1 /*
  2  * Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "jvm.h"
 27 #include "memory/allocation.inline.hpp"
 28 #include "os_aix.inline.hpp"
 29 #include "runtime/os.hpp"
 30 #include "runtime/os_perf.hpp"
 31 
 32 #include CPU_HEADER(vm_version_ext)
 33 
 34 #include <stdio.h>
 35 #include <stdarg.h>
 36 #include <unistd.h>
 37 #include <errno.h>
 38 #include <string.h>
 39 #include <sys/resource.h>
 40 #include <sys/types.h>
 41 #include <sys/stat.h>
 42 #include <dirent.h>
 43 #include <stdlib.h>
 44 #include <dlfcn.h>
 45 #include <pthread.h>
 46 #include <limits.h>
 47 
 48 /**
 49    /proc/[number]/stat
 50               Status information about the process.  This is used by ps(1).  It is defined in /usr/src/linux/fs/proc/array.c.
 51 
 52               The fields, in order, with their proper scanf(3) format specifiers, are:
 53 
 54               1. pid %d The process id.
 55 
 56               2. comm %s
 57                      The filename of the executable, in parentheses.  This is visible whether or not the executable is swapped out.
 58 
 59               3. state %c
 60                      One  character  from  the  string "RSDZTW" where R is running, S is sleeping in an interruptible wait, D is waiting in uninterruptible disk
 61                      sleep, Z is zombie, T is traced or stopped (on a signal), and W is paging.
 62 
 63               4. ppid %d
 64                      The PID of the parent.
 65 
 66               5. pgrp %d
 67                      The process group ID of the process.
 68 
 69               6. session %d
 70                      The session ID of the process.
 71 
 72               7. tty_nr %d
 73                      The tty the process uses.
 74 
 75               8. tpgid %d
 76                      The process group ID of the process which currently owns the tty that the process is connected to.
 77 
 78               9. flags %lu
 79                      The flags of the process.  The math bit is decimal 4, and the traced bit is decimal 10.
 80 
 81               10. minflt %lu
 82                      The number of minor faults the process has made which have not required loading a memory page from disk.
 83 
 84               11. cminflt %lu
 85                      The number of minor faults that the process's waited-for children have made.
 86 
 87               12. majflt %lu
 88                      The number of major faults the process has made which have required loading a memory page from disk.
 89 
 90               13. cmajflt %lu
 91                      The number of major faults that the process's waited-for children have made.
 92 
 93               14. utime %lu
 94                      The number of jiffies that this process has been scheduled in user mode.
 95 
 96               15. stime %lu
 97                      The number of jiffies that this process has been scheduled in kernel mode.
 98 
 99               16. cutime %ld
100                      The number of jiffies that this process's waited-for children have been scheduled in user mode. (See also times(2).)
101 
102               17. cstime %ld
103                      The number of jiffies that this process' waited-for children have been scheduled in kernel mode.
104 
105               18. priority %ld
106                      The standard nice value, plus fifteen.  The value is never negative in the kernel.
107 
108               19. nice %ld
109                      The nice value ranges from 19 (nicest) to -19 (not nice to others).
110 
111               20. 0 %ld  This value is hard coded to 0 as a placeholder for a removed field.
112 
113               21. itrealvalue %ld
114                      The time in jiffies before the next SIGALRM is sent to the process due to an interval timer.
115 
116               22. starttime %lu
117                      The time in jiffies the process started after system boot.
118 
119               23. vsize %lu
120                      Virtual memory size in bytes.
121 
122               24. rss %ld
123                      Resident Set Size: number of pages the process has in real memory, minus 3 for administrative purposes. This is just the pages which  count
124                      towards text, data, or stack space.  This does not include pages which have not been demand-loaded in, or which are swapped out.
