;
1152 }
1153 
1154 //------------------------------eq---------------------------------------------
1155 // Structural equality check for Type representations
1156 bool TypeF::eq(const Type *t) const {
1157   // Bitwise comparison to distinguish between +/-0. These values must be treated
1158   // as different to be consistent with C1 and the interpreter.
1159   return (jint_cast(_f) == jint_cast(t->getf()));
1160 }
1161 
1162 //------------------------------hash-------------------------------------------
1163 // Type-specific hashing function.
1164 int TypeF::hash(void) const {
1165   return *(int*)(&_f);
1166 }
1167 
1168 //------------------------------is_finite--------------------------------------
1169 // Has a finite value
1170 bool TypeF::is_finite() const {
1171   return g_isfinite(getf()) != 0;
1172 }
1173 
1174 //------------------------------is_nan-----------------------------------------
1175 // Is not a number (NaN)
1176 bool TypeF::is_nan()    const {
1177   return g_isnan(getf()) != 0;
1178 }
1179 
1180 //------------------------------dump2------------------------------------------
1181 // Dump float constant Type
1182 #ifndef PRODUCT
1183 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1184   Type::dump2(d,depth, st);
1185   st->print("%f", _f);
1186 }
1187 #endif
1188 
1189 //------------------------------singleton--------------------------------------
1190 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1191 // constants (Ldi nodes).  Singletons are integer, float or double constants
1192 // or a single symbol.
1193 bool TypeF::singleton(void) const {
1194   return true;                  // Always a singleton
1195 }
1196 
1197 bool TypeF::empty(void) const {
1198   return false;                 // always exactly a singleton
1199 }
1200 
1201 //=============================================================================
1202 // Convenience common pre-built types.
1203 const TypeD *TypeD::ZERO;       // Floating point zero
1204 const TypeD *TypeD::ONE;        // Floating point one
1205 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1206 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1207 
1208 //------------------------------make-------------------------------------------
1209 const TypeD *TypeD::make(double d) {
1210   return (TypeD*)(new TypeD(d))->hashcons();
1211 }
1212 
1213 //------------------------------meet-------------------------------------------
1214 // Compute the MEET of two types.  It returns a new Type object.
1215 const Type *TypeD::xmeet( const Type *t ) const {
1216   // Perform a fast test for common case; meeting the same types together.
1217   if( this == t ) return this;  // Meeting same type-rep?
1218 
1219   // Current "this->_base" is DoubleCon
1220   switch (t->base()) {          // Switch on original type
1221   case AnyPtr:                  // Mixing with oops happens when javac
1222   case RawPtr:                  // reuses local variables
1223   case OopPtr:
1224   case InstPtr:
1225   case AryPtr:
1226   case MetadataPtr:
1227   case KlassPtr:
1228   case NarrowOop:
1229   case NarrowKlass:
1230   case Int:
1231   case Long:
1232   case FloatTop:
1233   case FloatCon:
1234   case FloatBot:
1235   case Bottom:                  // Ye Olde Default
1236     return Type::BOTTOM;
1237 
1238   case DoubleBot:
1239     return t;
1240 
1241   default:                      // All else is a mistake
1242     typerr(t);
1243 
1244   case DoubleCon:               // Double-constant vs Double-constant?
1245     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1246       return DOUBLE;            // Return generic double
1247   case Top:
1248   case DoubleTop:
1249     break;
1250   }
1251   return this;                  // Return the double constant
1252 }
1253 
1254 //------------------------------xdual------------------------------------------
1255 // Dual: symmetric
1256 const Type *TypeD::xdual() const {
1257   return this;
1258 }
1259 
1260 //------------------------------eq---------------------------------------------
1261 // Structural equality check for Type representations
1262 bool TypeD::eq(const Type *t) const {
1263   // Bitwise comparison to distinguish between +/-0. These values must be treated
1264   // as different to be consistent with C1 and the interpreter.
1265   return (jlong_cast(_d) == jlong_cast(t->getd()));
1266 }
1267 
1268 //------------------------------hash-------------------------------------------
1269 // Type-specific hashing function.
1270 int TypeD::hash(void) const {
1271   return *(int*)(&_d);
1272 }
1273 
1274 //------------------------------is_finite--------------------------------------
1275 // Has a finite value
1276 bool TypeD::is_finite() const {
1277   return g_isfinite(getd()) != 0;
1278 }
1279 
1280 //------------------------------is_nan-----------------------------------------
1281 // Is not a number (NaN)
1282 bool TypeD::is_nan()    const {
1283   return g_isnan(getd()) != 0;
1284 }
1285 
1286 //------------------------------dump2------------------------------------------
1287 // Dump double constant Type
1288 #ifndef PRODUCT
1289 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1290   Type::dump2(d,depth,st);
1291   st->print("%f", _d);
1292 }
1293 #endif
1294 
1295 //------------------------------singleton--------------------------------------
1296 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1297 // constants (Ldi nodes).  Singletons are integer, float or double constants
1298 // or a single symbol.
1299 bool TypeD::singleton(void) const {
1300   return true;                  // Always a singleton
1301 }
1302 
1303 bool TypeD::empty(void) const {
1304   return false;                 // always exactly a singleton
1305 }
1306 
1307 //=============================================================================
1308 // Convience common pre-built types.
1309 const TypeInt *TypeInt::MINUS_1;// -1
1310 const TypeInt *TypeInt::ZERO;   // 0
1311 const TypeInt *TypeInt::ONE;    // 1
1312 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1313 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1314 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1315 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1316 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1317 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1318 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1319 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1320 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1321 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1322 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1323 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1324 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1325 const TypeInt *TypeInt::INT;    // 32-bit integers
1326 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1327 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1328 
1329 //------------------------------TypeInt----------------------------------------
1330 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1331 }
1332 
1333 //------------------------------make-------------------------------------------
1334 const TypeInt *TypeInt::make( jint lo ) {
1335   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1336 }
1337 
1338 static int normalize_int_widen( jint lo, jint hi, int w ) {
1339   // Certain normalizations keep us sane when comparing types.
1340   // The 'SMALLINT' covers constants and also CC and its relatives.
1341   if (lo <= hi) {
1342     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1343     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1344   } else {
1345     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1346     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1347   }
1348   return w;
1349 }
1350 
1351 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1352   w = normalize_int_widen(lo, hi, w);
1353   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1354 }
1355 
1356 //------------------------------meet-------------------------------------------
1357 // Compute the MEET of two types.  It returns a new Type representation object
1358 // with reference count equal to the number of Types pointing at it.
1359 // Caller should wrap a Types around it.
1360 const Type *TypeInt::xmeet( const Type *t ) const {
1361   // Perform a fast test for common case; meeting the same types together.
1362   if( this == t ) return this;  // Meeting same type?
1363 
1364   // Currently "this->_base" is a TypeInt
1365   switch (t->base()) {          // Switch on original type
1366   case AnyPtr:                  // Mixing with oops happens when javac
1367   case RawPtr:                  // reuses local variables
1368   case OopPtr:
1369   case InstPtr:
1370   case AryPtr:
1371   case MetadataPtr:
1372   case KlassPtr:
1373   case NarrowOop:
1374   case NarrowKlass:
1375   case Long:
1376   case FloatTop:
1377   case FloatCon:
1378   case FloatBot:
1379   case DoubleTop:
1380   case DoubleCon:
1381   case DoubleBot:
1382   case Bottom:                  // Ye Olde Default
1383     return Type::BOTTOM;
1384   default:                      // All else is a mistake
1385     typerr(t);
1386   case Top:                     // No change
1387     return this;
1388   case Int:                     // Int vs Int?
1389     break;
1390   }
1391 
1392   // Expand covered set
1393   const TypeInt *r = t->is_int();
1394   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1395 }
1396 
1397 //------------------------------xdual------------------------------------------
1398 // Dual: reverse hi & lo; flip widen
1399 const Type *TypeInt::xdual() const {
1400   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1401   return new TypeInt(_hi,_lo,w);
1402 }
1403 
1404 //------------------------------widen------------------------------------------
1405 // Only happens for optimistic top-down optimizations.
1406 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1407   // Coming from TOP or such; no widening
1408   if( old->base() != Int ) return this;
1409   const TypeInt *ot = old->is_int();
1410 
1411   // If new guy is equal to old guy, no widening
1412   if( _lo == ot->_lo && _hi == ot->_hi )
1413     return old;
1414 
1415   // If new guy contains old, then we widened
1416   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1417     // New contains old
1418     // If new guy is already wider than old, no widening
1419     if( _widen > ot->_widen ) return this;
1420     // If old guy was a constant, do not bother
1421     if (ot->_lo == ot->_hi)  return this;
1422     // Now widen new guy.
1423     // Check for widening too far
1424     if (_widen == WidenMax) {
1425       int max = max_jint;
1426       int min = min_jint;
1427       if (limit->isa_int()) {
1428         max = limit->is_int()->_hi;
1429         min = limit->is_int()->_lo;
1430       }
1431       if (min < _lo && _hi < max) {
1432         // If neither endpoint is extremal yet, push out the endpoint
1433         // which is closer to its respective limit.
1434         if (_lo >= 0 ||                 // easy common case
1435             (juint)(_lo - min) >= (juint)(max - _hi)) {
1436           // Try to widen to an unsigned range type of 31 bits:
1437           return make(_lo, max, WidenMax);
1438         } else {
1439           return make(min, _hi, WidenMax);
1440         }
1441       }
1442       return TypeInt::INT;
1443     }
1444     // Returned widened new guy
1445     return make(_lo,_hi,_widen+1);
1446   }
1447 
1448   // If old guy contains new, then we probably widened too far & dropped to
1449   // bottom.  Return the wider fellow.
1450   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1451     return old;
1452 
1453   //fatal("Integer value range is not subset");
1454   //return this;
1455   return TypeInt::INT;
1456 }
1457 
1458 //------------------------------narrow---------------------------------------
1459 // Only happens for pessimistic optimizations.
1460 const Type *TypeInt::narrow( const Type *old ) const {
1461   if (_lo >= _hi)  return this;   // already narrow enough
1462   if (old == NULL)  return this;
1463   const TypeInt* ot = old->isa_int();
1464   if (ot == NULL)  return this;
1465   jint olo = ot->_lo;
1466   jint ohi = ot->_hi;
1467 
1468   // If new guy is equal to old guy, no narrowing
1469   if (_lo == olo && _hi == ohi)  return old;
1470 
1471   // If old guy was maximum range, allow the narrowing
1472   if (olo == min_jint && ohi == max_jint)  return this;
1473 
1474   if (_lo < olo || _hi > ohi)
1475     return this;                // doesn't narrow; pretty wierd
1476 
1477   // The new type narrows the old type, so look for a "death march".
1478   // See comments on PhaseTransform::saturate.
1479   juint nrange = (juint)_hi - _lo;
1480   juint orange = (juint)ohi - olo;
1481   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1482     // Use the new type only if the range shrinks a lot.
1483     // We do not want the optimizer computing 2^31 point by point.
1484     return old;
1485   }
1486 
1487   return this;
1488 }
1489 
1490 //-----------------------------filter------------------------------------------
1491 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1492   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1493   if (ft == NULL || ft->empty())
1494     return Type::TOP;           // Canonical empty value
1495   if (ft->_widen < this->_widen) {
1496     // Do not allow the value of kill->_widen to affect the outcome.
1497     // The widen bits must be allowed to run freely through the graph.
1498     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1499   }
1500   return ft;
1501 }
1502 
1503 //------------------------------eq---------------------------------------------
1504 // Structural equality check for Type representations
1505 bool TypeInt::eq( const Type *t ) const {
1506   const TypeInt *r = t->is_int(); // Handy access
1507   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1508 }
1509 
1510 //------------------------------hash-------------------------------------------
1511 // Type-specific hashing function.
1512 int TypeInt::hash(void) const {
1513   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1514 }
1515 
1516 //------------------------------is_finite--------------------------------------
1517 // Has a finite value
1518 bool TypeInt::is_finite() const {
1519   return true;
1520 }
1521 
1522 //------------------------------dump2------------------------------------------
1523 // Dump TypeInt
1524 #ifndef PRODUCT
1525 static const char* intname(char* buf, jint n) {
1526   if (n == min_jint)
1527     return "min";
1528   else if (n < min_jint + 10000)
1529     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1530   else if (n == max_jint)
1531     return "max";
1532   else if (n > max_jint - 10000)
1533     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1534   else
1535     sprintf(buf, INT32_FORMAT, n);
1536   return buf;
1537 }
1538 
1539 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1540   char buf[40], buf2[40];
1541   if (_lo == min_jint && _hi == max_jint)
1542     st->print("int");
1543   else if (is_con())
1544     st->print("int:%s", intname(buf, get_con()));
1545   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1546     st->print("bool");
1547   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1548     st->print("byte");
1549   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1550     st->print("char");
1551   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1552     st->print("short");
1553   else if (_hi == max_jint)
1554     st->print("int:>=%s", intname(buf, _lo));
1555   else if (_lo == min_jint)
1556     st->print("int:<=%s", intname(buf, _hi));
1557   else
1558     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1559 
1560   if (_widen != 0 && this != TypeInt::INT)
1561     st->print(":%.*s", _widen, "wwww");
1562 }
1563 #endif
1564 
1565 //------------------------------singleton--------------------------------------
1566 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1567 // constants.
1568 bool TypeInt::singleton(void) const {
1569   return _lo >= _hi;
1570 }
1571 
1572 bool TypeInt::empty(void) const {
1573   return _lo > _hi;
1574 }
1575 
1576 //=============================================================================
1577 // Convenience common pre-built types.
1578 const TypeLong *TypeLong::MINUS_1;// -1
1579 const TypeLong *TypeLong::ZERO; // 0
1580 const TypeLong *TypeLong::ONE;  // 1
1581 const TypeLong *TypeLong::POS;  // >=0
1582 const TypeLong *TypeLong::LONG; // 64-bit integers
1583 const TypeLong *TypeLong::INT;  // 32-bit subrange
1584 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1585 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1586 
1587 //------------------------------TypeLong---------------------------------------
1588 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1589 }
1590 
1591 //------------------------------make-------------------------------------------
1592 const TypeLong *TypeLong::make( jlong lo ) {
1593   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1594 }
1595 
1596 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1597   // Certain normalizations keep us sane when comparing types.
1598   // The 'SMALLINT' covers constants.
1599   if (lo <= hi) {
1600     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1601     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1602   } else {
1603     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1604     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1605   }
1606   return w;
1607 }
1608 
1609 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1610   w = normalize_long_widen(lo, hi, w);
1611   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1612 }
1613 
1614 
1615 //------------------------------meet-------------------------------------------
1616 // Compute the MEET of two types.  It returns a new Type representation object
1617 // with reference count equal to the number of Types pointing at it.
1618 // Caller should wrap a Types around it.
1619 const Type *TypeLong::xmeet( const Type *t ) const {
1620   // Perform a fast test for common case; meeting the same types together.
1621   if( this == t ) return this;  // Meeting same type?
1622 
1623   // Currently "this->_base" is a TypeLong
1624   switch (t->base()) {          // Switch on original type
1625   case AnyPtr:                  // Mixing with oops happens when javac
1626   case RawPtr:                  // reuses local variables
1627   case OopPtr:
1628   case InstPtr:
1629   case AryPtr:
1630   case MetadataPtr:
1631   case KlassPtr:
1632   case NarrowOop:
1633   case NarrowKlass:
1634   case Int:
1635   case FloatTop:
1636   case FloatCon:
1637   case FloatBot:
1638   case DoubleTop:
1639   case DoubleCon:
1640   case DoubleBot:
1641   case Bottom:                  // Ye Olde Default
1642     return Type::BOTTOM;
1643   default:                      // All else is a mistake
1644     typerr(t);
1645   case Top:                     // No change
1646     return this;
1647   case Long:                    // Long vs Long?
1648     break;
1649   }
1650 
1651   // Expand covered set
1652   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1653   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1654 }
1655 
1656 //------------------------------xdual------------------------------------------
1657 // Dual: reverse hi & lo; flip widen
1658 const Type *TypeLong::xdual() const {
1659   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1660   return new TypeLong(_hi,_lo,w);
1661 }
1662 
1663 //------------------------------widen------------------------------------------
1664 // Only happens for optimistic top-down optimizations.
1665 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1666   // Coming from TOP or such; no widening
1667   if( old->base() != Long ) return this;
1668   const TypeLong *ot = old->is_long();
1669 
1670   // If new guy is equal to old guy, no widening
1671   if( _lo == ot->_lo && _hi == ot->_hi )
1672     return old;
1673 
1674   // If new guy contains old, then we widened
1675   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1676     // New contains old
1677     // If new guy is already wider than old, no widening
1678     if( _widen > ot->_widen ) return this;
1679     // If old guy was a constant, do not bother
1680     if (ot->_lo == ot->_hi)  return this;
1681     // Now widen new guy.
1682     // Check for widening too far
1683     if (_widen == WidenMax) {
1684       jlong max = max_jlong;
1685       jlong min = min_jlong;
1686       if (limit->isa_long()) {
1687         max = limit->is_long()->_hi;
1688         min = limit->is_long()->_lo;
1689       }
1690       if (min < _lo && _hi < max) {
1691         // If neither endpoint is extremal yet, push out the endpoint
1692         // which is closer to its respective limit.
