1 /*
   2  * Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "memory/allocation.inline.hpp"
  28 #include "os_linux.inline.hpp"
  29 #include "runtime/os.hpp"
  30 #include "runtime/os_perf.hpp"
  31 
  32 #include CPU_HEADER(vm_version_ext)
  33 
  34 #include <stdio.h>
  35 #include <stdarg.h>
  36 #include <unistd.h>
  37 #include <errno.h>
  38 #include <string.h>
  39 #include <sys/resource.h>
  40 #include <sys/types.h>
  41 #include <sys/stat.h>
  42 #include <dirent.h>
  43 #include <stdlib.h>
  44 #include <dlfcn.h>
  45 #include <pthread.h>
  46 #include <limits.h>
  47 #include <ifaddrs.h>
  48 #include <fcntl.h>
  49 
  50 /**
  51    /proc/[number]/stat
  52               Status information about the process.  This is used by ps(1).  It is defined in /usr/src/linux/fs/proc/array.c.
  53 
  54               The fields, in order, with their proper scanf(3) format specifiers, are:
  55 
  56               1. pid %d The process id.
  57 
  58               2. comm %s
  59                      The filename of the executable, in parentheses.  This is visible whether or not the executable is swapped out.
  60 
  61               3. state %c
  62                      One  character  from  the  string "RSDZTW" where R is running, S is sleeping in an interruptible wait, D is waiting in uninterruptible disk
  63                      sleep, Z is zombie, T is traced or stopped (on a signal), and W is paging.
  64 
  65               4. ppid %d
  66                      The PID of the parent.
  67 
  68               5. pgrp %d
  69                      The process group ID of the process.
  70 
  71               6. session %d
  72                      The session ID of the process.
  73 
  74               7. tty_nr %d
  75                      The tty the process uses.
  76 
  77               8. tpgid %d
  78                      The process group ID of the process which currently owns the tty that the process is connected to.
  79 
  80               9. flags %lu
  81                      The flags of the process.  The math bit is decimal 4, and the traced bit is decimal 10.
  82 
  83               10. minflt %lu
  84                      The number of minor faults the process has made which have not required loading a memory page from disk.
  85 
  86               11. cminflt %lu
  87                      The number of minor faults that the process's waited-for children have made.
  88 
  89               12. majflt %lu
  90                      The number of major faults the process has made which have required loading a memory page from disk.
  91 
  92               13. cmajflt %lu
  93                      The number of major faults that the process's waited-for children have made.
  94 
  95               14. utime %lu
  96                      The number of jiffies that this process has been scheduled in user mode.
  97 
  98               15. stime %lu
  99                      The number of jiffies that this process has been scheduled in kernel mode.
 100 
 101               16. cutime %ld
 102                      The number of jiffies that this process's waited-for children have been scheduled in user mode. (See also times(2).)
 103 
 104               17. cstime %ld
 105                      The number of jiffies that this process' waited-for children have been scheduled in kernel mode.
 106 
 107               18. priority %ld
 108                      The standard nice value, plus fifteen.  The value is never negative in the kernel.
 109 
 110               19. nice %ld
 111                      The nice value ranges from 19 (nicest) to -19 (not nice to others).
 112 
 113               20. 0 %ld  This value is hard coded to 0 as a placeholder for a removed field.
 114 
 115               21. itrealvalue %ld
 116                      The time in jiffies before the next SIGALRM is sent to the process due to an interval timer.
 117 
 118               22. starttime %lu
 119                      The time in jiffies the process started after system boot.
 120 
 121               23. vsize %lu
 122                      Virtual memory size in bytes.
 123 
 124               24. rss %ld
 125                      Resident Set Size: number of pages the process has in real memory, minus 3 for administrative purposes. This is just the pages which  count
 126                      towards text, data, or stack space.  This does not include pages which have not been demand-loaded in, or which are swapped out.
 127 
 128               25. rlim %lu
 129                      Current limit in bytes on the rss of the process (usually 4294967295 on i386).
 130 
 131               26. startcode %lu
 132                      The address above which program text can run.
 133 
 134               27. endcode %lu
 135                      The address below which program text can run.
 136 
 137               28. startstack %lu
 138                      The address of the start of the stack.
 139 
 140               29. kstkesp %lu
 141                      The current value of esp (stack pointer), as found in the kernel stack page for the process.
 142 
 143               30. kstkeip %lu
 144                      The current EIP (instruction pointer).
 145 
 146               31. signal %lu
 147                      The bitmap of pending signals (usually 0).
 148 
 149               32. blocked %lu
 150                      The bitmap of blocked signals (usually 0, 2 for shells).
 151 
 152               33. sigignore %lu
 153                      The bitmap of ignored signals.
 154 
 155               34. sigcatch %lu
 156                      The bitmap of catched signals.
 157 
 158               35. wchan %lu
 159                      This  is the "channel" in which the process is waiting.  It is the address of a system call, and can be looked up in a namelist if you need
 160                      a textual name.  (If you have an up-to-date /etc/psdatabase, then try ps -l to see the WCHAN field in action.)