125 
126               25. rlim %lu
127                      Current limit in bytes on the rss of the process (usually 4294967295 on i386).
128 
129               26. startcode %lu
130                      The address above which program text can run.
131 
132               27. endcode %lu
133                      The address below which program text can run.
134 
135               28. startstack %lu
136                      The address of the start of the stack.
137 
138               29. kstkesp %lu
139                      The current value of esp (stack pointer), as found in the kernel stack page for the process.
140 
141               30. kstkeip %lu
142                      The current EIP (instruction pointer).
143 
144               31. signal %lu
145                      The bitmap of pending signals (usually 0).
146 
147               32. blocked %lu
148                      The bitmap of blocked signals (usually 0, 2 for shells).
149 
150               33. sigignore %lu
151                      The bitmap of ignored signals.
152 
153               34. sigcatch %lu
154                      The bitmap of catched signals.
155 
156               35. wchan %lu
157                      This  is the "channel" in which the process is waiting.  It is the address of a system call, and can be looked up in a namelist if you need
158                      a textual name.  (If you have an up-to-date /etc/psdatabase, then try ps -l to see the WCHAN field in action.)
159 
160               36. nswap %lu
161                      Number of pages swapped - not maintained.
162 
163               37. cnswap %lu
164                      Cumulative nswap for child processes.
165 
166               38. exit_signal %d
167                      Signal to be sent to parent when we die.
168 
169               39. processor %d
170                      CPU number last executed on.
171 
172 
173 
174  ///// SSCANF FORMAT STRING. Copy and use.
175 
176 field:        1  2  3  4  5  6  7  8  9   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38 39
177 format:       %d %s %c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %d %d
178 
179 
180 */
181 
182 /**
183  * For platforms that have them, when declaring
184  * a printf-style function,
185  *   formatSpec is the parameter number (starting at 1)
186  *       that is the format argument ("%d pid %s")
187  *   params is the parameter number where the actual args to
188  *       the format starts. If the args are in a va_list, this
189  *       should be 0.
190  */
191 #ifndef PRINTF_ARGS
192 #  define PRINTF_ARGS(formatSpec,  params) ATTRIBUTE_PRINTF(formatSpec, params)
193 #endif
194 
195 #ifndef SCANF_ARGS
196 #  define SCANF_ARGS(formatSpec,   params) ATTRIBUTE_SCANF(formatSpec, params)
197 #endif
198 
199 #ifndef _PRINTFMT_
200 #  define _PRINTFMT_
201 #endif
202 
203 #ifndef _SCANFMT_
204 #  define _SCANFMT_
205 #endif
206 
207 
208 struct CPUPerfTicks {
209   uint64_t  used;
210   uint64_t  usedKernel;
211   uint64_t  total;
212 };
213 
214 typedef enum {
215   CPU_LOAD_VM_ONLY,
216   CPU_LOAD_GLOBAL,
217 } CpuLoadTarget;
218 
219 enum {
220   UNDETECTED,
221   UNDETECTABLE,
222   LINUX26_NPTL,
223   BAREMETAL
224 };
225 
226 struct CPUPerfCounters {
227   int   nProcs;
228   CPUPerfTicks jvmTicks;
229   CPUPerfTicks* cpus;
230 };
231 
232 static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target);
233 
234 /** reads /proc/<pid>/stat data, with some checks and some skips.
