1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/gcTimer.hpp"
  31 #include "gc/shared/gcTraceTime.inline.hpp"
  32 #include "gc/shared/referencePolicy.hpp"
  33 #include "gc/shared/referenceProcessor.inline.hpp"
  34 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "memory/universe.hpp"
  39 #include "oops/access.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "runtime/java.hpp"
  42 
  43 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  44 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  45 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  46 
  47 void referenceProcessor_init() {
  48   ReferenceProcessor::init_statics();
  49 }
  50 
  51 void ReferenceProcessor::init_statics() {
  52   // We need a monotonically non-decreasing time in ms but
  53   // os::javaTimeMillis() does not guarantee monotonicity.
  54   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  55 
  56   // Initialize the soft ref timestamp clock.
  57   _soft_ref_timestamp_clock = now;
  58   // Also update the soft ref clock in j.l.r.SoftReference
  59   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  60 
  61   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  62   if (is_server_compilation_mode_vm()) {
  63     _default_soft_ref_policy = new LRUMaxHeapPolicy();
  64   } else {
  65     _default_soft_ref_policy = new LRUCurrentHeapPolicy();
  66   }
  67   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  68     vm_exit_during_initialization("Could not allocate reference policy object");
  69   }
  70   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  71             RefDiscoveryPolicy == ReferentBasedDiscovery,
  72             "Unrecognized RefDiscoveryPolicy");
  73 }
  74 
  75 void ReferenceProcessor::enable_discovery(bool check_no_refs) {
  76 #ifdef ASSERT
  77   // Verify that we're not currently discovering refs
  78   assert(!_discovering_refs, "nested call?");
  79 
  80   if (check_no_refs) {
  81     // Verify that the discovered lists are empty
  82     verify_no_references_recorded();
  83   }
  84 #endif // ASSERT
  85 
  86   // Someone could have modified the value of the static
  87   // field in the j.l.r.SoftReference class that holds the
  88   // soft reference timestamp clock using reflection or
  89   // Unsafe between GCs. Unconditionally update the static
  90   // field in ReferenceProcessor here so that we use the new
  91   // value during reference discovery.
  92 
  93   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  94   _discovering_refs = true;
  95 }
  96 
  97 ReferenceProcessor::ReferenceProcessor(BoolObjectClosure* is_subject_to_discovery,
  98                                        bool      mt_processing,
  99                                        uint      mt_processing_degree,
 100                                        bool      mt_discovery,
 101                                        uint      mt_discovery_degree,
 102                                        bool      atomic_discovery,
 103                                        BoolObjectClosure* is_alive_non_header,
 104                                        bool      adjust_no_of_processing_threads)  :
 105   _is_subject_to_discovery(is_subject_to_discovery),
 106   _discovering_refs(false),
 107   _enqueuing_is_done(false),
 108   _processing_is_mt(mt_processing),
 109   _next_id(0),
 110   _adjust_no_of_processing_threads(adjust_no_of_processing_threads),
 111   _is_alive_non_header(is_alive_non_header)
 112 {
 113   assert(is_subject_to_discovery != NULL, "must be set");
 114 
 115   _discovery_is_atomic = atomic_discovery;
 116   _discovery_is_mt     = mt_discovery;
 117   _num_queues          = MAX2(1U, mt_processing_degree);
 118   _max_num_queues      = MAX2(_num_queues, mt_discovery_degree);
 119   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 120             _max_num_queues * number_of_subclasses_of_ref(), mtGC);
 121 
 122   _discoveredSoftRefs    = &_discovered_refs[0];
 123   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_queues];
 124   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_queues];
 125   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_queues];
 126 
 127   // Initialize all entries to NULL
 128   for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
 129     _discovered_refs[i].clear();
 130   }
 131 
 132   setup_policy(false /* default soft ref policy */);
 133 }
 134 
 135 #ifndef PRODUCT
 136 void ReferenceProcessor::verify_no_references_recorded() {
 137   guarantee(!_discovering_refs, "Discovering refs?");
 138   for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
 139     guarantee(_discovered_refs[i].is_empty(),
 140               "Found non-empty discovered list at %u", i);
 141   }
 142 }
 143 #endif
 144 
 145 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 146   for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
 147     if (UseCompressedOops) {
 148       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 149     } else {
 150       f->do_oop((oop*)_discovered_refs[i].adr_head());
 151     }
 152   }
 153 }
 154 
 155 void ReferenceProcessor::update_soft_ref_master_clock() {
 156   // Update (advance) the soft ref master clock field. This must be done
 157   // after processing the soft ref list.
 158 
 159   // We need a monotonically non-decreasing time in ms but
 160   // os::javaTimeMillis() does not guarantee monotonicity.
 161   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 162   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 163   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 164 
 165   NOT_PRODUCT(
 166   if (now < _soft_ref_timestamp_clock) {
 167     log_warning(gc)("time warp: " JLONG_FORMAT " to " JLONG_FORMAT,
 168                     _soft_ref_timestamp_clock, now);
 169   }
 170   )
 171   // The values of now and _soft_ref_timestamp_clock are set using
 172   // javaTimeNanos(), which is guaranteed to be monotonically
 173   // non-decreasing provided the underlying platform provides such
 174   // a time source (and it is bug free).
 175   // In product mode, however, protect ourselves from non-monotonicity.
 176   if (now > _soft_ref_timestamp_clock) {
 177     _soft_ref_timestamp_clock = now;
 178     java_lang_ref_SoftReference::set_clock(now);
 179   }
 180   // Else leave clock stalled at its old value until time progresses
 181   // past clock value.
 182 }
 183 
 184 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) const {
 185   size_t total = 0;
 186   for (uint i = 0; i < _max_num_queues; ++i) {
 187     total += lists[i].length();
 188   }
 189   return total;
 190 }
 191 
 192 #ifdef ASSERT
 193 void ReferenceProcessor::verify_total_count_zero(DiscoveredList lists[], const char* type) {
 194   size_t count = total_count(lists);
 195   assert(count == 0, "%ss must be empty but has " SIZE_FORMAT " elements", type, count);
 196 }
 197 #endif
 198 
 199 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
 200   BoolObjectClosure*            is_alive,
 201   OopClosure*                   keep_alive,
 202   VoidClosure*                  complete_gc,
 203   AbstractRefProcTaskExecutor*  task_executor,
 204   ReferenceProcessorPhaseTimes* phase_times) {
 205 
 206   double start_time = os::elapsedTime();
 207 
 208   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 209   // Stop treating discovered references specially.
 210   disable_discovery();
 211 
 212   // If discovery was concurrent, someone could have modified
 213   // the value of the static field in the j.l.r.SoftReference
 214   // class that holds the soft reference timestamp clock using
 215   // reflection or Unsafe between when discovery was enabled and
 216   // now. Unconditionally update the static field in ReferenceProcessor
 217   // here so that we use the new value during processing of the
 218   // discovered soft refs.