 161 
 162               36. nswap %lu
 163                      Number of pages swapped - not maintained.
 164 
 165               37. cnswap %lu
 166                      Cumulative nswap for child processes.
 167 
 168               38. exit_signal %d
 169                      Signal to be sent to parent when we die.
 170 
 171               39. processor %d
 172                      CPU number last executed on.
 173 
 174 
 175 
 176  ///// SSCANF FORMAT STRING. Copy and use.
 177 
 178 field:        1  2  3  4  5  6  7  8  9   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38 39
 179 format:       %d %s %c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %d %d
 180 
 181 
 182 */
 183 
 184 /**
 185  * For platforms that have them, when declaring
 186  * a printf-style function,
 187  *   formatSpec is the parameter number (starting at 1)
 188  *       that is the format argument ("%d pid %s")
 189  *   params is the parameter number where the actual args to
 190  *       the format starts. If the args are in a va_list, this
 191  *       should be 0.
 192  */
 193 #ifndef PRINTF_ARGS
 194 #  define PRINTF_ARGS(formatSpec,  params) ATTRIBUTE_PRINTF(formatSpec, params)
 195 #endif
 196 
 197 #ifndef SCANF_ARGS
 198 #  define SCANF_ARGS(formatSpec,   params) ATTRIBUTE_SCANF(formatSpec, params)
 199 #endif
 200 
 201 #ifndef _PRINTFMT_
 202 #  define _PRINTFMT_
 203 #endif
 204 
 205 #ifndef _SCANFMT_
 206 #  define _SCANFMT_
 207 #endif
 208 
 209 typedef enum {
 210   CPU_LOAD_VM_ONLY,
 211   CPU_LOAD_GLOBAL,
 212 } CpuLoadTarget;
 213 
 214 enum {
 215   UNDETECTED,
 216   UNDETECTABLE,
 217   LINUX26_NPTL,
 218   BAREMETAL
 219 };
 220 
 221 struct CPUPerfCounters {
 222   int   nProcs;
 223   os::Linux::CPUPerfTicks jvmTicks;
 224   os::Linux::CPUPerfTicks* cpus;
 225 };
 226 
 227 static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target);
 228 
 229 /** reads /proc/<pid>/stat data, with some checks and some skips.
 230  *  Ensure that 'fmt' does _NOT_ contain the first two "%d %s"
 231  */
 232 static int SCANF_ARGS(2, 0) vread_statdata(const char* procfile, _SCANFMT_ const char* fmt, va_list args) {
 233   FILE*f;
 234   int n;
 235   char buf[2048];
 236 
 237   if ((f = fopen(procfile, "r")) == NULL) {
 238     return -1;
 239   }
 240 
 241   if ((n = fread(buf, 1, sizeof(buf), f)) != -1) {
 242     char *tmp;
 243 
 244     buf[n-1] = '\0';
 245     /** skip through pid and exec name. */
 246     if ((tmp = strrchr(buf, ')')) != NULL) {
 247       // skip the ')' and the following space
 248       // but check that buffer is long enough
 249       tmp += 2;
 250       if (tmp < buf + n) {
 251         n = vsscanf(tmp, fmt, args);
 252       }
 253     }
 254   }
 255 
 256   fclose(f);
 257 
 258   return n;
 259 }
 260 
 261 static int SCANF_ARGS(2, 3) read_statdata(const char* procfile, _SCANFMT_ const char* fmt, ...) {
 262   int   n;
 263   va_list args;
 264 
 265   va_start(args, fmt);
 266   n = vread_statdata(procfile, fmt, args);
 267   va_end(args);
 268   return n;
 269 }
 270 
 271 static FILE* open_statfile(void) {
 272   FILE *f;
 273 
 274   if ((f = fopen("/proc/stat", "r")) == NULL) {
 275     static int haveWarned = 0;
 276     if (!haveWarned) {
 277       haveWarned = 1;
 278     }
 279   }
 280   return f;
 281 }
 282 
 283 static int get_systemtype(void) {
 284   static int procEntriesType = UNDETECTED;
 285   DIR *taskDir;
 286 
 287   if (procEntriesType != UNDETECTED) {
 288     return procEntriesType;
 289   }
 290 
 291   // Check whether we have a task subdirectory
 292   if ((taskDir = opendir("/proc/self/task")) == NULL) {
 293     procEntriesType = UNDETECTABLE;
 294   } else {
 295     // The task subdirectory exists; we're on a Linux >= 2.6 system
 296     closedir(taskDir);
 297     procEntriesType = LINUX26_NPTL;
 298   }
 299 
 300   return procEntriesType;
 301 }
 302 
 303 /** read user and system ticks from a named procfile, assumed to be in 'stat' format then. */
 304 static int read_ticks(const char* procfile, uint64_t* userTicks, uint64_t* systemTicks) {
 305   return read_statdata(procfile, "%*c %*d %*d %*d %*d %*d %*u %*u %*u %*u %*u " UINT64_FORMAT " " UINT64_FORMAT,
 306     userTicks, systemTicks);
 307 }
 308 
 309 /**
 310  * Return the number of ticks spent in any of the processes belonging
 311  * to the JVM on any CPU.
