1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "memory/universe.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "os_share_solaris.hpp"
  42 #include "os_solaris.inline.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.inline.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "runtime/vm_version.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 // put OS-includes here
  77 # include <dlfcn.h>
  78 # include <errno.h>
  79 # include <exception>
  80 # include <link.h>
  81 # include <poll.h>
  82 # include <pthread.h>
  83 # include <setjmp.h>
  84 # include <signal.h>
  85 # include <stdio.h>
  86 # include <alloca.h>
  87 # include <sys/filio.h>
  88 # include <sys/ipc.h>
  89 # include <sys/lwp.h>
  90 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  91 # include <sys/mman.h>
  92 # include <sys/processor.h>
  93 # include <sys/procset.h>
  94 # include <sys/pset.h>
  95 # include <sys/resource.h>
  96 # include <sys/shm.h>
  97 # include <sys/socket.h>
  98 # include <sys/stat.h>
  99 # include <sys/systeminfo.h>
 100 # include <sys/time.h>
 101 # include <sys/times.h>
 102 # include <sys/types.h>
 103 # include <sys/wait.h>
 104 # include <sys/utsname.h>
 105 # include <thread.h>
 106 # include <unistd.h>
 107 # include <sys/priocntl.h>
 108 # include <sys/rtpriocntl.h>
 109 # include <sys/tspriocntl.h>
 110 # include <sys/iapriocntl.h>
 111 # include <sys/fxpriocntl.h>
 112 # include <sys/loadavg.h>
 113 # include <string.h>
 114 # include <stdio.h>
 115 
 116 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 117 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 118 
 119 #define MAX_PATH (2 * K)
 120 
 121 // for timer info max values which include all bits
 122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 123 
 124 
 125 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 126 // compile on older systems without this header file.
 127 
 128 #ifndef MADV_ACCESS_LWP
 129   #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
 130 #endif
 131 #ifndef MADV_ACCESS_MANY
 132   #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
 133 #endif
 134 
 135 #ifndef LGRP_RSRC_CPU
 136   #define LGRP_RSRC_CPU      0       /* CPU resources */
 137 #endif
 138 #ifndef LGRP_RSRC_MEM
 139   #define LGRP_RSRC_MEM      1       /* memory resources */
 140 #endif
 141 
 142 // Values for ThreadPriorityPolicy == 1
 143 int prio_policy1[CriticalPriority+1] = {
 144   -99999,  0, 16,  32,  48,  64,
 145           80, 96, 112, 124, 127, 127 };
 146 
 147 // System parameters used internally
 148 static clock_t clock_tics_per_sec = 100;
 149 
 150 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 151 static bool enabled_extended_FILE_stdio = false;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static bool check_addr0_done = false;
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 159 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 160 
 161 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 162 
 163 os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
 164 
 165 // "default" initializers for missing libc APIs
 166 extern "C" {
 167   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 168   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 169 
 170   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 171   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 172 }
 173 
 174 // "default" initializers for pthread-based synchronization
 175 extern "C" {
 176   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 177   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 178 }
 179 
 180 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 181 
 182 static inline size_t adjust_stack_size(address base, size_t size) {
 183   if ((ssize_t)size < 0) {
 184     // 4759953: Compensate for ridiculous stack size.
 185     size = max_intx;
 186   }
 187   if (size > (size_t)base) {
 188     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 189     size = (size_t)base;
 190   }
 191   return size;
 192 }
 193 
 194 static inline stack_t get_stack_info() {
 195   stack_t st;
 196   int retval = thr_stksegment(&st);
 197   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 198   assert(retval == 0, "incorrect return value from thr_stksegment");
 199   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 200   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 201   return st;
 202 }
 203 
 204 static void _handle_uncaught_cxx_exception() {
 205   VMError::report_and_die("An uncaught C++ exception");
 206 }
 207 
 208 bool os::is_primordial_thread(void) {
 209   int r = thr_main();
 210   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 211   return r == 1;
 212 }
 213 
 214 address os::current_stack_base() {
 215   bool _is_primordial_thread = is_primordial_thread();
 216 
 217   // Workaround 4352906, avoid calls to thr_stksegment by
 218   // thr_main after the first one (it looks like we trash
 219   // some data, causing the value for ss_sp to be incorrect).
 220   if (!_is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 221     stack_t st = get_stack_info();
 222     if (_is_primordial_thread) {
 223       // cache initial value of stack base
 224       os::Solaris::_main_stack_base = (address)st.ss_sp;
 225     }
 226     return (address)st.ss_sp;
 227   } else {
 228     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 229     return os::Solaris::_main_stack_base;
 230   }
 231 }
 232 
 233 size_t os::current_stack_size() {
 234   size_t size;
 235 
 236   if (!is_primordial_thread()) {
 237     size = get_stack_info().ss_size;
 238   } else {
 239     struct rlimit limits;
 240     getrlimit(RLIMIT_STACK, &limits);
 241     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 242   }
 243   // base may not be page aligned
 244   address base = current_stack_base();
 245   address bottom = align_up(base - size, os::vm_page_size());;
 246   return (size_t)(base - bottom);
 247 }
 248 
 249 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 250   return localtime_r(clock, res);
 251 }
 252 
 253 void os::Solaris::try_enable_extended_io() {
 254   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 255 
 256   if (!UseExtendedFileIO) {
 257     return;
 258   }
 259 
 260   enable_extended_FILE_stdio_t enabler =
 261     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 262                                          "enable_extended_FILE_stdio");
 263   if (enabler) {
 264     enabler(-1, -1);
 265   }
 266 }
 267 
 268 static int _processors_online = 0;
 269 
 270 jint os::Solaris::_os_thread_limit = 0;
 271 volatile jint os::Solaris::_os_thread_count = 0;
 272 
 273 julong os::available_memory() {
 274   return Solaris::available_memory();
 275 }
 276 
 277 julong os::Solaris::available_memory() {
 278   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 279 }
 280 
 281 julong os::Solaris::_physical_memory = 0;
 282 
 283 julong os::physical_memory() {
 284   return Solaris::physical_memory();
 285 }
 286 
 287 static hrtime_t first_hrtime = 0;
 288 static const hrtime_t hrtime_hz = 1000*1000*1000;
 289 static volatile hrtime_t max_hrtime = 0;
 290 
 291 
 292 void os::Solaris::initialize_system_info() {
 293   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 294   _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
 295   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
 296                                      (julong)sysconf(_SC_PAGESIZE);
 297 }
 298 
 299 uint os::processor_id() {
 300   const processorid_t id = ::getcpuid();
 301   assert(id >= 0 && id < _processor_count, "Invalid processor id");
 302   return (uint)id;
 303 }
 304 
 305 int os::active_processor_count() {
 306   // User has overridden the number of active processors
 307   if (ActiveProcessorCount > 0) {
 308     log_trace(os)("active_processor_count: "
 309                   "active processor count set by user : %d",
 310                   ActiveProcessorCount);
 311     return ActiveProcessorCount;
 312   }
 313 
 314   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 315   pid_t pid = getpid();
 316   psetid_t pset = PS_NONE;
 317   // Are we running in a processor set or is there any processor set around?
 318   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 319     uint_t pset_cpus;
 320     // Query the number of cpus available to us.
 321     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 322       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 323       _processors_online = pset_cpus;
 324       return pset_cpus;
 325     }
 326   }
 327   // Otherwise return number of online cpus
 328   return online_cpus;
 329 }
 330 
 331 static bool find_processors_in_pset(psetid_t        pset,
 332                                     processorid_t** id_array,
 333                                     uint_t*         id_length) {
 334   bool result = false;
 335   // Find the number of processors in the processor set.
 336   if (pset_info(pset, NULL, id_length, NULL) == 0) {
 337     // Make up an array to hold their ids.
 338     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 339     // Fill in the array with their processor ids.
 340     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
 341       result = true;
 342     }
 343   }
 344   return result;
 345 }
 346 
 347 // Callers of find_processors_online() must tolerate imprecise results --
 348 // the system configuration can change asynchronously because of DR
 349 // or explicit psradm operations.
 350 //
 351 // We also need to take care that the loop (below) terminates as the
 352 // number of processors online can change between the _SC_NPROCESSORS_ONLN
 353 // request and the loop that builds the list of processor ids.   Unfortunately
 354 // there's no reliable way to determine the maximum valid processor id,
 355 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
 356 // man pages, which claim the processor id set is "sparse, but
 357 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
 358 // exit the loop.
 359 //
 360 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
 361 // not available on S8.0.
 362 
 363 static bool find_processors_online(processorid_t** id_array,
 364                                    uint*           id_length) {
 365   const processorid_t MAX_PROCESSOR_ID = 100000;
 366   // Find the number of processors online.
 367   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
 368   // Make up an array to hold their ids.
 369   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 370   // Processors need not be numbered consecutively.
 371   long found = 0;
 372   processorid_t next = 0;
 373   while (found < *id_length && next < MAX_PROCESSOR_ID) {
 374     processor_info_t info;
 375     if (processor_info(next, &info) == 0) {
 376       // NB, PI_NOINTR processors are effectively online ...
 377       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
 378         (*id_array)[found] = next;
 379         found += 1;
 380       }
 381     }
 382     next += 1;
 383   }
 384   if (found < *id_length) {
 385     // The loop above didn't identify the expected number of processors.
 386     // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
 387     // and re-running the loop, above, but there's no guarantee of progress
 388     // if the system configuration is in flux.  Instead, we just return what
 389     // we've got.  Note that in the worst case find_processors_online() could
 390     // return an empty set.  (As a fall-back in the case of the empty set we
 391     // could just return the ID of the current processor).
 392     *id_length = found;
 393   }
 394 
 395   return true;
 396 }
 397 
 398 static bool assign_distribution(processorid_t* id_array,
 399                                 uint           id_length,
 400                                 uint*          distribution,
 401                                 uint           distribution_length) {
 402   // We assume we can assign processorid_t's to uint's.
 403   assert(sizeof(processorid_t) == sizeof(uint),
 404          "can't convert processorid_t to uint");
 405   // Quick check to see if we won't succeed.
 406   if (id_length < distribution_length) {
 407     return false;
 408   }
 409   // Assign processor ids to the distribution.
 410   // Try to shuffle processors to distribute work across boards,
 411   // assuming 4 processors per board.
 412   const uint processors_per_board = ProcessDistributionStride;
 413   // Find the maximum processor id.
 414   processorid_t max_id = 0;
 415   for (uint m = 0; m < id_length; m += 1) {
 416     max_id = MAX2(max_id, id_array[m]);
 417   }
 418   // The next id, to limit loops.
 419   const processorid_t limit_id = max_id + 1;
 420   // Make up markers for available processors.
 421   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
 422   for (uint c = 0; c < limit_id; c += 1) {
 423     available_id[c] = false;
 424   }
 425   for (uint a = 0; a < id_length; a += 1) {
 426     available_id[id_array[a]] = true;
 427   }
 428   // Step by "boards", then by "slot", copying to "assigned".
 429   // NEEDS_CLEANUP: The assignment of processors should be stateful,
 430   //                remembering which processors have been assigned by
 431   //                previous calls, etc., so as to distribute several
 432   //                independent calls of this method.  What we'd like is
 433   //                It would be nice to have an API that let us ask
 434   //                how many processes are bound to a processor,
 435   //                but we don't have that, either.
 436   //                In the short term, "board" is static so that
 437   //                subsequent distributions don't all start at board 0.
 438   static uint board = 0;
 439   uint assigned = 0;
 440   // Until we've found enough processors ....
 441   while (assigned < distribution_length) {
 442     // ... find the next available processor in the board.
 443     for (uint slot = 0; slot < processors_per_board; slot += 1) {
 444       uint try_id = board * processors_per_board + slot;
 445       if ((try_id < limit_id) && (available_id[try_id] == true)) {
 446         distribution[assigned] = try_id;
 447         available_id[try_id] = false;
 448         assigned += 1;
 449         break;
 450       }
 451     }
 452     board += 1;
 453     if (board * processors_per_board + 0 >= limit_id) {
 454       board = 0;
 455     }
 456   }
 457   if (available_id != NULL) {
 458     FREE_C_HEAP_ARRAY(bool, available_id);
 459   }
 460   return true;
 461 }
 462 
 463 void os::set_native_thread_name(const char *name) {
 464   if (Solaris::_pthread_setname_np != NULL) {
 465     // Only the first 31 bytes of 'name' are processed by pthread_setname_np
 466     // but we explicitly copy into a size-limited buffer to avoid any
 467     // possible overflow.
 468     char buf[32];
 469     snprintf(buf, sizeof(buf), "%s", name);
 470     buf[sizeof(buf) - 1] = '\0';
 471     Solaris::_pthread_setname_np(pthread_self(), buf);
 472   }
 473 }
 474 
 475 bool os::distribute_processes(uint length, uint* distribution) {
 476   bool result = false;
 477   // Find the processor id's of all the available CPUs.
 478   processorid_t* id_array  = NULL;
 479   uint           id_length = 0;
 480   // There are some races between querying information and using it,
 481   // since processor sets can change dynamically.
 482   psetid_t pset = PS_NONE;
 483   // Are we running in a processor set?
 484   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
 485     result = find_processors_in_pset(pset, &id_array, &id_length);
 486   } else {
 487     result = find_processors_online(&id_array, &id_length);
 488   }
 489   if (result == true) {
 490     if (id_length >= length) {
 491       result = assign_distribution(id_array, id_length, distribution, length);
 492     } else {
 493       result = false;
 494     }
 495   }
 496   if (id_array != NULL) {
 497     FREE_C_HEAP_ARRAY(processorid_t, id_array);
 498   }
 499   return result;
 500 }
 501 
 502 bool os::bind_to_processor(uint processor_id) {
 503   // We assume that a processorid_t can be stored in a uint.
 504   assert(sizeof(uint) == sizeof(processorid_t),
 505          "can't convert uint to processorid_t");
 506   int bind_result =
 507     processor_bind(P_LWPID,                       // bind LWP.
 508                    P_MYID,                        // bind current LWP.
 509                    (processorid_t) processor_id,  // id.
 510                    NULL);                         // don't return old binding.
 511   return (bind_result == 0);
 512 }
 513 
 514 // Return true if user is running as root.
 515 
 516 bool os::have_special_privileges() {
 517   static bool init = false;
 518   static bool privileges = false;
 519   if (!init) {
 520     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 521     init = true;
 522   }
 523   return privileges;
 524 }
 525 
 526 
 527 void os::init_system_properties_values() {
 528   // The next steps are taken in the product version:
 529   //
 530   // Obtain the JAVA_HOME value from the location of libjvm.so.
 531   // This library should be located at:
 532   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 533   //
 534   // If "/jre/lib/" appears at the right place in the path, then we
 535   // assume libjvm.so is installed in a JDK and we use this path.
 536   //
 537   // Otherwise exit with message: "Could not create the Java virtual machine."
 538   //
 539   // The following extra steps are taken in the debugging version:
 540   //
 541   // If "/jre/lib/" does NOT appear at the right place in the path
 542   // instead of exit check for $JAVA_HOME environment variable.
 543   //
 544   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 545   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 546   // it looks like libjvm.so is installed there
 547   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 548   //
 549   // Otherwise exit.
 550   //
 551   // Important note: if the location of libjvm.so changes this
 552   // code needs to be changed accordingly.
 553 
 554 // Base path of extensions installed on the system.
 555 #define SYS_EXT_DIR     "/usr/jdk/packages"
 556 #define EXTENSIONS_DIR  "/lib/ext"
 557 
 558   // Buffer that fits several sprintfs.
 559   // Note that the space for the colon and the trailing null are provided
 560   // by the nulls included by the sizeof operator.
 561   const size_t bufsize =
 562     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 563          sizeof(SYS_EXT_DIR) + sizeof("/lib/"), // invariant ld_library_path
 564          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 565   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 566 
 567   // sysclasspath, java_home, dll_dir
 568   {
 569     char *pslash;
 570     os::jvm_path(buf, bufsize);
 571 
 572     // Found the full path to libjvm.so.
 573     // Now cut the path to <java_home>/jre if we can.
 574     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 575     pslash = strrchr(buf, '/');
 576     if (pslash != NULL) {
 577       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 578     }
 579     Arguments::set_dll_dir(buf);
 580 
 581     if (pslash != NULL) {
 582       pslash = strrchr(buf, '/');
 583       if (pslash != NULL) {
 584         *pslash = '\0';        // Get rid of /lib.
 585       }
 586     }
 587     Arguments::set_java_home(buf);
 588     if (!set_boot_path('/', ':')) {
 589       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 590     }
 591   }
 592 
 593   // Where to look for native libraries.
 594   {
 595     // Use dlinfo() to determine the correct java.library.path.
 596     //
 597     // If we're launched by the Java launcher, and the user
 598     // does not set java.library.path explicitly on the commandline,
 599     // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 600     // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 601     // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 602     // /usr/lib), which is exactly what we want.
 603     //
 604     // If the user does set java.library.path, it completely
 605     // overwrites this setting, and always has.
 606     //
 607     // If we're not launched by the Java launcher, we may
 608     // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 609     // settings.  Again, dlinfo does exactly what we want.
 610 
 611     Dl_serinfo     info_sz, *info = &info_sz;
 612     Dl_serpath     *path;
 613     char           *library_path;
 614     char           *common_path = buf;
 615 
 616     // Determine search path count and required buffer size.
 617     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 618       FREE_C_HEAP_ARRAY(char, buf);
 619       vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 620     }
 621 
 622     // Allocate new buffer and initialize.
 623     info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
 624     info->dls_size = info_sz.dls_size;
 625     info->dls_cnt = info_sz.dls_cnt;
 626 
 627     // Obtain search path information.
 628     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 629       FREE_C_HEAP_ARRAY(char, buf);
 630       FREE_C_HEAP_ARRAY(char, info);
 631       vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 632     }
 633 
 634     path = &info->dls_serpath[0];
 635 
 636     // Note: Due to a legacy implementation, most of the library path
 637     // is set in the launcher. This was to accomodate linking restrictions
 638     // on legacy Solaris implementations (which are no longer supported).
 639     // Eventually, all the library path setting will be done here.
 640     //
 641     // However, to prevent the proliferation of improperly built native
 642     // libraries, the new path component /usr/jdk/packages is added here.
 643 
 644     // Construct the invariant part of ld_library_path.
 645     sprintf(common_path, SYS_EXT_DIR "/lib");
 646 
 647     // Struct size is more than sufficient for the path components obtained
 648     // through the dlinfo() call, so only add additional space for the path
 649     // components explicitly added here.
 650     size_t library_path_size = info->dls_size + strlen(common_path);
 651     library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
 652     library_path[0] = '\0';
 653 
 654     // Construct the desired Java library path from the linker's library
 655     // search path.
 656     //
 657     // For compatibility, it is optimal that we insert the additional path
 658     // components specific to the Java VM after those components specified
 659     // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 660     // infrastructure.
 661     if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
 662       strcpy(library_path, common_path);
 663     } else {
 664       int inserted = 0;
 665       int i;
 666       for (i = 0; i < info->dls_cnt; i++, path++) {
 667         uint_t flags = path->dls_flags & LA_SER_MASK;
 668         if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 669           strcat(library_path, common_path);
 670           strcat(library_path, os::path_separator());
 671           inserted = 1;
 672         }
 673         strcat(library_path, path->dls_name);
 674         strcat(library_path, os::path_separator());
 675       }
 676       // Eliminate trailing path separator.
 677       library_path[strlen(library_path)-1] = '\0';
 678     }
 679 
 680     // happens before argument parsing - can't use a trace flag
 681     // tty->print_raw("init_system_properties_values: native lib path: ");
 682     // tty->print_raw_cr(library_path);
 683 
 684     // Callee copies into its own buffer.
 685     Arguments::set_library_path(library_path);
 686 
 687     FREE_C_HEAP_ARRAY(char, library_path);
 688     FREE_C_HEAP_ARRAY(char, info);
 689   }
 690 
 691   // Extensions directories.
 692   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 693   Arguments::set_ext_dirs(buf);
 694 
 695   FREE_C_HEAP_ARRAY(char, buf);
 696 
 697 #undef SYS_EXT_DIR
 698 #undef EXTENSIONS_DIR
 699 }
 700 
 701 void os::breakpoint() {
 702   BREAKPOINT;
 703 }
 704 
 705 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
 706   address  stackStart  = (address)thread->stack_base();
 707   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
 708   if (sp < stackStart && sp >= stackEnd) return true;
 709   return false;
 710 }
 711 
 712 extern "C" void breakpoint() {
 713   // use debugger to set breakpoint here
 714 }
 715 
 716 static thread_t main_thread;
 717 
 718 // Thread start routine for all newly created threads
 719 extern "C" void* thread_native_entry(void* thread_addr) {
 720 
 721   Thread* thread = (Thread*)thread_addr;
 722 
 723   thread->record_stack_base_and_size();
 724 
 725   // Try to randomize the cache line index of hot stack frames.
 726   // This helps when threads of the same stack traces evict each other's
 727   // cache lines. The threads can be either from the same JVM instance, or
 728   // from different JVM instances. The benefit is especially true for
 729   // processors with hyperthreading technology.