235  *  Ensure that 'fmt' does _NOT_ contain the first two "%d %s"
236  */
237 static int SCANF_ARGS(2, 0) vread_statdata(const char* procfile, _SCANFMT_ const char* fmt, va_list args) {
238   FILE*f;
239   int n;
240   char buf[2048];
241 
242   if ((f = fopen(procfile, "r")) == NULL) {
243     return -1;
244   }
245 
246   if ((n = fread(buf, 1, sizeof(buf), f)) != -1) {
247     char *tmp;
248 
249     buf[n-1] = '\0';
250     /** skip through pid and exec name. */
251     if ((tmp = strrchr(buf, ')')) != NULL) {
252       // skip the ')' and the following space
253       // but check that buffer is long enough
254       tmp += 2;
255       if (tmp < buf + n) {
256         n = vsscanf(tmp, fmt, args);
257       }
258     }
259   }
260 
261   fclose(f);
262 
263   return n;
264 }
265 
266 static int SCANF_ARGS(2, 3) read_statdata(const char* procfile, _SCANFMT_ const char* fmt, ...) {
267   int   n;
268   va_list args;
269 
270   va_start(args, fmt);
271   n = vread_statdata(procfile, fmt, args);
272   va_end(args);
273   return n;
274 }
275 
276 /**
277  * on Linux we got the ticks related information from /proc/stat
278  * this does not work on AIX, libperfstat might be an alternative
279  */
280 static OSReturn get_total_ticks(int which_logical_cpu, CPUPerfTicks* pticks) {
281   return OS_ERR;
282 }
283 
284 /** read user and system ticks from a named procfile, assumed to be in 'stat' format then. */
285 static int read_ticks(const char* procfile, uint64_t* userTicks, uint64_t* systemTicks) {
286   return read_statdata(procfile, "%*c %*d %*d %*d %*d %*d %*u %*u %*u %*u %*u " UINT64_FORMAT " " UINT64_FORMAT,
287     userTicks, systemTicks);
288 }
289 
290 /**
291  * Return the number of ticks spent in any of the processes belonging
292  * to the JVM on any CPU.
293  */
294 static OSReturn get_jvm_ticks(CPUPerfTicks* pticks) {
295   return OS_ERR;
296 }
297 
298 /**
299  * Return the load of the CPU as a double. 1.0 means the CPU process uses all
300  * available time for user or system processes, 0.0 means the CPU uses all time
301  * being idle.
302  *
303  * Returns a negative value if there is a problem in determining the CPU load.
304  */
305 static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target) {
306   uint64_t udiff, kdiff, tdiff;
307   CPUPerfTicks* pticks;
308   CPUPerfTicks  tmp;
309   double user_load;
310 
311   *pkernelLoad = 0.0;
312 
313   if (target == CPU_LOAD_VM_ONLY) {
314     pticks = &counters->jvmTicks;
315   } else if (-1 == which_logical_cpu) {
316     pticks = &counters->cpus[counters->nProcs];
317   } else {
318     pticks = &counters->cpus[which_logical_cpu];
319   }
320 
321   tmp = *pticks;
322 
323   if (target == CPU_LOAD_VM_ONLY) {
324     if (get_jvm_ticks(pticks) != OS_OK) {
325       return -1.0;
326     }
327   } else if (get_total_ticks(which_logical_cpu, pticks) != OS_OK) {
328     return -1.0;
329   }
330 
331   // seems like we sometimes end up with less kernel ticks when
332   // reading /proc/self/stat a second time, timing issue between cpus?
333   if (pticks->usedKernel < tmp.usedKernel) {
334     kdiff = 0;
335   } else {
336     kdiff = pticks->usedKernel - tmp.usedKernel;
337   }
338   tdiff = pticks->total - tmp.total;
339   udiff = pticks->used - tmp.used;
340 
341   if (tdiff == 0) {
342     return 0.0;
343   } else if (tdiff < (udiff + kdiff)) {
344     tdiff = udiff + kdiff;
345   }
346   *pkernelLoad = (kdiff / (double)tdiff);
347   // BUG9044876, normalize return values to sane values
348   *pkernelLoad = MAX2<double>(*pkernelLoad, 0.0);