 312  */
 313 static OSReturn get_jvm_ticks(os::Linux::CPUPerfTicks* pticks) {
 314   uint64_t userTicks;
 315   uint64_t systemTicks;
 316 
 317   if (get_systemtype() != LINUX26_NPTL) {
 318     return OS_ERR;
 319   }
 320 
 321   if (read_ticks("/proc/self/stat", &userTicks, &systemTicks) != 2) {
 322     return OS_ERR;
 323   }
 324 
 325   // get the total
 326   if (! os::Linux::get_tick_information(pticks, -1)) {
 327     return OS_ERR;
 328   }
 329 
 330   pticks->used       = userTicks;
 331   pticks->usedKernel = systemTicks;
 332 
 333   return OS_OK;
 334 }
 335 
 336 /**
 337  * Return the load of the CPU as a double. 1.0 means the CPU process uses all
 338  * available time for user or system processes, 0.0 means the CPU uses all time
 339  * being idle.
 340  *
 341  * Returns a negative value if there is a problem in determining the CPU load.
 342  */
 343 static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target) {
 344   uint64_t udiff, kdiff, tdiff;
 345   os::Linux::CPUPerfTicks* pticks;
 346   os::Linux::CPUPerfTicks  tmp;
 347   double user_load;
 348 
 349   *pkernelLoad = 0.0;
 350 
 351   if (target == CPU_LOAD_VM_ONLY) {
 352     pticks = &counters->jvmTicks;
 353   } else if (-1 == which_logical_cpu) {
 354     pticks = &counters->cpus[counters->nProcs];
 355   } else {
 356     pticks = &counters->cpus[which_logical_cpu];
 357   }
 358 
 359   tmp = *pticks;
 360 
 361   if (target == CPU_LOAD_VM_ONLY) {
 362     if (get_jvm_ticks(pticks) != OS_OK) {
 363       return -1.0;
 364     }
 365   } else if (! os::Linux::get_tick_information(pticks, which_logical_cpu)) {
 366     return -1.0;
 367   }
 368 
 369   // seems like we sometimes end up with less kernel ticks when
 370   // reading /proc/self/stat a second time, timing issue between cpus?
 371   if (pticks->usedKernel < tmp.usedKernel) {
 372     kdiff = 0;
 373   } else {
 374     kdiff = pticks->usedKernel - tmp.usedKernel;
 375   }
 376   tdiff = pticks->total - tmp.total;
 377   udiff = pticks->used - tmp.used;
 378 
 379   if (tdiff == 0) {
 380     return 0.0;
 381   } else if (tdiff < (udiff + kdiff)) {
 382     tdiff = udiff + kdiff;
 383   }
 384   *pkernelLoad = (kdiff / (double)tdiff);
 385   // BUG9044876, normalize return values to sane values
 386   *pkernelLoad = MAX2<double>(*pkernelLoad, 0.0);
 387   *pkernelLoad = MIN2<double>(*pkernelLoad, 1.0);
 388 
 389   user_load = (udiff / (double)tdiff);
 390   user_load = MAX2<double>(user_load, 0.0);
 391   user_load = MIN2<double>(user_load, 1.0);
 392 
 393   return user_load;
 394 }
 395 
 396 static int SCANF_ARGS(1, 2) parse_stat(_SCANFMT_ const char* fmt, ...) {
 397   FILE *f;
 398   va_list args;
 399 
 400   va_start(args, fmt);
 401 
 402   if ((f = open_statfile()) == NULL) {
 403     va_end(args);
 404     return OS_ERR;
 405   }
 406   for (;;) {
 407     char line[80];
 408     if (fgets(line, sizeof(line), f) != NULL) {
 409       if (vsscanf(line, fmt, args) == 1) {
 410         fclose(f);
 411         va_end(args);
 412         return OS_OK;
 413       }
 414     } else {
 415         fclose(f);
 416         va_end(args);
 417         return OS_ERR;
 418     }
 419   }
 420 }
 421 
 422 static int get_noof_context_switches(uint64_t* switches) {
 423   return parse_stat("ctxt " UINT64_FORMAT "\n", switches);
 424 }
 425 
 426 /** returns boot time in _seconds_ since epoch */
 427 static int get_boot_time(uint64_t* time) {
 428   return parse_stat("btime " UINT64_FORMAT "\n", time);
 429 }
 430 
 431 static int perf_context_switch_rate(double* rate) {
 432   static pthread_mutex_t contextSwitchLock = PTHREAD_MUTEX_INITIALIZER;
 433   static uint64_t      lastTime;
 434   static uint64_t      lastSwitches;
 435   static double        lastRate;
 436 
 437   uint64_t lt = 0;
 438   int res = 0;
 439 
 440   if (lastTime == 0) {
 441     uint64_t tmp;
 442     if (get_boot_time(&tmp) < 0) {