1693         if (_lo >= 0 ||                 // easy common case
1694             ((julong)_lo - min) >= ((julong)max - _hi)) {
1695           // Try to widen to an unsigned range type of 32/63 bits:
1696           if (max >= max_juint && _hi < max_juint)
1697             return make(_lo, max_juint, WidenMax);
1698           else
1699             return make(_lo, max, WidenMax);
1700         } else {
1701           return make(min, _hi, WidenMax);
1702         }
1703       }
1704       return TypeLong::LONG;
1705     }
1706     // Returned widened new guy
1707     return make(_lo,_hi,_widen+1);
1708   }
1709 
1710   // If old guy contains new, then we probably widened too far & dropped to
1711   // bottom.  Return the wider fellow.
1712   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1713     return old;
1714 
1715   //  fatal("Long value range is not subset");
1716   // return this;
1717   return TypeLong::LONG;
1718 }
1719 
1720 //------------------------------narrow----------------------------------------
1721 // Only happens for pessimistic optimizations.
1722 const Type *TypeLong::narrow( const Type *old ) const {
1723   if (_lo >= _hi)  return this;   // already narrow enough
1724   if (old == NULL)  return this;
1725   const TypeLong* ot = old->isa_long();
1726   if (ot == NULL)  return this;
1727   jlong olo = ot->_lo;
1728   jlong ohi = ot->_hi;
1729 
1730   // If new guy is equal to old guy, no narrowing
1731   if (_lo == olo && _hi == ohi)  return old;
1732 
1733   // If old guy was maximum range, allow the narrowing
1734   if (olo == min_jlong && ohi == max_jlong)  return this;
1735 
1736   if (_lo < olo || _hi > ohi)
1737     return this;                // doesn't narrow; pretty wierd
1738 
1739   // The new type narrows the old type, so look for a "death march".
1740   // See comments on PhaseTransform::saturate.
1741   julong nrange = _hi - _lo;
1742   julong orange = ohi - olo;
1743   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1744     // Use the new type only if the range shrinks a lot.
1745     // We do not want the optimizer computing 2^31 point by point.
1746     return old;
1747   }
1748 
1749   return this;
1750 }
1751 
1752 //-----------------------------filter------------------------------------------
1753 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1754   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1755   if (ft == NULL || ft->empty())
1756     return Type::TOP;           // Canonical empty value
1757   if (ft->_widen < this->_widen) {
1758     // Do not allow the value of kill->_widen to affect the outcome.
1759     // The widen bits must be allowed to run freely through the graph.
1760     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1761   }
1762   return ft;
1763 }
1764 
1765 //------------------------------eq---------------------------------------------
1766 // Structural equality check for Type representations
1767 bool TypeLong::eq( const Type *t ) const {
1768   const TypeLong *r = t->is_long(); // Handy access
1769   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1770 }
1771 
1772 //------------------------------hash-------------------------------------------
1773 // Type-specific hashing function.
1774 int TypeLong::hash(void) const {
1775   return (int)(_lo+_hi+_widen+(int)Type::Long);
1776 }
1777 
1778 //------------------------------is_finite--------------------------------------
1779 // Has a finite value
1780 bool TypeLong::is_finite() const {
1781   return true;
1782 }
1783 
1784 //------------------------------dump2------------------------------------------
1785 // Dump TypeLong
1786 #ifndef PRODUCT
1787 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1788   if (n > x) {
1789     if (n >= x + 10000)  return NULL;
1790     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1791   } else if (n < x) {
1792     if (n <= x - 10000)  return NULL;
1793     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1794   } else {
1795     return xname;
1796   }
1797   return buf;
1798 }
1799 
1800 static const char* longname(char* buf, jlong n) {
1801   const char* str;
1802   if (n == min_jlong)
1803     return "min";
1804   else if (n < min_jlong + 10000)
1805     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1806   else if (n == max_jlong)
1807     return "max";
1808   else if (n > max_jlong - 10000)
1809     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1810   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1811     return str;
1812   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1813     return str;
1814   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1815     return str;
1816   else
1817     sprintf(buf, JLONG_FORMAT, n);
1818   return buf;
1819 }
1820 
1821 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1822   char buf[80], buf2[80];
1823   if (_lo == min_jlong && _hi == max_jlong)
1824     st->print("long");
1825   else if (is_con())
1826     st->print("long:%s", longname(buf, get_con()));
1827   else if (_hi == max_jlong)
1828     st->print("long:>=%s", longname(buf, _lo));
1829   else if (_lo == min_jlong)
1830     st->print("long:<=%s", longname(buf, _hi));
1831   else
1832     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1833 
1834   if (_widen != 0 && this != TypeLong::LONG)
1835     st->print(":%.*s", _widen, "wwww");
1836 }
1837 #endif
1838 
1839 //------------------------------singleton--------------------------------------
1840 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1841 // constants
1842 bool TypeLong::singleton(void) const {
1843   return _lo >= _hi;
1844 }
1845 
1846 bool TypeLong::empty(void) const {
1847   return _lo > _hi;
1848 }
1849 
1850 //=============================================================================
1851 // Convenience common pre-built types.
1852 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1853 const TypeTuple *TypeTuple::IFFALSE;
1854 const TypeTuple *TypeTuple::IFTRUE;
1855 const TypeTuple *TypeTuple::IFNEITHER;
1856 const TypeTuple *TypeTuple::LOOPBODY;
1857 const TypeTuple *TypeTuple::MEMBAR;
1858 const TypeTuple *TypeTuple::STORECONDITIONAL;
1859 const TypeTuple *TypeTuple::START_I2C;
1860 const TypeTuple *TypeTuple::INT_PAIR;
1861 const TypeTuple *TypeTuple::LONG_PAIR;
1862 const TypeTuple *TypeTuple::INT_CC_PAIR;
1863 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1864 
1865 
1866 //------------------------------make-------------------------------------------
1867 // Make a TypeTuple from the range of a method signature
1868 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1869   ciType* return_type = sig->return_type();
1870   uint arg_cnt = return_type->size();
1871   const Type **field_array = fields(arg_cnt);
1872   switch (return_type->basic_type()) {
1873   case T_LONG:
1874     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1875     field_array[TypeFunc::Parms+1] = Type::HALF;
1876     break;
1877   case T_DOUBLE:
1878     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1879     field_array[TypeFunc::Parms+1] = Type::HALF;
1880     break;
1881   case T_OBJECT:
1882   case T_ARRAY:
1883   case T_BOOLEAN:
1884   case T_CHAR:
1885   case T_FLOAT:
1886   case T_BYTE:
1887   case T_SHORT:
1888   case T_INT:
1889     field_array[TypeFunc::Parms] = get_const_type(return_type);
1890     break;
1891   case T_VOID:
1892     break;
1893   default:
1894     ShouldNotReachHere();
1895   }
1896   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1897 }
1898 
1899 // Make a TypeTuple from the domain of a method signature
1900 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1901   uint arg_cnt = sig->size();
1902 
1903   uint pos = TypeFunc::Parms;
1904   const Type **field_array;
1905   if (recv != NULL) {
1906     arg_cnt++;
1907     field_array = fields(arg_cnt);
1908     // Use get_const_type here because it respects UseUniqueSubclasses:
1909     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1910   } else {
1911     field_array = fields(arg_cnt);
1912   }
1913 
1914   int i = 0;
1915   while (pos < TypeFunc::Parms + arg_cnt) {
1916     ciType* type = sig->type_at(i);
1917 
1918     switch (type->basic_type()) {
1919     case T_LONG:
1920       field_array[pos++] = TypeLong::LONG;
1921       field_array[pos++] = Type::HALF;
1922       break;
1923     case T_DOUBLE:
1924       field_array[pos++] = Type::DOUBLE;
1925       field_array[pos++] = Type::HALF;
1926       break;
1927     case T_OBJECT:
1928     case T_ARRAY:
1929     case T_FLOAT:
1930     case T_INT:
1931       field_array[pos++] = get_const_type(type);
1932       break;
1933     case T_BOOLEAN:
1934     case T_CHAR:
1935     case T_BYTE:
1936     case T_SHORT:
1937       field_array[pos++] = TypeInt::INT;
1938       break;
1939     default:
1940       ShouldNotReachHere();
1941     }
1942     i++;
1943   }
1944 
1945   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1946 }
1947 
1948 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1949   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1950 }
1951 
1952 //------------------------------fields-----------------------------------------
1953 // Subroutine call type with space allocated for argument types
1954 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1955 const Type **TypeTuple::fields( uint arg_cnt ) {
1956   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1957   flds[TypeFunc::Control  ] = Type::CONTROL;
1958   flds[TypeFunc::I_O      ] = Type::ABIO;
1959   flds[TypeFunc::Memory   ] = Type::MEMORY;
1960   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1961   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1962 
1963   return flds;
1964 }
1965 
1966 //------------------------------meet-------------------------------------------
1967 // Compute the MEET of two types.  It returns a new Type object.
1968 const Type *TypeTuple::xmeet( const Type *t ) const {
1969   // Perform a fast test for common case; meeting the same types together.
1970   if( this == t ) return this;  // Meeting same type-rep?
1971 
1972   // Current "this->_base" is Tuple
1973   switch (t->base()) {          // switch on original type
1974 
1975   case Bottom:                  // Ye Olde Default
1976     return t;
1977 
1978   default:                      // All else is a mistake
1979     typerr(t);
1980 
1981   case Tuple: {                 // Meeting 2 signatures?
1982     const TypeTuple *x = t->is_tuple();
1983     assert( _cnt == x->_cnt, "" );
1984     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1985     for( uint i=0; i<_cnt; i++ )
1986       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1987     return TypeTuple::make(_cnt,fields);
1988   }
1989   case Top:
1990     break;
1991   }
1992   return this;                  // Return the double constant
1993 }
1994 
1995 //------------------------------xdual------------------------------------------
1996 // Dual: compute field-by-field dual
1997 const Type *TypeTuple::xdual() const {
1998   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1999   for( uint i=0; i<_cnt; i++ )
2000     fields[i] = _fields[i]->dual();
2001   return new TypeTuple(_cnt,fields);
2002 }
2003 
2004 //------------------------------eq---------------------------------------------
2005 // Structural equality check for Type representations
2006 bool TypeTuple::eq( const Type *t ) const {
2007   const TypeTuple *s = (const TypeTuple *)t;
2008   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2009   for (uint i = 0; i < _cnt; i++)
2010     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2011       return false;             // Missed
2012   return true;
2013 }
2014 
2015 //------------------------------hash-------------------------------------------
2016 // Type-specific hashing function.
2017 int TypeTuple::hash(void) const {
2018   intptr_t sum = _cnt;
2019   for( uint i=0; i<_cnt; i++ )
2020     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2021   return sum;
2022 }
2023 
2024 //------------------------------dump2------------------------------------------
2025 // Dump signature Type
2026 #ifndef PRODUCT
2027 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2028   st->print("{");
2029   if( !depth || d[this] ) {     // Check for recursive print
2030     st->print("...}");
2031     return;
2032   }
2033   d.Insert((void*)this, (void*)this);   // Stop recursion
2034   if( _cnt ) {
2035     uint i;
2036     for( i=0; i<_cnt-1; i++ ) {
2037       st->print("%d:", i);
2038       _fields[i]->dump2(d, depth-1, st);
2039       st->print(", ");
2040     }
2041     st->print("%d:", i);
2042     _fields[i]->dump2(d, depth-1, st);
2043   }
2044   st->print("}");
2045 }
2046 #endif
2047 
2048 //------------------------------singleton--------------------------------------
2049 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2050 // constants (Ldi nodes).  Singletons are integer, float or double constants
2051 // or a single symbol.
2052 bool TypeTuple::singleton(void) const {
2053   return false;                 // Never a singleton
2054 }
2055 
2056 bool TypeTuple::empty(void) const {
2057   for( uint i=0; i<_cnt; i++ ) {
2058     if (_fields[i]->empty())  return true;
2059   }
2060   return false;
2061 }
2062 
2063 //=============================================================================
2064 // Convenience common pre-built types.
2065 
2066 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2067   // Certain normalizations keep us sane when comparing types.
2068   // We do not want arrayOop variables to differ only by the wideness
2069   // of their index types.  Pick minimum wideness, since that is the
2070   // forced wideness of small ranges anyway.
2071   if (size->_widen != Type::WidenMin)
2072     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2073   else
2074     return size;
2075 }
2076 
2077 //------------------------------make-------------------------------------------
2078 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2079   if (UseCompressedOops && elem->isa_oopptr()) {
2080     elem = elem->make_narrowoop();
2081   }
2082   size = normalize_array_size(size);
2083   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2084 }
2085 
2086 //------------------------------meet-------------------------------------------
2087 // Compute the MEET of two types.  It returns a new Type object.
2088 const Type *TypeAry::xmeet( const Type *t ) const {
2089   // Perform a fast test for common case; meeting the same types together.
2090   if( this == t ) return this;  // Meeting same type-rep?
2091 
2092   // Current "this->_base" is Ary
2093   switch (t->base()) {          // switch on original type
2094 
2095   case Bottom:                  // Ye Olde Default
2096     return t;
2097 
2098   default:                      // All else is a mistake
2099     typerr(t);
2100 
2101   case Array: {                 // Meeting 2 arrays?
2102     const TypeAry *a = t->is_ary();
2103     return TypeAry::make(_elem->meet_speculative(a->_elem),
2104                          _size->xmeet(a->_size)->is_int(),
2105                          _stable && a->_stable);
2106   }
2107   case Top:
2108     break;
2109   }
2110   return this;                  // Return the double constant
2111 }
2112 
2113 //------------------------------xdual------------------------------------------
2114 // Dual: compute field-by-field dual
2115 const Type *TypeAry::xdual() const {
2116   const TypeInt* size_dual = _size->dual()->is_int();
2117   size_dual = normalize_array_size(size_dual);
2118   return new TypeAry(_elem->dual(), size_dual, !_stable);
2119 }
2120 
2121 //------------------------------eq---------------------------------------------
2122 // Structural equality check for Type representations
2123 bool TypeAry::eq( const Type *t ) const {
2124   const TypeAry *a = (const TypeAry*)t;
2125   return _elem == a->_elem &&
2126     _stable == a->_stable &&
2127     _size == a->_size;
2128 }
2129 
2130 //------------------------------hash-------------------------------------------
2131 // Type-specific hashing function.
2132 int TypeAry::hash(void) const {
2133   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2134 }
2135 
2136 /**
2137  * Return same type without a speculative part in the element
2138  */
2139 const Type* TypeAry::remove_speculative() const {
2140   return make(_elem->remove_speculative(), _size, _stable);
2141 }
2142 
2143 /**
2144  * Return same type with cleaned up speculative part of element
2145  */
2146 const Type* TypeAry::cleanup_speculative() const {
2147   return make(_elem->cleanup_speculative(), _size, _stable);
2148 }
2149 
2150 /**
2151  * Return same type but with a different inline depth (used for speculation)
2152  *
2153  * @param depth  depth to meet with
2154  */
2155 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2156   if (!UseInlineDepthForSpeculativeTypes) {
2157     return this;
2158   }
2159   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2160 }
2161 
2162 //----------------------interface_vs_oop---------------------------------------
2163 #ifdef ASSERT
2164 bool TypeAry::interface_vs_oop(const Type *t) const {
2165   const TypeAry* t_ary = t->is_ary();
2166   if (t_ary) {
2167     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2168     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2169     if(this_ptr != NULL && t_ptr != NULL) {
2170       return this_ptr->interface_vs_oop(t_ptr);
2171     }
2172   }
2173   return false;
2174 }
2175 #endif
2176 
2177 //------------------------------dump2------------------------------------------
2178 #ifndef PRODUCT
2179 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2180   if (_stable)  st->print("stable:");
2181   _elem->dump2(d, depth, st);
2182   st->print("[");
2183   _size->dump2(d, depth, st);
2184   st->print("]");
2185 }
2186 #endif
2187 
2188 //------------------------------singleton--------------------------------------
2189 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2190 // constants (Ldi nodes).  Singletons are integer, float or double constants
2191 // or a single symbol.
2192 bool TypeAry::singleton(void) const {
2193   return false;                 // Never a singleton
2194 }
2195 
2196 bool TypeAry::empty(void) const {
2197   return _elem->empty() || _size->empty();
2198 }
2199 
2200 //--------------------------ary_must_be_exact----------------------------------
2201 bool TypeAry::ary_must_be_exact() const {
2202   if (!UseExactTypes)       return false;
2203   // This logic looks at the element type of an array, and returns true
2204   // if the element type is either a primitive or a final instance class.
2205   // In such cases, an array built on this ary must have no subclasses.