349   *pkernelLoad = MIN2<double>(*pkernelLoad, 1.0);
350 
351   user_load = (udiff / (double)tdiff);
352   user_load = MAX2<double>(user_load, 0.0);
353   user_load = MIN2<double>(user_load, 1.0);
354 
355   return user_load;
356 }
357 
358 static int SCANF_ARGS(1, 2) parse_stat(_SCANFMT_ const char* fmt, ...) {
359   return OS_ERR;
360 }
361 
362 static int get_noof_context_switches(uint64_t* switches) {
363   return parse_stat("ctxt " UINT64_FORMAT "\n", switches);
364 }
365 
366 /** returns boot time in _seconds_ since epoch */
367 static int get_boot_time(uint64_t* time) {
368   return parse_stat("btime " UINT64_FORMAT "\n", time);
369 }
370 
371 static int perf_context_switch_rate(double* rate) {
372   static pthread_mutex_t contextSwitchLock = PTHREAD_MUTEX_INITIALIZER;
373   static uint64_t      lastTime;
374   static uint64_t      lastSwitches;
375   static double        lastRate;
376 
377   uint64_t lt = 0;
378   int res = 0;
379 
380   if (lastTime == 0) {
381     uint64_t tmp;
382     if (get_boot_time(&tmp) < 0) {
383       return OS_ERR;
384     }
385     lt = tmp * 1000;
386   }
387 
388   res = OS_OK;
389 
390   pthread_mutex_lock(&contextSwitchLock);
391   {
392 
393     uint64_t sw;
394     s8 t, d;
395 
396     if (lastTime == 0) {
397       lastTime = lt;
398     }
399 
400     t = os::javaTimeMillis();
401     d = t - lastTime;
402 
403     if (d == 0) {
404       *rate = lastRate;
405     } else if (!get_noof_context_switches(&sw)) {
406       *rate      = ( (double)(sw - lastSwitches) / d ) * 1000;
407       lastRate     = *rate;
408       lastSwitches = sw;
409       lastTime     = t;
410     } else {
411       *rate = 0;
412       res   = OS_ERR;
413     }
414     if (*rate <= 0) {
415       *rate = 0;
416       lastRate = 0;
417     }
418   }
419   pthread_mutex_unlock(&contextSwitchLock);
420 
421   return res;
422 }
423 
424 class CPUPerformanceInterface::CPUPerformance : public CHeapObj<mtInternal> {
425   friend class CPUPerformanceInterface;
426  private:
427   CPUPerfCounters _counters;
428 
429   int cpu_load(int which_logical_cpu, double* cpu_load);
430   int context_switch_rate(double* rate);
431   int cpu_load_total_process(double* cpu_load);
432   int cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad);
433 
434  public:
435   CPUPerformance();
436   bool initialize();
437   ~CPUPerformance();
438 };
439 
440 CPUPerformanceInterface::CPUPerformance::CPUPerformance() {
441   _counters.nProcs = os::active_processor_count();
442   _counters.cpus = NULL;
443 }
444 
445 bool CPUPerformanceInterface::CPUPerformance::initialize() {
446   size_t tick_array_size = (_counters.nProcs +1) * sizeof(CPUPerfTicks);
447   _counters.cpus = (CPUPerfTicks*)NEW_C_HEAP_ARRAY(char, tick_array_size, mtInternal);
448   if (NULL == _counters.cpus) {
449     return false;
450   }
451   memset(_counters.cpus, 0, tick_array_size);
452 
453   // For the CPU load total
454   get_total_ticks(-1, &_counters.cpus[_counters.nProcs]);
455 
456   // For each CPU
457   for (int i = 0; i < _counters.nProcs; i++) {
458     get_total_ticks(i, &_counters.cpus[i]);
459   }
460   // For JVM load
461   get_jvm_ticks(&_counters.jvmTicks);
462 
463   // initialize context switch system
464   // the double is only for init
465   double init_ctx_switch_rate;
466   perf_context_switch_rate(&init_ctx_switch_rate);
467 
468   return true;
469 }
470 
471 CPUPerformanceInterface::CPUPerformance::~CPUPerformance() {
472   if (_counters.cpus != NULL) {
473     FREE_C_HEAP_ARRAY(char, _counters.cpus);
474   }
475 }
476 