 443       return OS_ERR;
 444     }
 445     lt = tmp * 1000;
 446   }
 447 
 448   res = OS_OK;
 449 
 450   pthread_mutex_lock(&contextSwitchLock);
 451   {
 452 
 453     uint64_t sw;
 454     s8 t, d;
 455 
 456     if (lastTime == 0) {
 457       lastTime = lt;
 458     }
 459 
 460     t = os::javaTimeMillis();
 461     d = t - lastTime;
 462 
 463     if (d == 0) {
 464       *rate = lastRate;
 465     } else if (!get_noof_context_switches(&sw)) {
 466       *rate      = ( (double)(sw - lastSwitches) / d ) * 1000;
 467       lastRate     = *rate;
 468       lastSwitches = sw;
 469       lastTime     = t;
 470     } else {
 471       *rate = 0;
 472       res   = OS_ERR;
 473     }
 474     if (*rate <= 0) {
 475       *rate = 0;
 476       lastRate = 0;
 477     }
 478   }
 479   pthread_mutex_unlock(&contextSwitchLock);
 480 
 481   return res;
 482 }
 483 
 484 class CPUPerformanceInterface::CPUPerformance : public CHeapObj<mtInternal> {
 485   friend class CPUPerformanceInterface;
 486  private:
 487   CPUPerfCounters _counters;
 488 
 489   int cpu_load(int which_logical_cpu, double* cpu_load);
 490   int context_switch_rate(double* rate);
 491   int cpu_load_total_process(double* cpu_load);
 492   int cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad);
 493 
 494  public:
 495   CPUPerformance();
 496   bool initialize();
 497   ~CPUPerformance();
 498 };
 499 
 500 CPUPerformanceInterface::CPUPerformance::CPUPerformance() {
 501   _counters.nProcs = os::active_processor_count();
 502   _counters.cpus = NULL;
 503 }
 504 
 505 bool CPUPerformanceInterface::CPUPerformance::initialize() {
 506   size_t array_entry_count = _counters.nProcs + 1;
 507   _counters.cpus = NEW_C_HEAP_ARRAY(os::Linux::CPUPerfTicks, array_entry_count, mtInternal);
 508   if (NULL == _counters.cpus) {
 509     return false;
 510   }
 511   memset(_counters.cpus, 0, array_entry_count * sizeof(*_counters.cpus));
 512 
 513   // For the CPU load total
 514   os::Linux::get_tick_information(&_counters.cpus[_counters.nProcs], -1);
 515 
 516   // For each CPU
 517   for (int i = 0; i < _counters.nProcs; i++) {
 518     os::Linux::get_tick_information(&_counters.cpus[i], i);
 519   }
 520   // For JVM load
 521   get_jvm_ticks(&_counters.jvmTicks);
 522 
 523   // initialize context switch system
 524   // the double is only for init
 525   double init_ctx_switch_rate;
 526   perf_context_switch_rate(&init_ctx_switch_rate);
 527 
 528   return true;
 529 }
 530 
 531 CPUPerformanceInterface::CPUPerformance::~CPUPerformance() {
 532   if (_counters.cpus != NULL) {
 533     FREE_C_HEAP_ARRAY(char, _counters.cpus);
 534   }
 535 }
 536 
 537 int CPUPerformanceInterface::CPUPerformance::cpu_load(int which_logical_cpu, double* cpu_load) {
 538   double u, s;
 539   u = get_cpu_load(which_logical_cpu, &_counters, &s, CPU_LOAD_GLOBAL);
 540   if (u < 0) {
 541     *cpu_load = 0.0;
 542     return OS_ERR;
 543   }
 544   // Cap total systemload to 1.0
 545   *cpu_load = MIN2<double>((u + s), 1.0);
 546   return OS_OK;
 547 }
 548 
 549 int CPUPerformanceInterface::CPUPerformance::cpu_load_total_process(double* cpu_load) {
 550   double u, s;
 551   u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
 552   if (u < 0) {
 553     *cpu_load = 0.0;
 554     return OS_ERR;
 555   }
 556   *cpu_load = u + s;
 557   return OS_OK;
 558 }
 559 
 560 int CPUPerformanceInterface::CPUPerformance::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) {
 561   double u, s, t;
 562 
 563   assert(pjvmUserLoad != NULL, "pjvmUserLoad not inited");
 564   assert(pjvmKernelLoad != NULL, "pjvmKernelLoad not inited");
 565   assert(psystemTotalLoad != NULL, "psystemTotalLoad not inited");
 566 
 567   u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
 568   if (u < 0) {
 569     *pjvmUserLoad = 0.0;
 570     *pjvmKernelLoad = 0.0;
 571     *psystemTotalLoad = 0.0;
 572     return OS_ERR;
 573   }
 574 