2206   if (_elem == BOTTOM)      return false;  // general array not exact
2207   if (_elem == TOP   )      return false;  // inverted general array not exact
2208   const TypeOopPtr*  toop = NULL;
2209   if (UseCompressedOops && _elem->isa_narrowoop()) {
2210     toop = _elem->make_ptr()->isa_oopptr();
2211   } else {
2212     toop = _elem->isa_oopptr();
2213   }
2214   if (!toop)                return true;   // a primitive type, like int
2215   ciKlass* tklass = toop->klass();
2216   if (tklass == NULL)       return false;  // unloaded class
2217   if (!tklass->is_loaded()) return false;  // unloaded class
2218   const TypeInstPtr* tinst;
2219   if (_elem->isa_narrowoop())
2220     tinst = _elem->make_ptr()->isa_instptr();
2221   else
2222     tinst = _elem->isa_instptr();
2223   if (tinst)
2224     return tklass->as_instance_klass()->is_final();
2225   const TypeAryPtr*  tap;
2226   if (_elem->isa_narrowoop())
2227     tap = _elem->make_ptr()->isa_aryptr();
2228   else
2229     tap = _elem->isa_aryptr();
2230   if (tap)
2231     return tap->ary()->ary_must_be_exact();
2232   return false;
2233 }
2234 
2235 //==============================TypeVect=======================================
2236 // Convenience common pre-built types.
2237 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2238 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2239 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2240 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2241 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2242 
2243 //------------------------------make-------------------------------------------
2244 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2245   BasicType elem_bt = elem->array_element_basic_type();
2246   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2247   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2248   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2249   int size = length * type2aelembytes(elem_bt);
2250   switch (Matcher::vector_ideal_reg(size)) {
2251   case Op_VecS:
2252     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2253   case Op_RegL:
2254   case Op_VecD:
2255   case Op_RegD:
2256     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2257   case Op_VecX:
2258     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2259   case Op_VecY:
2260     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2261   case Op_VecZ:
2262     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2263   }
2264  ShouldNotReachHere();
2265   return NULL;
2266 }
2267 
2268 //------------------------------meet-------------------------------------------
2269 // Compute the MEET of two types.  It returns a new Type object.
2270 const Type *TypeVect::xmeet( const Type *t ) const {
2271   // Perform a fast test for common case; meeting the same types together.
2272   if( this == t ) return this;  // Meeting same type-rep?
2273 
2274   // Current "this->_base" is Vector
2275   switch (t->base()) {          // switch on original type
2276 
2277   case Bottom:                  // Ye Olde Default
2278     return t;
2279 
2280   default:                      // All else is a mistake
2281     typerr(t);
2282 
2283   case VectorS:
2284   case VectorD:
2285   case VectorX:
2286   case VectorY:
2287   case VectorZ: {                // Meeting 2 vectors?
2288     const TypeVect* v = t->is_vect();
2289     assert(  base() == v->base(), "");
2290     assert(length() == v->length(), "");
2291     assert(element_basic_type() == v->element_basic_type(), "");
2292     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2293   }
2294   case Top:
2295     break;
2296   }
2297   return this;
2298 }
2299 
2300 //------------------------------xdual------------------------------------------
2301 // Dual: compute field-by-field dual
2302 const Type *TypeVect::xdual() const {
2303   return new TypeVect(base(), _elem->dual(), _length);
2304 }
2305 
2306 //------------------------------eq---------------------------------------------
2307 // Structural equality check for Type representations
2308 bool TypeVect::eq(const Type *t) const {
2309   const TypeVect *v = t->is_vect();
2310   return (_elem == v->_elem) && (_length == v->_length);
2311 }
2312 
2313 //------------------------------hash-------------------------------------------
2314 // Type-specific hashing function.
2315 int TypeVect::hash(void) const {
2316   return (intptr_t)_elem + (intptr_t)_length;
2317 }
2318 
2319 //------------------------------singleton--------------------------------------
2320 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2321 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2322 // constant value (when vector is created with Replicate code).
2323 bool TypeVect::singleton(void) const {
2324 // There is no Con node for vectors yet.
2325 //  return _elem->singleton();
2326   return false;
2327 }
2328 
2329 bool TypeVect::empty(void) const {
2330   return _elem->empty();
2331 }
2332 
2333 //------------------------------dump2------------------------------------------
2334 #ifndef PRODUCT
2335 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2336   switch (base()) {
2337   case VectorS:
2338     st->print("vectors["); break;
2339   case VectorD:
2340     st->print("vectord["); break;
2341   case VectorX:
2342     st->print("vectorx["); break;
2343   case VectorY:
2344     st->print("vectory["); break;
2345   case VectorZ:
2346     st->print("vectorz["); break;
2347   default:
2348     ShouldNotReachHere();
2349   }
2350   st->print("%d]:{", _length);
2351   _elem->dump2(d, depth, st);
2352   st->print("}");
2353 }
2354 #endif
2355 
2356 
2357 //=============================================================================
2358 // Convenience common pre-built types.
2359 const TypePtr *TypePtr::NULL_PTR;
2360 const TypePtr *TypePtr::NOTNULL;
2361 const TypePtr *TypePtr::BOTTOM;
2362 
2363 //------------------------------meet-------------------------------------------
2364 // Meet over the PTR enum
2365 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2366   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2367   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2368   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2369   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2370   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2371   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2372   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2373 };
2374 
2375 //------------------------------make-------------------------------------------
2376 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2377   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2378 }
2379 
2380 //------------------------------cast_to_ptr_type-------------------------------
2381 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2382   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2383   if( ptr == _ptr ) return this;
2384   return make(_base, ptr, _offset, _speculative, _inline_depth);
2385 }
2386 
2387 //------------------------------get_con----------------------------------------
2388 intptr_t TypePtr::get_con() const {
2389   assert( _ptr == Null, "" );
2390   return _offset;
2391 }
2392 
2393 //------------------------------meet-------------------------------------------
2394 // Compute the MEET of two types.  It returns a new Type object.
2395 const Type *TypePtr::xmeet(const Type *t) const {
2396   const Type* res = xmeet_helper(t);
2397   if (res->isa_ptr() == NULL) {
2398     return res;
2399   }
2400 
2401   const TypePtr* res_ptr = res->is_ptr();
2402   if (res_ptr->speculative() != NULL) {
2403     // type->speculative() == NULL means that speculation is no better
2404     // than type, i.e. type->speculative() == type. So there are 2
2405     // ways to represent the fact that we have no useful speculative
2406     // data and we should use a single one to be able to test for
2407     // equality between types. Check whether type->speculative() ==
2408     // type and set speculative to NULL if it is the case.
2409     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2410       return res_ptr->remove_speculative();
2411     }
2412   }
2413 
2414   return res;
2415 }
2416 
2417 const Type *TypePtr::xmeet_helper(const Type *t) const {
2418   // Perform a fast test for common case; meeting the same types together.
2419   if( this == t ) return this;  // Meeting same type-rep?
2420 
2421   // Current "this->_base" is AnyPtr
2422   switch (t->base()) {          // switch on original type
2423   case Int:                     // Mixing ints & oops happens when javac
2424   case Long:                    // reuses local variables
2425   case FloatTop:
2426   case FloatCon:
2427   case FloatBot:
2428   case DoubleTop:
2429   case DoubleCon:
2430   case DoubleBot:
2431   case NarrowOop:
2432   case NarrowKlass:
2433   case Bottom:                  // Ye Olde Default
2434     return Type::BOTTOM;
2435   case Top:
2436     return this;
2437 
2438   case AnyPtr: {                // Meeting to AnyPtrs
2439     const TypePtr *tp = t->is_ptr();
2440     const TypePtr* speculative = xmeet_speculative(tp);
2441     int depth = meet_inline_depth(tp->inline_depth());
2442     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2443   }
2444   case RawPtr:                  // For these, flip the call around to cut down
2445   case OopPtr:
2446   case InstPtr:                 // on the cases I have to handle.
2447   case AryPtr:
2448   case MetadataPtr:
2449   case KlassPtr:
2450     return t->xmeet(this);      // Call in reverse direction
2451   default:                      // All else is a mistake
2452     typerr(t);
2453 
2454   }
2455   return this;
2456 }
2457 
2458 //------------------------------meet_offset------------------------------------
2459 int TypePtr::meet_offset( int offset ) const {
2460   // Either is 'TOP' offset?  Return the other offset!
2461   if( _offset == OffsetTop ) return offset;
2462   if( offset == OffsetTop ) return _offset;
2463   // If either is different, return 'BOTTOM' offset
2464   if( _offset != offset ) return OffsetBot;
2465   return _offset;
2466 }
2467 
2468 //------------------------------dual_offset------------------------------------
2469 int TypePtr::dual_offset( ) const {
2470   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2471   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2472   return _offset;               // Map everything else into self
2473 }
2474 
2475 //------------------------------xdual------------------------------------------
2476 // Dual: compute field-by-field dual
2477 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2478   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2479 };
2480 const Type *TypePtr::xdual() const {
2481   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2482 }
2483 
2484 //------------------------------xadd_offset------------------------------------
2485 int TypePtr::xadd_offset( intptr_t offset ) const {
2486   // Adding to 'TOP' offset?  Return 'TOP'!
2487   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2488   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2489   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2490   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2491   offset += (intptr_t)_offset;
2492   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2493 
2494   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2495   // It is possible to construct a negative offset during PhaseCCP
2496 
2497   return (int)offset;        // Sum valid offsets
2498 }
2499 
2500 //------------------------------add_offset-------------------------------------
2501 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2502   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2503 }
2504 
2505 //------------------------------eq---------------------------------------------
2506 // Structural equality check for Type representations
2507 bool TypePtr::eq( const Type *t ) const {
2508   const TypePtr *a = (const TypePtr*)t;
2509   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2510 }
2511 
2512 //------------------------------hash-------------------------------------------
2513 // Type-specific hashing function.
2514 int TypePtr::hash(void) const {
2515   return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth));
2516 ;
2517 }
2518 
2519 /**
2520  * Return same type without a speculative part
2521  */
2522 const Type* TypePtr::remove_speculative() const {
2523   if (_speculative == NULL) {
2524     return this;
2525   }
2526   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2527   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2528 }
2529 
2530 /**
2531  * Return same type but drop speculative part if we know we won't use
2532  * it
2533  */
2534 const Type* TypePtr::cleanup_speculative() const {
2535   if (speculative() == NULL) {
2536     return this;
2537   }
2538   const Type* no_spec = remove_speculative();
2539   // If this is NULL_PTR then we don't need the speculative type
2540   // (with_inline_depth in case the current type inline depth is
2541   // InlineDepthTop)
2542   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2543     return no_spec;
2544   }
2545   if (above_centerline(speculative()->ptr())) {
2546     return no_spec;
2547   }
2548   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2549   // If the speculative may be null and is an inexact klass then it
2550   // doesn't help
2551   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2552       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2553     return no_spec;
2554   }
2555   return this;
2556 }
2557 
2558 /**
2559  * dual of the speculative part of the type
2560  */
2561 const TypePtr* TypePtr::dual_speculative() const {
2562   if (_speculative == NULL) {
2563     return NULL;
2564   }
2565   return _speculative->dual()->is_ptr();
2566 }
2567 
2568 /**
2569  * meet of the speculative parts of 2 types
2570  *
2571  * @param other  type to meet with
2572  */
2573 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2574   bool this_has_spec = (_speculative != NULL);
2575   bool other_has_spec = (other->speculative() != NULL);
2576 
2577   if (!this_has_spec && !other_has_spec) {
2578     return NULL;
2579   }
2580 
2581   // If we are at a point where control flow meets and one branch has
2582   // a speculative type and the other has not, we meet the speculative
2583   // type of one branch with the actual type of the other. If the
2584   // actual type is exact and the speculative is as well, then the
2585   // result is a speculative type which is exact and we can continue
2586   // speculation further.
2587   const TypePtr* this_spec = _speculative;
2588   const TypePtr* other_spec = other->speculative();
2589 
2590   if (!this_has_spec) {
2591     this_spec = this;
2592   }
2593 
2594   if (!other_has_spec) {
2595     other_spec = other;
2596   }
2597 
2598   return this_spec->meet(other_spec)->is_ptr();
2599 }
2600 
2601 /**
2602  * dual of the inline depth for this type (used for speculation)
2603  */
2604 int TypePtr::dual_inline_depth() const {
2605   return -inline_depth();
2606 }
2607 
2608 /**
2609  * meet of 2 inline depths (used for speculation)
2610  *
2611  * @param depth  depth to meet with
2612  */
2613 int TypePtr::meet_inline_depth(int depth) const {
2614   return MAX2(inline_depth(), depth);
2615 }
2616 
2617 /**
2618  * Are the speculative parts of 2 types equal?
2619  *
2620  * @param other  type to compare this one to
2621  */
2622 bool TypePtr::eq_speculative(const TypePtr* other) const {
2623   if (_speculative == NULL || other->speculative() == NULL) {
2624     return _speculative == other->speculative();
2625   }
2626 
2627   if (_speculative->base() != other->speculative()->base()) {
2628     return false;
2629   }
2630 
2631   return _speculative->eq(other->speculative());
2632 }
2633 
2634 /**
2635  * Hash of the speculative part of the type
2636  */
2637 int TypePtr::hash_speculative() const {
2638   if (_speculative == NULL) {
2639     return 0;
2640   }
2641 
2642   return _speculative->hash();
2643 }
2644 
2645 /**
2646  * add offset to the speculative part of the type
2647  *
2648  * @param offset  offset to add
2649  */
2650 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2651   if (_speculative == NULL) {
2652     return NULL;
2653   }
2654   return _speculative->add_offset(offset)->is_ptr();
2655 }
2656 
2657 /**
2658  * return exact klass from the speculative type if there's one
2659  */
2660 ciKlass* TypePtr::speculative_type() const {
2661   if (_speculative != NULL && _speculative->isa_oopptr()) {
2662     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2663     if (speculative->klass_is_exact()) {
2664       return speculative->klass();
2665     }
2666   }
2667   return NULL;
2668 }
2669 
2670 /**
2671  * return true if speculative type may be null
2672  */
2673 bool TypePtr::speculative_maybe_null() const {
2674   if (_speculative != NULL) {
2675     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2676     return speculative->maybe_null();
2677   }
2678   return true;
2679 }
2680 
2681 bool TypePtr::speculative_always_null() const {
2682   if (_speculative != NULL) {
2683     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2684     return speculative == TypePtr::NULL_PTR;
2685   }
2686   return false;
2687 }
2688 
2689 /**
2690  * Same as TypePtr::speculative_type() but return the klass only if
2691  * the speculative tells us is not null
2692  */
2693 ciKlass* TypePtr::speculative_type_not_null() const {
2694   if (speculative_maybe_null()) {
2695     return NULL;
2696   }
2697   return speculative_type();
2698 }
2699 
2700 /**
2701  * Check whether new profiling would improve speculative type
2702  *
2703  * @param   exact_kls    class from profiling
2704  * @param   inline_depth inlining depth of profile point
2705  *
2706  * @return  true if type profile is valuable
2707  */
2708 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2709   // no profiling?
2710   if (exact_kls == NULL) {
2711     return false;
2712   }
2713   if (speculative() == TypePtr::NULL_PTR) {
2714     return false;
2715   }
2716   // no speculative type or non exact speculative type?
2717   if (speculative_type() == NULL) {
2718     return true;
2719   }
2720   // If the node already has an exact speculative type keep it,
2721   // unless it was provided by profiling that is at a deeper
2722   // inlining level. Profiling at a higher inlining depth is
2723   // expected to be less accurate.
2724   if (_speculative->inline_depth() == InlineDepthBottom) {
2725     return false;
2726   }
2727   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2728   return inline_depth < _speculative->inline_depth();
2729 }
2730 
2731 /**
2732  * Check whether new profiling would improve ptr (= tells us it is non
2733  * null)
2734  *
2735  * @param   ptr_kind always null or not null?
2736  *
2737  * @return  true if ptr profile is valuable
2738  */
2739 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2740   // profiling doesn't tell us anything useful
2741   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2742     return false;
2743   }
2744   // We already know this is not null
2745   if (!this->maybe_null()) {
2746     return false;
2747   }
2748   // We already know the speculative type cannot be null
2749   if (!speculative_maybe_null()) {
2750     return false;
2751   }
2752   // We already know this is always null
2753   if (this == TypePtr::NULL_PTR) {
2754     return false;
2755   }
2756   // We already know the speculative type is always null
2757   if (speculative_always_null()) {
2758     return false;
2759   }
2760   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
2761     return false;
2762   }
2763   return true;
2764 }
2765 
2766 //------------------------------dump2------------------------------------------
2767 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2768   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2769 };
2770 
2771 #ifndef PRODUCT
2772 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2773   if( _ptr == Null ) st->print("NULL");
2774   else st->print("%s *", ptr_msg[_ptr]);
2775   if( _offset == OffsetTop ) st->print("+top");
2776   else if( _offset == OffsetBot ) st->print("+bot");
2777   else if( _offset ) st->print("+%d", _offset);
2778   dump_inline_depth(st);
2779   dump_speculative(st);
2780 }
2781 
2782 /**
2783  *dump the speculative part of the type
2784  */
2785 void TypePtr::dump_speculative(outputStream *st) const {
2786   if (_speculative != NULL) {
2787     st->print(" (speculative=");
2788     _speculative->dump_on(st);
2789     st->print(")");
2790   }
2791 }
2792 
2793 /**
2794  *dump the inline depth of the type
2795  */
2796 void TypePtr::dump_inline_depth(outputStream *st) const {
2797   if (_inline_depth != InlineDepthBottom) {
2798     if (_inline_depth == InlineDepthTop) {
2799       st->print(" (inline_depth=InlineDepthTop)");
2800     } else {
2801       st->print(" (inline_depth=%d)", _inline_depth);
2802     }
2803   }
2804 }
2805 #endif
2806 
2807 //------------------------------singleton--------------------------------------
2808 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2809 // constants
2810 bool TypePtr::singleton(void) const {
2811   // TopPTR, Null, AnyNull, Constant are all singletons
2812   return (_offset != OffsetBot) && !below_centerline(_ptr);
2813 }
2814 
2815 bool TypePtr::empty(void) const {
2816   return (_offset == OffsetTop) || above_centerline(_ptr);
2817 }
2818 
2819 //=============================================================================
2820 // Convenience common pre-built types.