 219 
 220   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 221 
 222   ReferenceProcessorStats stats(total_count(_discoveredSoftRefs),
 223                                 total_count(_discoveredWeakRefs),
 224                                 total_count(_discoveredFinalRefs),
 225                                 total_count(_discoveredPhantomRefs));
 226 
 227   {
 228     RefProcTotalPhaseTimesTracker tt(RefPhase1, phase_times, this);
 229     process_soft_ref_reconsider(is_alive, keep_alive, complete_gc,
 230                                 task_executor, phase_times);
 231   }
 232 
 233   update_soft_ref_master_clock();
 234 
 235   {
 236     RefProcTotalPhaseTimesTracker tt(RefPhase2, phase_times, this);
 237     process_soft_weak_final_refs(is_alive, keep_alive, complete_gc, task_executor, phase_times);
 238   }
 239 
 240   {
 241     RefProcTotalPhaseTimesTracker tt(RefPhase3, phase_times, this);
 242     process_final_keep_alive(keep_alive, complete_gc, task_executor, phase_times);
 243   }
 244 
 245   {
 246     RefProcTotalPhaseTimesTracker tt(RefPhase4, phase_times, this);
 247     process_phantom_refs(is_alive, keep_alive, complete_gc, task_executor, phase_times);
 248   }
 249 
 250   if (task_executor != NULL) {
 251     // Record the work done by the parallel workers.
 252     task_executor->set_single_threaded_mode();
 253   }
 254 
 255   phase_times->set_total_time_ms((os::elapsedTime() - start_time) * 1000);
 256 
 257   return stats;
 258 }
 259 
 260 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 261   _current_discovered_addr = java_lang_ref_Reference::discovered_addr_raw(_current_discovered);
 262   oop discovered = java_lang_ref_Reference::discovered(_current_discovered);
 263   assert(_current_discovered_addr && oopDesc::is_oop_or_null(discovered),
 264          "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
 265   _next_discovered = discovered;
 266 
 267   _referent_addr = java_lang_ref_Reference::referent_addr_raw(_current_discovered);
 268   _referent = java_lang_ref_Reference::referent(_current_discovered);
 269   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 270          "Wrong oop found in java.lang.Reference object");
 271   assert(allow_null_referent ?
 272              oopDesc::is_oop_or_null(_referent)
 273            : oopDesc::is_oop(_referent),
 274          "Expected an oop%s for referent field at " PTR_FORMAT,
 275          (allow_null_referent ? " or NULL" : ""),
 276          p2i(_referent));
 277 }
 278 
 279 void DiscoveredListIterator::remove() {
 280   assert(oopDesc::is_oop(_current_discovered), "Dropping a bad reference");
 281   RawAccess<>::oop_store(_current_discovered_addr, oop(NULL));
 282 
 283   // First _prev_next ref actually points into DiscoveredList (gross).
 284   oop new_next;
 285   if (oopDesc::equals_raw(_next_discovered, _current_discovered)) {
 286     // At the end of the list, we should make _prev point to itself.
 287     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 288     // and _prev will be NULL.
 289     new_next = _prev_discovered;
 290   } else {
 291     new_next = _next_discovered;
 292   }
 293   // Remove Reference object from discovered list. Note that G1 does not need a
 294   // pre-barrier here because we know the Reference has already been found/marked,
 295   // that's how it ended up in the discovered list in the first place.
 296   RawAccess<>::oop_store(_prev_discovered_addr, new_next);
 297   _removed++;
 298   _refs_list.dec_length(1);
 299 }
 300 
 301 void DiscoveredListIterator::clear_referent() {
 302   RawAccess<>::oop_store(_referent_addr, oop(NULL));
 303 }
 304 
 305 void DiscoveredListIterator::enqueue() {
 306   HeapAccess<AS_NO_KEEPALIVE>::oop_store_at(_current_discovered,
 307                                             java_lang_ref_Reference::discovered_offset,
 308                                             _next_discovered);
 309 }
 310 
 311 void DiscoveredListIterator::complete_enqueue() {
 312   if (_prev_discovered != NULL) {
 313     // This is the last object.
 314     // Swap refs_list into pending list and set obj's
 315     // discovered to what we read from the pending list.
 316     oop old = Universe::swap_reference_pending_list(_refs_list.head());
 317     HeapAccess<AS_NO_KEEPALIVE>::oop_store_at(_prev_discovered, java_lang_ref_Reference::discovered_offset, old);
 318   }
 319 }
 320 
 321 inline void log_dropped_ref(const DiscoveredListIterator& iter, const char* reason) {
 322   if (log_develop_is_enabled(Trace, gc, ref)) {
 323     ResourceMark rm;
 324     log_develop_trace(gc, ref)("Dropping %s reference " PTR_FORMAT ": %s",
 325                                reason, p2i(iter.obj()),
 326                                iter.obj()->klass()->internal_name());
 327   }
 328 }
 329 
 330 inline void log_enqueued_ref(const DiscoveredListIterator& iter, const char* reason) {
 331   if (log_develop_is_enabled(Trace, gc, ref)) {
 332     ResourceMark rm;
 333     log_develop_trace(gc, ref)("Enqueue %s reference (" INTPTR_FORMAT ": %s)",
 334                                reason, p2i(iter.obj()), iter.obj()->klass()->internal_name());
 335   }
 336   assert(oopDesc::is_oop(iter.obj(), UseConcMarkSweepGC), "Adding a bad reference");
 337 }
 338 
 339 size_t ReferenceProcessor::process_soft_ref_reconsider_work(DiscoveredList&    refs_list,
 340                                                             ReferencePolicy*   policy,
 341                                                             BoolObjectClosure* is_alive,
 342                                                             OopClosure*        keep_alive,
 343                                                             VoidClosure*       complete_gc) {
 344   assert(policy != NULL, "Must have a non-NULL policy");
 345   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 346   // Decide which softly reachable refs should be kept alive.
 347   while (iter.has_next()) {
 348     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 349     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 350     if (referent_is_dead &&
 351         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 352       log_dropped_ref(iter, "by policy");
 353       // Remove Reference object from list
 354       iter.remove();
 355       // keep the referent around
 356       iter.make_referent_alive();
 357       iter.move_to_next();
 358     } else {
 359       iter.next();
 360     }
 361   }
 362   // Close the reachable set
 363   complete_gc->do_void();
 364 
 365   log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT " discovered Refs by policy, from list " INTPTR_FORMAT,
 366                              iter.removed(), iter.processed(), p2i(&refs_list));
 367   return iter.removed();
 368 }
 369 
 370 size_t ReferenceProcessor::process_soft_weak_final_refs_work(DiscoveredList&    refs_list,
 371                                                              BoolObjectClosure* is_alive,
 372                                                              OopClosure*        keep_alive,
 373                                                              bool               do_enqueue_and_clear) {
 374   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 375   while (iter.has_next()) {
 376     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 377     if (iter.referent() == NULL) {
 378       // Reference has been cleared since discovery; only possible if
 379       // discovery is not atomic (checked by load_ptrs).  Remove
 380       // reference from list.
 381       log_dropped_ref(iter, "cleared");
 382       iter.remove();
 383       iter.move_to_next();
 384     } else if (iter.is_referent_alive()) {
 385       // The referent is reachable after all.