 575   cpu_load(-1, &t);
 576   // clamp at user+system and 1.0
 577   if (u + s > t) {
 578     t = MIN2<double>(u + s, 1.0);
 579   }
 580 
 581   *pjvmUserLoad = u;
 582   *pjvmKernelLoad = s;
 583   *psystemTotalLoad = t;
 584 
 585   return OS_OK;
 586 }
 587 
 588 int CPUPerformanceInterface::CPUPerformance::context_switch_rate(double* rate) {
 589   return perf_context_switch_rate(rate);
 590 }
 591 
 592 CPUPerformanceInterface::CPUPerformanceInterface() {
 593   _impl = NULL;
 594 }
 595 
 596 bool CPUPerformanceInterface::initialize() {
 597   _impl = new CPUPerformanceInterface::CPUPerformance();
 598   return NULL == _impl ? false : _impl->initialize();
 599 }
 600 
 601 CPUPerformanceInterface::~CPUPerformanceInterface() {
 602   if (_impl != NULL) {
 603     delete _impl;
 604   }
 605 }
 606 
 607 int CPUPerformanceInterface::cpu_load(int which_logical_cpu, double* cpu_load) const {
 608   return _impl->cpu_load(which_logical_cpu, cpu_load);
 609 }
 610 
 611 int CPUPerformanceInterface::cpu_load_total_process(double* cpu_load) const {
 612   return _impl->cpu_load_total_process(cpu_load);
 613 }
 614 
 615 int CPUPerformanceInterface::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) const {
 616   return _impl->cpu_loads_process(pjvmUserLoad, pjvmKernelLoad, psystemTotalLoad);
 617 }
 618 
 619 int CPUPerformanceInterface::context_switch_rate(double* rate) const {
 620   return _impl->context_switch_rate(rate);
 621 }
 622 
 623 class SystemProcessInterface::SystemProcesses : public CHeapObj<mtInternal> {
 624   friend class SystemProcessInterface;
 625  private:
 626   class ProcessIterator : public CHeapObj<mtInternal> {
 627     friend class SystemProcessInterface::SystemProcesses;
 628    private:
 629     DIR*           _dir;
 630     struct dirent* _entry;
 631     bool           _valid;
 632     char           _exeName[PATH_MAX];
 633     char           _exePath[PATH_MAX];
 634 
 635     ProcessIterator();
 636     ~ProcessIterator();
 637     bool initialize();
 638 
 639     bool is_valid() const { return _valid; }
 640     bool is_valid_entry(struct dirent* entry) const;
 641     bool is_dir(const char* name) const;
 642     int  fsize(const char* name, uint64_t& size) const;
 643 
 644     char* allocate_string(const char* str) const;
 645     void  get_exe_name();
 646     char* get_exe_path();
 647     char* get_cmdline();
 648 
 649     int current(SystemProcess* process_info);
 650     int next_process();
 651   };
 652 
 653   ProcessIterator* _iterator;
 654   SystemProcesses();
 655   bool initialize();
 656   ~SystemProcesses();
 657 
 658   //information about system processes
 659   int system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const;
 660 };
 661 
 662 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_dir(const char* name) const {
 663   struct stat mystat;
 664   int ret_val = 0;
 665 
 666   ret_val = stat(name, &mystat);
 667   if (ret_val < 0) {
 668     return false;
 669   }
 670   ret_val = S_ISDIR(mystat.st_mode);
 671   return ret_val > 0;
 672 }
 673 
 674 int SystemProcessInterface::SystemProcesses::ProcessIterator::fsize(const char* name, uint64_t& size) const {
 675   assert(name != NULL, "name pointer is NULL!");
 676   size = 0;
 677   struct stat fbuf;
 678 
 679   if (stat(name, &fbuf) < 0) {
 680     return OS_ERR;
 681   }
 682   size = fbuf.st_size;
 683   return OS_OK;
 684 }
 685 
 686 // if it has a numeric name, is a directory and has a 'stat' file in it
 687 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_valid_entry(struct dirent* entry) const {
 688   char buffer[PATH_MAX];
 689   uint64_t size = 0;
 690 
 691   if (atoi(entry->d_name) != 0) {
 692     jio_snprintf(buffer, PATH_MAX, "/proc/%s", entry->d_name);
 693     buffer[PATH_MAX - 1] = '\0';
 694 
 695     if (is_dir(buffer)) {
 696       jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", entry->d_name);