2821 const TypeRawPtr *TypeRawPtr::BOTTOM;
2822 const TypeRawPtr *TypeRawPtr::NOTNULL;
2823 
2824 //------------------------------make-------------------------------------------
2825 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2826   assert( ptr != Constant, "what is the constant?" );
2827   assert( ptr != Null, "Use TypePtr for NULL" );
2828   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2829 }
2830 
2831 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2832   assert( bits, "Use TypePtr for NULL" );
2833   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2834 }
2835 
2836 //------------------------------cast_to_ptr_type-------------------------------
2837 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2838   assert( ptr != Constant, "what is the constant?" );
2839   assert( ptr != Null, "Use TypePtr for NULL" );
2840   assert( _bits==0, "Why cast a constant address?");
2841   if( ptr == _ptr ) return this;
2842   return make(ptr);
2843 }
2844 
2845 //------------------------------get_con----------------------------------------
2846 intptr_t TypeRawPtr::get_con() const {
2847   assert( _ptr == Null || _ptr == Constant, "" );
2848   return (intptr_t)_bits;
2849 }
2850 
2851 //------------------------------meet-------------------------------------------
2852 // Compute the MEET of two types.  It returns a new Type object.
2853 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2854   // Perform a fast test for common case; meeting the same types together.
2855   if( this == t ) return this;  // Meeting same type-rep?
2856 
2857   // Current "this->_base" is RawPtr
2858   switch( t->base() ) {         // switch on original type
2859   case Bottom:                  // Ye Olde Default
2860     return t;
2861   case Top:
2862     return this;
2863   case AnyPtr:                  // Meeting to AnyPtrs
2864     break;
2865   case RawPtr: {                // might be top, bot, any/not or constant
2866     enum PTR tptr = t->is_ptr()->ptr();
2867     enum PTR ptr = meet_ptr( tptr );
2868     if( ptr == Constant ) {     // Cannot be equal constants, so...
2869       if( tptr == Constant && _ptr != Constant)  return t;
2870       if( _ptr == Constant && tptr != Constant)  return this;
2871       ptr = NotNull;            // Fall down in lattice
2872     }
2873     return make( ptr );
2874   }
2875 
2876   case OopPtr:
2877   case InstPtr:
2878   case AryPtr:
2879   case MetadataPtr:
2880   case KlassPtr:
2881     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2882   default:                      // All else is a mistake
2883     typerr(t);
2884   }
2885 
2886   // Found an AnyPtr type vs self-RawPtr type
2887   const TypePtr *tp = t->is_ptr();
2888   switch (tp->ptr()) {
2889   case TypePtr::TopPTR:  return this;
2890   case TypePtr::BotPTR:  return t;
2891   case TypePtr::Null:
2892     if( _ptr == TypePtr::TopPTR ) return t;
2893     return TypeRawPtr::BOTTOM;
2894   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2895   case TypePtr::AnyNull:
2896     if( _ptr == TypePtr::Constant) return this;
2897     return make( meet_ptr(TypePtr::AnyNull) );
2898   default: ShouldNotReachHere();
2899   }
2900   return this;
2901 }
2902 
2903 //------------------------------xdual------------------------------------------
2904 // Dual: compute field-by-field dual
2905 const Type *TypeRawPtr::xdual() const {
2906   return new TypeRawPtr( dual_ptr(), _bits );
2907 }
2908 
2909 //------------------------------add_offset-------------------------------------
2910 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2911   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2912   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2913   if( offset == 0 ) return this; // No change
2914   switch (_ptr) {
2915   case TypePtr::TopPTR:
2916   case TypePtr::BotPTR:
2917   case TypePtr::NotNull:
2918     return this;
2919   case TypePtr::Null:
2920   case TypePtr::Constant: {
2921     address bits = _bits+offset;
2922     if ( bits == 0 ) return TypePtr::NULL_PTR;
2923     return make( bits );
2924   }
2925   default:  ShouldNotReachHere();
2926   }
2927   return NULL;                  // Lint noise
2928 }
2929 
2930 //------------------------------eq---------------------------------------------
2931 // Structural equality check for Type representations
2932 bool TypeRawPtr::eq( const Type *t ) const {
2933   const TypeRawPtr *a = (const TypeRawPtr*)t;
2934   return _bits == a->_bits && TypePtr::eq(t);
2935 }
2936 
2937 //------------------------------hash-------------------------------------------
2938 // Type-specific hashing function.
2939 int TypeRawPtr::hash(void) const {
2940   return (intptr_t)_bits + TypePtr::hash();
2941 }
2942 
2943 //------------------------------dump2------------------------------------------
2944 #ifndef PRODUCT
2945 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2946   if( _ptr == Constant )
2947     st->print(INTPTR_FORMAT, p2i(_bits));
2948   else
2949     st->print("rawptr:%s", ptr_msg[_ptr]);
2950 }
2951 #endif
2952 
2953 //=============================================================================
2954 // Convenience common pre-built type.
2955 const TypeOopPtr *TypeOopPtr::BOTTOM;
2956 
2957 //------------------------------TypeOopPtr-------------------------------------
2958 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2959                        int instance_id, const TypePtr* speculative, int inline_depth)
2960   : TypePtr(t, ptr, offset, speculative, inline_depth),
2961     _const_oop(o), _klass(k),
2962     _klass_is_exact(xk),
2963     _is_ptr_to_narrowoop(false),
2964     _is_ptr_to_narrowklass(false),
2965     _is_ptr_to_boxed_value(false),
2966     _instance_id(instance_id) {
2967   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2968       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2969     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2970   }
2971 #ifdef _LP64
2972   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
2973     if (_offset == oopDesc::klass_offset_in_bytes()) {
2974       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2975     } else if (klass() == NULL) {
2976       // Array with unknown body type
2977       assert(this->isa_aryptr(), "only arrays without klass");
2978       _is_ptr_to_narrowoop = UseCompressedOops;
2979     } else if (this->isa_aryptr()) {
2980       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2981                              _offset != arrayOopDesc::length_offset_in_bytes());
2982     } else if (klass()->is_instance_klass()) {
2983       ciInstanceKlass* ik = klass()->as_instance_klass();
2984       ciField* field = NULL;
2985       if (this->isa_klassptr()) {
2986         // Perm objects don't use compressed references
2987       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2988         // unsafe access
2989         _is_ptr_to_narrowoop = UseCompressedOops;
2990       } else { // exclude unsafe ops
2991         assert(this->isa_instptr(), "must be an instance ptr.");
2992 
2993         if (klass() == ciEnv::current()->Class_klass() &&
2994             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2995              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2996           // Special hidden fields from the Class.
2997           assert(this->isa_instptr(), "must be an instance ptr.");
2998           _is_ptr_to_narrowoop = false;
2999         } else if (klass() == ciEnv::current()->Class_klass() &&
3000                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3001           // Static fields
3002           assert(o != NULL, "must be constant");
3003           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3004           ciField* field = k->get_field_by_offset(_offset, true);
3005           assert(field != NULL, "missing field");
3006           BasicType basic_elem_type = field->layout_type();
3007           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3008                                                        basic_elem_type == T_ARRAY);
3009         } else {
3010           // Instance fields which contains a compressed oop references.
3011           field = ik->get_field_by_offset(_offset, false);
3012           if (field != NULL) {
3013             BasicType basic_elem_type = field->layout_type();
3014             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3015                                                          basic_elem_type == T_ARRAY);
3016           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3017             // Compile::find_alias_type() cast exactness on all types to verify
3018             // that it does not affect alias type.
3019             _is_ptr_to_narrowoop = UseCompressedOops;
3020           } else {
3021             // Type for the copy start in LibraryCallKit::inline_native_clone().
3022             _is_ptr_to_narrowoop = UseCompressedOops;
3023           }
3024         }
3025       }
3026     }
3027   }
3028 #endif
3029 }
3030 
3031 //------------------------------make-------------------------------------------
3032 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3033                                      const TypePtr* speculative, int inline_depth) {
3034   assert(ptr != Constant, "no constant generic pointers");
3035   ciKlass*  k = Compile::current()->env()->Object_klass();
3036   bool      xk = false;
3037   ciObject* o = NULL;
3038   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3039 }
3040 
3041 
3042 //------------------------------cast_to_ptr_type-------------------------------
3043 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3044   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3045   if( ptr == _ptr ) return this;
3046   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3047 }
3048 
3049 //-----------------------------cast_to_instance_id----------------------------
3050 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3051   // There are no instances of a general oop.
3052   // Return self unchanged.
3053   return this;
3054 }
3055 
3056 const TypeOopPtr *TypeOopPtr::cast_to_nonconst() const {
3057   return this;
3058 }
3059 
3060 //-----------------------------cast_to_exactness-------------------------------
3061 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3062   // There is no such thing as an exact general oop.
3063   // Return self unchanged.
3064   return this;
3065 }
3066 
3067 
3068 //------------------------------as_klass_type----------------------------------
3069 // Return the klass type corresponding to this instance or array type.
3070 // It is the type that is loaded from an object of this type.
3071 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3072   ciKlass* k = klass();
3073   bool    xk = klass_is_exact();
3074   if (k == NULL)
3075     return TypeKlassPtr::OBJECT;
3076   else
3077     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
3078 }
3079 
3080 //------------------------------meet-------------------------------------------
3081 // Compute the MEET of two types.  It returns a new Type object.
3082 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3083   // Perform a fast test for common case; meeting the same types together.
3084   if( this == t ) return this;  // Meeting same type-rep?
3085 
3086   // Current "this->_base" is OopPtr
3087   switch (t->base()) {          // switch on original type
3088 
3089   case Int:                     // Mixing ints & oops happens when javac
3090   case Long:                    // reuses local variables
3091   case FloatTop:
3092   case FloatCon:
3093   case FloatBot:
3094   case DoubleTop:
3095   case DoubleCon:
3096   case DoubleBot:
3097   case NarrowOop:
3098   case NarrowKlass:
3099   case Bottom:                  // Ye Olde Default
3100     return Type::BOTTOM;
3101   case Top:
3102     return this;
3103 
3104   default:                      // All else is a mistake
3105     typerr(t);
3106 
3107   case RawPtr:
3108   case MetadataPtr:
3109   case KlassPtr:
3110     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3111 
3112   case AnyPtr: {
3113     // Found an AnyPtr type vs self-OopPtr type
3114     const TypePtr *tp = t->is_ptr();
3115     int offset = meet_offset(tp->offset());
3116     PTR ptr = meet_ptr(tp->ptr());
3117     const TypePtr* speculative = xmeet_speculative(tp);
3118     int depth = meet_inline_depth(tp->inline_depth());
3119     switch (tp->ptr()) {
3120     case Null:
3121       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3122       // else fall through:
3123     case TopPTR:
3124     case AnyNull: {
3125       int instance_id = meet_instance_id(InstanceTop);
3126       return make(ptr, offset, instance_id, speculative, depth);
3127     }
3128     case BotPTR:
3129     case NotNull:
3130       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3131     default: typerr(t);
3132     }
3133   }
3134 
3135   case OopPtr: {                 // Meeting to other OopPtrs
3136     const TypeOopPtr *tp = t->is_oopptr();
3137     int instance_id = meet_instance_id(tp->instance_id());
3138     const TypePtr* speculative = xmeet_speculative(tp);
3139     int depth = meet_inline_depth(tp->inline_depth());
3140     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3141   }
3142 
3143   case InstPtr:                  // For these, flip the call around to cut down
3144   case AryPtr:
3145     return t->xmeet(this);      // Call in reverse direction
3146 
3147   } // End of switch
3148   return this;                  // Return the double constant
3149 }
3150 
3151 
3152 //------------------------------xdual------------------------------------------
3153 // Dual of a pure heap pointer.  No relevant klass or oop information.
3154 const Type *TypeOopPtr::xdual() const {
3155   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3156   assert(const_oop() == NULL,             "no constants here");
3157   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3158 }
3159 
3160 //--------------------------make_from_klass_common-----------------------------
3161 // Computes the element-type given a klass.
3162 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3163   if (klass->is_instance_klass()) {
3164     Compile* C = Compile::current();
3165     Dependencies* deps = C->dependencies();
3166     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3167     // Element is an instance
3168     bool klass_is_exact = false;
3169     if (klass->is_loaded()) {
3170       // Try to set klass_is_exact.
3171       ciInstanceKlass* ik = klass->as_instance_klass();
3172       klass_is_exact = ik->is_final();
3173       if (!klass_is_exact && klass_change
3174           && deps != NULL && UseUniqueSubclasses) {
3175         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3176         if (sub != NULL) {
3177           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3178           klass = ik = sub;
3179           klass_is_exact = sub->is_final();
3180         }
3181       }
3182       if (!klass_is_exact && try_for_exact
3183           && deps != NULL && UseExactTypes) {
3184         if (!ik->is_interface() && !ik->has_subklass()) {
3185           // Add a dependence; if concrete subclass added we need to recompile
3186           deps->assert_leaf_type(ik);
3187           klass_is_exact = true;
3188         }
3189       }
3190     }
3191     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3192   } else if (klass->is_obj_array_klass()) {
3193     // Element is an object array. Recursively call ourself.
3194     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3195     bool xk = etype->klass_is_exact();
3196     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3197     // We used to pass NotNull in here, asserting that the sub-arrays
3198     // are all not-null.  This is not true in generally, as code can
3199     // slam NULLs down in the subarrays.
3200     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3201     return arr;
3202   } else if (klass->is_type_array_klass()) {
3203     // Element is an typeArray
3204     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3205     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3206     // We used to pass NotNull in here, asserting that the array pointer
3207     // is not-null. That was not true in general.
3208     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3209     return arr;
3210   } else {
3211     ShouldNotReachHere();
3212     return NULL;
3213   }
3214 }
3215 
3216 //------------------------------make_from_constant-----------------------------
3217 // Make a java pointer from an oop constant
3218 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3219   assert(!o->is_null_object(), "null object not yet handled here.");
3220 
3221   const bool make_constant = require_constant || o->should_be_constant();
3222 
3223   ciKlass* klass = o->klass();
3224   if (klass->is_instance_klass()) {
3225     // Element is an instance
3226     if (make_constant) {
3227       return TypeInstPtr::make(o);
3228     } else {
3229       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3230     }
3231   } else if (klass->is_obj_array_klass()) {
3232     // Element is an object array. Recursively call ourself.
3233     const TypeOopPtr *etype =
3234       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3235     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3236     // We used to pass NotNull in here, asserting that the sub-arrays
3237     // are all not-null.  This is not true in generally, as code can
3238     // slam NULLs down in the subarrays.
3239     if (make_constant) {
3240       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3241     } else {
3242       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3243     }
3244   } else if (klass->is_type_array_klass()) {
3245     // Element is an typeArray
3246     const Type* etype =
3247       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3248     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3249     // We used to pass NotNull in here, asserting that the array pointer
3250     // is not-null. That was not true in general.
3251     if (make_constant) {
3252       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3253     } else {
3254       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3255     }
3256   }
3257 
3258   fatal("unhandled object type");
3259   return NULL;
3260 }
3261 
3262 //------------------------------get_con----------------------------------------
3263 intptr_t TypeOopPtr::get_con() const {
3264   assert( _ptr == Null || _ptr == Constant, "" );
3265   assert( _offset >= 0, "" );
3266 
3267   if (_offset != 0) {
3268     // After being ported to the compiler interface, the compiler no longer
3269     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3270     // to a handle at compile time.  This handle is embedded in the generated
3271     // code and dereferenced at the time the nmethod is made.  Until that time,
3272     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3273     // have access to the addresses!).  This does not seem to currently happen,
3274     // but this assertion here is to help prevent its occurence.
3275     tty->print_cr("Found oop constant with non-zero offset");
3276     ShouldNotReachHere();
3277   }
3278 
3279   return (intptr_t)const_oop()->constant_encoding();
3280 }
3281 
3282 
3283 //-----------------------------filter------------------------------------------
3284 // Do not allow interface-vs.-noninterface joins to collapse to top.
3285 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3286 
3287   const Type* ft = join_helper(kills, include_speculative);
3288   const TypeInstPtr* ftip = ft->isa_instptr();
3289   const TypeInstPtr* ktip = kills->isa_instptr();
3290 
3291   if (ft->empty()) {
3292     // Check for evil case of 'this' being a class and 'kills' expecting an
3293     // interface.  This can happen because the bytecodes do not contain
3294     // enough type info to distinguish a Java-level interface variable
3295     // from a Java-level object variable.  If we meet 2 classes which
3296     // both implement interface I, but their meet is at 'j/l/O' which
3297     // doesn't implement I, we have no way to tell if the result should
3298     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3299     // into a Phi which "knows" it's an Interface type we'll have to
3300     // uplift the type.