 386       // Remove reference from list.
 387       log_dropped_ref(iter, "reachable");
 388       iter.remove();
 389       // Update the referent pointer as necessary.  Note that this
 390       // should not entail any recursive marking because the
 391       // referent must already have been traversed.
 392       iter.make_referent_alive();
 393       iter.move_to_next();
 394     } else {
 395       if (do_enqueue_and_clear) {
 396         iter.clear_referent();
 397         iter.enqueue();
 398         log_enqueued_ref(iter, "cleared");
 399       }
 400       // Keep in discovered list
 401       iter.next();
 402     }
 403   }
 404   if (do_enqueue_and_clear) {
 405     iter.complete_enqueue();
 406     refs_list.clear();
 407   }
 408 
 409   log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 410                              " Refs in discovered list " INTPTR_FORMAT,
 411                              iter.removed(), iter.processed(), p2i(&refs_list));
 412   return iter.removed();
 413 }
 414 
 415 size_t ReferenceProcessor::process_final_keep_alive_work(DiscoveredList& refs_list,
 416                                                          OopClosure*     keep_alive,
 417                                                          VoidClosure*    complete_gc) {
 418   DiscoveredListIterator iter(refs_list, keep_alive, NULL);
 419   while (iter.has_next()) {
 420     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 421     // keep the referent and followers around
 422     iter.make_referent_alive();
 423 
 424     // Self-loop next, to mark the FinalReference not active.
 425     assert(java_lang_ref_Reference::next(iter.obj()) == NULL, "enqueued FinalReference");
 426     java_lang_ref_Reference::set_next_raw(iter.obj(), iter.obj());
 427 
 428     iter.enqueue();
 429     log_enqueued_ref(iter, "Final");
 430     iter.next();
 431   }
 432   iter.complete_enqueue();
 433   // Close the reachable set
 434   complete_gc->do_void();
 435   refs_list.clear();
 436 
 437   assert(iter.removed() == 0, "This phase does not remove anything.");
 438   return iter.removed();
 439 }
 440 
 441 size_t ReferenceProcessor::process_phantom_refs_work(DiscoveredList&    refs_list,
 442                                           BoolObjectClosure* is_alive,
 443                                           OopClosure*        keep_alive,
 444                                           VoidClosure*       complete_gc) {
 445   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 446   while (iter.has_next()) {
 447     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 448 
 449     oop const referent = iter.referent();
 450 
 451     if (referent == NULL || iter.is_referent_alive()) {
 452       iter.make_referent_alive();
 453       iter.remove();
 454       iter.move_to_next();
 455     } else {
 456       iter.clear_referent();
 457       iter.enqueue();
 458       log_enqueued_ref(iter, "cleared Phantom");
 459       iter.next();
 460     }
 461   }
 462   iter.complete_enqueue();
 463   // Close the reachable set; needed for collectors which keep_alive_closure do
 464   // not immediately complete their work.
 465   complete_gc->do_void();
 466   refs_list.clear();
 467 
 468   return iter.removed();
 469 }
 470 
 471 void
 472 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 473   oop obj = NULL;
 474   oop next = refs_list.head();
 475   while (!oopDesc::equals_raw(next, obj)) {
 476     obj = next;
 477     next = java_lang_ref_Reference::discovered(obj);
 478     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 479   }
 480   refs_list.clear();
 481 }
 482 
 483 void ReferenceProcessor::abandon_partial_discovery() {
 484   // loop over the lists
 485   for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
 486     if ((i % _max_num_queues) == 0) {
 487       log_develop_trace(gc, ref)("Abandoning %s discovered list", list_name(i));
 488     }
 489     clear_discovered_references(_discovered_refs[i]);
 490   }
 491 }
 492 
 493 size_t ReferenceProcessor::total_reference_count(ReferenceType type) const {
 494   DiscoveredList* list = NULL;
 495 
 496   switch (type) {
 497     case REF_SOFT:
 498       list = _discoveredSoftRefs;
 499       break;
 500     case REF_WEAK:
 501       list = _discoveredWeakRefs;
 502       break;
 503     case REF_FINAL:
 504       list = _discoveredFinalRefs;
 505       break;
 506     case REF_PHANTOM:
 507       list = _discoveredPhantomRefs;
 508       break;
 509     case REF_OTHER:
 510     case REF_NONE:
 511     default:
 512       ShouldNotReachHere();
 513   }
 514   return total_count(list);
 515 }
 516 
 517 class RefProcPhase1Task : public AbstractRefProcTaskExecutor::ProcessTask {
 518 public:
 519   RefProcPhase1Task(ReferenceProcessor&           ref_processor,
 520                     ReferenceProcessorPhaseTimes* phase_times,
 521                     ReferencePolicy*              policy)
 522     : ProcessTask(ref_processor, true /* marks_oops_alive */, phase_times),
 523       _policy(policy) { }
 524 
 525   virtual void work(uint worker_id,
 526                     BoolObjectClosure& is_alive,
 527                     OopClosure& keep_alive,
 528                     VoidClosure& complete_gc)
 529   {
 530     RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::SoftRefSubPhase1, _phase_times, worker_id);
 531     size_t const removed = _ref_processor.process_soft_ref_reconsider_work(_ref_processor._discoveredSoftRefs[worker_id],
 532                                                                            _policy,
 533                                                                            &is_alive,
 534                                                                            &keep_alive,
 535                                                                            &complete_gc);
 536     _phase_times->add_ref_cleared(REF_SOFT, removed);
 537   }
 538 private:
 539   ReferencePolicy* _policy;
 540 };
 541 
 542 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 543   void run_phase2(uint worker_id,
 544                   DiscoveredList list[],
 545                   BoolObjectClosure& is_alive,
 546                   OopClosure& keep_alive,
 547                   bool do_enqueue_and_clear,
 548                   ReferenceType ref_type) {
 549     size_t const removed = _ref_processor.process_soft_weak_final_refs_work(list[worker_id],
 550                                                                             &is_alive,
 551                                                                             &keep_alive,
 552                                                                             do_enqueue_and_clear);
 553     _phase_times->add_ref_cleared(ref_type, removed);
 554   }
 555 
 556 public:
 557   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 558                     ReferenceProcessorPhaseTimes* phase_times)
 559     : ProcessTask(ref_processor, false /* marks_oops_alive */, phase_times) { }
 560 
 561   virtual void work(uint worker_id,
 562                     BoolObjectClosure& is_alive,
 563                     OopClosure& keep_alive,
 564                     VoidClosure& complete_gc) {
 565     RefProcWorkerTimeTracker t(_phase_times->phase2_worker_time_sec(), worker_id);
 566     {
 567       RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::SoftRefSubPhase2, _phase_times, worker_id);
 568       run_phase2(worker_id, _ref_processor._discoveredSoftRefs, is_alive, keep_alive, true /* do_enqueue_and_clear */, REF_SOFT);
 569     }
 570     {
 571       RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::WeakRefSubPhase2, _phase_times, worker_id);
 572       run_phase2(worker_id, _ref_processor._discoveredWeakRefs, is_alive, keep_alive, true /* do_enqueue_and_clear */, REF_WEAK);
 573     }
 574     {
 575       RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::FinalRefSubPhase2, _phase_times, worker_id);
 576       run_phase2(worker_id, _ref_processor._discoveredFinalRefs, is_alive, keep_alive, false /* do_enqueue_and_clear */, REF_FINAL);
 577     }
 578     // Close the reachable set; needed for collectors which keep_alive_closure do
 579     // not immediately complete their work.
