1 /*
  2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "gc/shared/gcId.hpp"
 27 #include "gc/shared/workgroup.hpp"
 28 #include "gc/shared/workerManager.hpp"
 29 #include "memory/allocation.hpp"
 30 #include "memory/allocation.inline.hpp"
 31 #include "runtime/atomic.hpp"
 32 #include "runtime/os.hpp"
 33 #include "runtime/semaphore.hpp"
 34 #include "runtime/thread.inline.hpp"
 35 
 36 // Definitions of WorkGang methods.
 37 
 38 // The current implementation will exit if the allocation
 39 // of any worker fails.
 40 void  AbstractWorkGang::initialize_workers() {
 41   log_develop_trace(gc, workgang)("Constructing work gang %s with %u threads", name(), total_workers());
 42   _workers = NEW_C_HEAP_ARRAY(AbstractGangWorker*, total_workers(), mtInternal);
 43   add_workers(true);
 44 }
 45 
 46 
 47 AbstractGangWorker* AbstractWorkGang::install_worker(uint worker_id) {
 48   AbstractGangWorker* new_worker = allocate_worker(worker_id);
 49   set_thread(worker_id, new_worker);
 50   return new_worker;
 51 }
 52 
 53 void AbstractWorkGang::add_workers(bool initializing) {
 54   add_workers(_active_workers, initializing);
 55 }
 56 
 57 void AbstractWorkGang::add_workers(uint active_workers, bool initializing) {
 58 
 59   os::ThreadType worker_type;
 60   if (are_ConcurrentGC_threads()) {
 61     worker_type = os::cgc_thread;
 62   } else {
 63     worker_type = os::pgc_thread;
 64   }
 65   uint previous_created_workers = _created_workers;
 66 
 67   _created_workers = WorkerManager::add_workers(this,
 68                                                 active_workers,
 69                                                 _total_workers,
 70                                                 _created_workers,
 71                                                 worker_type,
 72                                                 initializing);
 73   _active_workers = MIN2(_created_workers, _active_workers);
 74 
 75   WorkerManager::log_worker_creation(this, previous_created_workers, _active_workers, _created_workers, initializing);
 76 }
 77 
 78 AbstractGangWorker* AbstractWorkGang::worker(uint i) const {
 79   // Array index bounds checking.
 80   AbstractGangWorker* result = NULL;
 81   assert(_workers != NULL, "No workers for indexing");
 82   assert(i < total_workers(), "Worker index out of bounds");
 83   result = _workers[i];
 84   assert(result != NULL, "Indexing to null worker");
 85   return result;
 86 }
 87 
 88 void AbstractWorkGang::print_worker_threads_on(outputStream* st) const {
 89   uint workers = created_workers();
 90   for (uint i = 0; i < workers; i++) {
 91     worker(i)->print_on(st);
 92     st->cr();
 93   }
 94 }
 95 
 96 void AbstractWorkGang::threads_do(ThreadClosure* tc) const {
 97   assert(tc != NULL, "Null ThreadClosure");
 98   uint workers = created_workers();
 99   for (uint i = 0; i < workers; i++) {
100     tc->do_thread(worker(i));
101   }
102 }
103 
104 // WorkGang dispatcher implemented with semaphores.
105 //
106 // Semaphores don't require the worker threads to re-claim the lock when they wake up.
107 // This helps lowering the latency when starting and stopping the worker threads.
108 class SemaphoreGangTaskDispatcher : public GangTaskDispatcher {
109   // The task currently being dispatched to the GangWorkers.
110   AbstractGangTask* _task;
111 
112   volatile uint _started;
113   volatile uint _not_finished;
114 
115   // Semaphore used to start the GangWorkers.
116   Semaphore* _start_semaphore;
117   // Semaphore used to notify the coordinator that all workers are done.