 730   static int counter = 0;
 731   int pid = os::current_process_id();
 732   alloca(((pid ^ counter++) & 7) * 128);
 733 
 734   int prio;
 735 
 736   thread->initialize_thread_current();
 737 
 738   OSThread* osthr = thread->osthread();
 739 
 740   osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
 741 
 742   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
 743     os::current_thread_id());
 744 
 745   if (UseNUMA) {
 746     int lgrp_id = os::numa_get_group_id();
 747     if (lgrp_id != -1) {
 748       thread->set_lgrp_id(lgrp_id);
 749     }
 750   }
 751 
 752   // Our priority was set when we were created, and stored in the
 753   // osthread, but couldn't be passed through to our LWP until now.
 754   // So read back the priority and set it again.
 755 
 756   if (osthr->thread_id() != -1) {
 757     if (UseThreadPriorities) {
 758       int prio = osthr->native_priority();
 759       if (ThreadPriorityVerbose) {
 760         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
 761                       INTPTR_FORMAT ", setting priority: %d\n",
 762                       osthr->thread_id(), osthr->lwp_id(), prio);
 763       }
 764       os::set_native_priority(thread, prio);
 765     }
 766   } else if (ThreadPriorityVerbose) {
 767     warning("Can't set priority in _start routine, thread id hasn't been set\n");
 768   }
 769 
 770   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 771 
 772   // initialize signal mask for this thread
 773   os::Solaris::hotspot_sigmask(thread);
 774 
 775   os::Solaris::init_thread_fpu_state();
 776   std::set_terminate(_handle_uncaught_cxx_exception);
 777 
 778   thread->call_run();
 779 
 780   // Note: at this point the thread object may already have deleted itself.
 781   // Do not dereference it from here on out.
 782 
 783   // One less thread is executing
 784   // When the VMThread gets here, the main thread may have already exited
 785   // which frees the CodeHeap containing the Atomic::dec code
 786   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 787     Atomic::dec(&os::Solaris::_os_thread_count);
 788   }
 789 
 790   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 791 
 792   if (UseDetachedThreads) {
 793     thr_exit(NULL);
 794     ShouldNotReachHere();
 795   }
 796   return NULL;
 797 }
 798 
 799 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
 800   // Allocate the OSThread object
 801   OSThread* osthread = new OSThread(NULL, NULL);
 802   if (osthread == NULL) return NULL;
 803 
 804   // Store info on the Solaris thread into the OSThread
 805   osthread->set_thread_id(thread_id);
 806   osthread->set_lwp_id(_lwp_self());
 807 
 808   if (UseNUMA) {
 809     int lgrp_id = os::numa_get_group_id();
 810     if (lgrp_id != -1) {
 811       thread->set_lgrp_id(lgrp_id);
 812     }
 813   }
 814 
 815   if (ThreadPriorityVerbose) {
 816     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
 817                   osthread->thread_id(), osthread->lwp_id());
 818   }
 819 
 820   // Initial thread state is INITIALIZED, not SUSPENDED
 821   osthread->set_state(INITIALIZED);
 822 
 823   return osthread;
 824 }
 825 
 826 void os::Solaris::hotspot_sigmask(Thread* thread) {
 827   //Save caller's signal mask
 828   sigset_t sigmask;
 829   pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
 830   OSThread *osthread = thread->osthread();
 831   osthread->set_caller_sigmask(sigmask);
 832 
 833   pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
 834   if (!ReduceSignalUsage) {
 835     if (thread->is_VM_thread()) {
 836       // Only the VM thread handles BREAK_SIGNAL ...
 837       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 838     } else {
 839       // ... all other threads block BREAK_SIGNAL
 840       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
 841       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 842     }
 843   }
 844 }
 845 
 846 bool os::create_attached_thread(JavaThread* thread) {
 847 #ifdef ASSERT
 848   thread->verify_not_published();
 849 #endif
 850   OSThread* osthread = create_os_thread(thread, thr_self());
 851   if (osthread == NULL) {
 852     return false;
 853   }
 854 
 855   // Initial thread state is RUNNABLE
 856   osthread->set_state(RUNNABLE);
 857   thread->set_osthread(osthread);
 858 
 859   // initialize signal mask for this thread
 860   // and save the caller's signal mask
 861   os::Solaris::hotspot_sigmask(thread);
 862 
 863   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 864     os::current_thread_id());
 865 
 866   return true;
 867 }
 868 
 869 bool os::create_main_thread(JavaThread* thread) {
 870 #ifdef ASSERT
 871   thread->verify_not_published();
 872 #endif
 873   if (_starting_thread == NULL) {
 874     _starting_thread = create_os_thread(thread, main_thread);
 875     if (_starting_thread == NULL) {
 876       return false;
 877     }
 878   }
 879 
 880   // The primodial thread is runnable from the start
 881   _starting_thread->set_state(RUNNABLE);
 882 
 883   thread->set_osthread(_starting_thread);
 884 
 885   // initialize signal mask for this thread
 886   // and save the caller's signal mask
 887   os::Solaris::hotspot_sigmask(thread);
 888 
 889   return true;
 890 }
 891 
 892 // Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
 893 static char* describe_thr_create_attributes(char* buf, size_t buflen,
 894                                             size_t stacksize, long flags) {
 895   stringStream ss(buf, buflen);
 896   ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 897   ss.print("flags: ");
 898   #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
 899   #define ALL(X) \
 900     X(THR_SUSPENDED) \
 901     X(THR_DETACHED) \
 902     X(THR_BOUND) \
 903     X(THR_NEW_LWP) \
 904     X(THR_DAEMON)
 905   ALL(PRINT_FLAG)
 906   #undef ALL
 907   #undef PRINT_FLAG
 908   return buf;
 909 }
 910 
 911 // return default stack size for thr_type
 912 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 913   // default stack size when not specified by caller is 1M (2M for LP64)
 914   size_t s = (BytesPerWord >> 2) * K * K;
 915   return s;
 916 }
 917 
 918 bool os::create_thread(Thread* thread, ThreadType thr_type,
 919                        size_t req_stack_size) {
 920   // Allocate the OSThread object
 921   OSThread* osthread = new OSThread(NULL, NULL);
 922   if (osthread == NULL) {
 923     return false;
 924   }
 925 
 926   if (ThreadPriorityVerbose) {
 927     char *thrtyp;
 928     switch (thr_type) {
 929     case vm_thread:
 930       thrtyp = (char *)"vm";
 931       break;
 932     case cgc_thread:
 933       thrtyp = (char *)"cgc";
 934       break;
 935     case pgc_thread:
 936       thrtyp = (char *)"pgc";
 937       break;
 938     case java_thread:
 939       thrtyp = (char *)"java";
 940       break;
 941     case compiler_thread:
 942       thrtyp = (char *)"compiler";
 943       break;
 944     case watcher_thread:
 945       thrtyp = (char *)"watcher";
 946       break;
 947     default:
 948       thrtyp = (char *)"unknown";
 949       break;
 950     }
 951     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
 952   }
 953 
 954   // calculate stack size if it's not specified by caller
 955   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 956 
 957   // Initial state is ALLOCATED but not INITIALIZED
 958   osthread->set_state(ALLOCATED);
 959 
 960   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
 961     // We got lots of threads. Check if we still have some address space left.
 962     // Need to be at least 5Mb of unreserved address space. We do check by
 963     // trying to reserve some.
 964     const size_t VirtualMemoryBangSize = 20*K*K;
 965     char* mem = os::reserve_memory(VirtualMemoryBangSize);
 966     if (mem == NULL) {
 967       delete osthread;
 968       return false;
 969     } else {
 970       // Release the memory again
 971       os::release_memory(mem, VirtualMemoryBangSize);
 972     }
 973   }
 974 
 975   // Setup osthread because the child thread may need it.
 976   thread->set_osthread(osthread);
 977 
 978   // Create the Solaris thread
 979   thread_t tid = 0;
 980   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
 981   int      status;
 982 
 983   // Mark that we don't have an lwp or thread id yet.
 984   // In case we attempt to set the priority before the thread starts.
 985   osthread->set_lwp_id(-1);
 986   osthread->set_thread_id(-1);
 987 
 988   status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
 989 
 990   char buf[64];
 991   if (status == 0) {
 992     log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
 993       (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 994   } else {
 995     log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
 996       os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 997     // Log some OS information which might explain why creating the thread failed.
 998     log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 999     LogStream st(Log(os, thread)::info());
1000     os::Posix::print_rlimit_info(&st);
1001     os::print_memory_info(&st);
1002   }
1003 
1004   if (status != 0) {
1005     thread->set_osthread(NULL);
1006     // Need to clean up stuff we've allocated so far
1007     delete osthread;
1008     return false;
1009   }
1010 
1011   Atomic::inc(&os::Solaris::_os_thread_count);
1012 
1013   // Store info on the Solaris thread into the OSThread
1014   osthread->set_thread_id(tid);
1015 
1016   // Remember that we created this thread so we can set priority on it
1017   osthread->set_vm_created();
1018 
1019   // Most thread types will set an explicit priority before starting the thread,
1020   // but for those that don't we need a valid value to read back in thread_native_entry.
1021   osthread->set_native_priority(NormPriority);
1022 
1023   // Initial thread state is INITIALIZED, not SUSPENDED
1024   osthread->set_state(INITIALIZED);
1025 
1026   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1027   return true;
1028 }
1029 
1030 debug_only(static bool signal_sets_initialized = false);
1031 static sigset_t unblocked_sigs, vm_sigs;
1032 
1033 void os::Solaris::signal_sets_init() {
1034   // Should also have an assertion stating we are still single-threaded.
1035   assert(!signal_sets_initialized, "Already initialized");
1036   // Fill in signals that are necessarily unblocked for all threads in
1037   // the VM. Currently, we unblock the following signals:
1038   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1039   //                         by -Xrs (=ReduceSignalUsage));
1040   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1041   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1042   // the dispositions or masks wrt these signals.
1043   // Programs embedding the VM that want to use the above signals for their
1044   // own purposes must, at this time, use the "-Xrs" option to prevent
1045   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1046   // (See bug 4345157, and other related bugs).
1047   // In reality, though, unblocking these signals is really a nop, since
1048   // these signals are not blocked by default.
1049   sigemptyset(&unblocked_sigs);
1050   sigaddset(&unblocked_sigs, SIGILL);
1051   sigaddset(&unblocked_sigs, SIGSEGV);
1052   sigaddset(&unblocked_sigs, SIGBUS);
1053   sigaddset(&unblocked_sigs, SIGFPE);
1054   sigaddset(&unblocked_sigs, ASYNC_SIGNAL);
1055 
1056   if (!ReduceSignalUsage) {
1057     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1058       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1059     }
1060     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1061       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1062     }
1063     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1064       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1065     }
1066   }
1067   // Fill in signals that are blocked by all but the VM thread.
1068   sigemptyset(&vm_sigs);
1069   if (!ReduceSignalUsage) {
1070     sigaddset(&vm_sigs, BREAK_SIGNAL);
1071   }
1072   debug_only(signal_sets_initialized = true);
1073 
1074   // For diagnostics only used in run_periodic_checks
1075   sigemptyset(&check_signal_done);
1076 }
1077 
1078 // These are signals that are unblocked while a thread is running Java.
1079 // (For some reason, they get blocked by default.)
1080 sigset_t* os::Solaris::unblocked_signals() {
1081   assert(signal_sets_initialized, "Not initialized");
1082   return &unblocked_sigs;
1083 }
1084 
1085 // These are the signals that are blocked while a (non-VM) thread is
1086 // running Java. Only the VM thread handles these signals.
1087 sigset_t* os::Solaris::vm_signals() {
1088   assert(signal_sets_initialized, "Not initialized");
1089   return &vm_sigs;
1090 }
1091 
1092 // CR 7190089: on Solaris, primordial thread's stack needs adjusting.
1093 // Without the adjustment, stack size is incorrect if stack is set to unlimited (ulimit -s unlimited).
1094 void os::Solaris::correct_stack_boundaries_for_primordial_thread(Thread* thr) {
1095   assert(is_primordial_thread(), "Call only for primordial thread");
1096 
1097   JavaThread* jt = (JavaThread *)thr;
1098   assert(jt != NULL, "Sanity check");
1099   size_t stack_size;
1100   address base = jt->stack_base();
1101   if (Arguments::created_by_java_launcher()) {
1102     // Use 2MB to allow for Solaris 7 64 bit mode.
1103     stack_size = JavaThread::stack_size_at_create() == 0
1104       ? 2048*K : JavaThread::stack_size_at_create();
1105 
1106     // There are rare cases when we may have already used more than
1107     // the basic stack size allotment before this method is invoked.
1108     // Attempt to allow for a normally sized java_stack.
1109     size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1110     stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1111   } else {
1112     // 6269555: If we were not created by a Java launcher, i.e. if we are
1113     // running embedded in a native application, treat the primordial thread
1114     // as much like a native attached thread as possible.  This means using
1115     // the current stack size from thr_stksegment(), unless it is too large
1116     // to reliably setup guard pages.  A reasonable max size is 8MB.
1117     size_t current_size = os::current_stack_size();
1118     // This should never happen, but just in case....
1119     if (current_size == 0) current_size = 2 * K * K;
1120     stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1121   }
1122   address bottom = align_up(base - stack_size, os::vm_page_size());;
1123   stack_size = (size_t)(base - bottom);
1124 
1125   assert(stack_size > 0, "Stack size calculation problem");
1126 
1127   if (stack_size > jt->stack_size()) {
1128 #ifndef PRODUCT
1129     struct rlimit limits;
1130     getrlimit(RLIMIT_STACK, &limits);
1131     size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1132     assert(size >= jt->stack_size(), "Stack size problem in main thread");
1133 #endif
1134     tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1135                   "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1136                   "See limit(1) to increase the stack size limit.",
1137                   stack_size / K, jt->stack_size() / K);
1138     vm_exit(1);
1139   }
1140   assert(jt->stack_size() >= stack_size,
1141          "Attempt to map more stack than was allocated");
1142   jt->set_stack_size(stack_size);
1143 
1144 }
1145 
1146 
1147 
1148 // Free Solaris resources related to the OSThread
1149 void os::free_thread(OSThread* osthread) {
1150   assert(osthread != NULL, "os::free_thread but osthread not set");
1151 
1152   // We are told to free resources of the argument thread,
1153   // but we can only really operate on the current thread.
1154   assert(Thread::current()->osthread() == osthread,
1155          "os::free_thread but not current thread");
1156 
1157   // Restore caller's signal mask
1158   sigset_t sigmask = osthread->caller_sigmask();
1159   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1160 
1161   delete osthread;
1162 }
1163 
1164 void os::pd_start_thread(Thread* thread) {
1165   int status = thr_continue(thread->osthread()->thread_id());
1166   assert_status(status == 0, status, "thr_continue failed");
1167 }
1168 
1169 
1170 intx os::current_thread_id() {
1171   return (intx)thr_self();
1172 }
1173 
1174 static pid_t _initial_pid = 0;
1175 
1176 int os::current_process_id() {
1177   return (int)(_initial_pid ? _initial_pid : getpid());
1178 }
1179 
1180 // gethrtime() should be monotonic according to the documentation,
1181 // but some virtualized platforms are known to break this guarantee.
1182 // getTimeNanos() must be guaranteed not to move backwards, so we
1183 // are forced to add a check here.
1184 inline hrtime_t getTimeNanos() {
1185   const hrtime_t now = gethrtime();
1186   const hrtime_t prev = max_hrtime;
1187   if (now <= prev) {
1188     return prev;   // same or retrograde time;
1189   }
1190   const hrtime_t obsv = Atomic::cmpxchg(now, &max_hrtime, prev);
1191   assert(obsv >= prev, "invariant");   // Monotonicity
1192   // If the CAS succeeded then we're done and return "now".
1193   // If the CAS failed and the observed value "obsv" is >= now then
1194   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1195   // some other thread raced this thread and installed a new value, in which case
1196   // we could either (a) retry the entire operation, (b) retry trying to install now
1197   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1198   // we might discard a higher "now" value in deference to a slightly lower but freshly
1199   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1200   // to (a) or (b) -- and greatly reduces coherence traffic.
1201   // We might also condition (c) on the magnitude of the delta between obsv and now.
1202   // Avoiding excessive CAS operations to hot RW locations is critical.
1203   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1204   return (prev == obsv) ? now : obsv;
1205 }
1206 
1207 // Time since start-up in seconds to a fine granularity.
1208 // Used by VMSelfDestructTimer and the MemProfiler.
1209 double os::elapsedTime() {
1210   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1211 }
1212 
1213 jlong os::elapsed_counter() {
1214   return (jlong)(getTimeNanos() - first_hrtime);
1215 }
1216 
1217 jlong os::elapsed_frequency() {
1218   return hrtime_hz;
1219 }
1220 
1221 // Return the real, user, and system times in seconds from an
1222 // arbitrary fixed point in the past.
1223 bool os::getTimesSecs(double* process_real_time,
1224                       double* process_user_time,
1225                       double* process_system_time) {
1226   struct tms ticks;
1227   clock_t real_ticks = times(&ticks);
1228 
1229   if (real_ticks == (clock_t) (-1)) {
1230     return false;
1231   } else {
1232     double ticks_per_second = (double) clock_tics_per_sec;
1233     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1234     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1235     // For consistency return the real time from getTimeNanos()
1236     // converted to seconds.
1237     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1238 
1239     return true;
1240   }
1241 }
1242 
1243 bool os::supports_vtime() { return true; }
1244 bool os::enable_vtime() { return false; }
1245 bool os::vtime_enabled() { return false; }
1246 
1247 double os::elapsedVTime() {
1248   return (double)gethrvtime() / (double)hrtime_hz;
1249 }
1250 
1251 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1252 jlong os::javaTimeMillis() {
1253   timeval t;
1254   if (gettimeofday(&t, NULL) == -1) {
1255     fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1256   }
1257   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1258 }
1259 
1260 // Must return seconds+nanos since Jan 1 1970. This must use the same
1261 // time source as javaTimeMillis and can't use get_nsec_fromepoch as
1262 // we need better than 1ms accuracy
1263 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1264   timeval t;
1265   if (gettimeofday(&t, NULL) == -1) {
1266     fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1267   }
1268   seconds = jlong(t.tv_sec);
1269   nanos = jlong(t.tv_usec) * 1000;
1270 }
1271 
1272 
1273 jlong os::javaTimeNanos() {
1274   return (jlong)getTimeNanos();
1275 }
1276 
1277 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1278   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1279   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1280   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1281   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1282 }
1283 
1284 char * os::local_time_string(char *buf, size_t buflen) {
1285   struct tm t;
1286   time_t long_time;
1287   time(&long_time);
1288   localtime_r(&long_time, &t);
1289   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1290                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1291                t.tm_hour, t.tm_min, t.tm_sec);
1292   return buf;
1293 }
1294 
1295 // Note: os::shutdown() might be called very early during initialization, or
1296 // called from signal handler. Before adding something to os::shutdown(), make
1297 // sure it is async-safe and can handle partially initialized VM.
1298 void os::shutdown() {
1299 
1300   // allow PerfMemory to attempt cleanup of any persistent resources
1301   perfMemory_exit();
1302 
1303   // needs to remove object in file system
1304   AttachListener::abort();
1305 
1306   // flush buffered output, finish log files
1307   ostream_abort();
1308 
1309   // Check for abort hook
1310   abort_hook_t abort_hook = Arguments::abort_hook();
1311   if (abort_hook != NULL) {
1312     abort_hook();
1313   }
1314 }
1315 
1316 // Note: os::abort() might be called very early during initialization, or
1317 // called from signal handler. Before adding something to os::abort(), make
1318 // sure it is async-safe and can handle partially initialized VM.
1319 void os::abort(bool dump_core, void* siginfo, const void* context) {
1320   os::shutdown();
1321   if (dump_core) {
1322 #ifndef PRODUCT
1323     fdStream out(defaultStream::output_fd());
1324     out.print_raw("Current thread is ");
1325     char buf[16];
1326     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1327     out.print_raw_cr(buf);
1328     out.print_raw_cr("Dumping core ...");
1329 #endif
1330     ::abort(); // dump core (for debugging)
1331   }
1332 
1333   ::exit(1);
1334 }
1335 
1336 // Die immediately, no exit hook, no abort hook, no cleanup.
1337 // Dump a core file, if possible, for debugging.
1338 void os::die() {
1339   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1340     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1341     // and don't take the time to generate a core file.
1342     os::signal_raise(SIGKILL);
1343   } else {
1344     ::abort();
1345   }
1346 }
1347 
1348 // DLL functions
1349 
1350 const char* os::dll_file_extension() { return ".so"; }
1351 
1352 // This must be hard coded because it's the system's temporary
1353 // directory not the java application's temp directory, ala java.io.tmpdir.