3301     if (!empty()) {
3302       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3303         return kills;           // Uplift to interface
3304       }
3305       // Also check for evil cases of 'this' being a class array
3306       // and 'kills' expecting an array of interfaces.
3307       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3308       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3309         return kills;           // Uplift to array of interface
3310       }
3311     }
3312 
3313     return Type::TOP;           // Canonical empty value
3314   }
3315 
3316   // If we have an interface-typed Phi or cast and we narrow to a class type,
3317   // the join should report back the class.  However, if we have a J/L/Object
3318   // class-typed Phi and an interface flows in, it's possible that the meet &
3319   // join report an interface back out.  This isn't possible but happens
3320   // because the type system doesn't interact well with interfaces.
3321   if (ftip != NULL && ktip != NULL &&
3322       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3323       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3324     assert(!ftip->klass_is_exact(), "interface could not be exact");
3325     return ktip->cast_to_ptr_type(ftip->ptr());
3326   }
3327 
3328   return ft;
3329 }
3330 
3331 //------------------------------eq---------------------------------------------
3332 // Structural equality check for Type representations
3333 bool TypeOopPtr::eq( const Type *t ) const {
3334   const TypeOopPtr *a = (const TypeOopPtr*)t;
3335   if (_klass_is_exact != a->_klass_is_exact ||
3336       _instance_id != a->_instance_id)  return false;
3337   ciObject* one = const_oop();
3338   ciObject* two = a->const_oop();
3339   if (one == NULL || two == NULL) {
3340     return (one == two) && TypePtr::eq(t);
3341   } else {
3342     return one->equals(two) && TypePtr::eq(t);
3343   }
3344 }
3345 
3346 //------------------------------hash-------------------------------------------
3347 // Type-specific hashing function.
3348 int TypeOopPtr::hash(void) const {
3349   return
3350     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3351              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3352 }
3353 
3354 //------------------------------dump2------------------------------------------
3355 #ifndef PRODUCT
3356 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3357   st->print("oopptr:%s", ptr_msg[_ptr]);
3358   if( _klass_is_exact ) st->print(":exact");
3359   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3360   switch( _offset ) {
3361   case OffsetTop: st->print("+top"); break;
3362   case OffsetBot: st->print("+any"); break;
3363   case         0: break;
3364   default:        st->print("+%d",_offset); break;
3365   }
3366   if (_instance_id == InstanceTop)
3367     st->print(",iid=top");
3368   else if (_instance_id != InstanceBot)
3369     st->print(",iid=%d",_instance_id);
3370 
3371   dump_inline_depth(st);
3372   dump_speculative(st);
3373 }
3374 #endif
3375 
3376 //------------------------------singleton--------------------------------------
3377 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3378 // constants
3379 bool TypeOopPtr::singleton(void) const {
3380   // detune optimizer to not generate constant oop + constant offset as a constant!
3381   // TopPTR, Null, AnyNull, Constant are all singletons
3382   return (_offset == 0) && !below_centerline(_ptr);
3383 }
3384 
3385 //------------------------------add_offset-------------------------------------
3386 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3387   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3388 }
3389 
3390 /**
3391  * Return same type without a speculative part
3392  */
3393 const Type* TypeOopPtr::remove_speculative() const {
3394   if (_speculative == NULL) {
3395     return this;
3396   }
3397   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3398   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3399 }
3400 
3401 /**
3402  * Return same type but drop speculative part if we know we won't use
3403  * it
3404  */
3405 const Type* TypeOopPtr::cleanup_speculative() const {
3406   // If the klass is exact and the ptr is not null then there's
3407   // nothing that the speculative type can help us with
3408   if (klass_is_exact() && !maybe_null()) {
3409     return remove_speculative();
3410   }
3411   return TypePtr::cleanup_speculative();
3412 }
3413 
3414 /**
3415  * Return same type but with a different inline depth (used for speculation)
3416  *
3417  * @param depth  depth to meet with
3418  */
3419 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3420   if (!UseInlineDepthForSpeculativeTypes) {
3421     return this;
3422   }
3423   return make(_ptr, _offset, _instance_id, _speculative, depth);
3424 }
3425 
3426 //------------------------------with_instance_id--------------------------------
3427 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
3428   assert(_instance_id != -1, "should be known");
3429   return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
3430 }
3431 
3432 //------------------------------meet_instance_id--------------------------------
3433 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3434   // Either is 'TOP' instance?  Return the other instance!
3435   if( _instance_id == InstanceTop ) return  instance_id;
3436   if(  instance_id == InstanceTop ) return _instance_id;
3437   // If either is different, return 'BOTTOM' instance
3438   if( _instance_id != instance_id ) return InstanceBot;
3439   return _instance_id;
3440 }
3441 
3442 //------------------------------dual_instance_id--------------------------------
3443 int TypeOopPtr::dual_instance_id( ) const {
3444   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3445   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3446   return _instance_id;              // Map everything else into self
3447 }
3448 
3449 /**
3450  * Check whether new profiling would improve speculative type
3451  *
3452  * @param   exact_kls    class from profiling
3453  * @param   inline_depth inlining depth of profile point
3454  *
3455  * @return  true if type profile is valuable
3456  */
3457 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3458   // no way to improve an already exact type
3459   if (klass_is_exact()) {
3460     return false;
3461   }
3462   return TypePtr::would_improve_type(exact_kls, inline_depth);
3463 }
3464 
3465 //=============================================================================
3466 // Convenience common pre-built types.
3467 const TypeInstPtr *TypeInstPtr::NOTNULL;
3468 const TypeInstPtr *TypeInstPtr::BOTTOM;
3469 const TypeInstPtr *TypeInstPtr::MIRROR;
3470 const TypeInstPtr *TypeInstPtr::MARK;
3471 const TypeInstPtr *TypeInstPtr::KLASS;
3472 
3473 //------------------------------TypeInstPtr-------------------------------------
3474 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3475                          int instance_id, const TypePtr* speculative, int inline_depth)
3476   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3477     _name(k->name()) {
3478    assert(k != NULL &&
3479           (k->is_loaded() || o == NULL),
3480           "cannot have constants with non-loaded klass");
3481 };
3482 
3483 //------------------------------make-------------------------------------------
3484 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3485                                      ciKlass* k,
3486                                      bool xk,
3487                                      ciObject* o,
3488                                      int offset,
3489                                      int instance_id,
3490                                      const TypePtr* speculative,
3491                                      int inline_depth) {
3492   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3493   // Either const_oop() is NULL or else ptr is Constant
3494   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3495           "constant pointers must have a value supplied" );
3496   // Ptr is never Null
3497   assert( ptr != Null, "NULL pointers are not typed" );
3498 
3499   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3500   if (!UseExactTypes)  xk = false;
3501   if (ptr == Constant) {
3502     // Note:  This case includes meta-object constants, such as methods.
3503     xk = true;
3504   } else if (k->is_loaded()) {
3505     ciInstanceKlass* ik = k->as_instance_klass();
3506     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3507     if (xk && ik->is_interface())  xk = false;  // no exact interface
3508   }
3509 
3510   // Now hash this baby
3511   TypeInstPtr *result =
3512     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3513 
3514   return result;
3515 }
3516 
3517 /**
3518  *  Create constant type for a constant boxed value
3519  */
3520 const Type* TypeInstPtr::get_const_boxed_value() const {
3521   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3522   assert((const_oop() != NULL), "should be called only for constant object");
3523   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3524   BasicType bt = constant.basic_type();
3525   switch (bt) {
3526     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3527     case T_INT:      return TypeInt::make(constant.as_int());
3528     case T_CHAR:     return TypeInt::make(constant.as_char());
3529     case T_BYTE:     return TypeInt::make(constant.as_byte());
3530     case T_SHORT:    return TypeInt::make(constant.as_short());
3531     case T_FLOAT:    return TypeF::make(constant.as_float());
3532     case T_DOUBLE:   return TypeD::make(constant.as_double());
3533     case T_LONG:     return TypeLong::make(constant.as_long());
3534     default:         break;
3535   }
3536   fatal("Invalid boxed value type '%s'", type2name(bt));
3537   return NULL;
3538 }
3539 
3540 //------------------------------cast_to_ptr_type-------------------------------
3541 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3542   if( ptr == _ptr ) return this;
3543   // Reconstruct _sig info here since not a problem with later lazy
3544   // construction, _sig will show up on demand.
3545   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3546 }
3547 
3548 
3549 //-----------------------------cast_to_exactness-------------------------------
3550 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3551   if( klass_is_exact == _klass_is_exact ) return this;
3552   if (!UseExactTypes)  return this;
3553   if (!_klass->is_loaded())  return this;
3554   ciInstanceKlass* ik = _klass->as_instance_klass();
3555   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3556   if( ik->is_interface() )              return this;  // cannot set xk
3557   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3558 }
3559 
3560 //-----------------------------cast_to_instance_id----------------------------
3561 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3562   if( instance_id == _instance_id ) return this;
3563   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3564 }
3565 
3566 const TypeOopPtr *TypeInstPtr::cast_to_nonconst() const {
3567   if (const_oop() == NULL) return this;
3568   return make(NotNull, klass(), _klass_is_exact, NULL, _offset, _instance_id, _speculative, _inline_depth);
3569 }
3570 
3571 //------------------------------xmeet_unloaded---------------------------------
3572 // Compute the MEET of two InstPtrs when at least one is unloaded.
3573 // Assume classes are different since called after check for same name/class-loader
3574 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3575     int off = meet_offset(tinst->offset());
3576     PTR ptr = meet_ptr(tinst->ptr());
3577     int instance_id = meet_instance_id(tinst->instance_id());
3578     const TypePtr* speculative = xmeet_speculative(tinst);
3579     int depth = meet_inline_depth(tinst->inline_depth());
3580 
3581     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3582     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3583     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3584       //
3585       // Meet unloaded class with java/lang/Object
3586       //
3587       // Meet
3588       //          |                     Unloaded Class
3589       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3590       //  ===================================================================
3591       //   TOP    | ..........................Unloaded......................|
3592       //  AnyNull |  U-AN    |................Unloaded......................|
3593       // Constant | ... O-NN .................................. |   O-BOT   |
3594       //  NotNull | ... O-NN .................................. |   O-BOT   |
3595       //  BOTTOM  | ........................Object-BOTTOM ..................|
3596       //
3597       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3598       //
3599       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3600       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3601       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3602       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3603         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3604         else                                      { return TypeInstPtr::NOTNULL; }
3605       }
3606       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3607 
3608       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3609     }
3610 
3611     // Both are unloaded, not the same class, not Object
3612     // Or meet unloaded with a different loaded class, not java/lang/Object
3613     if( ptr != TypePtr::BotPTR ) {
3614       return TypeInstPtr::NOTNULL;
3615     }
3616     return TypeInstPtr::BOTTOM;
3617 }
3618 
3619 
3620 //------------------------------meet-------------------------------------------
3621 // Compute the MEET of two types.  It returns a new Type object.
3622 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3623   // Perform a fast test for common case; meeting the same types together.
3624   if( this == t ) return this;  // Meeting same type-rep?
3625 
3626   // Current "this->_base" is Pointer
3627   switch (t->base()) {          // switch on original type
3628 
3629   case Int:                     // Mixing ints & oops happens when javac
3630   case Long:                    // reuses local variables
3631   case FloatTop:
3632   case FloatCon:
3633   case FloatBot:
3634   case DoubleTop:
3635   case DoubleCon:
3636   case DoubleBot:
3637   case NarrowOop:
3638   case NarrowKlass:
3639   case Bottom:                  // Ye Olde Default
3640     return Type::BOTTOM;
3641   case Top:
3642     return this;
3643 
3644   default:                      // All else is a mistake
3645     typerr(t);
3646 
3647   case MetadataPtr:
3648   case KlassPtr:
3649   case RawPtr: return TypePtr::BOTTOM;
3650 
3651   case AryPtr: {                // All arrays inherit from Object class
3652     const TypeAryPtr *tp = t->is_aryptr();
3653     int offset = meet_offset(tp->offset());
3654     PTR ptr = meet_ptr(tp->ptr());
3655     int instance_id = meet_instance_id(tp->instance_id());
3656     const TypePtr* speculative = xmeet_speculative(tp);
3657     int depth = meet_inline_depth(tp->inline_depth());
3658     switch (ptr) {
3659     case TopPTR:
3660     case AnyNull:                // Fall 'down' to dual of object klass
3661       // For instances when a subclass meets a superclass we fall
3662       // below the centerline when the superclass is exact. We need to
3663       // do the same here.
3664       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3665         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3666       } else {
3667         // cannot subclass, so the meet has to fall badly below the centerline
3668         ptr = NotNull;
3669         instance_id = InstanceBot;
3670         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3671       }
3672     case Constant:
3673     case NotNull:
3674     case BotPTR:                // Fall down to object klass
3675       // LCA is object_klass, but if we subclass from the top we can do better
3676       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3677         // If 'this' (InstPtr) is above the centerline and it is Object class
3678         // then we can subclass in the Java class hierarchy.
3679         // For instances when a subclass meets a superclass we fall
3680         // below the centerline when the superclass is exact. We need
3681         // to do the same here.
3682         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3683           // that is, tp's array type is a subtype of my klass
3684           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3685                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3686         }
3687       }
3688       // The other case cannot happen, since I cannot be a subtype of an array.
3689       // The meet falls down to Object class below centerline.
3690       if( ptr == Constant )
3691          ptr = NotNull;
3692       instance_id = InstanceBot;
3693       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3694     default: typerr(t);
3695     }
3696   }
3697 
3698   case OopPtr: {                // Meeting to OopPtrs
3699     // Found a OopPtr type vs self-InstPtr type
3700     const TypeOopPtr *tp = t->is_oopptr();
3701     int offset = meet_offset(tp->offset());
3702     PTR ptr = meet_ptr(tp->ptr());
3703     switch (tp->ptr()) {
3704     case TopPTR:
3705     case AnyNull: {
3706       int instance_id = meet_instance_id(InstanceTop);
3707       const TypePtr* speculative = xmeet_speculative(tp);
3708       int depth = meet_inline_depth(tp->inline_depth());
3709       return make(ptr, klass(), klass_is_exact(),
3710                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3711     }
3712     case NotNull:
3713     case BotPTR: {
3714       int instance_id = meet_instance_id(tp->instance_id());
3715       const TypePtr* speculative = xmeet_speculative(tp);
3716       int depth = meet_inline_depth(tp->inline_depth());
3717       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3718     }
3719     default: typerr(t);
3720     }
3721   }
3722 
3723   case AnyPtr: {                // Meeting to AnyPtrs
3724     // Found an AnyPtr type vs self-InstPtr type
3725     const TypePtr *tp = t->is_ptr();
3726     int offset = meet_offset(tp->offset());
3727     PTR ptr = meet_ptr(tp->ptr());
3728     int instance_id = meet_instance_id(InstanceTop);
3729     const TypePtr* speculative = xmeet_speculative(tp);
3730     int depth = meet_inline_depth(tp->inline_depth());
3731     switch (tp->ptr()) {
3732     case Null:
3733       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3734       // else fall through to AnyNull
3735     case TopPTR:
3736     case AnyNull: {
3737       return make(ptr, klass(), klass_is_exact(),
3738                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3739     }
3740     case NotNull:
3741     case BotPTR:
3742       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3743     default: typerr(t);
3744     }
3745   }
3746 
3747   /*
3748                  A-top         }
3749                /   |   \       }  Tops
3750            B-top A-any C-top   }
3751               | /  |  \ |      }  Any-nulls
3752            B-any   |   C-any   }
3753               |    |    |
3754            B-con A-con C-con   } constants; not comparable across classes
3755               |    |    |
3756            B-not   |   C-not   }
3757               | \  |  / |      }  not-nulls
3758            B-bot A-not C-bot   }
3759                \   |   /       }  Bottoms
3760                  A-bot         }
3761   */
3762 
3763   case InstPtr: {                // Meeting 2 Oops?
3764     // Found an InstPtr sub-type vs self-InstPtr type
3765     const TypeInstPtr *tinst = t->is_instptr();
3766     int off = meet_offset( tinst->offset() );
3767     PTR ptr = meet_ptr( tinst->ptr() );
3768     int instance_id = meet_instance_id(tinst->instance_id());
3769     const TypePtr* speculative = xmeet_speculative(tinst);
3770     int depth = meet_inline_depth(tinst->inline_depth());
3771 
3772     // Check for easy case; klasses are equal (and perhaps not loaded!)
3773     // If we have constants, then we created oops so classes are loaded
3774     // and we can handle the constants further down.  This case handles
3775     // both-not-loaded or both-loaded classes
3776     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3777       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3778     }
3779 
3780     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3781     ciKlass* tinst_klass = tinst->klass();
3782     ciKlass* this_klass  = this->klass();
3783     bool tinst_xk = tinst->klass_is_exact();
3784     bool this_xk  = this->klass_is_exact();
3785     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3786       // One of these classes has not been loaded
3787       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3788 #ifndef PRODUCT
3789       if( PrintOpto && Verbose ) {
3790         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3791         tty->print("  this == "); this->dump(); tty->cr();
3792         tty->print(" tinst == "); tinst->dump(); tty->cr();
3793       }
3794 #endif
3795       return unloaded_meet;
3796     }
3797 
3798     // Handle mixing oops and interfaces first.