 580     complete_gc.do_void();
 581   }
 582 };
 583 
 584 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 585 public:
 586   RefProcPhase3Task(ReferenceProcessor&           ref_processor,
 587                     ReferenceProcessorPhaseTimes* phase_times)
 588     : ProcessTask(ref_processor, true /* marks_oops_alive */, phase_times) { }
 589 
 590   virtual void work(uint worker_id,
 591                     BoolObjectClosure& is_alive,
 592                     OopClosure& keep_alive,
 593                     VoidClosure& complete_gc)
 594   {
 595     RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::FinalRefSubPhase3, _phase_times, worker_id);
 596     _ref_processor.process_final_keep_alive_work(_ref_processor._discoveredFinalRefs[worker_id], &keep_alive, &complete_gc);
 597   }
 598 };
 599 
 600 class RefProcPhase4Task: public AbstractRefProcTaskExecutor::ProcessTask {
 601 public:
 602   RefProcPhase4Task(ReferenceProcessor&           ref_processor,
 603                     ReferenceProcessorPhaseTimes* phase_times)
 604     : ProcessTask(ref_processor, false /* marks_oops_alive */, phase_times) { }
 605 
 606   virtual void work(uint worker_id,
 607                     BoolObjectClosure& is_alive,
 608                     OopClosure& keep_alive,
 609                     VoidClosure& complete_gc)
 610   {
 611     RefProcSubPhasesWorkerTimeTracker tt(ReferenceProcessor::PhantomRefSubPhase4, _phase_times, worker_id);
 612     size_t const removed = _ref_processor.process_phantom_refs_work(_ref_processor._discoveredPhantomRefs[worker_id],
 613                                                                     &is_alive,
 614                                                                     &keep_alive,
 615                                                                     &complete_gc);
 616     _phase_times->add_ref_cleared(REF_PHANTOM, removed);
 617   }
 618 };
 619 
 620 void ReferenceProcessor::log_reflist(const char* prefix, DiscoveredList list[], uint num_active_queues) {
 621   LogTarget(Trace, gc, ref) lt;
 622 
 623   if (!lt.is_enabled()) {
 624     return;
 625   }
 626 
 627   size_t total = 0;
 628 
 629   LogStream ls(lt);
 630   ls.print("%s", prefix);
 631   for (uint i = 0; i < num_active_queues; i++) {
 632     ls.print(SIZE_FORMAT " ", list[i].length());
 633     total += list[i].length();
 634   }
 635   ls.print_cr("(" SIZE_FORMAT ")", total);
 636 }
 637 
 638 #ifndef PRODUCT
 639 void ReferenceProcessor::log_reflist_counts(DiscoveredList ref_lists[], uint num_active_queues) {
 640   if (!log_is_enabled(Trace, gc, ref)) {
 641     return;
 642   }
 643 
 644   log_reflist("", ref_lists, num_active_queues);
 645 #ifdef ASSERT
 646   for (uint i = num_active_queues; i < _max_num_queues; i++) {
 647     assert(ref_lists[i].length() == 0, SIZE_FORMAT " unexpected References in %u",
 648            ref_lists[i].length(), i);
 649   }
 650 #endif
 651 }
 652 #endif
 653 
 654 void ReferenceProcessor::set_active_mt_degree(uint v) {
 655   _num_queues = v;
 656   _next_id = 0;
 657 }
 658 
 659 bool ReferenceProcessor::need_balance_queues(DiscoveredList refs_lists[]) {
 660   assert(_processing_is_mt, "why balance non-mt processing?");
 661   // _num_queues is the processing degree.  Only list entries up to
 662   // _num_queues will be processed, so any non-empty lists beyond
 663   // that must be redistributed to lists in that range.  Even if not
 664   // needed for that, balancing may be desirable to eliminate poor
 665   // distribution of references among the lists.
 666   if (ParallelRefProcBalancingEnabled) {
 667     return true;                // Configuration says do it.
 668   } else {
 669     // Configuration says don't balance, but if there are non-empty
 670     // lists beyond the processing degree, then must ignore the
 671     // configuration and balance anyway.
 672     for (uint i = _num_queues; i < _max_num_queues; ++i) {
 673       if (!refs_lists[i].is_empty()) {
 674         return true;            // Must balance despite configuration.
 675       }
 676     }
 677     return false;               // Safe to obey configuration and not balance.
 678   }
 679 }
 680 
 681 void ReferenceProcessor::maybe_balance_queues(DiscoveredList refs_lists[]) {
 682   assert(_processing_is_mt, "Should not call this otherwise");
 683   if (need_balance_queues(refs_lists)) {
 684     balance_queues(refs_lists);
 685   }
 686 }
 687 
 688 // Balances reference queues.
 689 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 690 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 691 // corresponding to the active workers will be processed.
 692 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 693 {
 694   // calculate total length
 695   size_t total_refs = 0;
 696   log_develop_trace(gc, ref)("Balance ref_lists ");
 697 
 698   log_reflist_counts(ref_lists, _max_num_queues);
 699 
 700   for (uint i = 0; i < _max_num_queues; ++i) {
 701     total_refs += ref_lists[i].length();
 702   }
 703   size_t avg_refs = total_refs / _num_queues + 1;
 704   uint to_idx = 0;
 705   for (uint from_idx = 0; from_idx < _max_num_queues; from_idx++) {
 706     bool move_all = false;
 707     if (from_idx >= _num_queues) {
 708       move_all = ref_lists[from_idx].length() > 0;
 709     }
 710     while ((ref_lists[from_idx].length() > avg_refs) ||
 711            move_all) {
 712       assert(to_idx < _num_queues, "Sanity Check!");
 713       if (ref_lists[to_idx].length() < avg_refs) {
 714         // move superfluous refs
 715         size_t refs_to_move;
 716         // Move all the Ref's if the from queue will not be processed.
 717         if (move_all) {
 718           refs_to_move = MIN2(ref_lists[from_idx].length(),
 719                               avg_refs - ref_lists[to_idx].length());
 720         } else {
 721           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 722                               avg_refs - ref_lists[to_idx].length());
 723         }
 724 
 725         assert(refs_to_move > 0, "otherwise the code below will fail");
 726 
 727         oop move_head = ref_lists[from_idx].head();
 728         oop move_tail = move_head;
 729         oop new_head  = move_head;
 730         // find an element to split the list on
 731         for (size_t j = 0; j < refs_to_move; ++j) {
 732           move_tail = new_head;
 733           new_head = java_lang_ref_Reference::discovered(new_head);
 734         }
 735 
 736         // Add the chain to the to list.