118   Semaphore* _end_semaphore;
119 
120 public:
121   SemaphoreGangTaskDispatcher() :
122       _task(NULL),
123       _started(0),
124       _not_finished(0),
125       _start_semaphore(new Semaphore()),
126       _end_semaphore(new Semaphore())
127 { }
128 
129   ~SemaphoreGangTaskDispatcher() {
130     delete _start_semaphore;
131     delete _end_semaphore;
132   }
133 
134   void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) {
135     // No workers are allowed to read the state variables until they have been signaled.
136     _task         = task;
137     _not_finished = num_workers;
138 
139     // Dispatch 'num_workers' number of tasks.
140     _start_semaphore->signal(num_workers);
141 
142     // Wait for the last worker to signal the coordinator.
143     _end_semaphore->wait();
144 
145     // No workers are allowed to read the state variables after the coordinator has been signaled.
146     assert(_not_finished == 0, "%d not finished workers?", _not_finished);
147     _task    = NULL;
148     _started = 0;
149 
150   }
151 
152   WorkData worker_wait_for_task() {
153     // Wait for the coordinator to dispatch a task.
154     _start_semaphore->wait();
155 
156     uint num_started = Atomic::add(1u, &_started);
157 
158     // Subtract one to get a zero-indexed worker id.
159     uint worker_id = num_started - 1;
160 
161     return WorkData(_task, worker_id);
162   }
163 
164   void worker_done_with_task() {
165     // Mark that the worker is done with the task.
166     // The worker is not allowed to read the state variables after this line.
167     uint not_finished = Atomic::sub(1u, &_not_finished);
168 
169     // The last worker signals to the coordinator that all work is completed.
170     if (not_finished == 0) {
171       _end_semaphore->signal();
172     }
173   }
174 };
175 
176 class MutexGangTaskDispatcher : public GangTaskDispatcher {
177   AbstractGangTask* _task;
178 
179   volatile uint _started;
180   volatile uint _finished;
181   volatile uint _num_workers;
182 
183   Monitor* _monitor;
184 
185  public:
186   MutexGangTaskDispatcher() :
187     _task(NULL),
188     _started(0),
189     _finished(0),
190     _num_workers(0),
191     _monitor(new Monitor(Monitor::leaf, "WorkGang dispatcher lock", false, Monitor::_safepoint_check_never)) {
192   }
193 
194   ~MutexGangTaskDispatcher() {
195     delete _monitor;
196   }
197 
198   void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) {
199     MonitorLocker ml(_monitor, Mutex::_no_safepoint_check_flag);
200 
201     _task        = task;
202     _num_workers = num_workers;
203 
204     // Tell the workers to get to work.
205     _monitor->notify_all();
206 
207     // Wait for them to finish.
208     while (_finished < _num_workers) {
209       ml.wait();
210     }
211 
212     _task        = NULL;
213     _num_workers = 0;
214     _started     = 0;
215     _finished    = 0;
216   }
217 
218   WorkData worker_wait_for_task() {
219     MonitorLocker ml(_monitor, Mutex::_no_safepoint_check_flag);
220 
221     while (_num_workers == 0 || _started == _num_workers) {
222       _monitor->wait();
223     }
224 
225     _started++;
226 
227     // Subtract one to get a zero-indexed worker id.
228     uint worker_id = _started - 1;
229 
230     return WorkData(_task, worker_id);
231   }
232 
233   void worker_done_with_task() {
234     MonitorLocker ml(_monitor, Mutex::_no_safepoint_check_flag);
235 
236     _finished++;
237 
238     if (_finished == _num_workers) {
239       // This will wake up all workers and not only the coordinator.