477 int CPUPerformanceInterface::CPUPerformance::cpu_load(int which_logical_cpu, double* cpu_load) {
478   double u, s;
479   u = get_cpu_load(which_logical_cpu, &_counters, &s, CPU_LOAD_GLOBAL);
480   if (u < 0) {
481     *cpu_load = 0.0;
482     return OS_ERR;
483   }
484   // Cap total systemload to 1.0
485   *cpu_load = MIN2<double>((u + s), 1.0);
486   return OS_OK;
487 }
488 
489 int CPUPerformanceInterface::CPUPerformance::cpu_load_total_process(double* cpu_load) {
490   double u, s;
491   u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
492   if (u < 0) {
493     *cpu_load = 0.0;
494     return OS_ERR;
495   }
496   *cpu_load = u + s;
497   return OS_OK;
498 }
499 
500 int CPUPerformanceInterface::CPUPerformance::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) {
501   double u, s, t;
502 
503   assert(pjvmUserLoad != NULL, "pjvmUserLoad not inited");
504   assert(pjvmKernelLoad != NULL, "pjvmKernelLoad not inited");
505   assert(psystemTotalLoad != NULL, "psystemTotalLoad not inited");
506 
507   u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
508   if (u < 0) {
509     *pjvmUserLoad = 0.0;
510     *pjvmKernelLoad = 0.0;
511     *psystemTotalLoad = 0.0;
512     return OS_ERR;
513   }
514 
515   cpu_load(-1, &t);
516   // clamp at user+system and 1.0
517   if (u + s > t) {
518     t = MIN2<double>(u + s, 1.0);
519   }
520 
521   *pjvmUserLoad = u;
522   *pjvmKernelLoad = s;
523   *psystemTotalLoad = t;
524 
525   return OS_OK;
526 }
527 
528 int CPUPerformanceInterface::CPUPerformance::context_switch_rate(double* rate) {
529   return perf_context_switch_rate(rate);
530 }
531 
532 CPUPerformanceInterface::CPUPerformanceInterface() {
533   _impl = NULL;
534 }
535 
536 bool CPUPerformanceInterface::initialize() {
537   _impl = new CPUPerformanceInterface::CPUPerformance();
538   return NULL == _impl ? false : _impl->initialize();
539 }
540 
541 CPUPerformanceInterface::~CPUPerformanceInterface() {
542   if (_impl != NULL) {
543     delete _impl;
544   }
545 }
546 
547 int CPUPerformanceInterface::cpu_load(int which_logical_cpu, double* cpu_load) const {
548   return _impl->cpu_load(which_logical_cpu, cpu_load);
549 }
550 
551 int CPUPerformanceInterface::cpu_load_total_process(double* cpu_load) const {
552   return _impl->cpu_load_total_process(cpu_load);
553 }
554 
555 int CPUPerformanceInterface::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) const {
556   return _impl->cpu_loads_process(pjvmUserLoad, pjvmKernelLoad, psystemTotalLoad);
557 }
558 
559 int CPUPerformanceInterface::context_switch_rate(double* rate) const {
560   return _impl->context_switch_rate(rate);
561 }
562 
563 class SystemProcessInterface::SystemProcesses : public CHeapObj<mtInternal> {
564   friend class SystemProcessInterface;
565  private:
566   class ProcessIterator : public CHeapObj<mtInternal> {
567     friend class SystemProcessInterface::SystemProcesses;
568    private:
569     DIR*           _dir;
570     struct dirent* _entry;
571     bool           _valid;
572     char           _exeName[PATH_MAX];
573     char           _exePath[PATH_MAX];
574 
575     ProcessIterator();
576     ~ProcessIterator();
577     bool initialize();
578 
579     bool is_valid() const { return _valid; }
580     bool is_valid_entry(struct dirent* entry) const;
581     bool is_dir(const char* name) const;
582     int  fsize(const char* name, uint64_t& size) const;
583 
584     char* allocate_string(const char* str) const;
585     void  get_exe_name();
586     char* get_exe_path();
587     char* get_cmdline();
588 
589     int current(SystemProcess* process_info);