 697       buffer[PATH_MAX - 1] = '\0';
 698       if (fsize(buffer, size) != OS_ERR) {
 699         return true;
 700       }
 701     }
 702   }
 703   return false;
 704 }
 705 
 706 // get exe-name from /proc/<pid>/stat
 707 void SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_name() {
 708   FILE* fp;
 709   char  buffer[PATH_MAX];
 710 
 711   jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", _entry->d_name);
 712   buffer[PATH_MAX - 1] = '\0';
 713   if ((fp = fopen(buffer, "r")) != NULL) {
 714     if (fgets(buffer, PATH_MAX, fp) != NULL) {
 715       char* start, *end;
 716       // exe-name is between the first pair of ( and )
 717       start = strchr(buffer, '(');
 718       if (start != NULL && start[1] != '\0') {
 719         start++;
 720         end = strrchr(start, ')');
 721         if (end != NULL) {
 722           size_t len;
 723           len = MIN2<size_t>(end - start, sizeof(_exeName) - 1);
 724           memcpy(_exeName, start, len);
 725           _exeName[len] = '\0';
 726         }
 727       }
 728     }
 729     fclose(fp);
 730   }
 731 }
 732 
 733 // get command line from /proc/<pid>/cmdline
 734 char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_cmdline() {
 735   FILE* fp;
 736   char  buffer[PATH_MAX];
 737   char* cmdline = NULL;
 738 
 739   jio_snprintf(buffer, PATH_MAX, "/proc/%s/cmdline", _entry->d_name);
 740   buffer[PATH_MAX - 1] = '\0';
 741   if ((fp = fopen(buffer, "r")) != NULL) {
 742     size_t size = 0;
 743     char   dummy;
 744 
 745     // find out how long the file is (stat always returns 0)
 746     while (fread(&dummy, 1, 1, fp) == 1) {
 747       size++;
 748     }
 749     if (size > 0) {
 750       cmdline = NEW_C_HEAP_ARRAY(char, size + 1, mtInternal);
 751       if (cmdline != NULL) {
 752         cmdline[0] = '\0';
 753         if (fseek(fp, 0, SEEK_SET) == 0) {
 754           if (fread(cmdline, 1, size, fp) == size) {
 755             // the file has the arguments separated by '\0',
 756             // so we translate '\0' to ' '
 757             for (size_t i = 0; i < size; i++) {
 758               if (cmdline[i] == '\0') {
 759                 cmdline[i] = ' ';
 760               }
 761             }
 762             cmdline[size] = '\0';
 763           }
 764         }
 765       }
 766     }
 767     fclose(fp);
 768   }
 769   return cmdline;
 770 }
 771 
 772 // get full path to exe from /proc/<pid>/exe symlink
 773 char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_path() {
 774   char buffer[PATH_MAX];
 775 
 776   jio_snprintf(buffer, PATH_MAX, "/proc/%s/exe", _entry->d_name);
 777   buffer[PATH_MAX - 1] = '\0';
 778   return realpath(buffer, _exePath);
 779 }
 780 
 781 char* SystemProcessInterface::SystemProcesses::ProcessIterator::allocate_string(const char* str) const {
 782   if (str != NULL) {
 783     return os::strdup_check_oom(str, mtInternal);
 784   }
 785   return NULL;
 786 }
 787 
 788 int SystemProcessInterface::SystemProcesses::ProcessIterator::current(SystemProcess* process_info) {
 789   if (!is_valid()) {
 790     return OS_ERR;
 791   }
 792 
 793   process_info->set_pid(atoi(_entry->d_name));
 794 
 795   get_exe_name();
 796   process_info->set_name(allocate_string(_exeName));
 797 
 798   if (get_exe_path() != NULL) {
 799      process_info->set_path(allocate_string(_exePath));
 800   }
 801 
 802   char* cmdline = NULL;
 803   cmdline = get_cmdline();
 804   if (cmdline != NULL) {
 805     process_info->set_command_line(allocate_string(cmdline));
 806     FREE_C_HEAP_ARRAY(char, cmdline);
 807   }
 808 
 809   return OS_OK;
 810 }
 811 
 812 int SystemProcessInterface::SystemProcesses::ProcessIterator::next_process() {
 813   if (!is_valid()) {
 814     return OS_ERR;
 815   }
 816 
 817   do {
 818     _entry = os::readdir(_dir);
 819     if (_entry == NULL) {
 820       // Error or reached end.  Could use errno to distinguish those cases.