240       _monitor->notify_all();
241     }
242   }
243 };
244 
245 static GangTaskDispatcher* create_dispatcher() {
246   if (UseSemaphoreGCThreadsSynchronization) {
247     return new SemaphoreGangTaskDispatcher();
248   }
249 
250   return new MutexGangTaskDispatcher();
251 }
252 
253 WorkGang::WorkGang(const char* name,
254                    uint  workers,
255                    bool  are_GC_task_threads,
256                    bool  are_ConcurrentGC_threads) :
257     AbstractWorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads),
258     _dispatcher(create_dispatcher())
259 { }
260 
261 WorkGang::~WorkGang() {
262   delete _dispatcher;
263 }
264 
265 AbstractGangWorker* WorkGang::allocate_worker(uint worker_id) {
266   return new GangWorker(this, worker_id);
267 }
268 
269 void WorkGang::run_task(AbstractGangTask* task) {
270   run_task(task, active_workers());
271 }
272 
273 void WorkGang::run_task(AbstractGangTask* task, uint num_workers) {
274   guarantee(num_workers <= total_workers(),
275             "Trying to execute task %s with %u workers which is more than the amount of total workers %u.",
276             task->name(), num_workers, total_workers());
277   guarantee(num_workers > 0, "Trying to execute task %s with zero workers", task->name());
278   uint old_num_workers = _active_workers;
279   update_active_workers(num_workers);
280   _dispatcher->coordinator_execute_on_workers(task, num_workers);
281   update_active_workers(old_num_workers);
282 }
283 
284 AbstractGangWorker::AbstractGangWorker(AbstractWorkGang* gang, uint id) {
285   _gang = gang;
286   set_id(id);
287   set_name("%s#%d", gang->name(), id);
288 }
289 
290 void AbstractGangWorker::run() {
291   initialize();
292   loop();
293 }
294 
295 void AbstractGangWorker::initialize() {
296   assert(_gang != NULL, "No gang to run in");
297   os::set_priority(this, NearMaxPriority);
298   log_develop_trace(gc, workgang)("Running gang worker for gang %s id %u", gang()->name(), id());
299   assert(!Thread::current()->is_VM_thread(), "VM thread should not be part"
300          " of a work gang");
301 }
302 
303 bool AbstractGangWorker::is_GC_task_thread() const {
304   return gang()->are_GC_task_threads();
305 }
306 
307 bool AbstractGangWorker::is_ConcurrentGC_thread() const {
308   return gang()->are_ConcurrentGC_threads();
309 }
310 
311 void AbstractGangWorker::print_on(outputStream* st) const {
312   st->print("\"%s\" ", name());
313   Thread::print_on(st);
314   st->cr();
315 }
316 
317 void AbstractGangWorker::print() const { print_on(tty); }
318 
319 WorkData GangWorker::wait_for_task() {
320   return gang()->dispatcher()->worker_wait_for_task();
321 }
322 
323 void GangWorker::signal_task_done() {
324   gang()->dispatcher()->worker_done_with_task();
325 }
326 
327 void GangWorker::run_task(WorkData data) {
328   GCIdMark gc_id_mark(data._task->gc_id());
329   log_develop_trace(gc, workgang)("Running work gang: %s task: %s worker: %u", name(), data._task->name(), data._worker_id);
330 
331   data._task->work(data._worker_id);
332 
333   log_develop_trace(gc, workgang)("Finished work gang: %s task: %s worker: %u thread: " PTR_FORMAT,
334                                   name(), data._task->name(), data._worker_id, p2i(Thread::current()));
335 }
336 
337 void GangWorker::loop() {
338   while (true) {
339     WorkData data = wait_for_task();
340 
341     run_task(data);
342 
343     signal_task_done();
344   }
345 }
346 
347 // *** WorkGangBarrierSync
348 
349 WorkGangBarrierSync::WorkGangBarrierSync()
350   : _monitor(Mutex::safepoint, "work gang barrier sync", true,
351              Monitor::_safepoint_check_never),
352     _n_workers(0), _n_completed(0), _should_reset(false), _aborted(false) {
353 }
354 
355 WorkGangBarrierSync::WorkGangBarrierSync(uint n_workers, const char* name)
356   : _monitor(Mutex::safepoint, name, true, Monitor::_safepoint_check_never),
357     _n_workers(n_workers), _n_completed(0), _should_reset(false), _aborted(false) {
358 }
359 
360 void WorkGangBarrierSync::set_n_workers(uint n_workers) {
361   _n_workers    = n_workers;
362   _n_completed  = 0;
363   _should_reset = false;
364   _aborted      = false;
365 }
366 
367 bool WorkGangBarrierSync::enter() {
368   MonitorLocker ml(monitor(), Mutex::_no_safepoint_check_flag);
369   if (should_reset()) {
370     // The should_reset() was set and we are the first worker to enter
371     // the sync barrier. We will zero the n_completed() count which
372     // effectively resets the barrier.