590     int next_process();
591   };
592 
593   ProcessIterator* _iterator;
594   SystemProcesses();
595   bool initialize();
596   ~SystemProcesses();
597 
598   //information about system processes
599   int system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const;
600 };
601 
602 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_dir(const char* name) const {
603   struct stat mystat;
604   int ret_val = 0;
605 
606   ret_val = stat(name, &mystat);
607   if (ret_val < 0) {
608     return false;
609   }
610   ret_val = S_ISDIR(mystat.st_mode);
611   return ret_val > 0;
612 }
613 
614 int SystemProcessInterface::SystemProcesses::ProcessIterator::fsize(const char* name, uint64_t& size) const {
615   assert(name != NULL, "name pointer is NULL!");
616   size = 0;
617   struct stat fbuf;
618 
619   if (stat(name, &fbuf) < 0) {
620     return OS_ERR;
621   }
622   size = fbuf.st_size;
623   return OS_OK;
624 }
625 
626 // if it has a numeric name, is a directory and has a 'stat' file in it
627 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_valid_entry(struct dirent* entry) const {
628   char buffer[PATH_MAX];
629   uint64_t size = 0;
630 
631   if (atoi(entry->d_name) != 0) {
632     jio_snprintf(buffer, PATH_MAX, "/proc/%s", entry->d_name);
633     buffer[PATH_MAX - 1] = '\0';
634 
635     if (is_dir(buffer)) {
636       jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", entry->d_name);
637       buffer[PATH_MAX - 1] = '\0';
638       if (fsize(buffer, size) != OS_ERR) {
639         return true;
640       }
641     }
642   }
643   return false;
644 }
645 
646 // get exe-name from /proc/<pid>/stat
647 void SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_name() {
648   FILE* fp;
649   char  buffer[PATH_MAX];
650 
651   jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", _entry->d_name);
652   buffer[PATH_MAX - 1] = '\0';
653   if ((fp = fopen(buffer, "r")) != NULL) {
654     if (fgets(buffer, PATH_MAX, fp) != NULL) {
655       char* start, *end;
656       // exe-name is between the first pair of ( and )
657       start = strchr(buffer, '(');
658       if (start != NULL && start[1] != '\0') {
659         start++;
660         end = strrchr(start, ')');
661         if (end != NULL) {
662           size_t len;
663           len = MIN2<size_t>(end - start, sizeof(_exeName) - 1);
664           memcpy(_exeName, start, len);
665           _exeName[len] = '\0';
666         }
667       }
668     }
669     fclose(fp);
670   }
671 }
672 
673 // get command line from /proc/<pid>/cmdline
674 char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_cmdline() {
675   FILE* fp;
676   char  buffer[PATH_MAX];
677   char* cmdline = NULL;
678 
679   jio_snprintf(buffer, PATH_MAX, "/proc/%s/cmdline", _entry->d_name);
680   buffer[PATH_MAX - 1] = '\0';
681   if ((fp = fopen(buffer, "r")) != NULL) {
682     size_t size = 0;
683     char   dummy;
684 
685     // find out how long the file is (stat always returns 0)
686     while (fread(&dummy, 1, 1, fp) == 1) {
687       size++;
688     }
689     if (size > 0) {
690       cmdline = NEW_C_HEAP_ARRAY(char, size + 1, mtInternal);
691       if (cmdline != NULL) {
692         cmdline[0] = '\0';
693         if (fseek(fp, 0, SEEK_SET) == 0) {
694           if (fread(cmdline, 1, size, fp) == size) {
695             // the file has the arguments separated by '\0',
696             // so we translate '\0' to ' '
697             for (size_t i = 0; i < size; i++) {
698               if (cmdline[i] == '\0') {
699                 cmdline[i] = ' ';
700               }
701             }