1354 const char* os::get_temp_directory() { return "/tmp"; }
1355 
1356 // check if addr is inside libjvm.so
1357 bool os::address_is_in_vm(address addr) {
1358   static address libjvm_base_addr;
1359   Dl_info dlinfo;
1360 
1361   if (libjvm_base_addr == NULL) {
1362     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1363       libjvm_base_addr = (address)dlinfo.dli_fbase;
1364     }
1365     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1366   }
1367 
1368   if (dladdr((void *)addr, &dlinfo) != 0) {
1369     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1370   }
1371 
1372   return false;
1373 }
1374 
1375 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1376 static dladdr1_func_type dladdr1_func = NULL;
1377 
1378 bool os::dll_address_to_function_name(address addr, char *buf,
1379                                       int buflen, int * offset,
1380                                       bool demangle) {
1381   // buf is not optional, but offset is optional
1382   assert(buf != NULL, "sanity check");
1383 
1384   Dl_info dlinfo;
1385 
1386   // dladdr1_func was initialized in os::init()
1387   if (dladdr1_func != NULL) {
1388     // yes, we have dladdr1
1389 
1390     // Support for dladdr1 is checked at runtime; it may be
1391     // available even if the vm is built on a machine that does
1392     // not have dladdr1 support.  Make sure there is a value for
1393     // RTLD_DL_SYMENT.
1394 #ifndef RTLD_DL_SYMENT
1395   #define RTLD_DL_SYMENT 1
1396 #endif
1397 #ifdef _LP64
1398     Elf64_Sym * info;
1399 #else
1400     Elf32_Sym * info;
1401 #endif
1402     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1403                      RTLD_DL_SYMENT) != 0) {
1404       // see if we have a matching symbol that covers our address
1405       if (dlinfo.dli_saddr != NULL &&
1406           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1407         if (dlinfo.dli_sname != NULL) {
1408           if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1409             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1410           }
1411           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1412           return true;
1413         }
1414       }
1415       // no matching symbol so try for just file info
1416       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1417         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1418                             buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1419           return true;
1420         }
1421       }
1422     }
1423     buf[0] = '\0';
1424     if (offset != NULL) *offset  = -1;
1425     return false;
1426   }
1427 
1428   // no, only dladdr is available
1429   if (dladdr((void *)addr, &dlinfo) != 0) {
1430     // see if we have a matching symbol
1431     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1432       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1433         jio_snprintf(buf, buflen, dlinfo.dli_sname);
1434       }
1435       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1436       return true;
1437     }
1438     // no matching symbol so try for just file info
1439     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1440       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1441                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1442         return true;
1443       }
1444     }
1445   }
1446   buf[0] = '\0';
1447   if (offset != NULL) *offset  = -1;
1448   return false;
1449 }
1450 
1451 bool os::dll_address_to_library_name(address addr, char* buf,
1452                                      int buflen, int* offset) {
1453   // buf is not optional, but offset is optional
1454   assert(buf != NULL, "sanity check");
1455 
1456   Dl_info dlinfo;
1457 
1458   if (dladdr((void*)addr, &dlinfo) != 0) {
1459     if (dlinfo.dli_fname != NULL) {
1460       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1461     }
1462     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1463       *offset = addr - (address)dlinfo.dli_fbase;
1464     }
1465     return true;
1466   }
1467 
1468   buf[0] = '\0';
1469   if (offset) *offset = -1;
1470   return false;
1471 }
1472 
1473 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1474   Dl_info dli;
1475   // Sanity check?
1476   if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1477       dli.dli_fname == NULL) {
1478     return 1;
1479   }
1480 
1481   void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1482   if (handle == NULL) {
1483     return 1;
1484   }
1485 
1486   Link_map *map;
1487   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1488   if (map == NULL) {
1489     dlclose(handle);
1490     return 1;
1491   }
1492 
1493   while (map->l_prev != NULL) {
1494     map = map->l_prev;
1495   }
1496 
1497   while (map != NULL) {
1498     // Iterate through all map entries and call callback with fields of interest
1499     if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1500       dlclose(handle);
1501       return 1;
1502     }
1503     map = map->l_next;
1504   }
1505 
1506   dlclose(handle);
1507   return 0;
1508 }
1509 
1510 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1511   outputStream * out = (outputStream *) param;
1512   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1513   return 0;
1514 }
1515 
1516 void os::print_dll_info(outputStream * st) {
1517   st->print_cr("Dynamic libraries:"); st->flush();
1518   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1519     st->print_cr("Error: Cannot print dynamic libraries.");
1520   }
1521 }
1522 
1523 static void change_endianness(Elf32_Half& val) {
1524   unsigned char *ptr = (unsigned char *)&val;
1525   unsigned char swp = ptr[0];
1526   ptr[0] = ptr[1];
1527   ptr[1] = swp;
1528 }
1529 
1530 // Loads .dll/.so and
1531 // in case of error it checks if .dll/.so was built for the
1532 // same architecture as Hotspot is running on
1533 
1534 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1535   log_info(os)("attempting shared library load of %s", filename);
1536 
1537   void * result= ::dlopen(filename, RTLD_LAZY);
1538   if (result != NULL) {
1539     // Successful loading
1540     Events::log(NULL, "Loaded shared library %s", filename);
1541     log_info(os)("shared library load of %s was successful", filename);
1542     return result;
1543   }
1544 
1545   Elf32_Ehdr elf_head;
1546   const char* error_report = ::dlerror();
1547   if (error_report == NULL) {
1548     error_report = "dlerror returned no error description";
1549   }
1550   if (ebuf != NULL && ebuflen > 0) {
1551     ::strncpy(ebuf, error_report, ebuflen-1);
1552     ebuf[ebuflen-1]='\0';
1553   }
1554 
1555   Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1556   log_info(os)("shared library load of %s failed, %s", filename, error_report);
1557 
1558   int diag_msg_max_length=ebuflen-strlen(ebuf);
1559   char* diag_msg_buf=ebuf+strlen(ebuf);
1560 
1561   if (diag_msg_max_length==0) {
1562     // No more space in ebuf for additional diagnostics message
1563     return NULL;
1564   }
1565 
1566 
1567   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1568 
1569   if (file_descriptor < 0) {
1570     // Can't open library, report dlerror() message
1571     return NULL;
1572   }
1573 
1574   bool failed_to_read_elf_head=
1575     (sizeof(elf_head)!=
1576      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1577 
1578   ::close(file_descriptor);
1579   if (failed_to_read_elf_head) {
1580     // file i/o error - report dlerror() msg
1581     return NULL;
1582   }
1583 
1584   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1585     // handle invalid/out of range endianness values
1586     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1587       return NULL;
1588     }
1589     change_endianness(elf_head.e_machine);
1590   }
1591 
1592   typedef struct {
1593     Elf32_Half    code;         // Actual value as defined in elf.h
1594     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1595     unsigned char elf_class;    // 32 or 64 bit
1596     unsigned char endianess;    // MSB or LSB
1597     char*         name;         // String representation
1598   } arch_t;
1599 
1600 #ifndef EM_AARCH64
1601   #define EM_AARCH64    183               /* ARM AARCH64 */
1602 #endif
1603 
1604   static const arch_t arch_array[]={
1605     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1606     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1607     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1608     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1609     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1610     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1611     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1612     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1613     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1614     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1615     // we only support 64 bit z architecture
1616     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1617     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"}
1618   };
1619 
1620 #if  (defined IA32)
1621   static  Elf32_Half running_arch_code=EM_386;
1622 #elif   (defined AMD64)
1623   static  Elf32_Half running_arch_code=EM_X86_64;
1624 #elif  (defined IA64)
1625   static  Elf32_Half running_arch_code=EM_IA_64;
1626 #elif  (defined __sparc) && (defined _LP64)
1627   static  Elf32_Half running_arch_code=EM_SPARCV9;
1628 #elif  (defined __sparc) && (!defined _LP64)
1629   static  Elf32_Half running_arch_code=EM_SPARC;
1630 #elif  (defined __powerpc64__)
1631   static  Elf32_Half running_arch_code=EM_PPC64;
1632 #elif  (defined __powerpc__)
1633   static  Elf32_Half running_arch_code=EM_PPC;
1634 #elif (defined ARM)
1635   static  Elf32_Half running_arch_code=EM_ARM;
1636 #else
1637   #error Method os::dll_load requires that one of following is defined:\
1638        IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1639 #endif
1640 
1641   // Identify compatibility class for VM's architecture and library's architecture
1642   // Obtain string descriptions for architectures
1643 
1644   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1645   int running_arch_index=-1;
1646 
1647   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1648     if (running_arch_code == arch_array[i].code) {
1649       running_arch_index    = i;
1650     }
1651     if (lib_arch.code == arch_array[i].code) {
1652       lib_arch.compat_class = arch_array[i].compat_class;
1653       lib_arch.name         = arch_array[i].name;
1654     }
1655   }
1656 
1657   assert(running_arch_index != -1,
1658          "Didn't find running architecture code (running_arch_code) in arch_array");
1659   if (running_arch_index == -1) {
1660     // Even though running architecture detection failed
1661     // we may still continue with reporting dlerror() message
1662     return NULL;
1663   }
1664 
1665   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1666     if (lib_arch.name != NULL) {
1667       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1668                  " (Possible cause: can't load %s .so on a %s platform)",
1669                  lib_arch.name, arch_array[running_arch_index].name);
1670     } else {
1671       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1672                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1673                  lib_arch.code, arch_array[running_arch_index].name);
1674     }
1675     return NULL;
1676   }
1677 
1678   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1679     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1680     return NULL;
1681   }
1682 
1683   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1684   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1685     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1686     return NULL;
1687   }
1688 
1689   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1690     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1691                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1692                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1693     return NULL;
1694   }
1695 
1696   return NULL;
1697 }
1698 
1699 void* os::dll_lookup(void* handle, const char* name) {
1700   return dlsym(handle, name);
1701 }
1702 
1703 void* os::get_default_process_handle() {
1704   return (void*)::dlopen(NULL, RTLD_LAZY);
1705 }
1706 
1707 static inline time_t get_mtime(const char* filename) {
1708   struct stat st;
1709   int ret = os::stat(filename, &st);
1710   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
1711   return st.st_mtime;
1712 }
1713 
1714 int os::compare_file_modified_times(const char* file1, const char* file2) {
1715   time_t t1 = get_mtime(file1);
1716   time_t t2 = get_mtime(file2);
1717   return t1 - t2;
1718 }
1719 
1720 static bool _print_ascii_file(const char* filename, outputStream* st) {
1721   int fd = ::open(filename, O_RDONLY);
1722   if (fd == -1) {
1723     return false;
1724   }
1725 
1726   char buf[32];
1727   int bytes;
1728   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1729     st->print_raw(buf, bytes);
1730   }
1731 
1732   ::close(fd);
1733 
1734   return true;
1735 }
1736 
1737 void os::print_os_info_brief(outputStream* st) {
1738   os::Solaris::print_distro_info(st);
1739 
1740   os::Posix::print_uname_info(st);
1741 
1742   os::Solaris::print_libversion_info(st);
1743 }
1744 
1745 void os::print_os_info(outputStream* st) {
1746   st->print("OS:");
1747 
1748   os::Solaris::print_distro_info(st);
1749 
1750   os::Posix::print_uname_info(st);
1751 
1752   os::Solaris::print_libversion_info(st);
1753 
1754   os::Posix::print_rlimit_info(st);
1755 
1756   os::Posix::print_load_average(st);
1757 }
1758 
1759 void os::Solaris::print_distro_info(outputStream* st) {
1760   if (!_print_ascii_file("/etc/release", st)) {
1761     st->print("Solaris");
1762   }
1763   st->cr();
1764 }
1765 
1766 void os::get_summary_os_info(char* buf, size_t buflen) {
1767   strncpy(buf, "Solaris", buflen);  // default to plain solaris
1768   FILE* fp = fopen("/etc/release", "r");
1769   if (fp != NULL) {
1770     char tmp[256];
1771     // Only get the first line and chop out everything but the os name.
1772     if (fgets(tmp, sizeof(tmp), fp)) {
1773       char* ptr = tmp;
1774       // skip past whitespace characters
1775       while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1776       if (*ptr != '\0') {
1777         char* nl = strchr(ptr, '\n');
1778         if (nl != NULL) *nl = '\0';
1779         strncpy(buf, ptr, buflen);
1780       }
1781     }
1782     fclose(fp);
1783   }
1784 }
1785 
1786 void os::Solaris::print_libversion_info(outputStream* st) {
1787   st->print("  (T2 libthread)");
1788   st->cr();
1789 }
1790 
1791 static bool check_addr0(outputStream* st) {
1792   jboolean status = false;
1793   const int read_chunk = 200;
1794   int ret = 0;
1795   int nmap = 0;
1796   int fd = ::open("/proc/self/map",O_RDONLY);
1797   if (fd >= 0) {
1798     prmap_t *p = NULL;
1799     char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1800     if (NULL == mbuff) {
1801       ::close(fd);
1802       return status;
1803     }
1804     while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1805       //check if read() has not read partial data
1806       if( 0 != ret % sizeof(prmap_t)){
1807         break;
1808       }
1809       nmap = ret / sizeof(prmap_t);
1810       p = (prmap_t *)mbuff;
1811       for(int i = 0; i < nmap; i++){
1812         if (p->pr_vaddr == 0x0) {
1813           st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1814           st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1815           st->print("Access: ");
1816           st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1817           st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1818           st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1819           st->cr();
1820           status = true;
1821         }
1822         p++;
1823       }
1824     }
1825     free(mbuff);
1826     ::close(fd);
1827   }
1828   return status;
1829 }
1830 
1831 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1832   // Get MHz with system call. We don't seem to already have this.
1833   processor_info_t stats;
1834   processorid_t id = getcpuid();
1835   int clock = 0;
1836   if (processor_info(id, &stats) != -1) {
1837     clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1838   }
1839 #ifdef AMD64
1840   snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1841 #else
1842   // must be sparc
1843   snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1844 #endif
1845 }
1846 
1847 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1848   // Nothing to do for now.
1849 }
1850 
1851 void os::print_memory_info(outputStream* st) {
1852   st->print("Memory:");
1853   st->print(" %dk page", os::vm_page_size()>>10);
1854   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1855   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1856   st->cr();
1857   (void) check_addr0(st);
1858 }
1859 
1860 // Moved from whole group, because we need them here for diagnostic
1861 // prints.
1862 static int Maxsignum = 0;
1863 static int *ourSigFlags = NULL;
1864 
1865 int os::Solaris::get_our_sigflags(int sig) {
1866   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1867   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1868   return ourSigFlags[sig];
1869 }
1870 
1871 void os::Solaris::set_our_sigflags(int sig, int flags) {
1872   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1873   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1874   ourSigFlags[sig] = flags;
1875 }
1876 
1877 
1878 static const char* get_signal_handler_name(address handler,
1879                                            char* buf, int buflen) {
1880   int offset;
1881   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1882   if (found) {
1883     // skip directory names
1884     const char *p1, *p2;
1885     p1 = buf;
1886     size_t len = strlen(os::file_separator());
1887     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1888     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1889   } else {
1890     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1891   }
1892   return buf;
1893 }
1894 
1895 static void print_signal_handler(outputStream* st, int sig,
1896                                  char* buf, size_t buflen) {
1897   struct sigaction sa;
1898 
1899   sigaction(sig, NULL, &sa);
1900 
1901   st->print("%s: ", os::exception_name(sig, buf, buflen));
1902 
1903   address handler = (sa.sa_flags & SA_SIGINFO)
1904                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1905                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
1906 
1907   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1908     st->print("SIG_DFL");
1909   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1910     st->print("SIG_IGN");
1911   } else {
1912     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1913   }
1914 
1915   st->print(", sa_mask[0]=");
1916   os::Posix::print_signal_set_short(st, &sa.sa_mask);
1917 
1918   address rh = VMError::get_resetted_sighandler(sig);
1919   // May be, handler was resetted by VMError?
1920   if (rh != NULL) {
1921     handler = rh;
1922     sa.sa_flags = VMError::get_resetted_sigflags(sig);
1923   }
1924 
1925   st->print(", sa_flags=");
1926   os::Posix::print_sa_flags(st, sa.sa_flags);
1927 
1928   // Check: is it our handler?
1929   if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1930     // It is our signal handler
1931     // check for flags
1932     if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1933       st->print(
1934                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1935                 os::Solaris::get_our_sigflags(sig));
1936     }
1937   }
1938   st->cr();
1939 }
1940 
1941 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1942   st->print_cr("Signal Handlers:");
1943   print_signal_handler(st, SIGSEGV, buf, buflen);
1944   print_signal_handler(st, SIGBUS , buf, buflen);
1945   print_signal_handler(st, SIGFPE , buf, buflen);
1946   print_signal_handler(st, SIGPIPE, buf, buflen);
1947   print_signal_handler(st, SIGXFSZ, buf, buflen);
1948   print_signal_handler(st, SIGILL , buf, buflen);
1949   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
1950   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1951   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
1952   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1953   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
1954 }
1955 
1956 static char saved_jvm_path[MAXPATHLEN] = { 0 };
1957 
1958 // Find the full path to the current module, libjvm.so
1959 void os::jvm_path(char *buf, jint buflen) {
1960   // Error checking.
1961   if (buflen < MAXPATHLEN) {
1962     assert(false, "must use a large-enough buffer");
1963     buf[0] = '\0';
1964     return;
1965   }
1966   // Lazy resolve the path to current module.
1967   if (saved_jvm_path[0] != 0) {
1968     strcpy(buf, saved_jvm_path);
1969     return;
1970   }
1971 
1972   Dl_info dlinfo;
1973   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1974   assert(ret != 0, "cannot locate libjvm");
1975   if (ret != 0 && dlinfo.dli_fname != NULL) {
1976     if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
1977       return;
1978     }
1979   } else {
1980     buf[0] = '\0';
1981     return;
1982   }
1983 
1984   if (Arguments::sun_java_launcher_is_altjvm()) {
1985     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1986     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
1987     // If "/jre/lib/" appears at the right place in the string, then
1988     // assume we are installed in a JDK and we're done.  Otherwise, check
1989     // for a JAVA_HOME environment variable and fix up the path so it
1990     // looks like libjvm.so is installed there (append a fake suffix
1991     // hotspot/libjvm.so).
1992     const char *p = buf + strlen(buf) - 1;
1993     for (int count = 0; p > buf && count < 5; ++count) {
1994       for (--p; p > buf && *p != '/'; --p)
1995         /* empty */ ;
1996     }
1997 
1998     if (strncmp(p, "/jre/lib/", 9) != 0) {
1999       // Look for JAVA_HOME in the environment.
2000       char* java_home_var = ::getenv("JAVA_HOME");
2001       if (java_home_var != NULL && java_home_var[0] != 0) {
2002         char* jrelib_p;
2003         int   len;
2004 
2005         // Check the current module name "libjvm.so".
2006         p = strrchr(buf, '/');
2007         assert(strstr(p, "/libjvm") == p, "invalid library name");
2008 
2009         if (os::Posix::realpath(java_home_var, buf, buflen) == NULL) {
2010           return;
2011         }
2012         // determine if this is a legacy image or modules image
2013         // modules image doesn't have "jre" subdirectory
2014         len = strlen(buf);
2015         assert(len < buflen, "Ran out of buffer space");
2016         jrelib_p = buf + len;
2017         snprintf(jrelib_p, buflen-len, "/jre/lib");
2018         if (0 != access(buf, F_OK)) {
2019           snprintf(jrelib_p, buflen-len, "/lib");
2020         }
2021 
2022         if (0 == access(buf, F_OK)) {
2023           // Use current module name "libjvm.so"
2024           len = strlen(buf);
2025           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2026         } else {
2027           // Go back to path of .so
2028           if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
2029             return;
2030           }
2031         }
2032       }
2033     }
2034   }
2035 
2036   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2037   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2038 }
2039 
2040 
2041 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2042   // no prefix required, not even "_"
2043 }
2044 
2045 
2046 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2047   // no suffix required
2048 }
2049 
2050 // sun.misc.Signal
2051 
2052 extern "C" {
2053   static void UserHandler(int sig, void *siginfo, void *context) {
2054     // Ctrl-C is pressed during error reporting, likely because the error
2055     // handler fails to abort. Let VM die immediately.
2056     if (sig == SIGINT && VMError::is_error_reported()) {
2057       os::die();
2058     }
2059 
2060     os::signal_notify(sig);
2061     // We do not need to reinstate the signal handler each time...
2062   }
2063 }
2064 
2065 void* os::user_handler() {
2066   return CAST_FROM_FN_PTR(void*, UserHandler);
2067 }
2068 
2069 extern "C" {
2070   typedef void (*sa_handler_t)(int);
2071   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2072 }
2073 
2074 void* os::signal(int signal_number, void* handler) {
2075   struct sigaction sigAct, oldSigAct;
2076   sigfillset(&(sigAct.sa_mask));
2077   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2078   sigAct.sa_flags |= SA_SIGINFO;
2079   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2080 
2081   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2082     // -1 means registration failed
2083     return (void *)-1;
2084   }
2085 
2086   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2087 }
2088 
2089 void os::signal_raise(int signal_number) {
2090   raise(signal_number);
2091 }
2092 
2093 // The following code is moved from os.cpp for making this
2094 // code platform specific, which it is by its very nature.
