/* * Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "jvm.h" #include "memory/allocation.inline.hpp" #include "runtime/os.hpp" #include "runtime/os_perf.hpp" #include "os_solaris.inline.hpp" #include "utilities/macros.hpp" #include CPU_HEADER(vm_version_ext) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const double NANOS_PER_SEC = 1000000000.0; struct CPUPerfTicks { kstat_t* kstat; uint64_t last_idle; uint64_t last_total; double last_ratio; }; struct CPUPerfCounters { int nProcs; CPUPerfTicks* jvmTicks; kstat_ctl_t* kstat_ctrl; }; static int get_info(const char* path, void* info, size_t s, off_t o) { assert(path != NULL, "path is NULL!"); assert(info != NULL, "info is NULL!"); int fd = -1; if ((fd = os::open(path, O_RDONLY, 0)) < 0) { return OS_ERR; } if (pread(fd, info, s, o) != s) { close(fd); return OS_ERR; } close(fd); return OS_OK; } static int get_psinfo2(void* info, size_t s, off_t o) { return get_info("/proc/self/psinfo", info, s, o); } static int get_psinfo(psinfo_t* info) { return get_psinfo2(info, sizeof(*info), 0); } static int get_psinfo(char* file, psinfo_t* info) { assert(file != NULL, "file is NULL!"); assert(info != NULL, "info is NULL!"); return get_info(file, info, sizeof(*info), 0); } static int get_usage(prusage_t* usage) { assert(usage != NULL, "usage is NULL!"); return get_info("/proc/self/usage", usage, sizeof(*usage), 0); } static int read_cpustat(kstat_ctl_t* kstat_ctrl, CPUPerfTicks* load, cpu_stat_t* cpu_stat) { assert(kstat_ctrl != NULL, "kstat_ctrl pointer is NULL!"); assert(load != NULL, "load pointer is NULL!"); assert(cpu_stat != NULL, "cpu_stat pointer is NULL!"); if (load->kstat == NULL) { // no handle. return OS_ERR; } if (kstat_read(kstat_ctrl, load->kstat, cpu_stat) == OS_ERR) { // disable handle for this CPU load->kstat = NULL; return OS_ERR; } return OS_OK; } static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters) { assert(counters != NULL, "counters pointer is NULL!"); cpu_stat_t cpu_stat = {0}; if (which_logical_cpu >= counters->nProcs) { return .0; } CPUPerfTicks load = counters->jvmTicks[which_logical_cpu]; if (read_cpustat(counters->kstat_ctrl, &load, &cpu_stat) != OS_OK) { return .0; } uint_t* usage = cpu_stat.cpu_sysinfo.cpu; if (usage == NULL) { return .0; } uint64_t c_idle = usage[CPU_IDLE]; uint64_t c_total = 0; for (int i = 0; i < CPU_STATES; i++) { c_total += usage[i]; } // Calculate diff against previous snapshot uint64_t d_idle = c_idle - load.last_idle; uint64_t d_total = c_total - load.last_total; /** update if weve moved */ if (d_total > 0) { // Save current values for next time around load.last_idle = c_idle; load.last_total = c_total; load.last_ratio = (double) (d_total - d_idle) / d_total; } return load.last_ratio; } static int get_boot_time(uint64_t* time) { assert(time != NULL, "time pointer is NULL!"); setutxent(); for(;;) { struct utmpx* u; if ((u = getutxent()) == NULL) { break; } if (u->ut_type == BOOT_TIME) { *time = u->ut_xtime; endutxent(); return OS_OK; } } endutxent(); return OS_ERR; } static int get_noof_context_switches(CPUPerfCounters* counters, uint64_t* switches) { assert(switches != NULL, "switches pointer is NULL!"); assert(counters != NULL, "counter pointer is NULL!"); *switches = 0; uint64_t s = 0; // Collect data from all CPUs for (int i = 0; i < counters->nProcs; i++) { cpu_stat_t cpu_stat = {0}; CPUPerfTicks load = counters->jvmTicks[i]; if (read_cpustat(counters->kstat_ctrl, &load, &cpu_stat) == OS_OK) { s += cpu_stat.cpu_sysinfo.pswitch; } else { //fail fast... return OS_ERR; } } *switches = s; return OS_OK; } static int perf_context_switch_rate(CPUPerfCounters* counters, double* rate) { assert(counters != NULL, "counters is NULL!"); assert(rate != NULL, "rate pointer is NULL!"); static pthread_mutex_t contextSwitchLock = PTHREAD_MUTEX_INITIALIZER; static uint64_t lastTime = 0; static uint64_t lastSwitches = 0; static double lastRate = 0.0; uint64_t lt = 0; int res = 0; if (lastTime == 0) { uint64_t tmp; if (get_boot_time(&tmp) < 0) { return OS_ERR; } lt = tmp * 1000; } res = OS_OK; pthread_mutex_lock(&contextSwitchLock); { uint64_t sw = 0; clock_t t, d; if (lastTime == 0) { lastTime = lt; } t = clock(); d = t - lastTime; if (d == 0) { *rate = lastRate; } else if (get_noof_context_switches(counters, &sw)== OS_OK) { *rate = ((double)(sw - lastSwitches) / d) * 1000; lastRate = *rate; lastSwitches = sw; lastTime = t; } else { *rate = 0.0; res = OS_ERR; } if (*rate < 0.0) { *rate = 0.0; lastRate = 0.0; } } pthread_mutex_unlock(&contextSwitchLock); return res; } class CPUPerformanceInterface::CPUPerformance : public CHeapObj { friend class CPUPerformanceInterface; private: CPUPerfCounters _counters; int cpu_load(int which_logical_cpu, double* cpu_load); int context_switch_rate(double* rate); int cpu_load_total_process(double* cpu_load); int cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad); CPUPerformance(); ~CPUPerformance(); bool initialize(); }; CPUPerformanceInterface::CPUPerformance::CPUPerformance() { _counters.nProcs = 0; _counters.jvmTicks = NULL; _counters.kstat_ctrl = NULL; } bool CPUPerformanceInterface::CPUPerformance::initialize() { // initialize kstat control structure, _counters.kstat_ctrl = kstat_open(); assert(_counters.kstat_ctrl != NULL, "error initializing kstat control structure!"); if (NULL == _counters.kstat_ctrl) { return false; } // Get number of CPU(s) if ((_counters.nProcs = sysconf(_SC_NPROCESSORS_ONLN)) == OS_ERR) { // ignore error? _counters.nProcs = 1; } assert(_counters.nProcs > 0, "no CPUs detected in sysconf call!"); if (_counters.nProcs == 0) { return false; } // Data structure(s) for saving CPU load (one per CPU) size_t array_entry_count = _counters.nProcs; _counters.jvmTicks = NEW_C_HEAP_ARRAY(CPUPerfTicks, array_entry_count, mtInternal); if (NULL == _counters.jvmTicks) { return false; } memset(_counters.jvmTicks, 0, array_entry_count * sizeof(*_counters.jvmTicks)); // Get kstat cpu_stat counters for every CPU // loop over kstat to find our cpu_stat(s) int i = 0; for (kstat_t* kstat = _counters.kstat_ctrl->kc_chain; kstat != NULL; kstat = kstat->ks_next) { if (strncmp(kstat->ks_module, "cpu_stat", 8) == 0) { if (kstat_read(_counters.kstat_ctrl, kstat, NULL) == OS_ERR) { continue; } if (i == _counters.nProcs) { // more cpu_stats than reported CPUs break; } _counters.jvmTicks[i++].kstat = kstat; } } return true; } CPUPerformanceInterface::CPUPerformance::~CPUPerformance() { if (_counters.jvmTicks != NULL) { FREE_C_HEAP_ARRAY(char, _counters.jvmTicks); } if (_counters.kstat_ctrl != NULL) { kstat_close(_counters.kstat_ctrl); } } int CPUPerformanceInterface::CPUPerformance::cpu_load(int which_logical_cpu, double* cpu_load) { assert(cpu_load != NULL, "cpu_load pointer is NULL!"); double t = .0; if (-1 == which_logical_cpu) { for (int i = 0; i < _counters.nProcs; i++) { t += get_cpu_load(i, &_counters); } // Cap total systemload to 1.0 t = MIN2((t / _counters.nProcs), 1.0); } else { t = MIN2(get_cpu_load(which_logical_cpu, &_counters), 1.0); } *cpu_load = t; return OS_OK; } int CPUPerformanceInterface::CPUPerformance::cpu_load_total_process(double* cpu_load) { assert(cpu_load != NULL, "cpu_load pointer is NULL!"); psinfo_t info; // Get the percentage of "recent cpu usage" from all the lwp:s in the JVM:s // process. This is returned as a value between 0.0 and 1.0 multiplied by 0x8000. if (get_psinfo2(&info.pr_pctcpu, sizeof(info.pr_pctcpu), offsetof(psinfo_t, pr_pctcpu)) != 0) { *cpu_load = 0.0; return OS_ERR; } *cpu_load = (double) info.pr_pctcpu / 0x8000; return OS_OK; } int CPUPerformanceInterface::CPUPerformance::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) { assert(pjvmUserLoad != NULL, "pjvmUserLoad