1 /*
  2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_MEMORY_ALLOCATION_HPP
 26 #define SHARE_MEMORY_ALLOCATION_HPP
 27 
 28 #include "utilities/globalDefinitions.hpp"
 29 #include "utilities/macros.hpp"
 30 
 31 #include <new>
 32 
 33 class outputStream;
 34 class Thread;
 35 
 36 class AllocFailStrategy {
 37 public:
 38   enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
 39 };
 40 typedef AllocFailStrategy::AllocFailEnum AllocFailType;
 41 
 42 // The virtual machine must never call one of the implicitly declared
 43 // global allocation or deletion functions.  (Such calls may result in
 44 // link-time or run-time errors.)  For convenience and documentation of
 45 // intended use, classes in the virtual machine may be derived from one
 46 // of the following allocation classes, some of which define allocation
 47 // and deletion functions.
 48 // Note: std::malloc and std::free should never called directly.
 49 
 50 //
 51 // For objects allocated in the resource area (see resourceArea.hpp).
 52 // - ResourceObj
 53 //
 54 // For objects allocated in the C-heap (managed by: free & malloc and tracked with NMT)
 55 // - CHeapObj
 56 //
 57 // For objects allocated on the stack.
 58 // - StackObj
 59 //
 60 // For classes used as name spaces.
 61 // - AllStatic
 62 //
 63 // For classes in Metaspace (class data)
 64 // - MetaspaceObj
 65 //
 66 // The printable subclasses are used for debugging and define virtual
 67 // member functions for printing. Classes that avoid allocating the
 68 // vtbl entries in the objects should therefore not be the printable
 69 // subclasses.
 70 //
 71 // The following macros and function should be used to allocate memory
 72 // directly in the resource area or in the C-heap, The _OBJ variants
 73 // of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
 74 // objects which are not inherited from CHeapObj, note constructor and
 75 // destructor are not called. The preferable way to allocate objects
 76 // is using the new operator.
 77 //
 78 // WARNING: The array variant must only be used for a homogenous array
 79 // where all objects are of the exact type specified. If subtypes are
 80 // stored in the array then must pay attention to calling destructors
 81 // at needed.
 82 //
 83 // In non product mode we introduce a super class for all allocation classes
 84 // that supports printing.
 85 // We avoid the superclass in product mode to save space.
 86 
 87 #ifdef PRODUCT
 88 #define ALLOCATION_SUPER_CLASS_SPEC
 89 #else
 90 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
 91 class AllocatedObj {
 92  public:
 93   // Printing support
 94   void print() const;
 95   void print_value() const;
 96 
 97   virtual void print_on(outputStream* st) const;
 98   virtual void print_value_on(outputStream* st) const;
 99 };
100 #endif
101 
102 #define MEMORY_TYPES_DO(f) \
103   /* Memory type by sub systems. It occupies lower byte. */  \
104   f(mtJavaHeap,      "Java Heap")   /* Java heap                                 */ \
105   f(mtClass,         "Class")       /* Java classes                              */ \
106   f(mtThread,        "Thread")      /* thread objects                            */ \
107   f(mtThreadStack,   "Thread Stack")                                                \
108   f(mtCode,          "Code")        /* generated code                            */ \
109   f(mtGC,            "GC")                                                          \
110   f(mtCompiler,      "Compiler")                                                    \
111   f(mtJVMCI,         "JVMCI")                                                       \
112   f(mtInternal,      "Internal")    /* memory used by VM, but does not belong to */ \
113                                     /* any of above categories, and not used by  */ \
114                                     /* NMT                                       */ \
115   f(mtOther,         "Other")       /* memory not used by VM                     */ \
116   f(mtSymbol,        "Symbol")                                                      \
117   f(mtNMT,           "Native Memory Tracking")  /* memory used by NMT            */ \
118   f(mtClassShared,   "Shared class space")      /* class data sharing            */ \
119   f(mtChunk,         "Arena Chunk") /* chunk that holds content of arenas        */ \
120   f(mtTest,          "Test")        /* Test type for verifying NMT               */ \
121   f(mtTracing,       "Tracing")                                                     \
122   f(mtLogging,       "Logging")                                                     \
123   f(mtStatistics,    "Statistics")                                                  \
124   f(mtArguments,     "Arguments")                                                   \
125   f(mtModule,        "Module")                                                      \