2095 
2096 // a counter for each possible signal value
2097 static int Sigexit = 0;
2098 static jint *pending_signals = NULL;
2099 static int *preinstalled_sigs = NULL;
2100 static struct sigaction *chainedsigactions = NULL;
2101 static Semaphore* sig_sem = NULL;
2102 
2103 int os::sigexitnum_pd() {
2104   assert(Sigexit > 0, "signal memory not yet initialized");
2105   return Sigexit;
2106 }
2107 
2108 void os::Solaris::init_signal_mem() {
2109   // Initialize signal structures
2110   Maxsignum = SIGRTMAX;
2111   Sigexit = Maxsignum+1;
2112   assert(Maxsignum >0, "Unable to obtain max signal number");
2113 
2114   // Initialize signal structures
2115   // pending_signals has one int per signal
2116   // The additional signal is for SIGEXIT - exit signal to signal_thread
2117   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2118   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2119 
2120   if (UseSignalChaining) {
2121     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2122                                                    * (Maxsignum + 1), mtInternal);
2123     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2124     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2125     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2126   }
2127   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2128   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2129 }
2130 
2131 static void jdk_misc_signal_init() {
2132   // Initialize signal semaphore
2133   sig_sem = new Semaphore();
2134 }
2135 
2136 void os::signal_notify(int sig) {
2137   if (sig_sem != NULL) {
2138     Atomic::inc(&pending_signals[sig]);
2139     sig_sem->signal();
2140   } else {
2141     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2142     // initialization isn't called.
2143     assert(ReduceSignalUsage, "signal semaphore should be created");
2144   }
2145 }
2146 
2147 static int check_pending_signals() {
2148   int ret;
2149   while (true) {
2150     for (int i = 0; i < Sigexit + 1; i++) {
2151       jint n = pending_signals[i];
2152       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2153         return i;
2154       }
2155     }
2156     JavaThread *thread = JavaThread::current();
2157     ThreadBlockInVM tbivm(thread);
2158 
2159     bool threadIsSuspended;
2160     do {
2161       thread->set_suspend_equivalent();
2162       sig_sem->wait();
2163 
2164       // were we externally suspended while we were waiting?
2165       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2166       if (threadIsSuspended) {
2167         // The semaphore has been incremented, but while we were waiting
2168         // another thread suspended us. We don't want to continue running
2169         // while suspended because that would surprise the thread that
2170         // suspended us.
2171         sig_sem->signal();
2172 
2173         thread->java_suspend_self();
2174       }
2175     } while (threadIsSuspended);
2176   }
2177 }
2178 
2179 int os::signal_wait() {
2180   return check_pending_signals();
2181 }
2182 
2183 ////////////////////////////////////////////////////////////////////////////////
2184 // Virtual Memory
2185 
2186 static int page_size = -1;
2187 
2188 int os::vm_page_size() {
2189   assert(page_size != -1, "must call os::init");
2190   return page_size;
2191 }
2192 
2193 // Solaris allocates memory by pages.
2194 int os::vm_allocation_granularity() {
2195   assert(page_size != -1, "must call os::init");
2196   return page_size;
2197 }
2198 
2199 static bool recoverable_mmap_error(int err) {
2200   // See if the error is one we can let the caller handle. This
2201   // list of errno values comes from the Solaris mmap(2) man page.
2202   switch (err) {
2203   case EBADF:
2204   case EINVAL:
2205   case ENOTSUP:
2206     // let the caller deal with these errors
2207     return true;
2208 
2209   default:
2210     // Any remaining errors on this OS can cause our reserved mapping
2211     // to be lost. That can cause confusion where different data
2212     // structures think they have the same memory mapped. The worst
2213     // scenario is if both the VM and a library think they have the
2214     // same memory mapped.
2215     return false;
2216   }
2217 }
2218 
2219 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2220                                     int err) {
2221   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2222           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2223           os::strerror(err), err);
2224 }
2225 
2226 static void warn_fail_commit_memory(char* addr, size_t bytes,
2227                                     size_t alignment_hint, bool exec,
2228                                     int err) {
2229   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2230           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2231           alignment_hint, exec, os::strerror(err), err);
2232 }
2233 
2234 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2235   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2236   size_t size = bytes;
2237   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2238   if (res != NULL) {
2239     if (UseNUMAInterleaving) {
2240       numa_make_global(addr, bytes);
2241     }
2242     return 0;
2243   }
2244 
2245   int err = errno;  // save errno from mmap() call in mmap_chunk()
2246 
2247   if (!recoverable_mmap_error(err)) {
2248     warn_fail_commit_memory(addr, bytes, exec, err);
2249     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2250   }
2251 
2252   return err;
2253 }
2254 
2255 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2256   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2257 }
2258 
2259 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2260                                   const char* mesg) {
2261   assert(mesg != NULL, "mesg must be specified");
2262   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2263   if (err != 0) {
2264     // the caller wants all commit errors to exit with the specified mesg:
2265     warn_fail_commit_memory(addr, bytes, exec, err);
2266     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2267   }
2268 }
2269 
2270 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2271   assert(is_aligned(alignment, (size_t) vm_page_size()),
2272          SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2273          alignment, (size_t) vm_page_size());
2274 
2275   for (int i = 0; _page_sizes[i] != 0; i++) {
2276     if (is_aligned(alignment, _page_sizes[i])) {
2277       return _page_sizes[i];
2278     }
2279   }
2280 
2281   return (size_t) vm_page_size();
2282 }
2283 
2284 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2285                                     size_t alignment_hint, bool exec) {
2286   int err = Solaris::commit_memory_impl(addr, bytes, exec);
2287   if (err == 0 && UseLargePages && alignment_hint > 0) {
2288     assert(is_aligned(bytes, alignment_hint),
2289            SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2290 
2291     // The syscall memcntl requires an exact page size (see man memcntl for details).
2292     size_t page_size = page_size_for_alignment(alignment_hint);
2293     if (page_size > (size_t) vm_page_size()) {
2294       (void)Solaris::setup_large_pages(addr, bytes, page_size);
2295     }
2296   }
2297   return err;
2298 }
2299 
2300 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2301                           bool exec) {
2302   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2303 }
2304 
2305 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2306                                   size_t alignment_hint, bool exec,
2307                                   const char* mesg) {
2308   assert(mesg != NULL, "mesg must be specified");
2309   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2310   if (err != 0) {
2311     // the caller wants all commit errors to exit with the specified mesg:
2312     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2313     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2314   }
2315 }
2316 
2317 // Uncommit the pages in a specified region.
2318 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2319   if (madvise(addr, bytes, MADV_FREE) < 0) {
2320     debug_only(warning("MADV_FREE failed."));
2321     return;
2322   }
2323 }
2324 
2325 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2326   return os::commit_memory(addr, size, !ExecMem);
2327 }
2328 
2329 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2330   return os::uncommit_memory(addr, size);
2331 }
2332 
2333 // Change the page size in a given range.
2334 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2335   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2336   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2337   if (UseLargePages) {
2338     size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2339     if (page_size > (size_t) vm_page_size()) {
2340       Solaris::setup_large_pages(addr, bytes, page_size);
2341     }
2342   }
2343 }
2344 
2345 // Tell the OS to make the range local to the first-touching LWP
2346 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2347   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2348   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2349     debug_only(warning("MADV_ACCESS_LWP failed."));
2350   }
2351 }
2352 
2353 // Tell the OS that this range would be accessed from different LWPs.
2354 void os::numa_make_global(char *addr, size_t bytes) {
2355   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2356   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2357     debug_only(warning("MADV_ACCESS_MANY failed."));
2358   }
2359 }
2360 
2361 // Get the number of the locality groups.
2362 size_t os::numa_get_groups_num() {
2363   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2364   return n != -1 ? n : 1;
2365 }
2366 
2367 // Get a list of leaf locality groups. A leaf lgroup is group that
2368 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2369 // board. An LWP is assigned to one of these groups upon creation.
2370 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2371   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2372     ids[0] = 0;
2373     return 1;
2374   }
2375   int result_size = 0, top = 1, bottom = 0, cur = 0;
2376   for (int k = 0; k < size; k++) {
2377     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2378                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2379     if (r == -1) {
2380       ids[0] = 0;
2381       return 1;
2382     }
2383     if (!r) {
2384       // That's a leaf node.
2385       assert(bottom <= cur, "Sanity check");
2386       // Check if the node has memory
2387       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2388                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2389         ids[bottom++] = ids[cur];
2390       }
2391     }
2392     top += r;
2393     cur++;
2394   }
2395   if (bottom == 0) {
2396     // Handle a situation, when the OS reports no memory available.
2397     // Assume UMA architecture.
2398     ids[0] = 0;
2399     return 1;
2400   }
2401   return bottom;
2402 }
2403 
2404 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2405 bool os::numa_topology_changed() {
2406   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2407   if (is_stale != -1 && is_stale) {
2408     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2409     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2410     assert(c != 0, "Failure to initialize LGRP API");
2411     Solaris::set_lgrp_cookie(c);
2412     return true;
2413   }
2414   return false;
2415 }
2416 
2417 // Get the group id of the current LWP.
2418 int os::numa_get_group_id() {
2419   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2420   if (lgrp_id == -1) {
2421     return 0;
2422   }
2423   const int size = os::numa_get_groups_num();
2424   int *ids = (int*)alloca(size * sizeof(int));
2425 
2426   // Get the ids of all lgroups with memory; r is the count.
2427   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2428                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2429   if (r <= 0) {
2430     return 0;
2431   }
2432   return ids[os::random() % r];
2433 }
2434 
2435 // Request information about the page.
2436 bool os::get_page_info(char *start, page_info* info) {
2437   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2438   uint64_t addr = (uintptr_t)start;
2439   uint64_t outdata[2];
2440   uint_t validity = 0;
2441 
2442   if (meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2443     return false;
2444   }
2445 
2446   info->size = 0;
2447   info->lgrp_id = -1;
2448 
2449   if ((validity & 1) != 0) {
2450     if ((validity & 2) != 0) {
2451       info->lgrp_id = outdata[0];
2452     }
2453     if ((validity & 4) != 0) {
2454       info->size = outdata[1];
2455     }
2456     return true;
2457   }
2458   return false;
2459 }
2460 
2461 // Scan the pages from start to end until a page different than
2462 // the one described in the info parameter is encountered.
2463 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2464                      page_info* page_found) {
2465   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2466   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2467   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2468   uint_t validity[MAX_MEMINFO_CNT];
2469 
2470   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2471   uint64_t p = (uint64_t)start;
2472   while (p < (uint64_t)end) {
2473     addrs[0] = p;
2474     size_t addrs_count = 1;
2475     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2476       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2477       addrs_count++;
2478     }
2479 
2480     if (meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2481       return NULL;
2482     }
2483 
2484     size_t i = 0;
2485     for (; i < addrs_count; i++) {
2486       if ((validity[i] & 1) != 0) {
2487         if ((validity[i] & 4) != 0) {
2488           if (outdata[types * i + 1] != page_expected->size) {
2489             break;
2490           }
2491         } else if (page_expected->size != 0) {
2492           break;
2493         }
2494 
2495         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2496           if (outdata[types * i] != page_expected->lgrp_id) {
2497             break;
2498           }
2499         }
2500       } else {
2501         return NULL;
2502       }
2503     }
2504 
2505     if (i < addrs_count) {
2506       if ((validity[i] & 2) != 0) {
2507         page_found->lgrp_id = outdata[types * i];
2508       } else {
2509         page_found->lgrp_id = -1;
2510       }
2511       if ((validity[i] & 4) != 0) {
2512         page_found->size = outdata[types * i + 1];
2513       } else {
2514         page_found->size = 0;
2515       }
2516       return (char*)addrs[i];
2517     }
2518 
2519     p = addrs[addrs_count - 1] + page_size;
2520   }
2521   return end;
2522 }
2523 
2524 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2525   size_t size = bytes;
2526   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2527   // uncommitted page. Otherwise, the read/write might succeed if we
2528   // have enough swap space to back the physical page.
2529   return
2530     NULL != Solaris::mmap_chunk(addr, size,
2531                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2532                                 PROT_NONE);
2533 }
2534 
2535 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2536   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2537 
2538   if (b == MAP_FAILED) {
2539     return NULL;
2540   }
2541   return b;
2542 }
2543 
2544 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2545                              size_t alignment_hint, bool fixed) {
2546   char* addr = requested_addr;
2547   int flags = MAP_PRIVATE | MAP_NORESERVE;
2548 
2549   assert(!(fixed && (alignment_hint > 0)),
2550          "alignment hint meaningless with fixed mmap");
2551 
2552   if (fixed) {
2553     flags |= MAP_FIXED;
2554   } else if (alignment_hint > (size_t) vm_page_size()) {
2555     flags |= MAP_ALIGN;
2556     addr = (char*) alignment_hint;
2557   }
2558 
2559   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2560   // uncommitted page. Otherwise, the read/write might succeed if we
2561   // have enough swap space to back the physical page.
2562   return mmap_chunk(addr, bytes, flags, PROT_NONE);
2563 }
2564 
2565 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2566                             size_t alignment_hint) {
2567   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2568                                   (requested_addr != NULL));
2569 
2570   guarantee(requested_addr == NULL || requested_addr == addr,
2571             "OS failed to return requested mmap address.");
2572   return addr;
2573 }
2574 
2575 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2576   assert(file_desc >= 0, "file_desc is not valid");
2577   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
2578   if (result != NULL) {
2579     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2580       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2581     }
2582   }
2583   return result;
2584 }
2585 
2586 // Reserve memory at an arbitrary address, only if that area is
2587 // available (and not reserved for something else).
2588 
2589 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2590   // Assert only that the size is a multiple of the page size, since
2591   // that's all that mmap requires, and since that's all we really know
2592   // about at this low abstraction level.  If we need higher alignment,
2593   // we can either pass an alignment to this method or verify alignment
2594   // in one of the methods further up the call chain.  See bug 5044738.
2595   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2596 
2597   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2598   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2599 
2600   volatile int err = errno;
2601   if (addr == requested_addr) {
2602     return addr;
2603   }
2604 
2605   if (addr != NULL) {
2606     pd_unmap_memory(addr, bytes);
2607   }
2608 
2609   return NULL;
2610 }
2611 
2612 bool os::pd_release_memory(char* addr, size_t bytes) {
2613   size_t size = bytes;
2614   return munmap(addr, size) == 0;
2615 }
2616 
2617 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2618   assert(addr == (char*)align_down((uintptr_t)addr, os::vm_page_size()),
2619          "addr must be page aligned");
2620   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(addr), p2i(addr+bytes), prot);
2621   int retVal = mprotect(addr, bytes, prot);
2622   return retVal == 0;
2623 }
2624 
2625 // Protect memory (Used to pass readonly pages through
2626 // JNI GetArray<type>Elements with empty arrays.)
2627 // Also, used for serialization page and for compressed oops null pointer
2628 // checking.
2629 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2630                         bool is_committed) {
2631   unsigned int p = 0;
2632   switch (prot) {
2633   case MEM_PROT_NONE: p = PROT_NONE; break;
2634   case MEM_PROT_READ: p = PROT_READ; break;
2635   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2636   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2637   default:
2638     ShouldNotReachHere();
2639   }
2640   // is_committed is unused.
2641   return solaris_mprotect(addr, bytes, p);
2642 }
2643 
2644 // guard_memory and unguard_memory only happens within stack guard pages.
2645 // Since ISM pertains only to the heap, guard and unguard memory should not
2646 /// happen with an ISM region.
2647 bool os::guard_memory(char* addr, size_t bytes) {
2648   return solaris_mprotect(addr, bytes, PROT_NONE);
2649 }
2650 
2651 bool os::unguard_memory(char* addr, size_t bytes) {
2652   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2653 }
2654 
2655 // Large page support
2656 static size_t _large_page_size = 0;
2657 
2658 // Insertion sort for small arrays (descending order).
2659 static void insertion_sort_descending(size_t* array, int len) {
2660   for (int i = 0; i < len; i++) {
2661     size_t val = array[i];
2662     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2663       size_t tmp = array[key];
2664       array[key] = array[key - 1];
2665       array[key - 1] = tmp;
2666     }
2667   }
2668 }
2669 
2670 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2671   const unsigned int usable_count = VM_Version::page_size_count();
2672   if (usable_count == 1) {
2673     return false;
2674   }
2675 
2676   // Find the right getpagesizes interface.  When solaris 11 is the minimum
2677   // build platform, getpagesizes() (without the '2') can be called directly.
2678   typedef int (*gps_t)(size_t[], int);
2679   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2680   if (gps_func == NULL) {
2681     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2682     if (gps_func == NULL) {
2683       if (warn) {
2684         warning("MPSS is not supported by the operating system.");
2685       }
2686       return false;
2687     }
2688   }
2689 
2690   // Fill the array of page sizes.
2691   int n = (*gps_func)(_page_sizes, page_sizes_max);
2692   assert(n > 0, "Solaris bug?");
2693 
2694   if (n == page_sizes_max) {
2695     // Add a sentinel value (necessary only if the array was completely filled
2696     // since it is static (zeroed at initialization)).
2697     _page_sizes[--n] = 0;
2698     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2699   }
2700   assert(_page_sizes[n] == 0, "missing sentinel");
2701   trace_page_sizes("available page sizes", _page_sizes, n);
2702 
2703   if (n == 1) return false;     // Only one page size available.
2704 
2705   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2706   // select up to usable_count elements.  First sort the array, find the first
2707   // acceptable value, then copy the usable sizes to the top of the array and
2708   // trim the rest.  Make sure to include the default page size :-).
2709   //
2710   // A better policy could get rid of the 4M limit by taking the sizes of the
2711   // important VM memory regions (java heap and possibly the code cache) into
2712   // account.
2713   insertion_sort_descending(_page_sizes, n);
2714   const size_t size_limit =
2715     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2716   int beg;
2717   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2718   const int end = MIN2((int)usable_count, n) - 1;
2719   for (int cur = 0; cur < end; ++cur, ++beg) {
2720     _page_sizes[cur] = _page_sizes[beg];
2721   }
2722   _page_sizes[end] = vm_page_size();
2723   _page_sizes[end + 1] = 0;
2724 
2725   if (_page_sizes[end] > _page_sizes[end - 1]) {
2726     // Default page size is not the smallest; sort again.
2727     insertion_sort_descending(_page_sizes, end + 1);
2728   }
2729   *page_size = _page_sizes[0];
2730 
2731   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2732   return true;
2733 }
2734 
2735 void os::large_page_init() {
2736   if (UseLargePages) {
2737     // print a warning if any large page related flag is specified on command line
2738     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2739                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2740 
2741     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2742   }
2743 }
2744 
2745 bool os::Solaris::is_valid_page_size(size_t bytes) {
2746   for (int i = 0; _page_sizes[i] != 0; i++) {
2747     if (_page_sizes[i] == bytes) {
2748       return true;
2749     }
2750   }
2751   return false;
2752 }
2753 
2754 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2755   assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2756   assert(is_aligned((void*) start, align),
2757          PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2758   assert(is_aligned(bytes, align),
2759          SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2760 
2761   // Signal to OS that we want large pages for addresses
2762   // from addr, addr + bytes
2763   struct memcntl_mha mpss_struct;
2764   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2765   mpss_struct.mha_pagesize = align;
2766   mpss_struct.mha_flags = 0;
2767   // Upon successful completion, memcntl() returns 0
2768   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2769     debug_only(warning("Attempt to use MPSS failed."));
2770     return false;
2771   }
2772   return true;
2773 }
2774 
2775 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2776   fatal("os::reserve_memory_special should not be called on Solaris.");
2777   return NULL;
2778 }
2779 
2780 bool os::release_memory_special(char* base, size_t bytes) {
2781   fatal("os::release_memory_special should not be called on Solaris.");
2782   return false;
2783 }
2784 
2785 size_t os::large_page_size() {
2786   return _large_page_size;
2787 }
2788 
2789 // MPSS allows application to commit large page memory on demand; with ISM
2790 // the entire memory region must be allocated as shared memory.
2791 bool os::can_commit_large_page_memory() {
2792   return true;
2793 }
2794 
2795 bool os::can_execute_large_page_memory() {
2796   return true;
2797 }
2798 
2799 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2800 void os::infinite_sleep() {
2801   while (true) {    // sleep forever ...
2802     ::sleep(100);   // ... 100 seconds at a time
2803   }
2804 }
2805 
2806 // Used to convert frequent JVM_Yield() to nops
2807 bool os::dont_yield() {
2808   if (DontYieldALot) {
2809     static hrtime_t last_time = 0;
2810     hrtime_t diff = getTimeNanos() - last_time;
2811 
2812     if (diff < DontYieldALotInterval * 1000000) {
2813       return true;
2814     }
2815 
2816     last_time += diff;
2817 
2818     return false;
2819   } else {
2820     return false;
2821   }
2822 }
2823 
2824 // Note that yield semantics are defined by the scheduling class to which
2825 // the thread currently belongs.  Typically, yield will _not yield to
2826 // other equal or higher priority threads that reside on the dispatch queues
2827 // of other CPUs.
2828 
2829 void os::naked_yield() {
2830   thr_yield();
2831 }
2832 
2833 // Interface for setting lwp priorities.  We are using T2 libthread,
2834 // which forces the use of bound threads, so all of our threads will
2835 // be assigned to real lwp's.  Using the thr_setprio function is
2836 // meaningless in this mode so we must adjust the real lwp's priority.
2837 // The routines below implement the getting and setting of lwp priorities.
2838 //
2839 // Note: There are three priority scales used on Solaris.  Java priotities
2840 //       which range from 1 to 10, libthread "thr_setprio" scale which range
2841 //       from 0 to 127, and the current scheduling class of the process we
2842 //       are running in.  This is typically from -60 to +60.