3799     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3800                                         tinst_klass == ciEnv::current()->Object_klass())) {
3801       ciKlass *tmp = tinst_klass; // Swap interface around
3802       tinst_klass = this_klass;
3803       this_klass = tmp;
3804       bool tmp2 = tinst_xk;
3805       tinst_xk = this_xk;
3806       this_xk = tmp2;
3807     }
3808     if (tinst_klass->is_interface() &&
3809         !(this_klass->is_interface() ||
3810           // Treat java/lang/Object as an honorary interface,
3811           // because we need a bottom for the interface hierarchy.
3812           this_klass == ciEnv::current()->Object_klass())) {
3813       // Oop meets interface!
3814 
3815       // See if the oop subtypes (implements) interface.
3816       ciKlass *k;
3817       bool xk;
3818       if( this_klass->is_subtype_of( tinst_klass ) ) {
3819         // Oop indeed subtypes.  Now keep oop or interface depending
3820         // on whether we are both above the centerline or either is
3821         // below the centerline.  If we are on the centerline
3822         // (e.g., Constant vs. AnyNull interface), use the constant.
3823         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3824         // If we are keeping this_klass, keep its exactness too.
3825         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3826       } else {                  // Does not implement, fall to Object
3827         // Oop does not implement interface, so mixing falls to Object
3828         // just like the verifier does (if both are above the
3829         // centerline fall to interface)
3830         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3831         xk = above_centerline(ptr) ? tinst_xk : false;
3832         // Watch out for Constant vs. AnyNull interface.
3833         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3834         instance_id = InstanceBot;
3835       }
3836       ciObject* o = NULL;  // the Constant value, if any
3837       if (ptr == Constant) {
3838         // Find out which constant.
3839         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3840       }
3841       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3842     }
3843 
3844     // Either oop vs oop or interface vs interface or interface vs Object
3845 
3846     // !!! Here's how the symmetry requirement breaks down into invariants:
3847     // If we split one up & one down AND they subtype, take the down man.
3848     // If we split one up & one down AND they do NOT subtype, "fall hard".
3849     // If both are up and they subtype, take the subtype class.
3850     // If both are up and they do NOT subtype, "fall hard".
3851     // If both are down and they subtype, take the supertype class.
3852     // If both are down and they do NOT subtype, "fall hard".
3853     // Constants treated as down.
3854 
3855     // Now, reorder the above list; observe that both-down+subtype is also
3856     // "fall hard"; "fall hard" becomes the default case:
3857     // If we split one up & one down AND they subtype, take the down man.
3858     // If both are up and they subtype, take the subtype class.
3859 
3860     // If both are down and they subtype, "fall hard".
3861     // If both are down and they do NOT subtype, "fall hard".
3862     // If both are up and they do NOT subtype, "fall hard".
3863     // If we split one up & one down AND they do NOT subtype, "fall hard".
3864 
3865     // If a proper subtype is exact, and we return it, we return it exactly.
3866     // If a proper supertype is exact, there can be no subtyping relationship!
3867     // If both types are equal to the subtype, exactness is and-ed below the
3868     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3869 
3870     // Check for subtyping:
3871     ciKlass *subtype = NULL;
3872     bool subtype_exact = false;
3873     if( tinst_klass->equals(this_klass) ) {
3874       subtype = this_klass;
3875       subtype_exact = below_centerline(ptr) ? (this_xk && tinst_xk) : (this_xk || tinst_xk);
3876     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3877       subtype = this_klass;     // Pick subtyping class
3878       subtype_exact = this_xk;
3879     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3880       subtype = tinst_klass;    // Pick subtyping class
3881       subtype_exact = tinst_xk;
3882     }
3883 
3884     if( subtype ) {
3885       if( above_centerline(ptr) ) { // both are up?
3886         this_klass = tinst_klass = subtype;
3887         this_xk = tinst_xk = subtype_exact;
3888       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3889         this_klass = tinst_klass; // tinst is down; keep down man
3890         this_xk = tinst_xk;
3891       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3892         tinst_klass = this_klass; // this is down; keep down man
3893         tinst_xk = this_xk;
3894       } else {
3895         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3896       }
3897     }
3898 
3899     // Check for classes now being equal
3900     if (tinst_klass->equals(this_klass)) {
3901       // If the klasses are equal, the constants may still differ.  Fall to
3902       // NotNull if they do (neither constant is NULL; that is a special case
3903       // handled elsewhere).
3904       ciObject* o = NULL;             // Assume not constant when done
3905       ciObject* this_oop  = const_oop();
3906       ciObject* tinst_oop = tinst->const_oop();
3907       if( ptr == Constant ) {
3908         if (this_oop != NULL && tinst_oop != NULL &&
3909             this_oop->equals(tinst_oop) )
3910           o = this_oop;
3911         else if (above_centerline(this ->_ptr))
3912           o = tinst_oop;
3913         else if (above_centerline(tinst ->_ptr))
3914           o = this_oop;
3915         else
3916           ptr = NotNull;
3917       }
3918       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3919     } // Else classes are not equal
3920 
3921     // Since klasses are different, we require a LCA in the Java
3922     // class hierarchy - which means we have to fall to at least NotNull.
3923     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3924       ptr = NotNull;
3925 
3926     instance_id = InstanceBot;
3927 
3928     // Now we find the LCA of Java classes
3929     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3930     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3931   } // End of case InstPtr
3932 
3933   } // End of switch
3934   return this;                  // Return the double constant
3935 }
3936 
3937 
3938 //------------------------java_mirror_type--------------------------------------
3939 ciType* TypeInstPtr::java_mirror_type() const {
3940   // must be a singleton type
3941   if( const_oop() == NULL )  return NULL;
3942 
3943   // must be of type java.lang.Class
3944   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3945 
3946   return const_oop()->as_instance()->java_mirror_type();
3947 }
3948 
3949 
3950 //------------------------------xdual------------------------------------------
3951 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3952 // inheritance mechanism.
3953 const Type *TypeInstPtr::xdual() const {
3954   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3955 }
3956 
3957 //------------------------------eq---------------------------------------------
3958 // Structural equality check for Type representations
3959 bool TypeInstPtr::eq( const Type *t ) const {
3960   const TypeInstPtr *p = t->is_instptr();
3961   return
3962     klass()->equals(p->klass()) &&
3963     TypeOopPtr::eq(p);          // Check sub-type stuff
3964 }
3965 
3966 //------------------------------hash-------------------------------------------
3967 // Type-specific hashing function.
3968 int TypeInstPtr::hash(void) const {
3969   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
3970   return hash;
3971 }
3972 
3973 //------------------------------dump2------------------------------------------
3974 // Dump oop Type
3975 #ifndef PRODUCT
3976 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3977   // Print the name of the klass.
3978   klass()->print_name_on(st);
3979 
3980   switch( _ptr ) {
3981   case Constant:
3982     // TO DO: Make CI print the hex address of the underlying oop.
3983     if (WizardMode || Verbose) {
3984       const_oop()->print_oop(st);
3985     }
3986   case BotPTR:
3987     if (!WizardMode && !Verbose) {
3988       if( _klass_is_exact ) st->print(":exact");
3989       break;
3990     }
3991   case TopPTR:
3992   case AnyNull:
3993   case NotNull:
3994     st->print(":%s", ptr_msg[_ptr]);
3995     if( _klass_is_exact ) st->print(":exact");
3996     break;
3997   default:
3998     break;
3999   }
4000 
4001   if( _offset ) {               // Dump offset, if any
4002     if( _offset == OffsetBot )      st->print("+any");
4003     else if( _offset == OffsetTop ) st->print("+unknown");
4004     else st->print("+%d", _offset);
4005   }
4006 
4007   st->print(" *");
4008   if (_instance_id == InstanceTop)
4009     st->print(",iid=top");
4010   else if (_instance_id != InstanceBot)
4011     st->print(",iid=%d",_instance_id);
4012 
4013   dump_inline_depth(st);
4014   dump_speculative(st);
4015 }
4016 #endif
4017 
4018 //------------------------------add_offset-------------------------------------
4019 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4020   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4021               _instance_id, add_offset_speculative(offset), _inline_depth);
4022 }
4023 
4024 const Type *TypeInstPtr::remove_speculative() const {
4025   if (_speculative == NULL) {
4026     return this;
4027   }
4028   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4029   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4030               _instance_id, NULL, _inline_depth);
4031 }
4032 
4033 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4034   if (!UseInlineDepthForSpeculativeTypes) {
4035     return this;
4036   }
4037   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4038 }
4039 
4040 const TypePtr *TypeInstPtr::with_instance_id(int instance_id) const {
4041   assert(is_known_instance(), "should be known");
4042   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4043 }
4044 
4045 //=============================================================================
4046 // Convenience common pre-built types.
4047 const TypeAryPtr *TypeAryPtr::RANGE;
4048 const TypeAryPtr *TypeAryPtr::OOPS;
4049 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4050 const TypeAryPtr *TypeAryPtr::BYTES;
4051 const TypeAryPtr *TypeAryPtr::SHORTS;
4052 const TypeAryPtr *TypeAryPtr::CHARS;
4053 const TypeAryPtr *TypeAryPtr::INTS;
4054 const TypeAryPtr *TypeAryPtr::LONGS;
4055 const TypeAryPtr *TypeAryPtr::FLOATS;
4056 const TypeAryPtr *TypeAryPtr::DOUBLES;
4057 
4058 //------------------------------make-------------------------------------------
4059 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4060                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4061   assert(!(k == NULL && ary->_elem->isa_int()),
4062          "integral arrays must be pre-equipped with a class");
4063   if (!xk)  xk = ary->ary_must_be_exact();
4064   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4065   if (!UseExactTypes)  xk = (ptr == Constant);
4066   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4067 }
4068 
4069 //------------------------------make-------------------------------------------
4070 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4071                                    int instance_id, const TypePtr* speculative, int inline_depth,
4072                                    bool is_autobox_cache) {
4073   assert(!(k == NULL && ary->_elem->isa_int()),
4074          "integral arrays must be pre-equipped with a class");
4075   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4076   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4077   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4078   if (!UseExactTypes)  xk = (ptr == Constant);
4079   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4080 }
4081 
4082 //------------------------------cast_to_ptr_type-------------------------------
4083 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4084   if( ptr == _ptr ) return this;
4085   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4086 }
4087 
4088 
4089 //-----------------------------cast_to_exactness-------------------------------
4090 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4091   if( klass_is_exact == _klass_is_exact ) return this;
4092   if (!UseExactTypes)  return this;
4093   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4094   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4095 }
4096 
4097 //-----------------------------cast_to_instance_id----------------------------
4098 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4099   if( instance_id == _instance_id ) return this;
4100   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4101 }
4102 
4103 const TypeOopPtr *TypeAryPtr::cast_to_nonconst() const {
4104   if (const_oop() == NULL) return this;
4105   return make(NotNull, NULL, _ary, klass(), _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4106 }
4107 
4108 
4109 //-----------------------------narrow_size_type-------------------------------
4110 // Local cache for arrayOopDesc::max_array_length(etype),
4111 // which is kind of slow (and cached elsewhere by other users).
4112 static jint max_array_length_cache[T_CONFLICT+1];
4113 static jint max_array_length(BasicType etype) {
4114   jint& cache = max_array_length_cache[etype];
4115   jint res = cache;
4116   if (res == 0) {
4117     switch (etype) {
4118     case T_NARROWOOP:
4119       etype = T_OBJECT;
4120       break;
4121     case T_NARROWKLASS:
4122     case T_CONFLICT:
4123     case T_ILLEGAL:
4124     case T_VOID:
4125       etype = T_BYTE;           // will produce conservatively high value
4126       break;
4127     default:
4128       break;
4129     }
4130     cache = res = arrayOopDesc::max_array_length(etype);
4131   }
4132   return res;
4133 }
4134 
4135 // Narrow the given size type to the index range for the given array base type.
4136 // Return NULL if the resulting int type becomes empty.
4137 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4138   jint hi = size->_hi;
4139   jint lo = size->_lo;
4140   jint min_lo = 0;
4141   jint max_hi = max_array_length(elem()->basic_type());
4142   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4143   bool chg = false;
4144   if (lo < min_lo) {
4145     lo = min_lo;
4146     if (size->is_con()) {
4147       hi = lo;
4148     }
4149     chg = true;
4150   }
4151   if (hi > max_hi) {
4152     hi = max_hi;
4153     if (size->is_con()) {
4154       lo = hi;
4155     }
4156     chg = true;
4157   }
4158   // Negative length arrays will produce weird intermediate dead fast-path code
4159   if (lo > hi)
4160     return TypeInt::ZERO;
4161   if (!chg)
4162     return size;
4163   return TypeInt::make(lo, hi, Type::WidenMin);
4164 }
4165 
4166 //-------------------------------cast_to_size----------------------------------
4167 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4168   assert(new_size != NULL, "");
4169   new_size = narrow_size_type(new_size);
4170   if (new_size == size())  return this;
4171   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4172   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4173 }
4174 
4175 //------------------------------cast_to_stable---------------------------------
4176 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4177   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4178     return this;
4179 
4180   const Type* elem = this->elem();
4181   const TypePtr* elem_ptr = elem->make_ptr();
4182 
4183   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4184     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4185     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4186   }
4187 
4188   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4189 
4190   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4191 }
4192 
4193 //-----------------------------stable_dimension--------------------------------
4194 int TypeAryPtr::stable_dimension() const {
4195   if (!is_stable())  return 0;
4196   int dim = 1;
4197   const TypePtr* elem_ptr = elem()->make_ptr();
4198   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4199     dim += elem_ptr->is_aryptr()->stable_dimension();
4200   return dim;
4201 }
4202 
4203 //----------------------cast_to_autobox_cache-----------------------------------
4204 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4205   if (is_autobox_cache() == cache)  return this;
4206   const TypeOopPtr* etype = elem()->make_oopptr();
4207   if (etype == NULL)  return this;
4208   // The pointers in the autobox arrays are always non-null.
4209   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4210   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4211   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4212   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
4213 }
4214 
4215 //------------------------------eq---------------------------------------------
4216 // Structural equality check for Type representations
4217 bool TypeAryPtr::eq( const Type *t ) const {
4218   const TypeAryPtr *p = t->is_aryptr();
4219   return
4220     _ary == p->_ary &&  // Check array
4221     TypeOopPtr::eq(p);  // Check sub-parts
4222 }
4223 
4224 //------------------------------hash-------------------------------------------
4225 // Type-specific hashing function.
4226 int TypeAryPtr::hash(void) const {
4227   return (intptr_t)_ary + TypeOopPtr::hash();
4228 }
4229 
4230 //------------------------------meet-------------------------------------------
4231 // Compute the MEET of two types.  It returns a new Type object.
4232 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4233   // Perform a fast test for common case; meeting the same types together.
4234   if( this == t ) return this;  // Meeting same type-rep?
4235   // Current "this->_base" is Pointer
4236   switch (t->base()) {          // switch on original type
4237 
4238   // Mixing ints & oops happens when javac reuses local variables
4239   case Int:
4240   case Long:
4241   case FloatTop:
4242   case FloatCon:
4243   case FloatBot:
4244   case DoubleTop:
4245   case DoubleCon:
4246   case DoubleBot:
4247   case NarrowOop:
4248   case NarrowKlass:
4249   case Bottom:                  // Ye Olde Default
4250     return Type::BOTTOM;
4251   case Top:
4252     return this;
4253 
4254   default:                      // All else is a mistake
4255     typerr(t);
4256 
4257   case OopPtr: {                // Meeting to OopPtrs
4258     // Found a OopPtr type vs self-AryPtr type
4259     const TypeOopPtr *tp = t->is_oopptr();
4260     int offset = meet_offset(tp->offset());
4261     PTR ptr = meet_ptr(tp->ptr());
4262     int depth = meet_inline_depth(tp->inline_depth());
4263     const TypePtr* speculative = xmeet_speculative(tp);
4264     switch (tp->ptr()) {
4265     case TopPTR:
4266     case AnyNull: {
4267       int instance_id = meet_instance_id(InstanceTop);
4268       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4269                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4270     }
4271     case BotPTR:
4272     case NotNull: {
4273       int instance_id = meet_instance_id(tp->instance_id());
4274       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4275     }
4276     default: ShouldNotReachHere();
4277     }
4278   }
4279 
4280   case AnyPtr: {                // Meeting two AnyPtrs
4281     // Found an AnyPtr type vs self-AryPtr type
4282     const TypePtr *tp = t->is_ptr();
4283     int offset = meet_offset(tp->offset());
4284     PTR ptr = meet_ptr(tp->ptr());
4285     const TypePtr* speculative = xmeet_speculative(tp);
4286     int depth = meet_inline_depth(tp->inline_depth());
4287     switch (tp->ptr()) {
4288     case TopPTR:
4289       return this;
4290     case BotPTR:
4291     case NotNull:
4292       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4293     case Null:
4294       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4295       // else fall through to AnyNull
4296     case AnyNull: {
4297       int instance_id = meet_instance_id(InstanceTop);
4298       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4299                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4300     }
4301     default: ShouldNotReachHere();
4302     }
4303   }
4304 
4305   case MetadataPtr:
4306   case KlassPtr:
4307   case RawPtr: return TypePtr::BOTTOM;
4308 
4309   case AryPtr: {                // Meeting 2 references?