126   f(mtSafepoint,     "Safepoint")                                                   \
127   f(mtSynchronizer,  "Synchronization")                                             \
128   f(mtNone,          "Unknown")                                                     \
129   //end
130 
131 #define MEMORY_TYPE_DECLARE_ENUM(type, human_readable) \
132   type,
133 
134 /*
135  * Memory types
136  */
137 enum MemoryType {
138   MEMORY_TYPES_DO(MEMORY_TYPE_DECLARE_ENUM)
139   mt_number_of_types   // number of memory types (mtDontTrack
140                        // is not included as validate type)
141 };
142 
143 typedef MemoryType MEMFLAGS;
144 
145 
146 #if INCLUDE_NMT
147 
148 extern bool NMT_track_callsite;
149 
150 #else
151 
152 const bool NMT_track_callsite = false;
153 
154 #endif // INCLUDE_NMT
155 
156 class NativeCallStack;
157 
158 
159 char* AllocateHeap(size_t size,
160                    MEMFLAGS flags,
161                    const NativeCallStack& stack,
162                    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
163 char* AllocateHeap(size_t size,
164                    MEMFLAGS flags,
165                    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
166 
167 char* ReallocateHeap(char *old,
168                      size_t size,
169                      MEMFLAGS flag,
170                      AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
171 
172 void FreeHeap(void* p);
173 
174 template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
175  public:
176   ALWAYSINLINE void* operator new(size_t size) throw() {
177     return (void*)AllocateHeap(size, F);
178   }
179 
180   ALWAYSINLINE void* operator new(size_t size,
181                                   const NativeCallStack& stack) throw() {
182     return (void*)AllocateHeap(size, F, stack);
183   }
184 
185   ALWAYSINLINE void* operator new(size_t size, const std::nothrow_t&,
186                                   const NativeCallStack& stack) throw() {
187     return (void*)AllocateHeap(size, F, stack, AllocFailStrategy::RETURN_NULL);
188   }
189 
190   ALWAYSINLINE void* operator new(size_t size, const std::nothrow_t&) throw() {
191     return (void*)AllocateHeap(size, F, AllocFailStrategy::RETURN_NULL);
192   }
193 
194   ALWAYSINLINE void* operator new[](size_t size) throw() {
195     return (void*)AllocateHeap(size, F);
196   }
197 
198   ALWAYSINLINE void* operator new[](size_t size,
199                                   const NativeCallStack& stack) throw() {
200     return (void*)AllocateHeap(size, F, stack);
201   }
202 
203   ALWAYSINLINE void* operator new[](size_t size, const std::nothrow_t&,
204                                     const NativeCallStack& stack) throw() {
205     return (void*)AllocateHeap(size, F, stack, AllocFailStrategy::RETURN_NULL);
206   }
207 
208   ALWAYSINLINE void* operator new[](size_t size, const std::nothrow_t&) throw() {
209     return (void*)AllocateHeap(size, F, AllocFailStrategy::RETURN_NULL);
210   }
211 
212   void  operator delete(void* p)     { FreeHeap(p); }
213   void  operator delete [] (void* p) { FreeHeap(p); }
214 };
215 
216 // Base class for objects allocated on the stack only.
217 // Calling new or delete will result in fatal error.
218 
219 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
220  private:
221   void* operator new(size_t size) throw();
222   void* operator new [](size_t size) throw();
223   void  operator delete(void* p);
224   void  operator delete [](void* p);
225 };
226 
227 // Base class for objects stored in Metaspace.
228 // Calling delete will result in fatal error.
229 //
230 // Do not inherit from something with a vptr because this class does
231 // not introduce one.  This class is used to allocate both shared read-only
232 // and shared read-write classes.
233 //
234 
235 class ClassLoaderData;
236 class MetaspaceClosure;
237 
238 class MetaspaceObj {
239   friend class VMStructs;
240   // When CDS is enabled, all shared metaspace objects are mapped
241   // into a single contiguous memory block, so we can use these
242   // two pointers to quickly determine if something is in the
243   // shared metaspace.
244   // When CDS is not enabled, both pointers are set to NULL.
245   static void* _shared_metaspace_base;  // (inclusive) low address
246   static void* _shared_metaspace_top;   // (exclusive) high address
247 
248  public:
249 
250   // Returns true if the pointer points to a valid MetaspaceObj. A valid
251   // MetaspaceObj is MetaWord-aligned and contained within either
252   // non-shared or shared metaspace.
253   static bool is_valid(const MetaspaceObj* p);
254 
255   static bool is_shared(const MetaspaceObj* p) {
256     // If no shared metaspace regions are mapped, _shared_metaspace_{base,top} will
257     // both be NULL and all values of p will be rejected quickly.