2843 //       The setting of the lwp priorities in done after a call to thr_setprio
2844 //       so Java priorities are mapped to libthread priorities and we map from
2845 //       the latter to lwp priorities.  We don't keep priorities stored in
2846 //       Java priorities since some of our worker threads want to set priorities
2847 //       higher than all Java threads.
2848 //
2849 // For related information:
2850 // (1)  man -s 2 priocntl
2851 // (2)  man -s 4 priocntl
2852 // (3)  man dispadmin
2853 // =    librt.so
2854 // =    libthread/common/rtsched.c - thrp_setlwpprio().
2855 // =    ps -cL <pid> ... to validate priority.
2856 // =    sched_get_priority_min and _max
2857 //              pthread_create
2858 //              sched_setparam
2859 //              pthread_setschedparam
2860 //
2861 // Assumptions:
2862 // +    We assume that all threads in the process belong to the same
2863 //              scheduling class.   IE. an homogenous process.
2864 // +    Must be root or in IA group to change change "interactive" attribute.
2865 //              Priocntl() will fail silently.  The only indication of failure is when
2866 //              we read-back the value and notice that it hasn't changed.
2867 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
2868 // +    For RT, change timeslice as well.  Invariant:
2869 //              constant "priority integral"
2870 //              Konst == TimeSlice * (60-Priority)
2871 //              Given a priority, compute appropriate timeslice.
2872 // +    Higher numerical values have higher priority.
2873 
2874 // sched class attributes
2875 typedef struct {
2876   int   schedPolicy;              // classID
2877   int   maxPrio;
2878   int   minPrio;
2879 } SchedInfo;
2880 
2881 
2882 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
2883 
2884 #ifdef ASSERT
2885 static int  ReadBackValidate = 1;
2886 #endif
2887 static int  myClass     = 0;
2888 static int  myMin       = 0;
2889 static int  myMax       = 0;
2890 static int  myCur       = 0;
2891 static bool priocntl_enable = false;
2892 
2893 static const int criticalPrio = FXCriticalPriority;
2894 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
2895 
2896 
2897 // lwp_priocntl_init
2898 //
2899 // Try to determine the priority scale for our process.
2900 //
2901 // Return errno or 0 if OK.
2902 //
2903 static int lwp_priocntl_init() {
2904   int rslt;
2905   pcinfo_t ClassInfo;
2906   pcparms_t ParmInfo;
2907   int i;
2908 
2909   if (!UseThreadPriorities) return 0;
2910 
2911   // If ThreadPriorityPolicy is 1, switch tables
2912   if (ThreadPriorityPolicy == 1) {
2913     for (i = 0; i < CriticalPriority+1; i++)
2914       os::java_to_os_priority[i] = prio_policy1[i];
2915   }
2916   if (UseCriticalJavaThreadPriority) {
2917     // MaxPriority always maps to the FX scheduling class and criticalPrio.
2918     // See set_native_priority() and set_lwp_class_and_priority().
2919     // Save original MaxPriority mapping in case attempt to
2920     // use critical priority fails.
2921     java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
2922     // Set negative to distinguish from other priorities
2923     os::java_to_os_priority[MaxPriority] = -criticalPrio;
2924   }
2925 
2926   // Get IDs for a set of well-known scheduling classes.
2927   // TODO-FIXME: GETCLINFO returns the current # of classes in the
2928   // the system.  We should have a loop that iterates over the
2929   // classID values, which are known to be "small" integers.
2930 
2931   strcpy(ClassInfo.pc_clname, "TS");
2932   ClassInfo.pc_cid = -1;
2933   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2934   if (rslt < 0) return errno;
2935   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
2936   tsLimits.schedPolicy = ClassInfo.pc_cid;
2937   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
2938   tsLimits.minPrio = -tsLimits.maxPrio;
2939 
2940   strcpy(ClassInfo.pc_clname, "IA");
2941   ClassInfo.pc_cid = -1;
2942   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2943   if (rslt < 0) return errno;
2944   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
2945   iaLimits.schedPolicy = ClassInfo.pc_cid;
2946   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
2947   iaLimits.minPrio = -iaLimits.maxPrio;
2948 
2949   strcpy(ClassInfo.pc_clname, "RT");
2950   ClassInfo.pc_cid = -1;
2951   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2952   if (rslt < 0) return errno;
2953   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
2954   rtLimits.schedPolicy = ClassInfo.pc_cid;
2955   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
2956   rtLimits.minPrio = 0;
2957 
2958   strcpy(ClassInfo.pc_clname, "FX");
2959   ClassInfo.pc_cid = -1;
2960   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2961   if (rslt < 0) return errno;
2962   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
2963   fxLimits.schedPolicy = ClassInfo.pc_cid;
2964   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
2965   fxLimits.minPrio = 0;
2966 
2967   // Query our "current" scheduling class.
2968   // This will normally be IA, TS or, rarely, FX or RT.
2969   memset(&ParmInfo, 0, sizeof(ParmInfo));
2970   ParmInfo.pc_cid = PC_CLNULL;
2971   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
2972   if (rslt < 0) return errno;
2973   myClass = ParmInfo.pc_cid;
2974 
2975   // We now know our scheduling classId, get specific information
2976   // about the class.
2977   ClassInfo.pc_cid = myClass;
2978   ClassInfo.pc_clname[0] = 0;
2979   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
2980   if (rslt < 0) return errno;
2981 
2982   if (ThreadPriorityVerbose) {
2983     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
2984   }
2985 
2986   memset(&ParmInfo, 0, sizeof(pcparms_t));
2987   ParmInfo.pc_cid = PC_CLNULL;
2988   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
2989   if (rslt < 0) return errno;
2990 
2991   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
2992     myMin = rtLimits.minPrio;
2993     myMax = rtLimits.maxPrio;
2994   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
2995     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
2996     myMin = iaLimits.minPrio;
2997     myMax = iaLimits.maxPrio;
2998     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
2999   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3000     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3001     myMin = tsLimits.minPrio;
3002     myMax = tsLimits.maxPrio;
3003     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3004   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3005     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3006     myMin = fxLimits.minPrio;
3007     myMax = fxLimits.maxPrio;
3008     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3009   } else {
3010     // No clue - punt
3011     if (ThreadPriorityVerbose) {
3012       tty->print_cr("Unknown scheduling class: %s ... \n",
3013                     ClassInfo.pc_clname);
3014     }
3015     return EINVAL;      // no clue, punt
3016   }
3017 
3018   if (ThreadPriorityVerbose) {
3019     tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3020   }
3021 
3022   priocntl_enable = true;  // Enable changing priorities
3023   return 0;
3024 }
3025 
3026 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3027 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3028 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3029 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3030 
3031 
3032 // scale_to_lwp_priority
3033 //
3034 // Convert from the libthread "thr_setprio" scale to our current
3035 // lwp scheduling class scale.
3036 //
3037 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3038   int v;
3039 
3040   if (x == 127) return rMax;            // avoid round-down
3041   v = (((x*(rMax-rMin)))/128)+rMin;
3042   return v;
3043 }
3044 
3045 
3046 // set_lwp_class_and_priority
3047 int set_lwp_class_and_priority(int ThreadID, int lwpid,
3048                                int newPrio, int new_class, bool scale) {
3049   int rslt;
3050   int Actual, Expected, prv;
3051   pcparms_t ParmInfo;                   // for GET-SET
3052 #ifdef ASSERT
3053   pcparms_t ReadBack;                   // for readback
3054 #endif
3055 
3056   // Set priority via PC_GETPARMS, update, PC_SETPARMS
3057   // Query current values.
3058   // TODO: accelerate this by eliminating the PC_GETPARMS call.
3059   // Cache "pcparms_t" in global ParmCache.
3060   // TODO: elide set-to-same-value
3061 
3062   // If something went wrong on init, don't change priorities.
3063   if (!priocntl_enable) {
3064     if (ThreadPriorityVerbose) {
3065       tty->print_cr("Trying to set priority but init failed, ignoring");
3066     }
3067     return EINVAL;
3068   }
3069 
3070   // If lwp hasn't started yet, just return
3071   // the _start routine will call us again.
3072   if (lwpid <= 0) {
3073     if (ThreadPriorityVerbose) {
3074       tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3075                     INTPTR_FORMAT " to %d, lwpid not set",
3076                     ThreadID, newPrio);
3077     }
3078     return 0;
3079   }
3080 
3081   if (ThreadPriorityVerbose) {
3082     tty->print_cr ("set_lwp_class_and_priority("
3083                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3084                    ThreadID, lwpid, newPrio);
3085   }
3086 
3087   memset(&ParmInfo, 0, sizeof(pcparms_t));
3088   ParmInfo.pc_cid = PC_CLNULL;
3089   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3090   if (rslt < 0) return errno;
3091 
3092   int cur_class = ParmInfo.pc_cid;
3093   ParmInfo.pc_cid = (id_t)new_class;
3094 
3095   if (new_class == rtLimits.schedPolicy) {
3096     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3097     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3098                                                        rtLimits.maxPrio, newPrio)
3099                                : newPrio;
3100     rtInfo->rt_tqsecs  = RT_NOCHANGE;
3101     rtInfo->rt_tqnsecs = RT_NOCHANGE;
3102     if (ThreadPriorityVerbose) {
3103       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3104     }
3105   } else if (new_class == iaLimits.schedPolicy) {
3106     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3107     int maxClamped     = MIN2(iaLimits.maxPrio,
3108                               cur_class == new_class
3109                               ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3110     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3111                                                        maxClamped, newPrio)
3112                                : newPrio;
3113     iaInfo->ia_uprilim = cur_class == new_class
3114                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3115     iaInfo->ia_mode    = IA_NOCHANGE;
3116     if (ThreadPriorityVerbose) {
3117       tty->print_cr("IA: [%d...%d] %d->%d\n",
3118                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3119     }
3120   } else if (new_class == tsLimits.schedPolicy) {
3121     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3122     int maxClamped     = MIN2(tsLimits.maxPrio,
3123                               cur_class == new_class
3124                               ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3125     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3126                                                        maxClamped, newPrio)
3127                                : newPrio;
3128     tsInfo->ts_uprilim = cur_class == new_class
3129                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3130     if (ThreadPriorityVerbose) {
3131       tty->print_cr("TS: [%d...%d] %d->%d\n",
3132                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3133     }
3134   } else if (new_class == fxLimits.schedPolicy) {
3135     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3136     int maxClamped     = MIN2(fxLimits.maxPrio,
3137                               cur_class == new_class
3138                               ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3139     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3140                                                        maxClamped, newPrio)
3141                                : newPrio;
3142     fxInfo->fx_uprilim = cur_class == new_class
3143                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3144     fxInfo->fx_tqsecs  = FX_NOCHANGE;
3145     fxInfo->fx_tqnsecs = FX_NOCHANGE;
3146     if (ThreadPriorityVerbose) {
3147       tty->print_cr("FX: [%d...%d] %d->%d\n",
3148                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3149     }
3150   } else {
3151     if (ThreadPriorityVerbose) {
3152       tty->print_cr("Unknown new scheduling class %d\n", new_class);
3153     }
3154     return EINVAL;    // no clue, punt
3155   }
3156 
3157   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3158   if (ThreadPriorityVerbose && rslt) {
3159     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3160   }
3161   if (rslt < 0) return errno;
3162 
3163 #ifdef ASSERT
3164   // Sanity check: read back what we just attempted to set.
3165   // In theory it could have changed in the interim ...
3166   //
3167   // The priocntl system call is tricky.
3168   // Sometimes it'll validate the priority value argument and
3169   // return EINVAL if unhappy.  At other times it fails silently.
3170   // Readbacks are prudent.
3171 
3172   if (!ReadBackValidate) return 0;
3173 
3174   memset(&ReadBack, 0, sizeof(pcparms_t));
3175   ReadBack.pc_cid = PC_CLNULL;
3176   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3177   assert(rslt >= 0, "priocntl failed");
3178   Actual = Expected = 0xBAD;
3179   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3180   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3181     Actual   = RTPRI(ReadBack)->rt_pri;
3182     Expected = RTPRI(ParmInfo)->rt_pri;
3183   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3184     Actual   = IAPRI(ReadBack)->ia_upri;
3185     Expected = IAPRI(ParmInfo)->ia_upri;
3186   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3187     Actual   = TSPRI(ReadBack)->ts_upri;
3188     Expected = TSPRI(ParmInfo)->ts_upri;
3189   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3190     Actual   = FXPRI(ReadBack)->fx_upri;
3191     Expected = FXPRI(ParmInfo)->fx_upri;
3192   } else {
3193     if (ThreadPriorityVerbose) {
3194       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3195                     ParmInfo.pc_cid);
3196     }
3197   }
3198 
3199   if (Actual != Expected) {
3200     if (ThreadPriorityVerbose) {
3201       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3202                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3203     }
3204   }
3205 #endif
3206 
3207   return 0;
3208 }
3209 
3210 // Solaris only gives access to 128 real priorities at a time,
3211 // so we expand Java's ten to fill this range.  This would be better
3212 // if we dynamically adjusted relative priorities.
3213 //
3214 // The ThreadPriorityPolicy option allows us to select 2 different
3215 // priority scales.
3216 //
3217 // ThreadPriorityPolicy=0
3218 // Since the Solaris' default priority is MaximumPriority, we do not
3219 // set a priority lower than Max unless a priority lower than
3220 // NormPriority is requested.
3221 //
3222 // ThreadPriorityPolicy=1
3223 // This mode causes the priority table to get filled with
3224 // linear values.  NormPriority get's mapped to 50% of the
3225 // Maximum priority an so on.  This will cause VM threads
3226 // to get unfair treatment against other Solaris processes
3227 // which do not explicitly alter their thread priorities.
3228 
3229 int os::java_to_os_priority[CriticalPriority + 1] = {
3230   -99999,         // 0 Entry should never be used
3231 
3232   0,              // 1 MinPriority
3233   32,             // 2
3234   64,             // 3
3235 
3236   96,             // 4
3237   127,            // 5 NormPriority
3238   127,            // 6
3239 
3240   127,            // 7
3241   127,            // 8
3242   127,            // 9 NearMaxPriority
3243 
3244   127,            // 10 MaxPriority
3245 
3246   -criticalPrio   // 11 CriticalPriority
3247 };
3248 
3249 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3250   OSThread* osthread = thread->osthread();
3251 
3252   // Save requested priority in case the thread hasn't been started
3253   osthread->set_native_priority(newpri);
3254 
3255   // Check for critical priority request
3256   bool fxcritical = false;
3257   if (newpri == -criticalPrio) {
3258     fxcritical = true;
3259     newpri = criticalPrio;
3260   }
3261 
3262   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3263   if (!UseThreadPriorities) return OS_OK;
3264 
3265   int status = 0;
3266 
3267   if (!fxcritical) {
3268     // Use thr_setprio only if we have a priority that thr_setprio understands
3269     status = thr_setprio(thread->osthread()->thread_id(), newpri);
3270   }
3271 
3272   int lwp_status =
3273           set_lwp_class_and_priority(osthread->thread_id(),
3274                                      osthread->lwp_id(),
3275                                      newpri,
3276                                      fxcritical ? fxLimits.schedPolicy : myClass,
3277                                      !fxcritical);
3278   if (lwp_status != 0 && fxcritical) {
3279     // Try again, this time without changing the scheduling class
3280     newpri = java_MaxPriority_to_os_priority;
3281     lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3282                                             osthread->lwp_id(),
3283                                             newpri, myClass, false);
3284   }
3285   status |= lwp_status;
3286   return (status == 0) ? OS_OK : OS_ERR;
3287 }
3288 
3289 
3290 OSReturn os::get_native_priority(const Thread* const thread,
3291                                  int *priority_ptr) {
3292   int p;
3293   if (!UseThreadPriorities) {
3294     *priority_ptr = NormalPriority;
3295     return OS_OK;
3296   }
3297   int status = thr_getprio(thread->osthread()->thread_id(), &p);
3298   if (status != 0) {
3299     return OS_ERR;
3300   }
3301   *priority_ptr = p;
3302   return OS_OK;
3303 }
3304 
3305 ////////////////////////////////////////////////////////////////////////////////
3306 // suspend/resume support
3307 
3308 //  The low-level signal-based suspend/resume support is a remnant from the
3309 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3310 //  within hotspot. Currently used by JFR's OSThreadSampler
3311 //
3312 //  The remaining code is greatly simplified from the more general suspension
3313 //  code that used to be used.
3314 //
3315 //  The protocol is quite simple:
3316 //  - suspend:
3317 //      - sends a signal to the target thread
3318 //      - polls the suspend state of the osthread using a yield loop
3319 //      - target thread signal handler (SR_handler) sets suspend state
3320 //        and blocks in sigsuspend until continued
3321 //  - resume:
3322 //      - sets target osthread state to continue
3323 //      - sends signal to end the sigsuspend loop in the SR_handler
3324 //
3325 //  Note that the SR_lock plays no role in this suspend/resume protocol,
3326 //  but is checked for NULL in SR_handler as a thread termination indicator.
3327 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
3328 //
3329 //  Note that resume_clear_context() and suspend_save_context() are needed
3330 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
3331 //  which in part is used by:
3332 //    - Forte Analyzer: AsyncGetCallTrace()
3333 //    - StackBanging: get_frame_at_stack_banging_point()
3334 //    - JFR: get_topframe()-->....-->get_valid_uc_in_signal_handler()
3335 
3336 static void resume_clear_context(OSThread *osthread) {
3337   osthread->set_ucontext(NULL);
3338 }
3339 
3340 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3341   osthread->set_ucontext(context);
3342 }
3343 
3344 static PosixSemaphore sr_semaphore;
3345 
3346 void os::Solaris::SR_handler(Thread* thread, ucontext_t* context) {
3347   // Save and restore errno to avoid confusing native code with EINTR
3348   // after sigsuspend.
3349   int old_errno = errno;
3350 
3351   OSThread* osthread = thread->osthread();
3352   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3353 
3354   os::SuspendResume::State current = osthread->sr.state();
3355   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3356     suspend_save_context(osthread, context);
3357 
3358     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3359     os::SuspendResume::State state = osthread->sr.suspended();
3360     if (state == os::SuspendResume::SR_SUSPENDED) {
3361       sigset_t suspend_set;  // signals for sigsuspend()
3362 
3363       // get current set of blocked signals and unblock resume signal
3364       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3365       sigdelset(&suspend_set, ASYNC_SIGNAL);
3366 
3367       sr_semaphore.signal();
3368       // wait here until we are resumed
3369       while (1) {
3370         sigsuspend(&suspend_set);
3371 
3372         os::SuspendResume::State result = osthread->sr.running();
3373         if (result == os::SuspendResume::SR_RUNNING) {
3374           sr_semaphore.signal();
3375           break;
3376         }
3377       }
3378 
3379     } else if (state == os::SuspendResume::SR_RUNNING) {
3380       // request was cancelled, continue
3381     } else {
3382       ShouldNotReachHere();
3383     }
3384 
3385     resume_clear_context(osthread);
3386   } else if (current == os::SuspendResume::SR_RUNNING) {
3387     // request was cancelled, continue
3388   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3389     // ignore
3390   } else {
3391     // ignore
3392   }
3393 
3394   errno = old_errno;
3395 }
3396 
3397 void os::print_statistics() {
3398 }
3399 
3400 bool os::message_box(const char* title, const char* message) {
3401   int i;
3402   fdStream err(defaultStream::error_fd());
3403   for (i = 0; i < 78; i++) err.print_raw("=");
3404   err.cr();
3405   err.print_raw_cr(title);
3406   for (i = 0; i < 78; i++) err.print_raw("-");
3407   err.cr();
3408   err.print_raw_cr(message);
3409   for (i = 0; i < 78; i++) err.print_raw("=");
3410   err.cr();
3411 
3412   char buf[16];
3413   // Prevent process from exiting upon "read error" without consuming all CPU
3414   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3415 
3416   return buf[0] == 'y' || buf[0] == 'Y';
3417 }
3418 
3419 static int sr_notify(OSThread* osthread) {
3420   int status = thr_kill(osthread->thread_id(), ASYNC_SIGNAL);
3421   assert_status(status == 0, status, "thr_kill");
3422   return status;
3423 }
3424 
3425 // "Randomly" selected value for how long we want to spin
3426 // before bailing out on suspending a thread, also how often
3427 // we send a signal to a thread we want to resume
3428 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3429 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3430 
3431 static bool do_suspend(OSThread* osthread) {
3432   assert(osthread->sr.is_running(), "thread should be running");
3433   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3434 
3435   // mark as suspended and send signal
3436   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3437     // failed to switch, state wasn't running?