702             cmdline[size] = '\0';
703           }
704         }
705       }
706     }
707     fclose(fp);
708   }
709   return cmdline;
710 }
711 
712 // get full path to exe from /proc/<pid>/exe symlink
713 char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_path() {
714   char buffer[PATH_MAX];
715 
716   jio_snprintf(buffer, PATH_MAX, "/proc/%s/exe", _entry->d_name);
717   buffer[PATH_MAX - 1] = '\0';
718   return realpath(buffer, _exePath);
719 }
720 
721 char* SystemProcessInterface::SystemProcesses::ProcessIterator::allocate_string(const char* str) const {
722   if (str != NULL) {
723     return os::strdup_check_oom(str, mtInternal);
724   }
725   return NULL;
726 }
727 
728 int SystemProcessInterface::SystemProcesses::ProcessIterator::current(SystemProcess* process_info) {
729   if (!is_valid()) {
730     return OS_ERR;
731   }
732 
733   process_info->set_pid(atoi(_entry->d_name));
734 
735   get_exe_name();
736   process_info->set_name(allocate_string(_exeName));
737 
738   if (get_exe_path() != NULL) {
739      process_info->set_path(allocate_string(_exePath));
740   }
741 
742   char* cmdline = NULL;
743   cmdline = get_cmdline();
744   if (cmdline != NULL) {
745     process_info->set_command_line(allocate_string(cmdline));
746     FREE_C_HEAP_ARRAY(char, cmdline);
747   }
748 
749   return OS_OK;
750 }
751 
752 int SystemProcessInterface::SystemProcesses::ProcessIterator::next_process() {
753   if (!is_valid()) {
754     return OS_ERR;
755   }
756 
757   do {
758     _entry = os::readdir(_dir);
759     if (_entry == NULL) {
760       // Error or reached end.  Could use errno to distinguish those cases.
761       _valid = false;
762       return OS_ERR;
763     }
764   } while(!is_valid_entry(_entry));
765 
766   _valid = true;
767   return OS_OK;
768 }
769 
770 SystemProcessInterface::SystemProcesses::ProcessIterator::ProcessIterator() {
771   _dir = NULL;
772   _entry = NULL;
773   _valid = false;
774 }
775 
776 bool SystemProcessInterface::SystemProcesses::ProcessIterator::initialize() {
777   // Not yet implemented.
778   return false;
779 }
780 
781 SystemProcessInterface::SystemProcesses::ProcessIterator::~ProcessIterator() {
782   if (_dir != NULL) {
783     os::closedir(_dir);
784   }
785 }
786 
787 SystemProcessInterface::SystemProcesses::SystemProcesses() {
788   _iterator = NULL;
789 }
790 
791 bool SystemProcessInterface::SystemProcesses::initialize() {
792   _iterator = new SystemProcessInterface::SystemProcesses::ProcessIterator();
793   return NULL == _iterator ? false : _iterator->initialize();
794 }
795 
796 SystemProcessInterface::SystemProcesses::~SystemProcesses() {
797   if (_iterator != NULL) {
798     delete _iterator;
799   }
800 }
801 
802 int SystemProcessInterface::SystemProcesses::system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const {
803   assert(system_processes != NULL, "system_processes pointer is NULL!");
804   assert(no_of_sys_processes != NULL, "system_processes counter pointers is NULL!");
805   assert(_iterator != NULL, "iterator is NULL!");
806 
807   // initialize pointers
808   *no_of_sys_processes = 0;
809   *system_processes = NULL;
810 
811   while (_iterator->is_valid()) {
812     SystemProcess* tmp = new SystemProcess();
813     _iterator->current(tmp);
814 
815     //if already existing head
816     if (*system_processes != NULL) {
817       //move "first to second"
818       tmp->set_next(*system_processes);
819     }
820     // new head
821     *system_processes = tmp;
822     // increment
823     (*no_of_sys_processes)++;
824     // step forward