258     return (((void*)p) < _shared_metaspace_top &&
259             ((void*)p) >= _shared_metaspace_base);
260   }
261   bool is_shared() const { return MetaspaceObj::is_shared(this); }
262 
263   void print_address_on(outputStream* st) const;  // nonvirtual address printing
264 
265   static void set_shared_metaspace_range(void* base, void* top) {
266     _shared_metaspace_base = base;
267     _shared_metaspace_top = top;
268   }
269 
270   static void expand_shared_metaspace_range(void* top) {
271     assert(top >= _shared_metaspace_top, "must be");
272     _shared_metaspace_top = top;
273   }
274 
275   static void* shared_metaspace_base() { return _shared_metaspace_base; }
276   static void* shared_metaspace_top()  { return _shared_metaspace_top;  }
277 
278 #define METASPACE_OBJ_TYPES_DO(f) \
279   f(Class) \
280   f(Symbol) \
281   f(TypeArrayU1) \
282   f(TypeArrayU2) \
283   f(TypeArrayU4) \
284   f(TypeArrayU8) \
285   f(TypeArrayOther) \
286   f(Method) \
287   f(ConstMethod) \
288   f(MethodData) \
289   f(ConstantPool) \
290   f(ConstantPoolCache) \
291   f(Annotations) \
292   f(MethodCounters)
293 
294 #define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
295 #define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
296 
297   enum Type {
298     // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
299     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
300     _number_of_types
301   };
302 
303   static const char * type_name(Type type) {
304     switch(type) {
305     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
306     default:
307       ShouldNotReachHere();
308       return NULL;
309     }
310   }
311 
312   static MetaspaceObj::Type array_type(size_t elem_size) {
313     switch (elem_size) {
314     case 1: return TypeArrayU1Type;
315     case 2: return TypeArrayU2Type;
316     case 4: return TypeArrayU4Type;
317     case 8: return TypeArrayU8Type;
318     default:
319       return TypeArrayOtherType;
320     }
321   }
322 
323   void* operator new(size_t size, ClassLoaderData* loader_data,
324                      size_t word_size,
325                      Type type, Thread* thread) throw();
326                      // can't use TRAPS from this header file.
327   void operator delete(void* p) { ShouldNotCallThis(); }
328 
329   // Declare a *static* method with the same signature in any subclass of MetaspaceObj
330   // that should be read-only by default. See symbol.hpp for an example. This function
331   // is used by the templates in metaspaceClosure.hpp
332   static bool is_read_only_by_default() { return false; }
333 };
334 
335 // Base class for classes that constitute name spaces.
336 
337 class Arena;
338 
339 class AllStatic {
340  public:
341   AllStatic()  { ShouldNotCallThis(); }
342   ~AllStatic() { ShouldNotCallThis(); }
343 };
344 
345 
346 extern char* resource_allocate_bytes(size_t size,
347     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
348 extern char* resource_allocate_bytes(Thread* thread, size_t size,
349     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
350 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
351     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
352 extern void resource_free_bytes( char *old, size_t size );
353 
354 //----------------------------------------------------------------------
355 // Base class for objects allocated in the resource area per default.
356 // Optionally, objects may be allocated on the C heap with
357 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
358 // ResourceObj's can be allocated within other objects, but don't use
359 // new or delete (allocation_type is unknown).  If new is used to allocate,
360 // use delete to deallocate.
361 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
362  public:
363   enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
364   static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
365 #ifdef ASSERT
366  private:
367   // When this object is allocated on stack the new() operator is not
368   // called but garbage on stack may look like a valid allocation_type.
369   // Store negated 'this' pointer when new() is called to distinguish cases.
370   // Use second array's element for verification value to distinguish garbage.
371   uintptr_t _allocation_t[2];
372   bool is_type_set() const;
373   void initialize_allocation_info();
374  public:
375   allocation_type get_allocation_type() const;
376   bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
377   bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
378   bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
379   bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
380 protected:
381   ResourceObj(); // default constructor
382   ResourceObj(const ResourceObj& r); // default copy constructor
383   ResourceObj& operator=(const ResourceObj& r); // default copy assignment
384   ~ResourceObj();
385 #endif // ASSERT
386 
387  public:
388   void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
389   void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
390   void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
391       allocation_type type, MEMFLAGS flags) throw();
392   void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
393       allocation_type type, MEMFLAGS flags) throw();
394 
395   void* operator new(size_t size, Arena *arena) throw();
396 
397   void* operator new [](size_t size, Arena *arena) throw();
398 
399   void* operator new(size_t size) throw() {
400       address res = (address)resource_allocate_bytes(size);
401       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
402       return res;
403   }
404 
405   void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
406       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
407       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
408       return res;
409   }
410 
411   void* operator new [](size_t size) throw() {
412       address res = (address)resource_allocate_bytes(size);
413       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
414       return res;
415   }
416 
417   void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
418       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
419       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
420       return res;
421   }
422 
423   void  operator delete(void* p);
424   void  operator delete [](void* p);
425 };
426 
427 // One of the following macros must be used when allocating an array
428 // or object to determine whether it should reside in the C heap on in
429 // the resource area.