3438     ShouldNotReachHere();
3439     return false;
3440   }
3441 
3442   if (sr_notify(osthread) != 0) {
3443     ShouldNotReachHere();
3444   }
3445 
3446   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3447   while (true) {
3448     if (sr_semaphore.timedwait(2000)) {
3449       break;
3450     } else {
3451       // timeout
3452       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3453       if (cancelled == os::SuspendResume::SR_RUNNING) {
3454         return false;
3455       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3456         // make sure that we consume the signal on the semaphore as well
3457         sr_semaphore.wait();
3458         break;
3459       } else {
3460         ShouldNotReachHere();
3461         return false;
3462       }
3463     }
3464   }
3465 
3466   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3467   return true;
3468 }
3469 
3470 static void do_resume(OSThread* osthread) {
3471   assert(osthread->sr.is_suspended(), "thread should be suspended");
3472   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3473 
3474   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3475     // failed to switch to WAKEUP_REQUEST
3476     ShouldNotReachHere();
3477     return;
3478   }
3479 
3480   while (true) {
3481     if (sr_notify(osthread) == 0) {
3482       if (sr_semaphore.timedwait(2)) {
3483         if (osthread->sr.is_running()) {
3484           return;
3485         }
3486       }
3487     } else {
3488       ShouldNotReachHere();
3489     }
3490   }
3491 
3492   guarantee(osthread->sr.is_running(), "Must be running!");
3493 }
3494 
3495 void os::SuspendedThreadTask::internal_do_task() {
3496   if (do_suspend(_thread->osthread())) {
3497     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3498     do_task(context);
3499     do_resume(_thread->osthread());
3500   }
3501 }
3502 
3503 // This does not do anything on Solaris. This is basically a hook for being
3504 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3505 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3506                               const methodHandle& method, JavaCallArguments* args,
3507                               Thread* thread) {
3508   f(value, method, args, thread);
3509 }
3510 
3511 // This routine may be used by user applications as a "hook" to catch signals.
3512 // The user-defined signal handler must pass unrecognized signals to this
3513 // routine, and if it returns true (non-zero), then the signal handler must
3514 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3515 // routine will never retun false (zero), but instead will execute a VM panic
3516 // routine kill the process.
3517 //
3518 // If this routine returns false, it is OK to call it again.  This allows
3519 // the user-defined signal handler to perform checks either before or after
3520 // the VM performs its own checks.  Naturally, the user code would be making
3521 // a serious error if it tried to handle an exception (such as a null check
3522 // or breakpoint) that the VM was generating for its own correct operation.
3523 //
3524 // This routine may recognize any of the following kinds of signals:
3525 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3526 // ASYNC_SIGNAL.
3527 // It should be consulted by handlers for any of those signals.
3528 //
3529 // The caller of this routine must pass in the three arguments supplied
3530 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3531 // field of the structure passed to sigaction().  This routine assumes that
3532 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3533 //
3534 // Note that the VM will print warnings if it detects conflicting signal
3535 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3536 //
3537 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3538                                                    siginfo_t* siginfo,
3539                                                    void* ucontext,
3540                                                    int abort_if_unrecognized);
3541 
3542 
3543 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3544   int orig_errno = errno;  // Preserve errno value over signal handler.
3545   JVM_handle_solaris_signal(sig, info, ucVoid, true);
3546   errno = orig_errno;
3547 }
3548 
3549 // This boolean allows users to forward their own non-matching signals
3550 // to JVM_handle_solaris_signal, harmlessly.
3551 bool os::Solaris::signal_handlers_are_installed = false;
3552 
3553 // For signal-chaining
3554 bool os::Solaris::libjsig_is_loaded = false;
3555 typedef struct sigaction *(*get_signal_t)(int);
3556 get_signal_t os::Solaris::get_signal_action = NULL;
3557 
3558 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3559   struct sigaction *actp = NULL;
3560 
3561   if ((libjsig_is_loaded)  && (sig <= Maxsignum)) {
3562     // Retrieve the old signal handler from libjsig
3563     actp = (*get_signal_action)(sig);
3564   }
3565   if (actp == NULL) {
3566     // Retrieve the preinstalled signal handler from jvm
3567     actp = get_preinstalled_handler(sig);
3568   }
3569 
3570   return actp;
3571 }
3572 
3573 static bool call_chained_handler(struct sigaction *actp, int sig,
3574                                  siginfo_t *siginfo, void *context) {
3575   // Call the old signal handler
3576   if (actp->sa_handler == SIG_DFL) {
3577     // It's more reasonable to let jvm treat it as an unexpected exception
3578     // instead of taking the default action.
3579     return false;
3580   } else if (actp->sa_handler != SIG_IGN) {
3581     if ((actp->sa_flags & SA_NODEFER) == 0) {
3582       // automaticlly block the signal
3583       sigaddset(&(actp->sa_mask), sig);
3584     }
3585 
3586     sa_handler_t hand;
3587     sa_sigaction_t sa;
3588     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3589     // retrieve the chained handler
3590     if (siginfo_flag_set) {
3591       sa = actp->sa_sigaction;
3592     } else {
3593       hand = actp->sa_handler;
3594     }
3595 
3596     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3597       actp->sa_handler = SIG_DFL;
3598     }
3599 
3600     // try to honor the signal mask
3601     sigset_t oset;
3602     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3603 
3604     // call into the chained handler
3605     if (siginfo_flag_set) {
3606       (*sa)(sig, siginfo, context);
3607     } else {
3608       (*hand)(sig);
3609     }
3610 
3611     // restore the signal mask
3612     pthread_sigmask(SIG_SETMASK, &oset, 0);
3613   }
3614   // Tell jvm's signal handler the signal is taken care of.
3615   return true;
3616 }
3617 
3618 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3619   bool chained = false;
3620   // signal-chaining
3621   if (UseSignalChaining) {
3622     struct sigaction *actp = get_chained_signal_action(sig);
3623     if (actp != NULL) {
3624       chained = call_chained_handler(actp, sig, siginfo, context);
3625     }
3626   }
3627   return chained;
3628 }
3629 
3630 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3631   assert((chainedsigactions != (struct sigaction *)NULL) &&
3632          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3633   if (preinstalled_sigs[sig] != 0) {
3634     return &chainedsigactions[sig];
3635   }
3636   return NULL;
3637 }
3638 
3639 void os::Solaris::save_preinstalled_handler(int sig,
3640                                             struct sigaction& oldAct) {
3641   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3642   assert((chainedsigactions != (struct sigaction *)NULL) &&
3643          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3644   chainedsigactions[sig] = oldAct;
3645   preinstalled_sigs[sig] = 1;
3646 }
3647 
3648 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3649                                      bool oktochain) {
3650   // Check for overwrite.
3651   struct sigaction oldAct;
3652   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3653   void* oldhand =
3654       oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3655                           : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3656   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3657       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3658       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3659     if (AllowUserSignalHandlers || !set_installed) {
3660       // Do not overwrite; user takes responsibility to forward to us.
3661       return;
3662     } else if (UseSignalChaining) {
3663       if (oktochain) {
3664         // save the old handler in jvm
3665         save_preinstalled_handler(sig, oldAct);
3666       } else {
3667         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3668       }
3669       // libjsig also interposes the sigaction() call below and saves the
3670       // old sigaction on it own.
3671     } else {
3672       fatal("Encountered unexpected pre-existing sigaction handler "
3673             "%#lx for signal %d.", (long)oldhand, sig);
3674     }
3675   }
3676 
3677   struct sigaction sigAct;
3678   sigfillset(&(sigAct.sa_mask));
3679   sigAct.sa_handler = SIG_DFL;
3680 
3681   sigAct.sa_sigaction = signalHandler;
3682   // Handle SIGSEGV on alternate signal stack if
3683   // not using stack banging
3684   if (!UseStackBanging && sig == SIGSEGV) {
3685     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3686   } else {
3687     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3688   }
3689   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3690 
3691   sigaction(sig, &sigAct, &oldAct);
3692 
3693   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3694                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3695   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3696 }
3697 
3698 
3699 #define DO_SIGNAL_CHECK(sig)                      \
3700   do {                                            \
3701     if (!sigismember(&check_signal_done, sig)) {  \
3702       os::Solaris::check_signal_handler(sig);     \
3703     }                                             \
3704   } while (0)
3705 
3706 // This method is a periodic task to check for misbehaving JNI applications
3707 // under CheckJNI, we can add any periodic checks here
3708 
3709 void os::run_periodic_checks() {
3710   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3711   // thereby preventing a NULL checks.
3712   if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3713 
3714   if (check_signals == false) return;
3715 
3716   // SEGV and BUS if overridden could potentially prevent
3717   // generation of hs*.log in the event of a crash, debugging
3718   // such a case can be very challenging, so we absolutely
3719   // check for the following for a good measure:
3720   DO_SIGNAL_CHECK(SIGSEGV);
3721   DO_SIGNAL_CHECK(SIGILL);
3722   DO_SIGNAL_CHECK(SIGFPE);
3723   DO_SIGNAL_CHECK(SIGBUS);
3724   DO_SIGNAL_CHECK(SIGPIPE);
3725   DO_SIGNAL_CHECK(SIGXFSZ);
3726   DO_SIGNAL_CHECK(ASYNC_SIGNAL);
3727 
3728   // ReduceSignalUsage allows the user to override these handlers
3729   // see comments at the very top and jvm_solaris.h
3730   if (!ReduceSignalUsage) {
3731     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3732     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3733     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3734     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3735   }
3736 }
3737 
3738 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3739 
3740 static os_sigaction_t os_sigaction = NULL;
3741 
3742 void os::Solaris::check_signal_handler(int sig) {
3743   char buf[O_BUFLEN];
3744   address jvmHandler = NULL;
3745 
3746   struct sigaction act;
3747   if (os_sigaction == NULL) {
3748     // only trust the default sigaction, in case it has been interposed
3749     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3750     if (os_sigaction == NULL) return;
3751   }
3752 
3753   os_sigaction(sig, (struct sigaction*)NULL, &act);
3754 
3755   address thisHandler = (act.sa_flags & SA_SIGINFO)
3756     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3757     : CAST_FROM_FN_PTR(address, act.sa_handler);
3758 
3759 
3760   switch (sig) {
3761   case SIGSEGV:
3762   case SIGBUS:
3763   case SIGFPE:
3764   case SIGPIPE:
3765   case SIGXFSZ:
3766   case SIGILL:
3767   case ASYNC_SIGNAL:
3768     jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
3769     break;
3770 
3771   case SHUTDOWN1_SIGNAL:
3772   case SHUTDOWN2_SIGNAL:
3773   case SHUTDOWN3_SIGNAL:
3774   case BREAK_SIGNAL:
3775     jvmHandler = (address)user_handler();
3776     break;
3777 
3778   default:
3779       return;
3780   }
3781 
3782   if (thisHandler != jvmHandler) {
3783     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3784     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3785     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3786     // No need to check this sig any longer
3787     sigaddset(&check_signal_done, sig);
3788     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3789     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3790       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3791                     exception_name(sig, buf, O_BUFLEN));
3792     }
3793   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
3794     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3795     tty->print("expected:");
3796     os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
3797     tty->cr();
3798     tty->print("  found:");
3799     os::Posix::print_sa_flags(tty, act.sa_flags);
3800     tty->cr();
3801     // No need to check this sig any longer
3802     sigaddset(&check_signal_done, sig);
3803   }
3804 
3805   // Print all the signal handler state
3806   if (sigismember(&check_signal_done, sig)) {
3807     print_signal_handlers(tty, buf, O_BUFLEN);
3808   }
3809 
3810 }
3811 
3812 void os::Solaris::install_signal_handlers() {
3813   signal_handlers_are_installed = true;
3814 
3815   // signal-chaining
3816   typedef void (*signal_setting_t)();
3817   signal_setting_t begin_signal_setting = NULL;
3818   signal_setting_t end_signal_setting = NULL;
3819   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3820                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3821   if (begin_signal_setting != NULL) {
3822     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3823                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3824     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3825                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3826     libjsig_is_loaded = true;
3827     assert(UseSignalChaining, "should enable signal-chaining");
3828   }
3829   if (libjsig_is_loaded) {
3830     // Tell libjsig jvm is setting signal handlers
3831     (*begin_signal_setting)();
3832   }
3833 
3834   set_signal_handler(SIGSEGV, true, true);
3835   set_signal_handler(SIGPIPE, true, true);
3836   set_signal_handler(SIGXFSZ, true, true);
3837   set_signal_handler(SIGBUS, true, true);
3838   set_signal_handler(SIGILL, true, true);
3839   set_signal_handler(SIGFPE, true, true);
3840   set_signal_handler(ASYNC_SIGNAL, true, true);
3841 
3842   if (libjsig_is_loaded) {
3843     // Tell libjsig jvm finishes setting signal handlers
3844     (*end_signal_setting)();
3845   }
3846 
3847   // We don't activate signal checker if libjsig is in place, we trust ourselves
3848   // and if UserSignalHandler is installed all bets are off.
3849   // Log that signal checking is off only if -verbose:jni is specified.
3850   if (CheckJNICalls) {
3851     if (libjsig_is_loaded) {
3852       if (PrintJNIResolving) {
3853         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3854       }
3855       check_signals = false;
3856     }
3857     if (AllowUserSignalHandlers) {
3858       if (PrintJNIResolving) {
3859         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3860       }
3861       check_signals = false;
3862     }
3863   }
3864 }
3865 
3866 
3867 void report_error(const char* file_name, int line_no, const char* title,
3868                   const char* format, ...);
3869 
3870 // (Static) wrappers for the liblgrp API
3871 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
3872 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
3873 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
3874 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
3875 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
3876 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
3877 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
3878 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
3879 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
3880 
3881 static address resolve_symbol_lazy(const char* name) {
3882   address addr = (address) dlsym(RTLD_DEFAULT, name);
3883   if (addr == NULL) {
3884     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
3885     addr = (address) dlsym(RTLD_NEXT, name);
3886   }
3887   return addr;
3888 }
3889 
3890 static address resolve_symbol(const char* name) {
3891   address addr = resolve_symbol_lazy(name);
3892   if (addr == NULL) {
3893     fatal(dlerror());
3894   }
3895   return addr;
3896 }
3897 
3898 void os::Solaris::libthread_init() {
3899   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
3900 
3901   lwp_priocntl_init();
3902 
3903   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
3904   if (func == NULL) {
3905     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
3906     // Guarantee that this VM is running on an new enough OS (5.6 or
3907     // later) that it will have a new enough libthread.so.
3908     guarantee(func != NULL, "libthread.so is too old.");
3909   }
3910 
3911   int size;
3912   void (*handler_info_func)(address *, int *);
3913   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
3914   handler_info_func(&handler_start, &size);
3915   handler_end = handler_start + size;
3916 }
3917 
3918 
3919 int_fnP_mutex_tP os::Solaris::_mutex_lock;
3920 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
3921 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
3922 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
3923 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
3924 int os::Solaris::_mutex_scope = USYNC_THREAD;
3925 
3926 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
3927 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
3928 int_fnP_cond_tP os::Solaris::_cond_signal;
3929 int_fnP_cond_tP os::Solaris::_cond_broadcast;
3930 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
3931 int_fnP_cond_tP os::Solaris::_cond_destroy;
3932 int os::Solaris::_cond_scope = USYNC_THREAD;
3933 bool os::Solaris::_synchronization_initialized;
3934 
3935 void os::Solaris::synchronization_init() {
3936   if (UseLWPSynchronization) {
3937     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
3938     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
3939     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
3940     os::Solaris::set_mutex_init(lwp_mutex_init);
3941     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
3942     os::Solaris::set_mutex_scope(USYNC_THREAD);
3943 
3944     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
3945     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
3946     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
3947     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
3948     os::Solaris::set_cond_init(lwp_cond_init);
3949     os::Solaris::set_cond_destroy(lwp_cond_destroy);
3950     os::Solaris::set_cond_scope(USYNC_THREAD);
3951   } else {
3952     os::Solaris::set_mutex_scope(USYNC_THREAD);
3953     os::Solaris::set_cond_scope(USYNC_THREAD);
3954 
3955     if (UsePthreads) {
3956       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
3957       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
3958       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
3959       os::Solaris::set_mutex_init(pthread_mutex_default_init);
3960       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
3961 
3962       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
3963       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
3964       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
3965       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
3966       os::Solaris::set_cond_init(pthread_cond_default_init);
3967       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
3968     } else {
3969       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
3970       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
3971       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
3972       os::Solaris::set_mutex_init(::mutex_init);
3973       os::Solaris::set_mutex_destroy(::mutex_destroy);
3974 
3975       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
3976       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
3977       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
3978       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
3979       os::Solaris::set_cond_init(::cond_init);
3980       os::Solaris::set_cond_destroy(::cond_destroy);
3981     }
3982   }
3983   _synchronization_initialized = true;
3984 }
3985 
3986 bool os::Solaris::liblgrp_init() {
3987   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
3988   if (handle != NULL) {
3989     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
3990     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
3991     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
3992     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
3993     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
3994     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
3995     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
3996     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
3997                                                       dlsym(handle, "lgrp_cookie_stale")));
3998 
3999     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4000     set_lgrp_cookie(c);
4001     return true;
4002   }
4003   return false;
4004 }
4005 
4006 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4007 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4008 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4009 
4010 void init_pset_getloadavg_ptr(void) {
4011   pset_getloadavg_ptr =
4012     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4013   if (pset_getloadavg_ptr == NULL) {
4014     log_warning(os)("pset_getloadavg function not found");
4015   }
4016 }
4017 
4018 int os::Solaris::_dev_zero_fd = -1;
4019 
4020 // this is called _before_ the global arguments have been parsed
4021 void os::init(void) {
4022   _initial_pid = getpid();
4023 
4024   max_hrtime = first_hrtime = gethrtime();
4025 
4026   init_random(1234567);
4027 
4028   page_size = sysconf(_SC_PAGESIZE);
4029   if (page_size == -1) {
4030     fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4031   }
4032   init_page_sizes((size_t) page_size);
4033 
4034   Solaris::initialize_system_info();
4035 
4036   int fd = ::open("/dev/zero", O_RDWR);
4037   if (fd < 0) {
4038     fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4039   } else {
4040     Solaris::set_dev_zero_fd(fd);
4041 
4042     // Close on exec, child won't inherit.
4043     fcntl(fd, F_SETFD, FD_CLOEXEC);
4044   }
4045 
4046   clock_tics_per_sec = CLK_TCK;
4047 
4048   // check if dladdr1() exists; dladdr1 can provide more information than
4049   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4050   // and is available on linker patches for 5.7 and 5.8.
4051   // libdl.so must have been loaded, this call is just an entry lookup
4052   void * hdl = dlopen("libdl.so", RTLD_NOW);
4053   if (hdl) {
4054     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4055   }
4056 
4057   // main_thread points to the thread that created/loaded the JVM.
4058   main_thread = thr_self();
4059 
4060   // dynamic lookup of functions that may not be available in our lowest
4061   // supported Solaris release
4062   void * handle = dlopen("libc.so.1", RTLD_LAZY);
4063   if (handle != NULL) {
4064     Solaris::_pthread_setname_np =  // from 11.3
4065         (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4066   }
4067 
4068   // Shared Posix initialization
4069   os::Posix::init();
4070 }
4071 
4072 // To install functions for atexit system call
4073 extern "C" {
4074   static void perfMemory_exit_helper() {
4075     perfMemory_exit();
4076   }
4077 }
4078 
4079 // this is called _after_ the global arguments have been parsed
4080 jint os::init_2(void) {
4081   // try to enable extended file IO ASAP, see 6431278
4082   os::Solaris::try_enable_extended_io();
4083 
4084   // Check and sets minimum stack sizes against command line options
4085   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4086     return JNI_ERR;
4087   }
4088 
4089   Solaris::libthread_init();
4090 
4091   if (UseNUMA) {
4092     if (!Solaris::liblgrp_init()) {
4093       UseNUMA = false;
4094     } else {
4095       size_t lgrp_limit = os::numa_get_groups_num();
4096       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4097       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4098       FREE_C_HEAP_ARRAY(int, lgrp_ids);
4099       if (lgrp_num < 2) {
4100         // There's only one locality group, disable NUMA.
4101         UseNUMA = false;
4102       }
4103     }
4104     if (!UseNUMA && ForceNUMA) {
4105       UseNUMA = true;
4106     }
4107   }
4108 
4109   Solaris::signal_sets_init();
4110   Solaris::init_signal_mem();
4111   Solaris::install_signal_handlers();
4112   // Initialize data for jdk.internal.misc.Signal
4113   if (!ReduceSignalUsage) {
4114     jdk_misc_signal_init();
4115   }
4116 
4117   // initialize synchronization primitives to use either thread or
4118   // lwp synchronization (controlled by UseLWPSynchronization)
4119   Solaris::synchronization_init();
4120   DEBUG_ONLY(os::set_mutex_init_done();)
4121 
4122   if (MaxFDLimit) {
4123     // set the number of file descriptors to max. print out error
4124     // if getrlimit/setrlimit fails but continue regardless.
4125     struct rlimit nbr_files;
4126     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4127     if (status != 0) {
4128       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4129     } else {
4130       nbr_files.rlim_cur = nbr_files.rlim_max;
4131       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4132       if (status != 0) {
4133         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4134       }
4135     }
4136   }
4137 
4138   // Calculate theoretical max. size of Threads to guard gainst
4139   // artifical out-of-memory situations, where all available address-
4140   // space has been reserved by thread stacks. Default stack size is 1Mb.
4141   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4142     JavaThread::stack_size_at_create() : (1*K*K);
4143   assert(pre_thread_stack_size != 0, "Must have a stack");
4144   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4145   // we should start doing Virtual Memory banging. Currently when the threads will
4146   // have used all but 200Mb of space.
4147   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4148   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4149 
4150   // at-exit methods are called in the reverse order of their registration.