4310     const TypeAryPtr *tap = t->is_aryptr();
4311     int off = meet_offset(tap->offset());
4312     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4313     PTR ptr = meet_ptr(tap->ptr());
4314     int instance_id = meet_instance_id(tap->instance_id());
4315     const TypePtr* speculative = xmeet_speculative(tap);
4316     int depth = meet_inline_depth(tap->inline_depth());
4317     ciKlass* lazy_klass = NULL;
4318     if (tary->_elem->isa_int()) {
4319       // Integral array element types have irrelevant lattice relations.
4320       // It is the klass that determines array layout, not the element type.
4321       if (_klass == NULL)
4322         lazy_klass = tap->_klass;
4323       else if (tap->_klass == NULL || tap->_klass == _klass) {
4324         lazy_klass = _klass;
4325       } else {
4326         // Something like byte[int+] meets char[int+].
4327         // This must fall to bottom, not (int[-128..65535])[int+].
4328         instance_id = InstanceBot;
4329         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4330       }
4331     } else // Non integral arrays.
4332       // Must fall to bottom if exact klasses in upper lattice
4333       // are not equal or super klass is exact.
4334       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4335           // meet with top[] and bottom[] are processed further down:
4336           tap->_klass != NULL  && this->_klass != NULL   &&
4337           // both are exact and not equal:
4338           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4339            // 'tap'  is exact and super or unrelated:
4340            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4341            // 'this' is exact and super or unrelated:
4342            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4343       if (above_centerline(ptr)) {
4344         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4345       }
4346       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4347     }
4348 
4349     bool xk = false;
4350     switch (tap->ptr()) {
4351     case AnyNull:
4352     case TopPTR:
4353       // Compute new klass on demand, do not use tap->_klass
4354       if (below_centerline(this->_ptr)) {
4355         xk = this->_klass_is_exact;
4356       } else {
4357         xk = (tap->_klass_is_exact || this->_klass_is_exact);
4358       }
4359       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4360     case Constant: {
4361       ciObject* o = const_oop();
4362       if( _ptr == Constant ) {
4363         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4364           xk = (klass() == tap->klass());
4365           ptr = NotNull;
4366           o = NULL;
4367           instance_id = InstanceBot;
4368         } else {
4369           xk = true;
4370         }
4371       } else if(above_centerline(_ptr)) {
4372         o = tap->const_oop();
4373         xk = true;
4374       } else {
4375         // Only precise for identical arrays
4376         xk = this->_klass_is_exact && (klass() == tap->klass());
4377       }
4378       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4379     }
4380     case NotNull:
4381     case BotPTR:
4382       // Compute new klass on demand, do not use tap->_klass
4383       if (above_centerline(this->_ptr))
4384             xk = tap->_klass_is_exact;
4385       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4386               (klass() == tap->klass()); // Only precise for identical arrays
4387       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4388     default: ShouldNotReachHere();
4389     }
4390   }
4391 
4392   // All arrays inherit from Object class
4393   case InstPtr: {
4394     const TypeInstPtr *tp = t->is_instptr();
4395     int offset = meet_offset(tp->offset());
4396     PTR ptr = meet_ptr(tp->ptr());
4397     int instance_id = meet_instance_id(tp->instance_id());
4398     const TypePtr* speculative = xmeet_speculative(tp);
4399     int depth = meet_inline_depth(tp->inline_depth());
4400     switch (ptr) {
4401     case TopPTR:
4402     case AnyNull:                // Fall 'down' to dual of object klass
4403       // For instances when a subclass meets a superclass we fall
4404       // below the centerline when the superclass is exact. We need to
4405       // do the same here.
4406       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4407         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4408       } else {
4409         // cannot subclass, so the meet has to fall badly below the centerline
4410         ptr = NotNull;
4411         instance_id = InstanceBot;
4412         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4413       }
4414     case Constant:
4415     case NotNull:
4416     case BotPTR:                // Fall down to object klass
4417       // LCA is object_klass, but if we subclass from the top we can do better
4418       if (above_centerline(tp->ptr())) {
4419         // If 'tp'  is above the centerline and it is Object class
4420         // then we can subclass in the Java class hierarchy.
4421         // For instances when a subclass meets a superclass we fall
4422         // below the centerline when the superclass is exact. We need
4423         // to do the same here.
4424         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4425           // that is, my array type is a subtype of 'tp' klass
4426           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4427                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4428         }
4429       }
4430       // The other case cannot happen, since t cannot be a subtype of an array.
4431       // The meet falls down to Object class below centerline.
4432       if( ptr == Constant )
4433          ptr = NotNull;
4434       instance_id = InstanceBot;
4435       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4436     default: typerr(t);
4437     }
4438   }
4439   }
4440   return this;                  // Lint noise
4441 }
4442 
4443 //------------------------------xdual------------------------------------------
4444 // Dual: compute field-by-field dual
4445 const Type *TypeAryPtr::xdual() const {
4446   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4447 }
4448 
4449 //----------------------interface_vs_oop---------------------------------------
4450 #ifdef ASSERT
4451 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4452   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4453   if (t_aryptr) {
4454     return _ary->interface_vs_oop(t_aryptr->_ary);
4455   }
4456   return false;
4457 }
4458 #endif
4459 
4460 //------------------------------dump2------------------------------------------
4461 #ifndef PRODUCT
4462 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4463   _ary->dump2(d,depth,st);
4464   switch( _ptr ) {
4465   case Constant:
4466     const_oop()->print(st);
4467     break;
4468   case BotPTR:
4469     if (!WizardMode && !Verbose) {
4470       if( _klass_is_exact ) st->print(":exact");
4471       break;
4472     }
4473   case TopPTR:
4474   case AnyNull:
4475   case NotNull:
4476     st->print(":%s", ptr_msg[_ptr]);
4477     if( _klass_is_exact ) st->print(":exact");
4478     break;
4479   default:
4480     break;
4481   }
4482 
4483   if( _offset != 0 ) {
4484     int header_size = objArrayOopDesc::header_size() * wordSize;
4485     if( _offset == OffsetTop )       st->print("+undefined");
4486     else if( _offset == OffsetBot )  st->print("+any");
4487     else if( _offset < header_size ) st->print("+%d", _offset);
4488     else {
4489       BasicType basic_elem_type = elem()->basic_type();
4490       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4491       int elem_size = type2aelembytes(basic_elem_type);
4492       st->print("[%d]", (_offset - array_base)/elem_size);
4493     }
4494   }
4495   st->print(" *");
4496   if (_instance_id == InstanceTop)
4497     st->print(",iid=top");
4498   else if (_instance_id != InstanceBot)
4499     st->print(",iid=%d",_instance_id);
4500 
4501   dump_inline_depth(st);
4502   dump_speculative(st);
4503 }
4504 #endif
4505 
4506 bool TypeAryPtr::empty(void) const {
4507   if (_ary->empty())       return true;
4508   return TypeOopPtr::empty();
4509 }
4510 
4511 //------------------------------add_offset-------------------------------------
4512 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4513   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4514 }
4515 
4516 const Type *TypeAryPtr::remove_speculative() const {
4517   if (_speculative == NULL) {
4518     return this;
4519   }
4520   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4521   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4522 }
4523 
4524 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4525   if (!UseInlineDepthForSpeculativeTypes) {
4526     return this;
4527   }
4528   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4529 }
4530 
4531 const TypePtr *TypeAryPtr::with_instance_id(int instance_id) const {
4532   assert(is_known_instance(), "should be known");
4533   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4534 }
4535 
4536 //=============================================================================
4537 
4538 //------------------------------hash-------------------------------------------
4539 // Type-specific hashing function.
4540 int TypeNarrowPtr::hash(void) const {
4541   return _ptrtype->hash() + 7;
4542 }
4543 
4544 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4545   return _ptrtype->singleton();
4546 }
4547 
4548 bool TypeNarrowPtr::empty(void) const {
4549   return _ptrtype->empty();
4550 }
4551 
4552 intptr_t TypeNarrowPtr::get_con() const {
4553   return _ptrtype->get_con();
4554 }
4555 
4556 bool TypeNarrowPtr::eq( const Type *t ) const {
4557   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4558   if (tc != NULL) {
4559     if (_ptrtype->base() != tc->_ptrtype->base()) {
4560       return false;
4561     }
4562     return tc->_ptrtype->eq(_ptrtype);
4563   }
4564   return false;
4565 }
4566 
4567 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4568   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4569   return make_same_narrowptr(odual);
4570 }
4571 
4572 
4573 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4574   if (isa_same_narrowptr(kills)) {
4575     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4576     if (ft->empty())
4577       return Type::TOP;           // Canonical empty value
4578     if (ft->isa_ptr()) {
4579       return make_hash_same_narrowptr(ft->isa_ptr());
4580     }
4581     return ft;
4582   } else if (kills->isa_ptr()) {
4583     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4584     if (ft->empty())
4585       return Type::TOP;           // Canonical empty value
4586     return ft;
4587   } else {
4588     return Type::TOP;
4589   }
4590 }
4591 
4592 //------------------------------xmeet------------------------------------------
4593 // Compute the MEET of two types.  It returns a new Type object.
4594 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4595   // Perform a fast test for common case; meeting the same types together.
4596   if( this == t ) return this;  // Meeting same type-rep?
4597 
4598   if (t->base() == base()) {
4599     const Type* result = _ptrtype->xmeet(t->make_ptr());
4600     if (result->isa_ptr()) {
4601       return make_hash_same_narrowptr(result->is_ptr());
4602     }
4603     return result;
4604   }
4605 
4606   // Current "this->_base" is NarrowKlass or NarrowOop
4607   switch (t->base()) {          // switch on original type
4608 
4609   case Int:                     // Mixing ints & oops happens when javac
4610   case Long:                    // reuses local variables
4611   case FloatTop:
4612   case FloatCon:
4613   case FloatBot:
4614   case DoubleTop:
4615   case DoubleCon:
4616   case DoubleBot:
4617   case AnyPtr:
4618   case RawPtr:
4619   case OopPtr:
4620   case InstPtr:
4621   case AryPtr:
4622   case MetadataPtr:
4623   case KlassPtr:
4624   case NarrowOop:
4625   case NarrowKlass:
4626 
4627   case Bottom:                  // Ye Olde Default
4628     return Type::BOTTOM;
4629   case Top:
4630     return this;
4631 
4632   default:                      // All else is a mistake
4633     typerr(t);
4634 
4635   } // End of switch
4636 
4637   return this;
4638 }
4639 
4640 #ifndef PRODUCT
4641 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4642   _ptrtype->dump2(d, depth, st);
4643 }
4644 #endif
4645 
4646 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4647 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4648 
4649 
4650 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4651   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4652 }
4653 
4654 const Type* TypeNarrowOop::remove_speculative() const {
4655   return make(_ptrtype->remove_speculative()->is_ptr());
4656 }
4657 
4658 const Type* TypeNarrowOop::cleanup_speculative() const {
4659   return make(_ptrtype->cleanup_speculative()->is_ptr());
4660 }
4661 
4662 #ifndef PRODUCT
4663 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4664   st->print("narrowoop: ");
4665   TypeNarrowPtr::dump2(d, depth, st);
4666 }
4667 #endif
4668 
4669 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4670 
4671 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4672   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4673 }
4674 
4675 #ifndef PRODUCT
4676 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4677   st->print("narrowklass: ");
4678   TypeNarrowPtr::dump2(d, depth, st);
4679 }
4680 #endif
4681 
4682 
4683 //------------------------------eq---------------------------------------------
4684 // Structural equality check for Type representations
4685 bool TypeMetadataPtr::eq( const Type *t ) const {
4686   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4687   ciMetadata* one = metadata();
4688   ciMetadata* two = a->metadata();
4689   if (one == NULL || two == NULL) {
4690     return (one == two) && TypePtr::eq(t);
4691   } else {
4692     return one->equals(two) && TypePtr::eq(t);
4693   }
4694 }
4695 
4696 //------------------------------hash-------------------------------------------
4697 // Type-specific hashing function.
4698 int TypeMetadataPtr::hash(void) const {
4699   return
4700     (metadata() ? metadata()->hash() : 0) +
4701     TypePtr::hash();
4702 }
4703 
4704 //------------------------------singleton--------------------------------------
4705 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4706 // constants
4707 bool TypeMetadataPtr::singleton(void) const {
4708   // detune optimizer to not generate constant metadata + constant offset as a constant!
4709   // TopPTR, Null, AnyNull, Constant are all singletons
4710   return (_offset == 0) && !below_centerline(_ptr);
4711 }
4712 
4713 //------------------------------add_offset-------------------------------------
4714 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4715   return make( _ptr, _metadata, xadd_offset(offset));
4716 }
4717 
4718 //-----------------------------filter------------------------------------------
4719 // Do not allow interface-vs.-noninterface joins to collapse to top.
4720 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4721   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4722   if (ft == NULL || ft->empty())
4723     return Type::TOP;           // Canonical empty value
4724   return ft;
4725 }
4726 
4727  //------------------------------get_con----------------------------------------
4728 intptr_t TypeMetadataPtr::get_con() const {
4729   assert( _ptr == Null || _ptr == Constant, "" );
4730   assert( _offset >= 0, "" );
4731 
4732   if (_offset != 0) {
4733     // After being ported to the compiler interface, the compiler no longer
4734     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4735     // to a handle at compile time.  This handle is embedded in the generated
4736     // code and dereferenced at the time the nmethod is made.  Until that time,
4737     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4738     // have access to the addresses!).  This does not seem to currently happen,
4739     // but this assertion here is to help prevent its occurence.
4740     tty->print_cr("Found oop constant with non-zero offset");
4741     ShouldNotReachHere();
4742   }
4743 
4744   return (intptr_t)metadata()->constant_encoding();
4745 }
4746 
4747 //------------------------------cast_to_ptr_type-------------------------------
4748 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4749   if( ptr == _ptr ) return this;
4750   return make(ptr, metadata(), _offset);
4751 }
4752 
4753 //------------------------------meet-------------------------------------------
4754 // Compute the MEET of two types.  It returns a new Type object.
4755 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4756   // Perform a fast test for common case; meeting the same types together.
4757   if( this == t ) return this;  // Meeting same type-rep?
4758 
4759   // Current "this->_base" is OopPtr
4760   switch (t->base()) {          // switch on original type
4761 
4762   case Int:                     // Mixing ints & oops happens when javac
4763   case Long:                    // reuses local variables
4764   case FloatTop:
4765   case FloatCon:
4766   case FloatBot:
4767   case DoubleTop:
4768   case DoubleCon:
4769   case DoubleBot:
4770   case NarrowOop:
4771   case NarrowKlass:
4772   case Bottom:                  // Ye Olde Default
4773     return Type::BOTTOM;
4774   case Top:
4775     return this;
4776 
4777   default:                      // All else is a mistake
4778     typerr(t);
4779 
4780   case AnyPtr: {
4781     // Found an AnyPtr type vs self-OopPtr type
4782     const TypePtr *tp = t->is_ptr();
4783     int offset = meet_offset(tp->offset());
4784     PTR ptr = meet_ptr(tp->ptr());
4785     switch (tp->ptr()) {
4786     case Null:
4787       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4788       // else fall through:
4789     case TopPTR:
4790     case AnyNull: {
4791       return make(ptr, _metadata, offset);
4792     }
4793     case BotPTR:
4794     case NotNull:
4795       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4796     default: typerr(t);
4797     }
4798   }
4799 
4800   case RawPtr:
4801   case KlassPtr:
4802   case OopPtr:
4803   case InstPtr:
4804   case AryPtr:
4805     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4806 
4807   case MetadataPtr: {
4808     const TypeMetadataPtr *tp = t->is_metadataptr();
4809     int offset = meet_offset(tp->offset());
4810     PTR tptr = tp->ptr();
4811     PTR ptr = meet_ptr(tptr);
4812     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4813     if (tptr == TopPTR || _ptr == TopPTR ||
4814         metadata()->equals(tp->metadata())) {
4815       return make(ptr, md, offset);
4816     }
4817     // metadata is different
4818     if( ptr == Constant ) {  // Cannot be equal constants, so...
4819       if( tptr == Constant && _ptr != Constant)  return t;
4820       if( _ptr == Constant && tptr != Constant)  return this;
4821       ptr = NotNull;            // Fall down in lattice
4822     }
4823     return make(ptr, NULL, offset);
4824     break;
4825   }
4826   } // End of switch
4827   return this;                  // Return the double constant
4828 }
4829 
4830 
4831 //------------------------------xdual------------------------------------------
4832 // Dual of a pure metadata pointer.
4833 const Type *TypeMetadataPtr::xdual() const {
4834   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4835 }
4836 
4837 //------------------------------dump2------------------------------------------
4838 #ifndef PRODUCT
4839 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4840   st->print("metadataptr:%s", ptr_msg[_ptr]);
4841   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
4842   switch( _offset ) {
4843   case OffsetTop: st->print("+top"); break;
4844   case OffsetBot: st->print("+any"); break;
4845   case         0: break;
4846   default:        st->print("+%d",_offset); break;
4847   }
4848 }
4849 #endif
4850 
4851 
4852 //=============================================================================
4853 // Convenience common pre-built type.