 737         if (ref_lists[to_idx].head() == NULL) {
 738           // to list is empty. Make a loop at the end.
 739           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
 740         } else {
 741           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
 742         }
 743         ref_lists[to_idx].set_head(move_head);
 744         ref_lists[to_idx].inc_length(refs_to_move);
 745 
 746         // Remove the chain from the from list.
 747         if (oopDesc::equals_raw(move_tail, new_head)) {
 748           // We found the end of the from list.
 749           ref_lists[from_idx].set_head(NULL);
 750         } else {
 751           ref_lists[from_idx].set_head(new_head);
 752         }
 753         ref_lists[from_idx].dec_length(refs_to_move);
 754         if (ref_lists[from_idx].length() == 0) {
 755           break;
 756         }
 757       } else {
 758         to_idx = (to_idx + 1) % _num_queues;
 759       }
 760     }
 761   }
 762 #ifdef ASSERT
 763   log_reflist_counts(ref_lists, _num_queues);
 764   size_t balanced_total_refs = 0;
 765   for (uint i = 0; i < _num_queues; ++i) {
 766     balanced_total_refs += ref_lists[i].length();
 767   }
 768   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 769 #endif
 770 }
 771 
 772 bool ReferenceProcessor::is_mt_processing_set_up(AbstractRefProcTaskExecutor* task_executor) const {
 773   return task_executor != NULL && _processing_is_mt;
 774 }
 775 
 776 void ReferenceProcessor::process_soft_ref_reconsider(BoolObjectClosure* is_alive,
 777                                                      OopClosure* keep_alive,
 778                                                      VoidClosure* complete_gc,
 779                                                      AbstractRefProcTaskExecutor* task_executor,
 780                                                      ReferenceProcessorPhaseTimes* phase_times) {
 781   assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set.");
 782 
 783   size_t const num_soft_refs = total_count(_discoveredSoftRefs);
 784   phase_times->set_ref_discovered(REF_SOFT, num_soft_refs);
 785 
 786   phase_times->set_processing_is_mt(_processing_is_mt);
 787 
 788   if (num_soft_refs == 0 || _current_soft_ref_policy == NULL) {
 789     log_debug(gc, ref)("Skipped phase1 of Reference Processing due to unavailable references");
 790     return;
 791   }
 792 
 793   RefProcMTDegreeAdjuster a(this, RefPhase1, num_soft_refs);
 794 
 795   if (_processing_is_mt) {
 796     RefProcBalanceQueuesTimeTracker tt(RefPhase1, phase_times);
 797     maybe_balance_queues(_discoveredSoftRefs);
 798   }
 799 
 800   RefProcPhaseTimeTracker tt(RefPhase1, phase_times);
 801 
 802   log_reflist("Phase1 Soft before", _discoveredSoftRefs, _max_num_queues);
 803   if (_processing_is_mt) {
 804     RefProcPhase1Task phase1(*this, phase_times, _current_soft_ref_policy);
 805     task_executor->execute(phase1, num_queues());
 806   } else {
 807     size_t removed = 0;
 808 
 809     RefProcSubPhasesWorkerTimeTracker tt2(SoftRefSubPhase1, phase_times, 0);
 810     for (uint i = 0; i < _max_num_queues; i++) {
 811       removed += process_soft_ref_reconsider_work(_discoveredSoftRefs[i], _current_soft_ref_policy,
 812                                                   is_alive, keep_alive, complete_gc);
 813     }
 814 
 815     phase_times->add_ref_cleared(REF_SOFT, removed);
 816   }
 817   log_reflist("Phase1 Soft after", _discoveredSoftRefs, _max_num_queues);
 818 }
 819 
 820 void ReferenceProcessor::process_soft_weak_final_refs(BoolObjectClosure* is_alive,
 821                                                       OopClosure* keep_alive,
 822                                                       VoidClosure* complete_gc,
 823                                                       AbstractRefProcTaskExecutor*  task_executor,
 824                                                       ReferenceProcessorPhaseTimes* phase_times) {
 825   assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set.");
 826 
 827   size_t const num_soft_refs = total_count(_discoveredSoftRefs);
 828   size_t const num_weak_refs = total_count(_discoveredWeakRefs);
 829   size_t const num_final_refs = total_count(_discoveredFinalRefs);
 830   size_t const num_total_refs = num_soft_refs + num_weak_refs + num_final_refs;
 831   phase_times->set_ref_discovered(REF_WEAK, num_weak_refs);
 832   phase_times->set_ref_discovered(REF_FINAL, num_final_refs);
 833 
 834   phase_times->set_processing_is_mt(_processing_is_mt);
 835 
 836   if (num_total_refs == 0) {
 837     log_debug(gc, ref)("Skipped phase2 of Reference Processing due to unavailable references");
 838     return;
 839   }
 840 
 841   RefProcMTDegreeAdjuster a(this, RefPhase2, num_total_refs);
 842 
 843   if (_processing_is_mt) {
 844     RefProcBalanceQueuesTimeTracker tt(RefPhase2, phase_times);
 845     maybe_balance_queues(_discoveredSoftRefs);
 846     maybe_balance_queues(_discoveredWeakRefs);
 847     maybe_balance_queues(_discoveredFinalRefs);
 848   }
 849 
 850   RefProcPhaseTimeTracker tt(RefPhase2, phase_times);
 851 
 852   log_reflist("Phase2 Soft before", _discoveredSoftRefs, _max_num_queues);
 853   log_reflist("Phase2 Weak before", _discoveredWeakRefs, _max_num_queues);
 854   log_reflist("Phase2 Final before", _discoveredFinalRefs, _max_num_queues);
 855   if (_processing_is_mt) {
 856     RefProcPhase2Task phase2(*this, phase_times);
 857     task_executor->execute(phase2, num_queues());
 858   } else {
 859     RefProcWorkerTimeTracker t(phase_times->phase2_worker_time_sec(), 0);
 860     {
 861       size_t removed = 0;
 862 
 863       RefProcSubPhasesWorkerTimeTracker tt2(SoftRefSubPhase2, phase_times, 0);
 864       for (uint i = 0; i < _max_num_queues; i++) {
 865         removed += process_soft_weak_final_refs_work(_discoveredSoftRefs[i], is_alive, keep_alive, true /* do_enqueue */);
 866       }
 867 
 868       phase_times->add_ref_cleared(REF_SOFT, removed);
 869     }
 870     {
 871       size_t removed = 0;
 872 
 873       RefProcSubPhasesWorkerTimeTracker tt2(WeakRefSubPhase2, phase_times, 0);
 874       for (uint i = 0; i < _max_num_queues; i++) {
 875         removed += process_soft_weak_final_refs_work(_discoveredWeakRefs[i], is_alive, keep_alive, true /* do_enqueue */);
 876       }
 877 
 878       phase_times->add_ref_cleared(REF_WEAK, removed);
 879     }
 880     {
 881       size_t removed = 0;
 882 
 883       RefProcSubPhasesWorkerTimeTracker tt2(FinalRefSubPhase2, phase_times, 0);
 884       for (uint i = 0; i < _max_num_queues; i++) {
 885         removed += process_soft_weak_final_refs_work(_discoveredFinalRefs[i], is_alive, keep_alive, false /* do_enqueue */);
 886       }
 887 
 888       phase_times->add_ref_cleared(REF_FINAL, removed);
 889     }
 890     complete_gc->do_void();
 891   }
 892   verify_total_count_zero(_discoveredSoftRefs, "SoftReference");
 893   verify_total_count_zero(_discoveredWeakRefs, "WeakReference");
 894   log_reflist("Phase2 Final after", _discoveredFinalRefs, _max_num_queues);
 895 }
 896 
 897 void ReferenceProcessor::process_final_keep_alive(OopClosure* keep_alive,
 898                                                   VoidClosure* complete_gc,
 899                                                   AbstractRefProcTaskExecutor*  task_executor,
 900                                                   ReferenceProcessorPhaseTimes* phase_times) {
 901   assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set.");
 902 
 903   size_t const num_final_refs = total_count(_discoveredFinalRefs);
 904 
 905   phase_times->set_processing_is_mt(_processing_is_mt);
 906 
 907   if (num_final_refs == 0) {
 908     log_debug(gc, ref)("Skipped phase3 of Reference Processing due to unavailable references");
 909     return;
 910   }
 911 
 912   RefProcMTDegreeAdjuster a(this, RefPhase3, num_final_refs);
 913 
 914   if (_processing_is_mt) {
 915     RefProcBalanceQueuesTimeTracker tt(RefPhase3, phase_times);
 916     maybe_balance_queues(_discoveredFinalRefs);
 917   }
 918 
 919   // Phase 3:
 920   // . Traverse referents of final references and keep them and followers alive.