430 
431 #define NEW_RESOURCE_ARRAY(type, size)\
432   (type*) resource_allocate_bytes((size) * sizeof(type))
433 
434 #define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
435   (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
436 
437 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
438   (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
439 
440 #define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
441   (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
442 
443 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
444   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
445 
446 #define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
447   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
448                                     (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
449 
450 #define FREE_RESOURCE_ARRAY(type, old, size)\
451   resource_free_bytes((char*)(old), (size) * sizeof(type))
452 
453 #define FREE_FAST(old)\
454     /* nop */
455 
456 #define NEW_RESOURCE_OBJ(type)\
457   NEW_RESOURCE_ARRAY(type, 1)
458 
459 #define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
460   NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
461 
462 #define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
463   (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
464 
465 #define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
466   (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
467 
468 #define NEW_C_HEAP_ARRAY(type, size, memflags)\
469   (type*) (AllocateHeap((size) * sizeof(type), memflags))
470 
471 #define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
472   NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
473 
474 #define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
475   NEW_C_HEAP_ARRAY3(type, (size), memflags, CURRENT_PC, AllocFailStrategy::RETURN_NULL)
476 
477 #define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
478   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
479 
480 #define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
481   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
482 
483 #define FREE_C_HEAP_ARRAY(type, old) \
484   FreeHeap((char*)(old))
485 
486 // allocate type in heap without calling ctor
487 #define NEW_C_HEAP_OBJ(type, memflags)\
488   NEW_C_HEAP_ARRAY(type, 1, memflags)
489 
490 #define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
491   NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
492 
493 // deallocate obj of type in heap without calling dtor
494 #define FREE_C_HEAP_OBJ(objname)\
495   FreeHeap((char*)objname);
496 
497 
498 //------------------------------ReallocMark---------------------------------
499 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
500 // ReallocMark, which is declared in the same scope as the reallocated
501 // pointer.  Any operation that could __potentially__ cause a reallocation
502 // should check the ReallocMark.
503 class ReallocMark: public StackObj {
504 protected:
505   NOT_PRODUCT(int _nesting;)
506 
507 public:
508   ReallocMark()   PRODUCT_RETURN;
509   void check()    PRODUCT_RETURN;
510 };
511 
512 // Helper class to allocate arrays that may become large.
513 // Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
514 // and uses mapped memory for larger allocations.
515 // Most OS mallocs do something similar but Solaris malloc does not revert
516 // to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
517 // is set so that we always use malloc except for Solaris where we set the
518 // limit to get mapped memory.
519 template <class E>
520 class ArrayAllocator : public AllStatic {
521  private:
522   static bool should_use_malloc(size_t length);
523 
524   static E* allocate_malloc(size_t length, MEMFLAGS flags);
525   static E* allocate_mmap(size_t length, MEMFLAGS flags);
526 
527   static void free_malloc(E* addr, size_t length);
528   static void free_mmap(E* addr, size_t length);
529 
530  public:
531   static E* allocate(size_t length, MEMFLAGS flags);
532   static E* reallocate(E* old_addr, size_t old_length, size_t new_length, MEMFLAGS flags);
533   static void free(E* addr, size_t length);
534 };
535 
536 // Uses mmaped memory for all allocations. All allocations are initially
537 // zero-filled. No pre-touching.
538 template <class E>
539 class MmapArrayAllocator : public AllStatic {
540  private:
541   static size_t size_for(size_t length);
542 
543  public:
544   static E* allocate_or_null(size_t length, MEMFLAGS flags);
545   static E* allocate(size_t length, MEMFLAGS flags);
546   static void free(E* addr, size_t length);
547 };
548 
549 // Uses malloc:ed memory for all allocations.
550 template <class E>
551 class MallocArrayAllocator : public AllStatic {
552  public:
553   static size_t size_for(size_t length);
554 
555   static E* allocate(size_t length, MEMFLAGS flags);
556   static void free(E* addr);
557 };
558 
559 #endif // SHARE_MEMORY_ALLOCATION_HPP