4151   // In Solaris 7 and earlier, atexit functions are called on return from
4152   // main or as a result of a call to exit(3C). There can be only 32 of
4153   // these functions registered and atexit() does not set errno. In Solaris
4154   // 8 and later, there is no limit to the number of functions registered
4155   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4156   // functions are called upon dlclose(3DL) in addition to return from main
4157   // and exit(3C).
4158 
4159   if (PerfAllowAtExitRegistration) {
4160     // only register atexit functions if PerfAllowAtExitRegistration is set.
4161     // atexit functions can be delayed until process exit time, which
4162     // can be problematic for embedded VM situations. Embedded VMs should
4163     // call DestroyJavaVM() to assure that VM resources are released.
4164 
4165     // note: perfMemory_exit_helper atexit function may be removed in
4166     // the future if the appropriate cleanup code can be added to the
4167     // VM_Exit VMOperation's doit method.
4168     if (atexit(perfMemory_exit_helper) != 0) {
4169       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4170     }
4171   }
4172 
4173   // Init pset_loadavg function pointer
4174   init_pset_getloadavg_ptr();
4175 
4176   // Shared Posix initialization
4177   os::Posix::init_2();
4178 
4179   return JNI_OK;
4180 }
4181 
4182 // Mark the polling page as unreadable
4183 void os::make_polling_page_unreadable(void) {
4184   Events::log(NULL, "Protecting polling page " INTPTR_FORMAT " with PROT_NONE", p2i(_polling_page));
4185   if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4186     fatal("Could not disable polling page");
4187   }
4188 }
4189 
4190 // Mark the polling page as readable
4191 void os::make_polling_page_readable(void) {
4192   Events::log(NULL, "Protecting polling page " INTPTR_FORMAT " with PROT_READ", p2i(_polling_page));
4193   if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4194     fatal("Could not enable polling page");
4195   }
4196 }
4197 
4198 // Is a (classpath) directory empty?
4199 bool os::dir_is_empty(const char* path) {
4200   DIR *dir = NULL;
4201   struct dirent *ptr;
4202 
4203   dir = opendir(path);
4204   if (dir == NULL) return true;
4205 
4206   // Scan the directory
4207   bool result = true;
4208   while (result && (ptr = readdir(dir)) != NULL) {
4209     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4210       result = false;
4211     }
4212   }
4213   closedir(dir);
4214   return result;
4215 }
4216 
4217 // This code originates from JDK's sysOpen and open64_w
4218 // from src/solaris/hpi/src/system_md.c
4219 
4220 int os::open(const char *path, int oflag, int mode) {
4221   if (strlen(path) > MAX_PATH - 1) {
4222     errno = ENAMETOOLONG;
4223     return -1;
4224   }
4225   int fd;
4226 
4227   fd = ::open64(path, oflag, mode);
4228   if (fd == -1) return -1;
4229 
4230   // If the open succeeded, the file might still be a directory
4231   {
4232     struct stat64 buf64;
4233     int ret = ::fstat64(fd, &buf64);
4234     int st_mode = buf64.st_mode;
4235 
4236     if (ret != -1) {
4237       if ((st_mode & S_IFMT) == S_IFDIR) {
4238         errno = EISDIR;
4239         ::close(fd);
4240         return -1;
4241       }
4242     } else {
4243       ::close(fd);
4244       return -1;
4245     }
4246   }
4247 
4248   // 32-bit Solaris systems suffer from:
4249   //
4250   // - an historical default soft limit of 256 per-process file
4251   //   descriptors that is too low for many Java programs.
4252   //
4253   // - a design flaw where file descriptors created using stdio
4254   //   fopen must be less than 256, _even_ when the first limit above
4255   //   has been raised.  This can cause calls to fopen (but not calls to
4256   //   open, for example) to fail mysteriously, perhaps in 3rd party
4257   //   native code (although the JDK itself uses fopen).  One can hardly
4258   //   criticize them for using this most standard of all functions.
4259   //
4260   // We attempt to make everything work anyways by:
4261   //
4262   // - raising the soft limit on per-process file descriptors beyond
4263   //   256
4264   //
4265   // - As of Solaris 10u4, we can request that Solaris raise the 256
4266   //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4267   //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4268   //
4269   // - If we are stuck on an old (pre 10u4) Solaris system, we can
4270   //   workaround the bug by remapping non-stdio file descriptors below
4271   //   256 to ones beyond 256, which is done below.
4272   //
4273   // See:
4274   // 1085341: 32-bit stdio routines should support file descriptors >255
4275   // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4276   // 6431278: Netbeans crash on 32 bit Solaris: need to call
4277   //          enable_extended_FILE_stdio() in VM initialisation
4278   // Giri Mandalika's blog
4279   // http://technopark02.blogspot.com/2005_05_01_archive.html
4280   //
4281 #ifndef  _LP64
4282   if ((!enabled_extended_FILE_stdio) && fd < 256) {
4283     int newfd = ::fcntl(fd, F_DUPFD, 256);
4284     if (newfd != -1) {
4285       ::close(fd);
4286       fd = newfd;
4287     }
4288   }
4289 #endif // 32-bit Solaris
4290 
4291   // All file descriptors that are opened in the JVM and not
4292   // specifically destined for a subprocess should have the
4293   // close-on-exec flag set.  If we don't set it, then careless 3rd
4294   // party native code might fork and exec without closing all
4295   // appropriate file descriptors (e.g. as we do in closeDescriptors in
4296   // UNIXProcess.c), and this in turn might:
4297   //
4298   // - cause end-of-file to fail to be detected on some file
4299   //   descriptors, resulting in mysterious hangs, or
4300   //
4301   // - might cause an fopen in the subprocess to fail on a system
4302   //   suffering from bug 1085341.
4303   //
4304   // (Yes, the default setting of the close-on-exec flag is a Unix
4305   // design flaw)
4306   //
4307   // See:
4308   // 1085341: 32-bit stdio routines should support file descriptors >255
4309   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4310   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4311   //
4312 #ifdef FD_CLOEXEC
4313   {
4314     int flags = ::fcntl(fd, F_GETFD);
4315     if (flags != -1) {
4316       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4317     }
4318   }
4319 #endif
4320 
4321   return fd;
4322 }
4323 
4324 // create binary file, rewriting existing file if required
4325 int os::create_binary_file(const char* path, bool rewrite_existing) {
4326   int oflags = O_WRONLY | O_CREAT;
4327   if (!rewrite_existing) {
4328     oflags |= O_EXCL;
4329   }
4330   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4331 }
4332 
4333 // return current position of file pointer
4334 jlong os::current_file_offset(int fd) {
4335   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4336 }
4337 
4338 // move file pointer to the specified offset
4339 jlong os::seek_to_file_offset(int fd, jlong offset) {
4340   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4341 }
4342 
4343 jlong os::lseek(int fd, jlong offset, int whence) {
4344   return (jlong) ::lseek64(fd, offset, whence);
4345 }
4346 
4347 int os::ftruncate(int fd, jlong length) {
4348   return ::ftruncate64(fd, length);
4349 }
4350 
4351 int os::fsync(int fd)  {
4352   RESTARTABLE_RETURN_INT(::fsync(fd));
4353 }
4354 
4355 int os::available(int fd, jlong *bytes) {
4356   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4357          "Assumed _thread_in_native");
4358   jlong cur, end;
4359   int mode;
4360   struct stat64 buf64;
4361 
4362   if (::fstat64(fd, &buf64) >= 0) {
4363     mode = buf64.st_mode;
4364     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4365       int n,ioctl_return;
4366 
4367       RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4368       if (ioctl_return>= 0) {
4369         *bytes = n;
4370         return 1;
4371       }
4372     }
4373   }
4374   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4375     return 0;
4376   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4377     return 0;
4378   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4379     return 0;
4380   }
4381   *bytes = end - cur;
4382   return 1;
4383 }
4384 
4385 // Map a block of memory.
4386 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4387                         char *addr, size_t bytes, bool read_only,
4388                         bool allow_exec) {
4389   int prot;
4390   int flags;
4391 
4392   if (read_only) {
4393     prot = PROT_READ;
4394     flags = MAP_SHARED;
4395   } else {
4396     prot = PROT_READ | PROT_WRITE;
4397     flags = MAP_PRIVATE;
4398   }
4399 
4400   if (allow_exec) {
4401     prot |= PROT_EXEC;
4402   }
4403 
4404   if (addr != NULL) {
4405     flags |= MAP_FIXED;
4406   }
4407 
4408   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4409                                      fd, file_offset);
4410   if (mapped_address == MAP_FAILED) {
4411     return NULL;
4412   }
4413   return mapped_address;
4414 }
4415 
4416 
4417 // Remap a block of memory.
4418 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4419                           char *addr, size_t bytes, bool read_only,
4420                           bool allow_exec) {
4421   // same as map_memory() on this OS
4422   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4423                         allow_exec);
4424 }
4425 
4426 
4427 // Unmap a block of memory.
4428 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4429   return munmap(addr, bytes) == 0;
4430 }
4431 
4432 void os::pause() {
4433   char filename[MAX_PATH];
4434   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4435     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4436   } else {
4437     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4438   }
4439 
4440   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4441   if (fd != -1) {
4442     struct stat buf;
4443     ::close(fd);
4444     while (::stat(filename, &buf) == 0) {
4445       (void)::poll(NULL, 0, 100);
4446     }
4447   } else {
4448     jio_fprintf(stderr,
4449                 "Could not open pause file '%s', continuing immediately.\n", filename);
4450   }
4451 }
4452 
4453 #ifndef PRODUCT
4454 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4455 // Turn this on if you need to trace synch operations.
4456 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4457 // and call record_synch_enable and record_synch_disable
4458 // around the computation of interest.
4459 
4460 void record_synch(char* name, bool returning);  // defined below
4461 
4462 class RecordSynch {
4463   char* _name;
4464  public:
4465   RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4466   ~RecordSynch()                       { record_synch(_name, true); }
4467 };
4468 
4469 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4470 extern "C" ret name params {                                    \
4471   typedef ret name##_t params;                                  \
4472   static name##_t* implem = NULL;                               \
4473   static int callcount = 0;                                     \
4474   if (implem == NULL) {                                         \
4475     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4476     if (implem == NULL)  fatal(dlerror());                      \
4477   }                                                             \
4478   ++callcount;                                                  \
4479   RecordSynch _rs(#name);                                       \
4480   inner;                                                        \
4481   return implem args;                                           \
4482 }
4483 // in dbx, examine callcounts this way:
4484 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4485 
4486 #define CHECK_POINTER_OK(p) \
4487   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4488 #define CHECK_MU \
4489   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4490 #define CHECK_CV \
4491   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4492 #define CHECK_P(p) \
4493   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4494 
4495 #define CHECK_MUTEX(mutex_op) \
4496   CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4497 
4498 CHECK_MUTEX(   mutex_lock)
4499 CHECK_MUTEX(  _mutex_lock)
4500 CHECK_MUTEX( mutex_unlock)
4501 CHECK_MUTEX(_mutex_unlock)
4502 CHECK_MUTEX( mutex_trylock)
4503 CHECK_MUTEX(_mutex_trylock)
4504 
4505 #define CHECK_COND(cond_op) \
4506   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4507 
4508 CHECK_COND( cond_wait);
4509 CHECK_COND(_cond_wait);
4510 CHECK_COND(_cond_wait_cancel);
4511 
4512 #define CHECK_COND2(cond_op) \
4513   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4514 
4515 CHECK_COND2( cond_timedwait);
4516 CHECK_COND2(_cond_timedwait);
4517 CHECK_COND2(_cond_timedwait_cancel);
4518 
4519 // do the _lwp_* versions too
4520 #define mutex_t lwp_mutex_t
4521 #define cond_t  lwp_cond_t
4522 CHECK_MUTEX(  _lwp_mutex_lock)
4523 CHECK_MUTEX(  _lwp_mutex_unlock)
4524 CHECK_MUTEX(  _lwp_mutex_trylock)
4525 CHECK_MUTEX( __lwp_mutex_lock)
4526 CHECK_MUTEX( __lwp_mutex_unlock)
4527 CHECK_MUTEX( __lwp_mutex_trylock)
4528 CHECK_MUTEX(___lwp_mutex_lock)
4529 CHECK_MUTEX(___lwp_mutex_unlock)
4530 
4531 CHECK_COND(  _lwp_cond_wait);
4532 CHECK_COND( __lwp_cond_wait);
4533 CHECK_COND(___lwp_cond_wait);
4534 
4535 CHECK_COND2(  _lwp_cond_timedwait);
4536 CHECK_COND2( __lwp_cond_timedwait);
4537 #undef mutex_t
4538 #undef cond_t
4539 
4540 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4541 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4542 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4543 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4544 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4545 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4546 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4547 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4548 
4549 
4550 // recording machinery:
4551 
4552 enum { RECORD_SYNCH_LIMIT = 200 };
4553 char* record_synch_name[RECORD_SYNCH_LIMIT];
4554 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4555 bool record_synch_returning[RECORD_SYNCH_LIMIT];
4556 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4557 int record_synch_count = 0;
4558 bool record_synch_enabled = false;
4559 
4560 // in dbx, examine recorded data this way:
4561 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4562 
4563 void record_synch(char* name, bool returning) {
4564   if (record_synch_enabled) {
4565     if (record_synch_count < RECORD_SYNCH_LIMIT) {
4566       record_synch_name[record_synch_count] = name;
4567       record_synch_returning[record_synch_count] = returning;
4568       record_synch_thread[record_synch_count] = thr_self();
4569       record_synch_arg0ptr[record_synch_count] = &name;
4570       record_synch_count++;
4571     }
4572     // put more checking code here:
4573     // ...
4574   }
4575 }
4576 
4577 void record_synch_enable() {
4578   // start collecting trace data, if not already doing so
4579   if (!record_synch_enabled)  record_synch_count = 0;
4580   record_synch_enabled = true;
4581 }
4582 
4583 void record_synch_disable() {
4584   // stop collecting trace data
4585   record_synch_enabled = false;
4586 }
4587 
4588 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4589 #endif // PRODUCT
4590 
4591 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4592 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4593                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4594 
4595 
4596 // JVMTI & JVM monitoring and management support
4597 // The thread_cpu_time() and current_thread_cpu_time() are only
4598 // supported if is_thread_cpu_time_supported() returns true.
4599 // They are not supported on Solaris T1.
4600 
4601 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4602 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4603 // of a thread.
4604 //
4605 // current_thread_cpu_time() and thread_cpu_time(Thread *)
4606 // returns the fast estimate available on the platform.
4607 
4608 // hrtime_t gethrvtime() return value includes
4609 // user time but does not include system time
4610 jlong os::current_thread_cpu_time() {
4611   return (jlong) gethrvtime();
4612 }
4613 
4614 jlong os::thread_cpu_time(Thread *thread) {
4615   // return user level CPU time only to be consistent with
4616   // what current_thread_cpu_time returns.
4617   // thread_cpu_time_info() must be changed if this changes
4618   return os::thread_cpu_time(thread, false /* user time only */);
4619 }
4620 
4621 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4622   if (user_sys_cpu_time) {
4623     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4624   } else {
4625     return os::current_thread_cpu_time();
4626   }
4627 }
4628 
4629 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4630   char proc_name[64];
4631   int count;
4632   prusage_t prusage;
4633   jlong lwp_time;
4634   int fd;
4635 
4636   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
4637           getpid(),
4638           thread->osthread()->lwp_id());
4639   fd = ::open(proc_name, O_RDONLY);
4640   if (fd == -1) return -1;
4641 
4642   do {
4643     count = ::pread(fd,
4644                     (void *)&prusage.pr_utime,
4645                     thr_time_size,
4646                     thr_time_off);
4647   } while (count < 0 && errno == EINTR);
4648   ::close(fd);
4649   if (count < 0) return -1;
4650 
4651   if (user_sys_cpu_time) {
4652     // user + system CPU time
4653     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
4654                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
4655                  (jlong)prusage.pr_stime.tv_nsec +
4656                  (jlong)prusage.pr_utime.tv_nsec;
4657   } else {
4658     // user level CPU time only
4659     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
4660                 (jlong)prusage.pr_utime.tv_nsec;
4661   }
4662 
4663   return (lwp_time);
4664 }
4665 
4666 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4667   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4668   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4669   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4670   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4671 }
4672 
4673 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4674   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4675   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4676   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4677   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4678 }
4679 
4680 bool os::is_thread_cpu_time_supported() {
4681   return true;
4682 }
4683 
4684 // System loadavg support.  Returns -1 if load average cannot be obtained.
4685 // Return the load average for our processor set if the primitive exists
4686 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
4687 int os::loadavg(double loadavg[], int nelem) {
4688   if (pset_getloadavg_ptr != NULL) {
4689     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
4690   } else {
4691     return ::getloadavg(loadavg, nelem);
4692   }
4693 }
4694 
4695 //---------------------------------------------------------------------------------
4696 
4697 bool os::find(address addr, outputStream* st) {
4698   Dl_info dlinfo;
4699   memset(&dlinfo, 0, sizeof(dlinfo));
4700   if (dladdr(addr, &dlinfo) != 0) {
4701     st->print(PTR_FORMAT ": ", addr);
4702     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4703       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
4704     } else if (dlinfo.dli_fbase != NULL) {
4705       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
4706     } else {
4707       st->print("<absolute address>");
4708     }
4709     if (dlinfo.dli_fname != NULL) {
4710       st->print(" in %s", dlinfo.dli_fname);
4711     }
4712     if (dlinfo.dli_fbase != NULL) {
4713       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4714     }
4715     st->cr();
4716 
4717     if (Verbose) {
4718       // decode some bytes around the PC
4719       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4720       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4721       address       lowest = (address) dlinfo.dli_sname;
4722       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4723       if (begin < lowest)  begin = lowest;
4724       Dl_info dlinfo2;
4725       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4726           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4727         end = (address) dlinfo2.dli_saddr;
4728       }
4729       Disassembler::decode(begin, end, st);
4730     }
4731     return true;
4732   }
4733   return false;
4734 }
4735 
4736 // Following function has been added to support HotSparc's libjvm.so running
4737 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
4738 // src/solaris/hpi/native_threads in the EVM codebase.
4739 //
4740 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
4741 // libraries and should thus be removed. We will leave it behind for a while
4742 // until we no longer want to able to run on top of 1.3.0 Solaris production
4743 // JDK. See 4341971.
4744 
4745 #define STACK_SLACK 0x800
4746 
4747 extern "C" {
4748   intptr_t sysThreadAvailableStackWithSlack() {
4749     stack_t st;
4750     intptr_t retval, stack_top;
4751     retval = thr_stksegment(&st);
4752     assert(retval == 0, "incorrect return value from thr_stksegment");
4753     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
4754     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
4755     stack_top=(intptr_t)st.ss_sp-st.ss_size;
4756     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
4757   }
4758 }
4759 
4760 // ObjectMonitor park-unpark infrastructure ...
4761 //
4762 // We implement Solaris and Linux PlatformEvents with the
4763 // obvious condvar-mutex-flag triple.
4764 // Another alternative that works quite well is pipes:
4765 // Each PlatformEvent consists of a pipe-pair.
4766 // The thread associated with the PlatformEvent
4767 // calls park(), which reads from the input end of the pipe.
4768 // Unpark() writes into the other end of the pipe.
4769 // The write-side of the pipe must be set NDELAY.
4770 // Unfortunately pipes consume a large # of handles.
4771 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
4772 // Using pipes for the 1st few threads might be workable, however.
4773 //
4774 // park() is permitted to return spuriously.
4775 // Callers of park() should wrap the call to park() in
4776 // an appropriate loop.  A litmus test for the correct
4777 // usage of park is the following: if park() were modified
4778 // to immediately return 0 your code should still work,
4779 // albeit degenerating to a spin loop.
4780 //
4781 // In a sense, park()-unpark() just provides more polite spinning
4782 // and polling with the key difference over naive spinning being
4783 // that a parked thread needs to be explicitly unparked() in order
4784 // to wake up and to poll the underlying condition.
4785 //
4786 // Assumption:
4787 //    Only one parker can exist on an event, which is why we allocate
4788 //    them per-thread. Multiple unparkers can coexist.
4789 //
4790 // _Event transitions in park()
4791 //   -1 => -1 : illegal
4792 //    1 =>  0 : pass - return immediately
4793 //    0 => -1 : block; then set _Event to 0 before returning
4794 //
4795 // _Event transitions in unpark()
4796 //    0 => 1 : just return
4797 //    1 => 1 : just return
4798 //   -1 => either 0 or 1; must signal target thread
4799 //         That is, we can safely transition _Event from -1 to either
4800 //         0 or 1.
4801 //
4802 // _Event serves as a restricted-range semaphore.
4803 //   -1 : thread is blocked, i.e. there is a waiter
4804 //    0 : neutral: thread is running or ready,
4805 //        could have been signaled after a wait started
4806 //    1 : signaled - thread is running or ready
4807 //
4808 // Another possible encoding of _Event would be with
4809 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4810 //
4811 // TODO-FIXME: add DTRACE probes for:
4812 // 1.   Tx parks
4813 // 2.   Ty unparks Tx
4814 // 3.   Tx resumes from park
4815 
4816 
4817 // value determined through experimentation
4818 #define ROUNDINGFIX 11
4819 
4820 // utility to compute the abstime argument to timedwait.