 921   RefProcPhaseTimeTracker tt(RefPhase3, phase_times);
 922 
 923   if (_processing_is_mt) {
 924     RefProcPhase3Task phase3(*this, phase_times);
 925     task_executor->execute(phase3, num_queues());
 926   } else {
 927     RefProcSubPhasesWorkerTimeTracker tt2(FinalRefSubPhase3, phase_times, 0);
 928     for (uint i = 0; i < _max_num_queues; i++) {
 929       process_final_keep_alive_work(_discoveredFinalRefs[i], keep_alive, complete_gc);
 930     }
 931   }
 932   verify_total_count_zero(_discoveredFinalRefs, "FinalReference");
 933 }
 934 
 935 void ReferenceProcessor::process_phantom_refs(BoolObjectClosure* is_alive,
 936                                               OopClosure* keep_alive,
 937                                               VoidClosure* complete_gc,
 938                                               AbstractRefProcTaskExecutor* task_executor,
 939                                               ReferenceProcessorPhaseTimes* phase_times) {
 940   assert(!_processing_is_mt || task_executor != NULL, "Task executor must not be NULL when mt processing is set.");
 941 
 942   size_t const num_phantom_refs = total_count(_discoveredPhantomRefs);
 943   phase_times->set_ref_discovered(REF_PHANTOM, num_phantom_refs);
 944 
 945   phase_times->set_processing_is_mt(_processing_is_mt);
 946 
 947   if (num_phantom_refs == 0) {
 948     log_debug(gc, ref)("Skipped phase4 of Reference Processing due to unavailable references");
 949     return;
 950   }
 951 
 952   RefProcMTDegreeAdjuster a(this, RefPhase4, num_phantom_refs);
 953 
 954   if (_processing_is_mt) {
 955     RefProcBalanceQueuesTimeTracker tt(RefPhase4, phase_times);
 956     maybe_balance_queues(_discoveredPhantomRefs);
 957   }
 958 
 959   // Phase 4: Walk phantom references appropriately.
 960   RefProcPhaseTimeTracker tt(RefPhase4, phase_times);
 961 
 962   log_reflist("Phase4 Phantom before", _discoveredPhantomRefs, _max_num_queues);
 963   if (_processing_is_mt) {
 964     RefProcPhase4Task phase4(*this, phase_times);
 965     task_executor->execute(phase4, num_queues());
 966   } else {
 967     size_t removed = 0;
 968 
 969     RefProcSubPhasesWorkerTimeTracker tt(PhantomRefSubPhase4, phase_times, 0);
 970     for (uint i = 0; i < _max_num_queues; i++) {
 971       removed += process_phantom_refs_work(_discoveredPhantomRefs[i], is_alive, keep_alive, complete_gc);
 972     }
 973 
 974     phase_times->add_ref_cleared(REF_PHANTOM, removed);
 975   }
 976   verify_total_count_zero(_discoveredPhantomRefs, "PhantomReference");
 977 }
 978 
 979 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
 980   uint id = 0;
 981   // Determine the queue index to use for this object.
 982   if (_discovery_is_mt) {
 983     // During a multi-threaded discovery phase,
 984     // each thread saves to its "own" list.
 985     Thread* thr = Thread::current();
 986     id = thr->as_Worker_thread()->id();
 987   } else {
 988     // single-threaded discovery, we save in round-robin
 989     // fashion to each of the lists.
 990     if (_processing_is_mt) {
 991       id = next_id();
 992     }
 993   }
 994   assert(id < _max_num_queues, "Id is out of bounds id %u and max id %u)", id, _max_num_queues);
 995 
 996   // Get the discovered queue to which we will add
 997   DiscoveredList* list = NULL;
 998   switch (rt) {
 999     case REF_OTHER:
1000       // Unknown reference type, no special treatment
1001       break;
1002     case REF_SOFT:
1003       list = &_discoveredSoftRefs[id];
1004       break;
1005     case REF_WEAK:
1006       list = &_discoveredWeakRefs[id];
1007       break;
1008     case REF_FINAL:
1009       list = &_discoveredFinalRefs[id];
1010       break;
1011     case REF_PHANTOM:
1012       list = &_discoveredPhantomRefs[id];
1013       break;
1014     case REF_NONE:
1015       // we should not reach here if we are an InstanceRefKlass
1016     default:
1017       ShouldNotReachHere();
1018   }
1019   log_develop_trace(gc, ref)("Thread %d gets list " INTPTR_FORMAT, id, p2i(list));
1020   return list;
1021 }
1022 
1023 inline void
1024 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
1025                                               oop             obj,
1026                                               HeapWord*       discovered_addr) {
1027   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
1028   // First we must make sure this object is only enqueued once. CAS in a non null
1029   // discovered_addr.
1030   oop current_head = refs_list.head();
1031   // The last ref must have its discovered field pointing to itself.
1032   oop next_discovered = (current_head != NULL) ? current_head : obj;
1033 
1034   oop retest = HeapAccess<AS_NO_KEEPALIVE>::oop_atomic_cmpxchg(next_discovered, discovered_addr, oop(NULL));
1035 
1036   if (retest == NULL) {
1037     // This thread just won the right to enqueue the object.
1038     // We have separate lists for enqueueing, so no synchronization
1039     // is necessary.