 821       _valid = false;
 822       return OS_ERR;
 823     }
 824   } while(!is_valid_entry(_entry));
 825 
 826   _valid = true;
 827   return OS_OK;
 828 }
 829 
 830 SystemProcessInterface::SystemProcesses::ProcessIterator::ProcessIterator() {
 831   _dir = NULL;
 832   _entry = NULL;
 833   _valid = false;
 834 }
 835 
 836 bool SystemProcessInterface::SystemProcesses::ProcessIterator::initialize() {
 837   _dir = os::opendir("/proc");
 838   _entry = NULL;
 839   _valid = true;
 840   next_process();
 841 
 842   return true;
 843 }
 844 
 845 SystemProcessInterface::SystemProcesses::ProcessIterator::~ProcessIterator() {
 846   if (_dir != NULL) {
 847     os::closedir(_dir);
 848   }
 849 }
 850 
 851 SystemProcessInterface::SystemProcesses::SystemProcesses() {
 852   _iterator = NULL;
 853 }
 854 
 855 bool SystemProcessInterface::SystemProcesses::initialize() {
 856   _iterator = new SystemProcessInterface::SystemProcesses::ProcessIterator();
 857   return NULL == _iterator ? false : _iterator->initialize();
 858 }
 859 
 860 SystemProcessInterface::SystemProcesses::~SystemProcesses() {
 861   if (_iterator != NULL) {
 862     delete _iterator;
 863   }
 864 }
 865 
 866 int SystemProcessInterface::SystemProcesses::system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const {
 867   assert(system_processes != NULL, "system_processes pointer is NULL!");
 868   assert(no_of_sys_processes != NULL, "system_processes counter pointers is NULL!");
 869   assert(_iterator != NULL, "iterator is NULL!");
 870 
 871   // initialize pointers
 872   *no_of_sys_processes = 0;
 873   *system_processes = NULL;
 874 
 875   while (_iterator->is_valid()) {
 876     SystemProcess* tmp = new SystemProcess();
 877     _iterator->current(tmp);
 878 
 879     //if already existing head
 880     if (*system_processes != NULL) {
 881       //move "first to second"
 882       tmp->set_next(*system_processes);
 883     }
 884     // new head
 885     *system_processes = tmp;
 886     // increment
 887     (*no_of_sys_processes)++;
 888     // step forward
 889     _iterator->next_process();
 890   }
 891   return OS_OK;
 892 }
 893 
 894 int SystemProcessInterface::system_processes(SystemProcess** system_procs, int* no_of_sys_processes) const {
 895   return _impl->system_processes(system_procs, no_of_sys_processes);
 896 }
 897 
 898 SystemProcessInterface::SystemProcessInterface() {
 899   _impl = NULL;
 900 }
 901 
 902 bool SystemProcessInterface::initialize() {
 903   _impl = new SystemProcessInterface::SystemProcesses();
 904   return NULL == _impl ? false : _impl->initialize();
 905 }
 906 
 907 SystemProcessInterface::~SystemProcessInterface() {
 908   if (_impl != NULL) {
 909     delete _impl;
 910   }
 911 }
 912 
 913 CPUInformationInterface::CPUInformationInterface() {
 914   _cpu_info = NULL;
 915 }
 916 
 917 bool CPUInformationInterface::initialize() {
 918   _cpu_info = new CPUInformation();
 919   if (NULL == _cpu_info) {
 920     return false;
 921   }
 922   _cpu_info->set_number_of_hardware_threads(VM_Version_Ext::number_of_threads());
 923   _cpu_info->set_number_of_cores(VM_Version_Ext::number_of_cores());
 924   _cpu_info->set_number_of_sockets(VM_Version_Ext::number_of_sockets());
 925   _cpu_info->set_cpu_name(VM_Version_Ext::cpu_name());
 926   _cpu_info->set_cpu_description(VM_Version_Ext::cpu_description());
 927 
 928   return true;
 929 }
 930 
 931 CPUInformationInterface::~CPUInformationInterface() {
 932   if (_cpu_info != NULL) {
 933     if (_cpu_info->cpu_name() != NULL) {
 934       const char* cpu_name = _cpu_info->cpu_name();
 935       FREE_C_HEAP_ARRAY(char, cpu_name);