825     _iterator->next_process();
826   }
827   return OS_OK;
828 }
829 
830 int SystemProcessInterface::system_processes(SystemProcess** system_procs, int* no_of_sys_processes) const {
831   return _impl->system_processes(system_procs, no_of_sys_processes);
832 }
833 
834 SystemProcessInterface::SystemProcessInterface() {
835   _impl = NULL;
836 }
837 
838 bool SystemProcessInterface::initialize() {
839   _impl = new SystemProcessInterface::SystemProcesses();
840   return NULL == _impl ? false : _impl->initialize();
841 }
842 
843 SystemProcessInterface::~SystemProcessInterface() {
844   if (_impl != NULL) {
845     delete _impl;
846   }
847 }
848 
849 CPUInformationInterface::CPUInformationInterface() {
850   _cpu_info = NULL;
851 }
852 
853 bool CPUInformationInterface::initialize() {
854   _cpu_info = new CPUInformation();
855   if (NULL == _cpu_info) {
856     return false;
857   }
858   _cpu_info->set_number_of_hardware_threads(VM_Version_Ext::number_of_threads());
859   _cpu_info->set_number_of_cores(VM_Version_Ext::number_of_cores());
860   _cpu_info->set_number_of_sockets(VM_Version_Ext::number_of_sockets());
861   _cpu_info->set_cpu_name(VM_Version_Ext::cpu_name());
862   _cpu_info->set_cpu_description(VM_Version_Ext::cpu_description());
863 
864   return true;
865 }
866 
867 CPUInformationInterface::~CPUInformationInterface() {
868   if (_cpu_info != NULL) {
869     if (_cpu_info->cpu_name() != NULL) {
870       const char* cpu_name = _cpu_info->cpu_name();
871       FREE_C_HEAP_ARRAY(char, cpu_name);
872       _cpu_info->set_cpu_name(NULL);
873     }
874     if (_cpu_info->cpu_description() != NULL) {
875        const char* cpu_desc = _cpu_info->cpu_description();
876        FREE_C_HEAP_ARRAY(char, cpu_desc);
877       _cpu_info->set_cpu_description(NULL);
878     }
879     delete _cpu_info;
880   }
881 }
882 
883 int CPUInformationInterface::cpu_information(CPUInformation& cpu_info) {
884   if (_cpu_info == NULL) {
885     return OS_ERR;
886   }
887 
888   cpu_info = *_cpu_info; // shallow copy assignment
889   return OS_OK;
890 }
891 
892 class NetworkPerformanceInterface::NetworkPerformance : public CHeapObj<mtInternal> {
893   friend class NetworkPerformanceInterface;
894  private:
895   NetworkPerformance();
896   NetworkPerformance(const NetworkPerformance& rhs); // no impl
897   NetworkPerformance& operator=(const NetworkPerformance& rhs); // no impl
898   bool initialize();
899   ~NetworkPerformance();
900   int network_utilization(NetworkInterface** network_interfaces) const;
901 };
902 
903 NetworkPerformanceInterface::NetworkPerformance::NetworkPerformance() {
904 
905 }
906 
907 bool NetworkPerformanceInterface::NetworkPerformance::initialize() {
908   return true;
909 }
910 
911 NetworkPerformanceInterface::NetworkPerformance::~NetworkPerformance() {
912 }
913 
914 int NetworkPerformanceInterface::NetworkPerformance::network_utilization(NetworkInterface** network_interfaces) const
915 {
916   return FUNCTIONALITY_NOT_IMPLEMENTED;
917 }
918 
919 NetworkPerformanceInterface::NetworkPerformanceInterface() {
920   _impl = NULL;
921 }
922 
923 NetworkPerformanceInterface::~NetworkPerformanceInterface() {
924   if (_impl != NULL) {
925     delete _impl;
926   }
927 }
928 
929 bool NetworkPerformanceInterface::initialize() {
930   _impl = new NetworkPerformanceInterface::NetworkPerformance();
931   return _impl != NULL && _impl->initialize();
932 }
933 
934 int NetworkPerformanceInterface::network_utilization(NetworkInterface** network_interfaces) const {
935   return _impl->network_utilization(network_interfaces);
936 }