4854 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4855 
4856 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4857   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4858 }
4859 
4860 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4861   return make(Constant, m, 0);
4862 }
4863 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4864   return make(Constant, m, 0);
4865 }
4866 
4867 //------------------------------make-------------------------------------------
4868 // Create a meta data constant
4869 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4870   assert(m == NULL || !m->is_klass(), "wrong type");
4871   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4872 }
4873 
4874 
4875 //=============================================================================
4876 // Convenience common pre-built types.
4877 
4878 // Not-null object klass or below
4879 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4880 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4881 
4882 //------------------------------TypeKlassPtr-----------------------------------
4883 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4884   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4885 }
4886 
4887 //------------------------------make-------------------------------------------
4888 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4889 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4890   assert( k != NULL, "Expect a non-NULL klass");
4891   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4892   TypeKlassPtr *r =
4893     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4894 
4895   return r;
4896 }
4897 
4898 //------------------------------eq---------------------------------------------
4899 // Structural equality check for Type representations
4900 bool TypeKlassPtr::eq( const Type *t ) const {
4901   const TypeKlassPtr *p = t->is_klassptr();
4902   return
4903     klass()->equals(p->klass()) &&
4904     TypePtr::eq(p);
4905 }
4906 
4907 //------------------------------hash-------------------------------------------
4908 // Type-specific hashing function.
4909 int TypeKlassPtr::hash(void) const {
4910   return java_add((jint)klass()->hash(), (jint)TypePtr::hash());
4911 }
4912 
4913 //------------------------------singleton--------------------------------------
4914 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4915 // constants
4916 bool TypeKlassPtr::singleton(void) const {
4917   // detune optimizer to not generate constant klass + constant offset as a constant!
4918   // TopPTR, Null, AnyNull, Constant are all singletons
4919   return (_offset == 0) && !below_centerline(_ptr);
4920 }
4921 
4922 // Do not allow interface-vs.-noninterface joins to collapse to top.
4923 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4924   // logic here mirrors the one from TypeOopPtr::filter. See comments
4925   // there.
4926   const Type* ft = join_helper(kills, include_speculative);
4927   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4928   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4929 
4930   if (ft->empty()) {
4931     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4932       return kills;             // Uplift to interface
4933 
4934     return Type::TOP;           // Canonical empty value
4935   }
4936 
4937   // Interface klass type could be exact in opposite to interface type,
4938   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4939   if (ftkp != NULL && ktkp != NULL &&
4940       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4941       !ftkp->klass_is_exact() && // Keep exact interface klass
4942       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4943     return ktkp->cast_to_ptr_type(ftkp->ptr());
4944   }
4945 
4946   return ft;
4947 }
4948 
4949 //----------------------compute_klass------------------------------------------
4950 // Compute the defining klass for this class
4951 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4952   // Compute _klass based on element type.
4953   ciKlass* k_ary = NULL;
4954   const TypeInstPtr *tinst;
4955   const TypeAryPtr *tary;
4956   const Type* el = elem();
4957   if (el->isa_narrowoop()) {
4958     el = el->make_ptr();
4959   }
4960 
4961   // Get element klass
4962   if ((tinst = el->isa_instptr()) != NULL) {
4963     // Compute array klass from element klass
4964     k_ary = ciObjArrayKlass::make(tinst->klass());
4965   } else if ((tary = el->isa_aryptr()) != NULL) {
4966     // Compute array klass from element klass
4967     ciKlass* k_elem = tary->klass();
4968     // If element type is something like bottom[], k_elem will be null.
4969     if (k_elem != NULL)
4970       k_ary = ciObjArrayKlass::make(k_elem);
4971   } else if ((el->base() == Type::Top) ||
4972              (el->base() == Type::Bottom)) {
4973     // element type of Bottom occurs from meet of basic type
4974     // and object; Top occurs when doing join on Bottom.
4975     // Leave k_ary at NULL.
4976   } else {
4977     // Cannot compute array klass directly from basic type,
4978     // since subtypes of TypeInt all have basic type T_INT.
4979 #ifdef ASSERT
4980     if (verify && el->isa_int()) {
4981       // Check simple cases when verifying klass.
4982       BasicType bt = T_ILLEGAL;
4983       if (el == TypeInt::BYTE) {
4984         bt = T_BYTE;
4985       } else if (el == TypeInt::SHORT) {
4986         bt = T_SHORT;
4987       } else if (el == TypeInt::CHAR) {
4988         bt = T_CHAR;
4989       } else if (el == TypeInt::INT) {
4990         bt = T_INT;
4991       } else {
4992         return _klass; // just return specified klass
4993       }
4994       return ciTypeArrayKlass::make(bt);
4995     }
4996 #endif
4997     assert(!el->isa_int(),
4998            "integral arrays must be pre-equipped with a class");
4999     // Compute array klass directly from basic type
5000     k_ary = ciTypeArrayKlass::make(el->basic_type());
5001   }
5002   return k_ary;
5003 }
5004 
5005 //------------------------------klass------------------------------------------
5006 // Return the defining klass for this class
5007 ciKlass* TypeAryPtr::klass() const {
5008   if( _klass ) return _klass;   // Return cached value, if possible
5009 
5010   // Oops, need to compute _klass and cache it
5011   ciKlass* k_ary = compute_klass();
5012 
5013   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5014     // The _klass field acts as a cache of the underlying
5015     // ciKlass for this array type.  In order to set the field,
5016     // we need to cast away const-ness.
5017     //
5018     // IMPORTANT NOTE: we *never* set the _klass field for the
5019     // type TypeAryPtr::OOPS.  This Type is shared between all
5020     // active compilations.  However, the ciKlass which represents
5021     // this Type is *not* shared between compilations, so caching
5022     // this value would result in fetching a dangling pointer.
5023     //
5024     // Recomputing the underlying ciKlass for each request is
5025     // a bit less efficient than caching, but calls to
5026     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5027     ((TypeAryPtr*)this)->_klass = k_ary;
5028     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5029         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
5030       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5031     }
5032   }
5033   return k_ary;
5034 }
5035 
5036 
5037 //------------------------------add_offset-------------------------------------
5038 // Access internals of klass object
5039 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5040   return make( _ptr, klass(), xadd_offset(offset) );
5041 }
5042 
5043 //------------------------------cast_to_ptr_type-------------------------------
5044 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5045   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5046   if( ptr == _ptr ) return this;
5047   return make(ptr, _klass, _offset);
5048 }
5049 
5050 
5051 //-----------------------------cast_to_exactness-------------------------------
5052 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5053   if( klass_is_exact == _klass_is_exact ) return this;
5054   if (!UseExactTypes)  return this;
5055   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5056 }
5057 
5058 
5059 //-----------------------------as_instance_type--------------------------------
5060 // Corresponding type for an instance of the given class.
5061 // It will be NotNull, and exact if and only if the klass type is exact.
5062 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5063   ciKlass* k = klass();
5064   bool    xk = klass_is_exact();
5065   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5066   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5067   guarantee(toop != NULL, "need type for given klass");
5068   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5069   return toop->cast_to_exactness(xk)->is_oopptr();
5070 }
5071 
5072 
5073 //------------------------------xmeet------------------------------------------
5074 // Compute the MEET of two types, return a new Type object.
5075 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5076   // Perform a fast test for common case; meeting the same types together.
5077   if( this == t ) return this;  // Meeting same type-rep?
5078 
5079   // Current "this->_base" is Pointer
5080   switch (t->base()) {          // switch on original type
5081 
5082   case Int:                     // Mixing ints & oops happens when javac
5083   case Long:                    // reuses local variables
5084   case FloatTop:
5085   case FloatCon:
5086   case FloatBot:
5087   case DoubleTop:
5088   case DoubleCon:
5089   case DoubleBot:
5090   case NarrowOop:
5091   case NarrowKlass:
5092   case Bottom:                  // Ye Olde Default
5093     return Type::BOTTOM;
5094   case Top:
5095     return this;
5096 
5097   default:                      // All else is a mistake
5098     typerr(t);
5099 
5100   case AnyPtr: {                // Meeting to AnyPtrs
5101     // Found an AnyPtr type vs self-KlassPtr type
5102     const TypePtr *tp = t->is_ptr();
5103     int offset = meet_offset(tp->offset());
5104     PTR ptr = meet_ptr(tp->ptr());
5105     switch (tp->ptr()) {
5106     case TopPTR:
5107       return this;
5108     case Null:
5109       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5110     case AnyNull:
5111       return make( ptr, klass(), offset );
5112     case BotPTR:
5113     case NotNull:
5114       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5115     default: typerr(t);
5116     }
5117   }
5118 
5119   case RawPtr:
5120   case MetadataPtr:
5121   case OopPtr:
5122   case AryPtr:                  // Meet with AryPtr
5123   case InstPtr:                 // Meet with InstPtr
5124     return TypePtr::BOTTOM;
5125 
5126   //
5127   //             A-top         }
5128   //           /   |   \       }  Tops
5129   //       B-top A-any C-top   }
5130   //          | /  |  \ |      }  Any-nulls
5131   //       B-any   |   C-any   }
5132   //          |    |    |
5133   //       B-con A-con C-con   } constants; not comparable across classes
5134   //          |    |    |
5135   //       B-not   |   C-not   }
5136   //          | \  |  / |      }  not-nulls
5137   //       B-bot A-not C-bot   }
5138   //           \   |   /       }  Bottoms
5139   //             A-bot         }
5140   //
5141 
5142   case KlassPtr: {  // Meet two KlassPtr types
5143     const TypeKlassPtr *tkls = t->is_klassptr();
5144     int  off     = meet_offset(tkls->offset());
5145     PTR  ptr     = meet_ptr(tkls->ptr());
5146 
5147     // Check for easy case; klasses are equal (and perhaps not loaded!)
5148     // If we have constants, then we created oops so classes are loaded
5149     // and we can handle the constants further down.  This case handles
5150     // not-loaded classes
5151     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5152       return make( ptr, klass(), off );
5153     }
5154 
5155     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5156     ciKlass* tkls_klass = tkls->klass();
5157     ciKlass* this_klass = this->klass();
5158     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5159     assert( this_klass->is_loaded(), "This class should have been loaded.");
5160 
5161     // If 'this' type is above the centerline and is a superclass of the
5162     // other, we can treat 'this' as having the same type as the other.
5163     if ((above_centerline(this->ptr())) &&
5164         tkls_klass->is_subtype_of(this_klass)) {
5165       this_klass = tkls_klass;
5166     }
5167     // If 'tinst' type is above the centerline and is a superclass of the
5168     // other, we can treat 'tinst' as having the same type as the other.
5169     if ((above_centerline(tkls->ptr())) &&
5170         this_klass->is_subtype_of(tkls_klass)) {
5171       tkls_klass = this_klass;
5172     }
5173 
5174     // Check for classes now being equal
5175     if (tkls_klass->equals(this_klass)) {
5176       // If the klasses are equal, the constants may still differ.  Fall to
5177       // NotNull if they do (neither constant is NULL; that is a special case
5178       // handled elsewhere).
5179       if( ptr == Constant ) {
5180         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5181             this->klass()->equals(tkls->klass()));
5182         else if (above_centerline(this->ptr()));
5183         else if (above_centerline(tkls->ptr()));
5184         else
5185           ptr = NotNull;
5186       }
5187       return make( ptr, this_klass, off );
5188     } // Else classes are not equal
5189 
5190     // Since klasses are different, we require the LCA in the Java
5191     // class hierarchy - which means we have to fall to at least NotNull.
5192     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5193       ptr = NotNull;
5194     // Now we find the LCA of Java classes
5195     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5196     return   make( ptr, k, off );
5197   } // End of case KlassPtr
5198 
5199   } // End of switch
5200   return this;                  // Return the double constant
5201 }
5202 
5203 //------------------------------xdual------------------------------------------
5204 // Dual: compute field-by-field dual
5205 const Type    *TypeKlassPtr::xdual() const {
5206   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5207 }
5208 
5209 //------------------------------get_con----------------------------------------
5210 intptr_t TypeKlassPtr::get_con() const {
5211   assert( _ptr == Null || _ptr == Constant, "" );
5212   assert( _offset >= 0, "" );
5213 
5214   if (_offset != 0) {
5215     // After being ported to the compiler interface, the compiler no longer
5216     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5217     // to a handle at compile time.  This handle is embedded in the generated
5218     // code and dereferenced at the time the nmethod is made.  Until that time,
5219     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5220     // have access to the addresses!).  This does not seem to currently happen,
5221     // but this assertion here is to help prevent its occurence.
5222     tty->print_cr("Found oop constant with non-zero offset");
5223     ShouldNotReachHere();
5224   }
5225 
5226   return (intptr_t)klass()->constant_encoding();
5227 }
5228 //------------------------------dump2------------------------------------------
5229 // Dump Klass Type
5230 #ifndef PRODUCT
5231 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5232   switch( _ptr ) {
5233   case Constant:
5234     st->print("precise ");
5235   case NotNull:
5236     {
5237       const char *name = klass()->name()->as_utf8();
5238       if( name ) {
5239         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5240       } else {
5241         ShouldNotReachHere();
5242       }
5243     }
5244   case BotPTR:
5245     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5246   case TopPTR:
5247   case AnyNull:
5248     st->print(":%s", ptr_msg[_ptr]);
5249     if( _klass_is_exact ) st->print(":exact");
5250     break;
5251   default:
5252     break;
5253   }
5254 
5255   if( _offset ) {               // Dump offset, if any
5256     if( _offset == OffsetBot )      { st->print("+any"); }
5257     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5258     else                            { st->print("+%d", _offset); }
5259   }
5260 
5261   st->print(" *");
5262 }
5263 #endif
5264 
5265 
5266 
5267 //=============================================================================
5268 // Convenience common pre-built types.
5269 
5270 //------------------------------make-------------------------------------------
5271 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5272   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5273 }
5274 
5275 //------------------------------make-------------------------------------------
5276 const TypeFunc *TypeFunc::make(ciMethod* method) {
5277   Compile* C = Compile::current();
5278   const TypeFunc* tf = C->last_tf(method); // check cache
5279   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5280   const TypeTuple *domain;
5281   if (method->is_static()) {
5282     domain = TypeTuple::make_domain(NULL, method->signature());
5283   } else {
5284     domain = TypeTuple::make_domain(method->holder(), method->signature());
5285   }
5286   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5287   tf = TypeFunc::make(domain, range);
5288   C->set_last_tf(method, tf);  // fill cache
5289   return tf;
5290 }
5291 
5292 //------------------------------meet-------------------------------------------
5293 // Compute the MEET of two types.  It returns a new Type object.
5294 const Type *TypeFunc::xmeet( const Type *t ) const {
5295   // Perform a fast test for common case; meeting the same types together.
5296   if( this == t ) return this;  // Meeting same type-rep?
5297 
5298   // Current "this->_base" is Func
5299   switch (t->base()) {          // switch on original type
5300 
5301   case Bottom:                  // Ye Olde Default
5302     return t;
5303 
5304   default:                      // All else is a mistake
5305     typerr(t);
5306 
5307   case Top:
5308     break;
5309   }
5310   return this;                  // Return the double constant
5311 }
5312 
5313 //------------------------------xdual------------------------------------------
5314 // Dual: compute field-by-field dual
5315 const Type *TypeFunc::xdual() const {
5316   return this;
5317 }
5318 
5319 //------------------------------eq---------------------------------------------
5320 // Structural equality check for Type representations
5321 bool TypeFunc::eq( const Type *t ) const {
5322   const TypeFunc *a = (const TypeFunc*)t;
5323   return _domain == a->_domain &&
5324     _range == a->_range;
5325 }
5326 
5327 //------------------------------hash-------------------------------------------
5328 // Type-specific hashing function.
5329 int TypeFunc::hash(void) const {
5330   return (intptr_t)_domain + (intptr_t)_range;
5331 }
5332 
5333 //------------------------------dump2------------------------------------------
5334 // Dump Function Type
5335 #ifndef PRODUCT
5336 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5337   if( _range->cnt() <= Parms )
5338     st->print("void");
5339   else {
5340     uint i;
5341     for (i = Parms; i < _range->cnt()-1; i++) {
5342       _range->field_at(i)->dump2(d,depth,st);
5343       st->print("/");
5344     }
5345     _range->field_at(i)->dump2(d,depth,st);
5346   }
5347   st->print(" ");
5348   st->print("( ");
5349   if( !depth || d[this] ) {     // Check for recursive dump
5350     st->print("...)");
5351     return;
5352   }
5353   d.Insert((void*)this,(void*)this);    // Stop recursion
5354   if (Parms < _domain->cnt())
5355     _domain->field_at(Parms)->dump2(d,depth-1,st);
5356   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5357     st->print(", ");
5358     _domain->field_at(i)->dump2(d,depth-1,st);
5359   }
5360   st->print(" )");
5361 }
5362 #endif
5363 
5364 //------------------------------singleton--------------------------------------
5365 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5366 // constants (Ldi nodes).  Singletons are integer, float or double constants
5367 // or a single symbol.
5368 bool TypeFunc::singleton(void) const {
5369   return false;                 // Never a singleton
5370 }
5371 
5372 bool TypeFunc::empty(void) const {
5373   return false;                 // Never empty
5374 }
5375 
5376 
5377 BasicType TypeFunc::return_type() const{
5378   if (range()->cnt() == TypeFunc::Parms) {
5379     return T_VOID;
5380   }
5381   return range()->field_at(TypeFunc::Parms)->basic_type();
5382 }