4821 // TODO-FIXME: switch from compute_abstime() to unpackTime().
4822 
4823 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
4824   // millis is the relative timeout time
4825   // abstime will be the absolute timeout time
4826   if (millis < 0)  millis = 0;
4827   struct timeval now;
4828   int status = gettimeofday(&now, NULL);
4829   assert(status == 0, "gettimeofday");
4830   jlong seconds = millis / 1000;
4831   jlong max_wait_period;
4832 
4833   if (UseLWPSynchronization) {
4834     // forward port of fix for 4275818 (not sleeping long enough)
4835     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
4836     // _lwp_cond_timedwait() used a round_down algorithm rather
4837     // than a round_up. For millis less than our roundfactor
4838     // it rounded down to 0 which doesn't meet the spec.
4839     // For millis > roundfactor we may return a bit sooner, but
4840     // since we can not accurately identify the patch level and
4841     // this has already been fixed in Solaris 9 and 8 we will
4842     // leave it alone rather than always rounding down.
4843 
4844     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
4845     // It appears that when we go directly through Solaris _lwp_cond_timedwait()
4846     // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
4847     max_wait_period = 21000000;
4848   } else {
4849     max_wait_period = 50000000;
4850   }
4851   millis %= 1000;
4852   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
4853     seconds = max_wait_period;
4854   }
4855   abstime->tv_sec = now.tv_sec  + seconds;
4856   long       usec = now.tv_usec + millis * 1000;
4857   if (usec >= 1000000) {
4858     abstime->tv_sec += 1;
4859     usec -= 1000000;
4860   }
4861   abstime->tv_nsec = usec * 1000;
4862   return abstime;
4863 }
4864 
4865 void os::PlatformEvent::park() {           // AKA: down()
4866   // Transitions for _Event:
4867   //   -1 => -1 : illegal
4868   //    1 =>  0 : pass - return immediately
4869   //    0 => -1 : block; then set _Event to 0 before returning
4870 
4871   // Invariant: Only the thread associated with the Event/PlatformEvent
4872   // may call park().
4873   assert(_nParked == 0, "invariant");
4874 
4875   int v;
4876   for (;;) {
4877     v = _Event;
4878     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4879   }
4880   guarantee(v >= 0, "invariant");
4881   if (v == 0) {
4882     // Do this the hard way by blocking ...
4883     // See http://monaco.sfbay/detail.jsf?cr=5094058.
4884     int status = os::Solaris::mutex_lock(_mutex);
4885     assert_status(status == 0, status, "mutex_lock");
4886     guarantee(_nParked == 0, "invariant");
4887     ++_nParked;
4888     while (_Event < 0) {
4889       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4890       // Treat this the same as if the wait was interrupted
4891       // With usr/lib/lwp going to kernel, always handle ETIME
4892       status = os::Solaris::cond_wait(_cond, _mutex);
4893       if (status == ETIME) status = EINTR;
4894       assert_status(status == 0 || status == EINTR, status, "cond_wait");
4895     }
4896     --_nParked;
4897     _Event = 0;
4898     status = os::Solaris::mutex_unlock(_mutex);
4899     assert_status(status == 0, status, "mutex_unlock");
4900     // Paranoia to ensure our locked and lock-free paths interact
4901     // correctly with each other.
4902     OrderAccess::fence();
4903   }
4904 }
4905 
4906 int os::PlatformEvent::park(jlong millis) {
4907   // Transitions for _Event:
4908   //   -1 => -1 : illegal
4909   //    1 =>  0 : pass - return immediately
4910   //    0 => -1 : block; then set _Event to 0 before returning
4911 
4912   guarantee(_nParked == 0, "invariant");
4913   int v;
4914   for (;;) {
4915     v = _Event;
4916     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4917   }
4918   guarantee(v >= 0, "invariant");
4919   if (v != 0) return OS_OK;
4920 
4921   int ret = OS_TIMEOUT;
4922   timestruc_t abst;
4923   compute_abstime(&abst, millis);
4924 
4925   // See http://monaco.sfbay/detail.jsf?cr=5094058.
4926   int status = os::Solaris::mutex_lock(_mutex);
4927   assert_status(status == 0, status, "mutex_lock");
4928   guarantee(_nParked == 0, "invariant");
4929   ++_nParked;
4930   while (_Event < 0) {
4931     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
4932     assert_status(status == 0 || status == EINTR ||
4933                   status == ETIME || status == ETIMEDOUT,
4934                   status, "cond_timedwait");
4935     if (!FilterSpuriousWakeups) break;                // previous semantics
4936     if (status == ETIME || status == ETIMEDOUT) break;
4937     // We consume and ignore EINTR and spurious wakeups.
4938   }
4939   --_nParked;
4940   if (_Event >= 0) ret = OS_OK;
4941   _Event = 0;
4942   status = os::Solaris::mutex_unlock(_mutex);
4943   assert_status(status == 0, status, "mutex_unlock");
4944   // Paranoia to ensure our locked and lock-free paths interact
4945   // correctly with each other.
4946   OrderAccess::fence();
4947   return ret;
4948 }
4949 
4950 void os::PlatformEvent::unpark() {
4951   // Transitions for _Event:
4952   //    0 => 1 : just return
4953   //    1 => 1 : just return
4954   //   -1 => either 0 or 1; must signal target thread
4955   //         That is, we can safely transition _Event from -1 to either
4956   //         0 or 1.
4957   // See also: "Semaphores in Plan 9" by Mullender & Cox
4958   //
4959   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4960   // that it will take two back-to-back park() calls for the owning
4961   // thread to block. This has the benefit of forcing a spurious return
4962   // from the first park() call after an unpark() call which will help
4963   // shake out uses of park() and unpark() without condition variables.
4964 
4965   if (Atomic::xchg(1, &_Event) >= 0) return;
4966 
4967   // If the thread associated with the event was parked, wake it.
4968   // Wait for the thread assoc with the PlatformEvent to vacate.
4969   int status = os::Solaris::mutex_lock(_mutex);
4970   assert_status(status == 0, status, "mutex_lock");
4971   int AnyWaiters = _nParked;
4972   status = os::Solaris::mutex_unlock(_mutex);
4973   assert_status(status == 0, status, "mutex_unlock");
4974   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4975   if (AnyWaiters != 0) {
4976     // Note that we signal() *after* dropping the lock for "immortal" Events.
4977     // This is safe and avoids a common class of  futile wakeups.  In rare
4978     // circumstances this can cause a thread to return prematurely from
4979     // cond_{timed}wait() but the spurious wakeup is benign and the victim
4980     // will simply re-test the condition and re-park itself.
4981     // This provides particular benefit if the underlying platform does not
4982     // provide wait morphing.
4983     status = os::Solaris::cond_signal(_cond);
4984     assert_status(status == 0, status, "cond_signal");
4985   }
4986 }
4987 
4988 // JSR166
4989 // -------------------------------------------------------
4990 
4991 // The solaris and linux implementations of park/unpark are fairly
4992 // conservative for now, but can be improved. They currently use a
4993 // mutex/condvar pair, plus _counter.
4994 // Park decrements _counter if > 0, else does a condvar wait.  Unpark
4995 // sets count to 1 and signals condvar.  Only one thread ever waits
4996 // on the condvar. Contention seen when trying to park implies that someone
4997 // is unparking you, so don't wait. And spurious returns are fine, so there
4998 // is no need to track notifications.
4999 
5000 #define MAX_SECS 100000000
5001 
5002 // This code is common to linux and solaris and will be moved to a
5003 // common place in dolphin.
5004 //
5005 // The passed in time value is either a relative time in nanoseconds
5006 // or an absolute time in milliseconds. Either way it has to be unpacked
5007 // into suitable seconds and nanoseconds components and stored in the
5008 // given timespec structure.
5009 // Given time is a 64-bit value and the time_t used in the timespec is only
5010 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5011 // overflow if times way in the future are given. Further on Solaris versions
5012 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5013 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5014 // As it will be 28 years before "now + 100000000" will overflow we can
5015 // ignore overflow and just impose a hard-limit on seconds using the value
5016 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5017 // years from "now".
5018 //
5019 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5020   assert(time > 0, "convertTime");
5021 
5022   struct timeval now;
5023   int status = gettimeofday(&now, NULL);
5024   assert(status == 0, "gettimeofday");
5025 
5026   time_t max_secs = now.tv_sec + MAX_SECS;
5027 
5028   if (isAbsolute) {
5029     jlong secs = time / 1000;
5030     if (secs > max_secs) {
5031       absTime->tv_sec = max_secs;
5032     } else {
5033       absTime->tv_sec = secs;
5034     }
5035     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5036   } else {
5037     jlong secs = time / NANOSECS_PER_SEC;
5038     if (secs >= MAX_SECS) {
5039       absTime->tv_sec = max_secs;
5040       absTime->tv_nsec = 0;
5041     } else {
5042       absTime->tv_sec = now.tv_sec + secs;
5043       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5044       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5045         absTime->tv_nsec -= NANOSECS_PER_SEC;
5046         ++absTime->tv_sec; // note: this must be <= max_secs
5047       }
5048     }
5049   }
5050   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5051   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5052   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5053   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5054 }
5055 
5056 void Parker::park(bool isAbsolute, jlong time) {
5057   // Ideally we'd do something useful while spinning, such
5058   // as calling unpackTime().
5059 
5060   // Optional fast-path check:
5061   // Return immediately if a permit is available.
5062   // We depend on Atomic::xchg() having full barrier semantics
5063   // since we are doing a lock-free update to _counter.
5064   if (Atomic::xchg(0, &_counter) > 0) return;
5065 
5066   // Optional fast-exit: Check interrupt before trying to wait
5067   Thread* thread = Thread::current();
5068   assert(thread->is_Java_thread(), "Must be JavaThread");
5069   JavaThread *jt = (JavaThread *)thread;
5070   if (Thread::is_interrupted(thread, false)) {
5071     return;
5072   }
5073 
5074   // First, demultiplex/decode time arguments
5075   timespec absTime;
5076   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5077     return;
5078   }
5079   if (time > 0) {
5080     // Warning: this code might be exposed to the old Solaris time
5081     // round-down bugs.  Grep "roundingFix" for details.
5082     unpackTime(&absTime, isAbsolute, time);
5083   }
5084 
5085   // Enter safepoint region
5086   // Beware of deadlocks such as 6317397.
5087   // The per-thread Parker:: _mutex is a classic leaf-lock.
5088   // In particular a thread must never block on the Threads_lock while
5089   // holding the Parker:: mutex.  If safepoints are pending both the
5090   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5091   ThreadBlockInVM tbivm(jt);
5092 
5093   // Don't wait if cannot get lock since interference arises from
5094   // unblocking.  Also. check interrupt before trying wait
5095   if (Thread::is_interrupted(thread, false) ||
5096       os::Solaris::mutex_trylock(_mutex) != 0) {
5097     return;
5098   }
5099 
5100   int status;
5101 
5102   if (_counter > 0)  { // no wait needed
5103     _counter = 0;
5104     status = os::Solaris::mutex_unlock(_mutex);
5105     assert(status == 0, "invariant");
5106     // Paranoia to ensure our locked and lock-free paths interact
5107     // correctly with each other and Java-level accesses.
5108     OrderAccess::fence();
5109     return;
5110   }
5111 
5112   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5113   jt->set_suspend_equivalent();
5114   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5115 
5116   // Do this the hard way by blocking ...
5117   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5118   if (time == 0) {
5119     status = os::Solaris::cond_wait(_cond, _mutex);
5120   } else {
5121     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5122   }
5123   // Note that an untimed cond_wait() can sometimes return ETIME on older
5124   // versions of the Solaris.
5125   assert_status(status == 0 || status == EINTR ||
5126                 status == ETIME || status == ETIMEDOUT,
5127                 status, "cond_timedwait");
5128 
5129   _counter = 0;
5130   status = os::Solaris::mutex_unlock(_mutex);
5131   assert_status(status == 0, status, "mutex_unlock");
5132   // Paranoia to ensure our locked and lock-free paths interact
5133   // correctly with each other and Java-level accesses.
5134   OrderAccess::fence();
5135 
5136   // If externally suspended while waiting, re-suspend
5137   if (jt->handle_special_suspend_equivalent_condition()) {
5138     jt->java_suspend_self();
5139   }
5140 }
5141 
5142 void Parker::unpark() {
5143   int status = os::Solaris::mutex_lock(_mutex);
5144   assert(status == 0, "invariant");
5145   const int s = _counter;
5146   _counter = 1;
5147   status = os::Solaris::mutex_unlock(_mutex);
5148   assert(status == 0, "invariant");
5149 
5150   if (s < 1) {
5151     status = os::Solaris::cond_signal(_cond);
5152     assert(status == 0, "invariant");
5153   }
5154 }
5155 
5156 // Platform Mutex/Monitor implementations
5157 
5158 os::PlatformMutex::PlatformMutex() {
5159   int status = os::Solaris::mutex_init(&_mutex);
5160   assert_status(status == 0, status, "mutex_init");
5161 }
5162 
5163 os::PlatformMutex::~PlatformMutex() {
5164   int status = os::Solaris::mutex_destroy(&_mutex);
5165   assert_status(status == 0, status, "mutex_destroy");
5166 }
5167 
5168 void os::PlatformMutex::lock() {
5169   int status = os::Solaris::mutex_lock(&_mutex);
5170   assert_status(status == 0, status, "mutex_lock");
5171 }
5172 
5173 void os::PlatformMutex::unlock() {
5174   int status = os::Solaris::mutex_unlock(&_mutex);
5175   assert_status(status == 0, status, "mutex_unlock");
5176 }
5177 
5178 bool os::PlatformMutex::try_lock() {
5179   int status = os::Solaris::mutex_trylock(&_mutex);
5180   assert_status(status == 0 || status == EBUSY, status, "mutex_trylock");
5181   return status == 0;
5182 }
5183 
5184 os::PlatformMonitor::PlatformMonitor() {
5185   int status = os::Solaris::cond_init(&_cond);
5186   assert_status(status == 0, status, "cond_init");
5187 }
5188 
5189 os::PlatformMonitor::~PlatformMonitor() {
5190   int status = os::Solaris::cond_destroy(&_cond);
5191   assert_status(status == 0, status, "cond_destroy");
5192 }
5193 
5194 // Must already be locked
5195 int os::PlatformMonitor::wait(jlong millis) {
5196   assert(millis >= 0, "negative timeout");
5197   if (millis > 0) {
5198     timestruc_t abst;
5199     int ret = OS_TIMEOUT;
5200     compute_abstime(&abst, millis);
5201     int status = os::Solaris::cond_timedwait(&_cond, &_mutex, &abst);
5202     assert_status(status == 0 || status == EINTR ||
5203                   status == ETIME || status == ETIMEDOUT,
5204                   status, "cond_timedwait");
5205     // EINTR acts as spurious wakeup - which is permitted anyway
5206     if (status == 0 || status == EINTR) {
5207       ret = OS_OK;
5208     }
5209     return ret;
5210   } else {
5211     int status = os::Solaris::cond_wait(&_cond, &_mutex);
5212     assert_status(status == 0 || status == EINTR,
5213                   status, "cond_wait");
5214     return OS_OK;
5215   }
5216 }
5217 
5218 void os::PlatformMonitor::notify() {
5219   int status = os::Solaris::cond_signal(&_cond);
5220   assert_status(status == 0, status, "cond_signal");
5221 }
5222 
5223 void os::PlatformMonitor::notify_all() {
5224   int status = os::Solaris::cond_broadcast(&_cond);
5225   assert_status(status == 0, status, "cond_broadcast");
5226 }
5227 
5228 extern char** environ;
5229 
5230 // Run the specified command in a separate process. Return its exit value,
5231 // or -1 on failure (e.g. can't fork a new process).
5232 // Unlike system(), this function can be called from signal handler. It
5233 // doesn't block SIGINT et al.
5234 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5235   char * argv[4];
5236   argv[0] = (char *)"sh";
5237   argv[1] = (char *)"-c";
5238   argv[2] = cmd;
5239   argv[3] = NULL;
5240 
5241   // fork is async-safe, fork1 is not so can't use in signal handler
5242   pid_t pid;
5243   Thread* t = Thread::current_or_null_safe();
5244   if (t != NULL && t->is_inside_signal_handler()) {
5245     pid = fork();
5246   } else {
5247     pid = fork1();
5248   }
5249 
5250   if (pid < 0) {
5251     // fork failed
5252     warning("fork failed: %s", os::strerror(errno));
5253     return -1;
5254 
5255   } else if (pid == 0) {
5256     // child process
5257 
5258     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5259     execve("/usr/bin/sh", argv, environ);
5260 
5261     // execve failed
5262     _exit(-1);
5263 
5264   } else  {
5265     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5266     // care about the actual exit code, for now.
5267 
5268     int status;
5269 
5270     // Wait for the child process to exit.  This returns immediately if
5271     // the child has already exited. */
5272     while (waitpid(pid, &status, 0) < 0) {
5273       switch (errno) {
5274       case ECHILD: return 0;
5275       case EINTR: break;
5276       default: return -1;
5277       }
5278     }
5279 
5280     if (WIFEXITED(status)) {
5281       // The child exited normally; get its exit code.
5282       return WEXITSTATUS(status);
5283     } else if (WIFSIGNALED(status)) {
5284       // The child exited because of a signal
5285       // The best value to return is 0x80 + signal number,
5286       // because that is what all Unix shells do, and because
5287       // it allows callers to distinguish between process exit and
5288       // process death by signal.
5289       return 0x80 + WTERMSIG(status);
5290     } else {
5291       // Unknown exit code; pass it through
5292       return status;
5293     }
5294   }
5295 }
5296 
5297 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5298   size_t res;
5299   RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5300   return res;
5301 }
5302 
5303 int os::close(int fd) {
5304   return ::close(fd);
5305 }
5306 
5307 int os::socket_close(int fd) {
5308   return ::close(fd);
5309 }
5310 
5311 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5312   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5313          "Assumed _thread_in_native");
5314   RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5315 }
5316 
5317 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5318   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5319          "Assumed _thread_in_native");
5320   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5321 }
5322 
5323 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5324   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5325 }
5326 
5327 // As both poll and select can be interrupted by signals, we have to be
5328 // prepared to restart the system call after updating the timeout, unless
5329 // a poll() is done with timeout == -1, in which case we repeat with this
5330 // "wait forever" value.
5331 
5332 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5333   int _result;
5334   _result = ::connect(fd, him, len);
5335 
5336   // On Solaris, when a connect() call is interrupted, the connection
5337   // can be established asynchronously (see 6343810). Subsequent calls
5338   // to connect() must check the errno value which has the semantic
5339   // described below (copied from the connect() man page). Handling
5340   // of asynchronously established connections is required for both
5341   // blocking and non-blocking sockets.
5342   //     EINTR            The  connection  attempt  was   interrupted
5343   //                      before  any data arrived by the delivery of
5344   //                      a signal. The connection, however, will  be
5345   //                      established asynchronously.
5346   //
5347   //     EINPROGRESS      The socket is non-blocking, and the connec-
5348   //                      tion  cannot  be completed immediately.
5349   //
5350   //     EALREADY         The socket is non-blocking,  and a previous
5351   //                      connection  attempt  has  not yet been com-
5352   //                      pleted.
5353   //
5354   //     EISCONN          The socket is already connected.
5355   if (_result == OS_ERR && errno == EINTR) {
5356     // restarting a connect() changes its errno semantics
5357     RESTARTABLE(::connect(fd, him, len), _result);
5358     // undo these changes
5359     if (_result == OS_ERR) {
5360       if (errno == EALREADY) {
5361         errno = EINPROGRESS; // fall through
5362       } else if (errno == EISCONN) {
5363         errno = 0;
5364         return OS_OK;
5365       }
5366     }
5367   }
5368   return _result;
5369 }
5370 
5371 // Get the default path to the core file
5372 // Returns the length of the string
5373 int os::get_core_path(char* buffer, size_t bufferSize) {
5374   const char* p = get_current_directory(buffer, bufferSize);
5375 
5376   if (p == NULL) {
5377     assert(p != NULL, "failed to get current directory");
5378     return 0;
5379   }
5380 
5381   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5382                                               p, current_process_id());
5383 
5384   return strlen(buffer);
5385 }
5386 
5387 bool os::supports_map_sync() {
5388   return false;
5389 }
5390 
5391 #ifndef PRODUCT
5392 void TestReserveMemorySpecial_test() {
5393   // No tests available for this platform
5394 }
5395 #endif
5396 
5397 bool os::start_debugging(char *buf, int buflen) {
5398   int len = (int)strlen(buf);
5399   char *p = &buf[len];
5400 
5401   jio_snprintf(p, buflen-len,
5402                "\n\n"
5403                "Do you want to debug the problem?\n\n"
5404                "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5405                "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5406                "Otherwise, press RETURN to abort...",
5407                os::current_process_id(), os::current_thread_id());
5408 
5409   bool yes = os::message_box("Unexpected Error", buf);
5410 
5411   if (yes) {
5412     // yes, user asked VM to launch debugger
5413     jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5414 
5415     os::fork_and_exec(buf);
5416     yes = false;
5417   }
5418   return yes;
5419 }