 936       _cpu_info->set_cpu_name(NULL);
 937     }
 938     if (_cpu_info->cpu_description() != NULL) {
 939        const char* cpu_desc = _cpu_info->cpu_description();
 940        FREE_C_HEAP_ARRAY(char, cpu_desc);
 941       _cpu_info->set_cpu_description(NULL);
 942     }
 943     delete _cpu_info;
 944   }
 945 }
 946 
 947 int CPUInformationInterface::cpu_information(CPUInformation& cpu_info) {
 948   if (_cpu_info == NULL) {
 949     return OS_ERR;
 950   }
 951 
 952   cpu_info = *_cpu_info; // shallow copy assignment
 953   return OS_OK;
 954 }
 955 
 956 class NetworkPerformanceInterface::NetworkPerformance : public CHeapObj<mtInternal> {
 957   friend class NetworkPerformanceInterface;
 958  private:
 959   NetworkPerformance();
 960   NetworkPerformance(const NetworkPerformance& rhs); // no impl
 961   NetworkPerformance& operator=(const NetworkPerformance& rhs); // no impl
 962   bool initialize();
 963   ~NetworkPerformance();
 964   int64_t read_counter(const char* iface, const char* counter) const;
 965   int network_utilization(NetworkInterface** network_interfaces) const;
 966 };
 967 
 968 NetworkPerformanceInterface::NetworkPerformance::NetworkPerformance() {
 969 
 970 }
 971 
 972 bool NetworkPerformanceInterface::NetworkPerformance::initialize() {
 973   return true;
 974 }
 975 
 976 NetworkPerformanceInterface::NetworkPerformance::~NetworkPerformance() {
 977 }
 978 
 979 int64_t NetworkPerformanceInterface::NetworkPerformance::read_counter(const char* iface, const char* counter) const {
 980   char buf[128];
 981 
 982   snprintf(buf, sizeof(buf), "/sys/class/net/%s/statistics/%s", iface, counter);
 983 
 984   int fd = os::open(buf, O_RDONLY, 0);
 985   if (fd == -1) {
 986     return -1;
 987   }
 988 
 989   ssize_t num_bytes = read(fd, buf, sizeof(buf));
 990   close(fd);
 991   if ((num_bytes == -1) || (num_bytes >= static_cast<ssize_t>(sizeof(buf))) || (num_bytes < 1)) {
 992     return -1;
 993   }
 994 
 995   buf[num_bytes] = '\0';
 996   int64_t value = strtoll(buf, NULL, 10);
 997 
 998   return value;
 999 }
1000 
1001 int NetworkPerformanceInterface::NetworkPerformance::network_utilization(NetworkInterface** network_interfaces) const
1002 {
1003   ifaddrs* addresses;
1004   ifaddrs* cur_address;
1005 
1006   if (getifaddrs(&addresses) != 0) {
1007     return OS_ERR;
1008   }
1009 
1010   NetworkInterface* ret = NULL;
1011   for (cur_address = addresses; cur_address != NULL; cur_address = cur_address->ifa_next) {
1012     if ((cur_address->ifa_addr == NULL) || (cur_address->ifa_addr->sa_family != AF_PACKET)) {
1013       continue;
1014     }
1015 
1016     int64_t bytes_in = read_counter(cur_address->ifa_name, "rx_bytes");
1017     int64_t bytes_out = read_counter(cur_address->ifa_name, "tx_bytes");
1018 
1019     NetworkInterface* cur = new NetworkInterface(cur_address->ifa_name, bytes_in, bytes_out, ret);
1020     ret = cur;
1021   }
1022 
1023   freeifaddrs(addresses);
1024   *network_interfaces = ret;
1025 
1026   return OS_OK;
1027 }
1028 
1029 NetworkPerformanceInterface::NetworkPerformanceInterface() {
1030   _impl = NULL;
1031 }
1032 
1033 NetworkPerformanceInterface::~NetworkPerformanceInterface() {
1034   if (_impl != NULL) {
1035     delete _impl;
1036   }
1037 }
1038 
1039 bool NetworkPerformanceInterface::initialize() {
1040   _impl = new NetworkPerformanceInterface::NetworkPerformance();
1041   return _impl != NULL && _impl->initialize();
1042 }
1043 
1044 int NetworkPerformanceInterface::network_utilization(NetworkInterface** network_interfaces) const {
1045   return _impl->network_utilization(network_interfaces);
1046 }