not inited"); assert(pjvmKernelLoad != NULL, "pjvmKernelLoad not inited"); assert(psystemTotalLoad != NULL, "psystemTotalLoad not inited"); static uint64_t lastTime; static uint64_t lastUser, lastKernel; static double lastUserRes, lastKernelRes; pstatus_t pss; psinfo_t info; *pjvmKernelLoad = *pjvmUserLoad = *psystemTotalLoad = 0; if (get_info("/proc/self/status", &pss.pr_utime, sizeof(timestruc_t)*2, offsetof(pstatus_t, pr_utime)) != 0) { return OS_ERR; } if (get_psinfo(&info) != 0) { return OS_ERR; } // get the total time in user, kernel and total time // check ratios for 'lately' and multiply the 'recent load'. uint64_t time = (info.pr_time.tv_sec * NANOS_PER_SEC) + info.pr_time.tv_nsec; uint64_t user = (pss.pr_utime.tv_sec * NANOS_PER_SEC) + pss.pr_utime.tv_nsec; uint64_t kernel = (pss.pr_stime.tv_sec * NANOS_PER_SEC) + pss.pr_stime.tv_nsec; uint64_t diff = time - lastTime; double load = (double) info.pr_pctcpu / 0x8000; if (diff > 0) { lastUserRes = (load * (user - lastUser)) / diff; lastKernelRes = (load * (kernel - lastKernel)) / diff; // BUG9182835 - patch for clamping these values to sane ones. lastUserRes = MIN2(1, lastUserRes); lastUserRes = MAX2(0, lastUserRes); lastKernelRes = MIN2(1, lastKernelRes); lastKernelRes = MAX2(0, lastKernelRes); } double t = .0; cpu_load(-1, &t); // clamp at user+system and 1.0 if (lastUserRes + lastKernelRes > t) { t = MIN2(lastUserRes + lastKernelRes, 1.0); } *pjvmUserLoad = lastUserRes; *pjvmKernelLoad = lastKernelRes; *psystemTotalLoad = t; lastTime = time; lastUser = user; lastKernel = kernel; return OS_OK; } int CPUPerformanceInterface::CPUPerformance::context_switch_rate(double* rate) { return perf_context_switch_rate(&_counters, rate); } CPUPerformanceInterface::CPUPerformanceInterface() { _impl = NULL; } bool CPUPerformanceInterface::initialize() { _impl = new CPUPerformanceInterface::CPUPerformance(); return _impl != NULL && _impl->initialize(); } CPUPerformanceInterface::~CPUPerformanceInterface(void) { if (_impl != NULL) { delete _impl; } } int CPUPerformanceInterface::cpu_load(int which_logical_cpu, double* cpu_load) const { return _impl->cpu_load(which_logical_cpu, cpu_load); } int CPUPerformanceInterface::cpu_load_total_process(double* cpu_load) const { return _impl->cpu_load_total_process(cpu_load); } int CPUPerformanceInterface::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) const { return _impl->cpu_loads_process(pjvmUserLoad, pjvmKernelLoad, psystemTotalLoad); } int CPUPerformanceInterface::context_switch_rate(double* rate) const { return _impl->context_switch_rate(rate); } class SystemProcessInterface::SystemProcesses : public CHeapObj { friend class SystemProcessInterface; private: class ProcessIterator : public CHeapObj { friend class SystemProcessInterface::SystemProcesses; private: DIR* _dir; struct dirent* _entry; bool _valid; ProcessIterator(); ~ProcessIterator(); bool initialize(); bool is_valid() const { return _valid; } bool is_valid_entry(struct dirent* const entry) const; bool is_dir(const char* const name) const; char* allocate_string(const char* const str) const; int current(SystemProcess* const process_info); int next_process(); }; ProcessIterator* _iterator; SystemProcesses(); bool initialize(); ~SystemProcesses(); //information about system processes int system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const; }; bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_dir(const char* name) const { struct stat64 mystat; int ret_val = 0; ret_val = ::stat64(name, &mystat); if (ret_val < 0) { return false; } ret_val = S_ISDIR(mystat.st_mode); return ret_val > 0; } // if it has a numeric name, is a directory and has a 'psinfo' file in it bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_valid_entry(struct dirent* entry) const { // ignore the "." and ".." directories if ((strcmp(entry->d_name, ".") == 0) || (strcmp(entry->d_name, "..") == 0)) { return false; } char buffer[PATH_MAX] = {0}; uint64_t size = 0; bool result = false; FILE *fp = NULL; if (atoi(entry->d_name) != 0) { jio_snprintf(buffer, PATH_MAX, "/proc/%s", entry->d_name); if (is_dir(buffer)) { memset(buffer, 0, PATH_MAX); jio_snprintf(buffer, PATH_MAX, "/proc/%s/psinfo", entry->d_name); if ((fp = fopen(buffer, "r")) != NULL) { int nread = 0; psinfo_t psinfo_data; if ((nread = fread(&psinfo_data, 1, sizeof(psinfo_t), fp)) != -1) { // only considering system process owned by root if (psinfo_data.pr_uid == 0) { result = true; } } } } } if (fp != NULL) { fclose(fp); } return result; } char* SystemProcessInterface::SystemProcesses::ProcessIterator::allocate_string(const char* str) const { if (str != NULL) { return os::strdup_check_oom(str, mtInternal); } return NULL; } int SystemProcessInterface::SystemProcesses::ProcessIterator::current(SystemProcess* process_info) { if (!is_valid()) { return OS_ERR; } char psinfo_path[PATH_MAX] = {0}; jio_snprintf(psinfo_path, PATH_MAX, "/proc/%s/psinfo", _entry->d_name); FILE *fp = NULL; if ((fp = fopen(psinfo_path, "r")) == NULL) { return OS_ERR; } int nread = 0; psinfo_t psinfo_data; if ((nread = fread(&psinfo_data, 1, sizeof(psinfo_t), fp)) == -1) { fclose(fp); return OS_ERR; } char *exe_path = NULL; if ((psinfo_data.pr_fname != NULL) && (psinfo_data.pr_psargs != NULL)) { char *path_substring = strstr(psinfo_data.pr_psargs, psinfo_data.pr_fname); if (path_substring != NULL) { int len = path_substring - psinfo_data.pr_psargs; exe_path = NEW_C_HEAP_ARRAY(char, len+1, mtInternal); if (exe_path != NULL) { jio_snprintf(exe_path, len, "%s", psinfo_data.pr_psargs); exe_path[len] = '\0'; } } } process_info->set_pid(atoi(_entry->d_name)); process_info->set_name(allocate_string(psinfo_data.pr_fname)); process_info->set_path(allocate_string(exe_path)); process_info->set_command_line(allocate_string(psinfo_data.pr_psargs)); if (exe_path != NULL) { FREE_C_HEAP_ARRAY(char, exe_path); } if (fp != NULL) { fclose(fp); } return OS_OK; } int SystemProcessInterface::SystemProcesses::ProcessIterator::next_process() { if (!is_valid()) { return OS_ERR; } do { _entry = os::readdir(_dir); if (_entry == NULL) { // Error or reached end. Could use errno to distinguish those cases. _valid = false; return OS_ERR; } } while(!is_valid_entry(_entry)); _valid = true; return OS_OK; } SystemProcessInterface::SystemProcesses::ProcessIterator::ProcessIterator() { _dir = NULL; _entry = NULL; _valid = false; } bool SystemProcessInterface::SystemProcesses::ProcessIterator::initialize() { _dir = os::opendir("/proc"); _entry = NULL; _valid = true; next_process(); return true; } SystemProcessInterface::SystemProcesses::ProcessIterator::~ProcessIterator() { if (_dir != NULL) { os::closedir(_dir); } } SystemProcessInterface::SystemProcesses::SystemProcesses() { _iterator = NULL; } bool SystemProcessInterface::SystemProcesses::initialize() { _iterator = new SystemProcessInterface::SystemProcesses::ProcessIterator(); return _iterator != NULL && _iterator->initialize(); } SystemProcessInterface::SystemProcesses::~SystemProcesses() { if (_iterator != NULL) { delete _iterator; } } int SystemProcessInterface::SystemProcesses::system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const { assert(system_processes != NULL, "system_processes pointer is NULL!"); assert(no_of_sys_processes != NULL, "system_processes counter pointer is NULL!"); assert(_iterator != NULL, "iterator is NULL!"); // initialize pointers *no_of_sys_processes = 0; *system_processes = NULL; while (_iterator->is_valid()) { SystemProcess* tmp = new SystemProcess(); _iterator->current(tmp); //if already existing head if (*system_processes != NULL) { //move "first to second" tmp->set_next(*system_processes); } // new head *system_processes = tmp; // increment (*no_of_sys_processes)++; // step forward _iterator->next_process(); } return OS_OK; } int SystemProcessInterface::system_processes(SystemProcess** system_procs, int* no_of_sys_processes) const { return _impl->system_processes(system_procs, no_of_sys_processes); } SystemProcessInterface::SystemProcessInterface() { _impl = NULL; } bool SystemProcessInterface::initialize() { _impl = new SystemProcessInterface::SystemProcesses(); return _impl != NULL && _impl->initialize(); } SystemProcessInterface::~SystemProcessInterface() { if (_impl != NULL) { delete _impl; } } CPUInformationInterface::CPUInformationInterface() { _cpu_info = NULL; } bool CPUInformationInterface::initialize() { _cpu_info = new CPUInformation(); if (_cpu_info == NULL) { return false; } _cpu_info->set_number_of_hardware_threads(VM_Version_Ext::number_of_threads()); _cpu_info->set_number_of_cores(VM_Version_Ext::number_of_cores()); _cpu_info->set_number_of_sockets(VM_Version_Ext::number_of_sockets()); _cpu_info->set_cpu_name(VM_Version_Ext::cpu_name()); _cpu_info->set_cpu_description(VM_Version_Ext::cpu_description()); return true; } CPUInformationInterface::~CPUInformationInterface() { if (_cpu_info != NULL) { if (_cpu_info->cpu_name() != NULL) { const char* cpu_name = _cpu_info->cpu_name(); FREE_C_HEAP_ARRAY(char, cpu_name); _cpu_info->set_cpu_name(NULL); } if (_cpu_info->cpu_description() != NULL) { const char* cpu_desc = _cpu_info->cpu_description(); FREE_C_HEAP_ARRAY(char, cpu_desc); _cpu_info->set_cpu_description(NULL); } delete _cpu_info; } } int CPUInformationInterface::cpu_information(CPUInformation& cpu_info) { if (_cpu_info == NULL) { return OS_ERR; } cpu_info = *_cpu_info; // shallow copy assignment return OS_OK; } class NetworkPerformanceInterface::NetworkPerformance : public CHeapObj { friend class NetworkPerformanceInterface; private: NetworkPerformance(); NetworkPerformance(const NetworkPerformance& rhs); // no impl NetworkPerformance& operator=(const NetworkPerformance& rhs); // no impl bool initialize(); ~NetworkPerformance(); int network_utilization(NetworkInterface** network_interfaces) const; }; NetworkPerformanceInterface::NetworkPerformance::NetworkPerformance() { } bool NetworkPerformanceInterface::NetworkPerformance::initialize() { return true; } NetworkPerformanceInterface::NetworkPerformance::~NetworkPerformance() { } int NetworkPerformanceInterface::NetworkPerformance::network_utilization(NetworkInterface** network_interfaces) const { kstat_ctl_t* ctl = kstat_open(); if (ctl == NULL) { return OS_ERR; } NetworkInterface* ret = NULL; for (kstat_t* k = ctl->kc_chain; k != NULL; k = k->ks_next) { if (strcmp(k->ks_class, "net") != 0) { continue; } if (strcmp(k->ks_module, "link") != 0) { continue; } if (kstat_read(ctl, k, NULL) == -1) { return OS_ERR; } uint64_t bytes_in = UINT64_MAX; uint64_t bytes_out = UINT64_MAX; for (int i = 0; i < k->ks_ndata; ++i) { kstat_named_t* data = &reinterpret_cast(k->ks_data)[i]; if (strcmp(data->name, "rbytes64") == 0) { bytes_in = data->value.ui64; } else if (strcmp(data->name, "obytes64") == 0) { bytes_out = data->value.ui64; } } if ((bytes_in != UINT64_MAX) && (bytes_out != UINT64_MAX)) { NetworkInterface* cur = new NetworkInterface(k->ks_name, bytes_in, bytes_out, ret); ret = cur; } } kstat_close(ctl); *network_interfaces = ret; return OS_OK; } NetworkPerformanceInterface::NetworkPerformanceInterface() { _impl = NULL; } NetworkPerformanceInterface::~NetworkPerformanceInterface() { if (_impl != NULL) { delete _impl; } } bool NetworkPerformanceInterface::initialize() { _impl = new NetworkPerformanceInterface::NetworkPerformance(); return _impl != NULL && _impl->initialize(); } int NetworkPerformanceInterface::network_utilization(NetworkInterface** network_interfaces) const { return _impl->network_utilization(network_interfaces); }