1040     refs_list.set_head(obj);
1041     refs_list.inc_length(1);
1042 
1043     log_develop_trace(gc, ref)("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
1044                                p2i(obj), obj->klass()->internal_name());
1045   } else {
1046     // If retest was non NULL, another thread beat us to it:
1047     // The reference has already been discovered...
1048     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
1049                                p2i(obj), obj->klass()->internal_name());
1050   }
1051 }
1052 
1053 #ifndef PRODUCT
1054 // Non-atomic (i.e. concurrent) discovery might allow us
1055 // to observe j.l.References with NULL referents, being those
1056 // cleared concurrently by mutators during (or after) discovery.
1057 void ReferenceProcessor::verify_referent(oop obj) {
1058   bool da = discovery_is_atomic();
1059   oop referent = java_lang_ref_Reference::referent(obj);
1060   assert(da ? oopDesc::is_oop(referent) : oopDesc::is_oop_or_null(referent),
1061          "Bad referent " INTPTR_FORMAT " found in Reference "
1062          INTPTR_FORMAT " during %satomic discovery ",
1063          p2i(referent), p2i(obj), da ? "" : "non-");
1064 }
1065 #endif
1066 
1067 bool ReferenceProcessor::is_subject_to_discovery(oop const obj) const {
1068   return _is_subject_to_discovery->do_object_b(obj);
1069 }
1070 
1071 // We mention two of several possible choices here:
1072 // #0: if the reference object is not in the "originating generation"
1073 //     (or part of the heap being collected, indicated by our "span"
1074 //     we don't treat it specially (i.e. we scan it as we would
1075 //     a normal oop, treating its references as strong references).
1076 //     This means that references can't be discovered unless their
1077 //     referent is also in the same span. This is the simplest,
1078 //     most "local" and most conservative approach, albeit one
1079 //     that may cause weak references to be enqueued least promptly.
1080 //     We call this choice the "ReferenceBasedDiscovery" policy.
1081 // #1: the reference object may be in any generation (span), but if
1082 //     the referent is in the generation (span) being currently collected
1083 //     then we can discover the reference object, provided
1084 //     the object has not already been discovered by
1085 //     a different concurrently running collector (as may be the
1086 //     case, for instance, if the reference object is in CMS and
1087 //     the referent in DefNewGeneration), and provided the processing
1088 //     of this reference object by the current collector will
1089 //     appear atomic to every other collector in the system.
1090 //     (Thus, for instance, a concurrent collector may not
1091 //     discover references in other generations even if the
1092 //     referent is in its own generation). This policy may,
1093 //     in certain cases, enqueue references somewhat sooner than
1094 //     might Policy #0 above, but at marginally increased cost
1095 //     and complexity in processing these references.
1096 //     We call this choice the "RefeferentBasedDiscovery" policy.
1097 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1098   // Make sure we are discovering refs (rather than processing discovered refs).
1099   if (!_discovering_refs || !RegisterReferences) {
1100     return false;
1101   }
1102 
1103   if ((rt == REF_FINAL) && (java_lang_ref_Reference::next(obj) != NULL)) {
1104     // Don't rediscover non-active FinalReferences.
1105     return false;
1106   }
1107 
1108   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1109       !is_subject_to_discovery(obj)) {
1110     // Reference is not in the originating generation;
1111     // don't treat it specially (i.e. we want to scan it as a normal
1112     // object with strong references).
1113     return false;
1114   }
1115 
1116   // We only discover references whose referents are not (yet)
1117   // known to be strongly reachable.
1118   if (is_alive_non_header() != NULL) {
1119     verify_referent(obj);
1120     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1121       return false;  // referent is reachable
1122     }
1123   }
1124   if (rt == REF_SOFT) {
1125     // For soft refs we can decide now if these are not
1126     // current candidates for clearing, in which case we
1127     // can mark through them now, rather than delaying that
1128     // to the reference-processing phase. Since all current
1129     // time-stamp policies advance the soft-ref clock only
1130     // at a full collection cycle, this is always currently
1131     // accurate.
1132     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1133       return false;
1134     }
1135   }
1136 
1137   ResourceMark rm;      // Needed for tracing.
1138 
1139   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr_raw(obj);
1140   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1141   assert(oopDesc::is_oop_or_null(discovered), "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
1142   if (discovered != NULL) {
1143     // The reference has already been discovered...
1144     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
1145                                p2i(obj), obj->klass()->internal_name());
1146     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1147       // assumes that an object is not processed twice;
1148       // if it's been already discovered it must be on another
1149       // generation's discovered list; so we won't discover it.
1150       return false;
1151     } else {
1152       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1153              "Unrecognized policy");
1154       // Check assumption that an object is not potentially
1155       // discovered twice except by concurrent collectors that potentially
1156       // trace the same Reference object twice.
1157       assert(UseConcMarkSweepGC || UseG1GC || UseShenandoahGC,
1158              "Only possible with a concurrent marking collector");
1159       return true;
1160     }
1161   }
1162 
1163   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1164     verify_referent(obj);
1165     // Discover if and only if EITHER:
1166     // .. reference is in our span, OR
1167     // .. we are an atomic collector and referent is in our span
1168     if (is_subject_to_discovery(obj) ||
1169         (discovery_is_atomic() &&
1170          is_subject_to_discovery(java_lang_ref_Reference::referent(obj)))) {
1171     } else {
1172       return false;
1173     }
1174   } else {
1175     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1176            is_subject_to_discovery(obj), "code inconsistency");
1177   }
1178 
1179   // Get the right type of discovered queue head.
1180   DiscoveredList* list = get_discovered_list(rt);
1181   if (list == NULL) {
1182     return false;   // nothing special needs to be done
1183   }
1184 
1185   if (_discovery_is_mt) {
1186     add_to_discovered_list_mt(*list, obj, discovered_addr);
1187   } else {
1188     // We do a raw store here: the field will be visited later when processing
1189     // the discovered references.
1190     oop current_head = list->head();
1191     // The last ref must have its discovered field pointing to itself.
1192     oop next_discovered = (current_head != NULL) ? current_head : obj;
1193 
1194     assert(discovered == NULL, "control point invariant");
1195     RawAccess<>::oop_store(discovered_addr, next_discovered);
1196     list->set_head(obj);
1197     list->inc_length(1);
1198 
1199     log_develop_trace(gc, ref)("Discovered reference (" INTPTR_FORMAT ": %s)", p2i(obj), obj->klass()->internal_name());
1200   }
1201   assert(oopDesc::is_oop(obj), "Discovered a bad reference");
1202   verify_referent(obj);
1203   return true;
1204 }
1205 
1206 bool ReferenceProcessor::has_discovered_references() {
1207   for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
1208     if (!_discovered_refs[i].is_empty()) {
1209       return true;
1210     }
1211   }
1212   return false;
1213 }
1214 
1215 void ReferenceProcessor::preclean_discovered_references(BoolObjectClosure* is_alive,
1216                                                         OopClosure* keep_alive,
1217                                                         VoidClosure* complete_gc,
1218                                                         YieldClosure* yield,
1219                                                         GCTimer* gc_timer) {
1220   // These lists can be handled here in any order and, indeed, concurrently.
1221 
1222   // Soft references
1223   {
1224     GCTraceTime(Debug, gc, ref) tm("Preclean SoftReferences", gc_timer);
1225     log_reflist("SoftRef before: ", _discoveredSoftRefs, _max_num_queues);
1226     for (uint i = 0; i < _max_num_queues; i++) {
1227       if (yield->should_return()) {
1228         return;
1229       }
1230       if (preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1231                                       keep_alive, complete_gc, yield)) {
1232         log_reflist("SoftRef abort: ", _discoveredSoftRefs, _max_num_queues);
1233         return;
1234       }
1235     }
1236     log_reflist("SoftRef after: ", _discoveredSoftRefs, _max_num_queues);
1237   }
1238 
1239   // Weak references
1240   {
1241     GCTraceTime(Debug, gc, ref) tm("Preclean WeakReferences", gc_timer);
1242     log_reflist("WeakRef before: ", _discoveredWeakRefs, _max_num_queues);
1243     for (uint i = 0; i < _max_num_queues; i++) {
1244       if (yield->should_return()) {
1245         return;
1246       }
1247       if (preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1248                                       keep_alive, complete_gc, yield)) {
1249         log_reflist("WeakRef abort: ", _discoveredWeakRefs, _max_num_queues);
1250         return;
1251       }
1252     }
1253     log_reflist("WeakRef after: ", _discoveredWeakRefs, _max_num_queues);
1254   }
1255 
1256   // Final references
1257   {
1258     GCTraceTime(Debug, gc, ref) tm("Preclean FinalReferences", gc_timer);
1259     log_reflist("FinalRef before: ", _discoveredFinalRefs, _max_num_queues);
1260     for (uint i = 0; i < _max_num_queues; i++) {
1261       if (yield->should_return()) {
1262         return;
1263       }
1264       if (preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1265                                       keep_alive, complete_gc, yield)) {
1266         log_reflist("FinalRef abort: ", _discoveredFinalRefs, _max_num_queues);
1267         return;
1268       }
1269     }
1270     log_reflist("FinalRef after: ", _discoveredFinalRefs, _max_num_queues);
1271   }
1272 
1273   // Phantom references
1274   {
1275     GCTraceTime(Debug, gc, ref) tm("Preclean PhantomReferences", gc_timer);
1276     log_reflist("PhantomRef before: ", _discoveredPhantomRefs, _max_num_queues);
1277     for (uint i = 0; i < _max_num_queues; i++) {
1278       if (yield->should_return()) {
1279         return;
1280       }
1281       if (preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1282                                       keep_alive, complete_gc, yield)) {
1283         log_reflist("PhantomRef abort: ", _discoveredPhantomRefs, _max_num_queues);
1284         return;
1285       }
1286     }
1287     log_reflist("PhantomRef after: ", _discoveredPhantomRefs, _max_num_queues);
1288   }
1289 }
1290 
1291 // Walk the given discovered ref list, and remove all reference objects
1292 // whose referents are still alive, whose referents are NULL or which
1293 // are not active (have a non-NULL next field). NOTE: When we are
1294 // thus precleaning the ref lists (which happens single-threaded today),
1295 // we do not disable refs discovery to honor the correct semantics of
1296 // java.lang.Reference. As a result, we need to be careful below
1297 // that ref removal steps interleave safely with ref discovery steps
1298 // (in this thread).
1299 bool ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1300                                                      BoolObjectClosure* is_alive,
1301                                                      OopClosure*        keep_alive,
1302                                                      VoidClosure*       complete_gc,
1303                                                      YieldClosure*      yield) {
1304   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1305   while (iter.has_next()) {
1306     if (yield->should_return_fine_grain()) {
1307       return true;
1308     }
1309     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1310     if (iter.referent() == NULL || iter.is_referent_alive()) {
1311       // The referent has been cleared, or is alive; we need to trace
1312       // and mark its cohort.
1313       log_develop_trace(gc, ref)("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1314                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
1315       // Remove Reference object from list
1316       iter.remove();
1317       // Keep alive its cohort.
1318       iter.make_referent_alive();
1319       iter.move_to_next();
1320     } else {
1321       iter.next();
1322     }
1323   }
1324   // Close the reachable set
1325   complete_gc->do_void();
1326 
1327   if (iter.processed() > 0) {
1328     log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT " Refs in discovered list " INTPTR_FORMAT,
1329                                iter.removed(), iter.processed(), p2i(&refs_list));
1330   }
1331   return false;
1332 }
1333 
1334 const char* ReferenceProcessor::list_name(uint i) {
1335    assert(i <= _max_num_queues * number_of_subclasses_of_ref(),
1336           "Out of bounds index");
1337 
1338    int j = i / _max_num_queues;
1339    switch (j) {
1340      case 0: return "SoftRef";
1341      case 1: return "WeakRef";
1342      case 2: return "FinalRef";
1343      case 3: return "PhantomRef";
1344    }
1345    ShouldNotReachHere();
1346    return NULL;
1347 }
1348 
1349 uint RefProcMTDegreeAdjuster::ergo_proc_thread_count(size_t ref_count,
1350                                                      uint max_threads,
1351                                                      RefProcPhases phase) const {
1352   assert(0 < max_threads, "must allow at least one thread");
1353 
1354   if (use_max_threads(phase) || (ReferencesPerThread == 0)) {
1355     return max_threads;
1356   }
1357 
1358   size_t thread_count = 1 + (ref_count / ReferencesPerThread);
1359   return (uint)MIN3(thread_count,
1360                     static_cast<size_t>(max_threads),
1361                     (size_t)os::active_processor_count());
1362 }
1363 
1364 bool RefProcMTDegreeAdjuster::use_max_threads(RefProcPhases phase) const {
1365   // Even a small number of references in either of those cases could produce large amounts of work.
1366   return (phase == ReferenceProcessor::RefPhase1 || phase == ReferenceProcessor::RefPhase3);
1367 }
1368 
1369 RefProcMTDegreeAdjuster::RefProcMTDegreeAdjuster(ReferenceProcessor* rp,
1370                                                  RefProcPhases phase,
1371                                                  size_t ref_count):
1372     _rp(rp),
1373     _saved_mt_processing(_rp->processing_is_mt()),
1374     _saved_num_queues(_rp->num_queues()) {
1375   if (!_rp->processing_is_mt() || !_rp->adjust_no_of_processing_threads() || (ReferencesPerThread == 0)) {
1376     return;
1377   }
1378 
1379   uint workers = ergo_proc_thread_count(ref_count, _rp->num_queues(), phase);
1380 
1381   _rp->set_mt_processing(workers > 1);
1382   _rp->set_active_mt_degree(workers);
1383 }
1384 
1385 RefProcMTDegreeAdjuster::~RefProcMTDegreeAdjuster() {
1386   // Revert to previous status.
1387   _rp->set_mt_processing(_saved_mt_processing);
1388   _rp->set_active_mt_degree(_saved_num_queues);
1389 }