373     zero_completed();
374     set_should_reset(false);
375   }
376   inc_completed();
377   if (n_completed() == n_workers()) {
378     // At this point we would like to reset the barrier to be ready in
379     // case it is used again. However, we cannot set n_completed() to
380     // 0, even after the notify_all(), given that some other workers
381     // might still be waiting for n_completed() to become ==
382     // n_workers(). So, if we set n_completed() to 0, those workers
383     // will get stuck (as they will wake up, see that n_completed() !=
384     // n_workers() and go back to sleep). Instead, we raise the
385     // should_reset() flag and the barrier will be reset the first
386     // time a worker enters it again.
387     set_should_reset(true);
388     ml.notify_all();
389   } else {
390     while (n_completed() != n_workers() && !aborted()) {
391       ml.wait();
392     }
393   }
394   return !aborted();
395 }
396 
397 void WorkGangBarrierSync::abort() {
398   MutexLocker x(monitor(), Mutex::_no_safepoint_check_flag);
399   set_aborted();
400   monitor()->notify_all();
401 }
402 
403 // SubTasksDone functions.
404 
405 SubTasksDone::SubTasksDone(uint n) :
406   _tasks(NULL), _n_tasks(n), _threads_completed(0) {
407   _tasks = NEW_C_HEAP_ARRAY(uint, n, mtInternal);
408   clear();
409 }
410 
411 bool SubTasksDone::valid() {
412   return _tasks != NULL;
413 }
414 
415 void SubTasksDone::clear() {
416   for (uint i = 0; i < _n_tasks; i++) {
417     _tasks[i] = 0;
418   }
419   _threads_completed = 0;
420 #ifdef ASSERT
421   _claimed = 0;
422 #endif
423 }
424 
425 bool SubTasksDone::try_claim_task(uint t) {
426   assert(t < _n_tasks, "bad task id.");
427   uint old = _tasks[t];
428   if (old == 0) {
429     old = Atomic::cmpxchg(1u, &_tasks[t], 0u);
430   }
431   bool res = old == 0;
432 #ifdef ASSERT
433   if (res) {
434     assert(_claimed < _n_tasks, "Too many tasks claimed; missing clear?");
435     Atomic::inc(&_claimed);
436   }
437 #endif
438   return res;
439 }
440 
441 void SubTasksDone::all_tasks_completed(uint n_threads) {
442   uint observed = _threads_completed;
443   uint old;
444   do {
445     old = observed;
446     observed = Atomic::cmpxchg(old+1, &_threads_completed, old);
447   } while (observed != old);
448   // If this was the last thread checking in, clear the tasks.
449   uint adjusted_thread_count = (n_threads == 0 ? 1 : n_threads);
450   if (observed + 1 == adjusted_thread_count) {
451     clear();
452   }
453 }
454 
455 
456 SubTasksDone::~SubTasksDone() {
457   if (_tasks != NULL) FREE_C_HEAP_ARRAY(uint, _tasks);
458 }
459 
460 // *** SequentialSubTasksDone
461 
462 void SequentialSubTasksDone::clear() {
463   _n_tasks   = _n_claimed   = 0;
464   _n_threads = _n_completed = 0;
465 }
466 
467 bool SequentialSubTasksDone::valid() {
468   return _n_threads > 0;
469 }
470 
471 bool SequentialSubTasksDone::try_claim_task(uint& t) {
472   t = _n_claimed;
473   while (t < _n_tasks) {
474     uint res = Atomic::cmpxchg(t+1, &_n_claimed, t);
475     if (res == t) {
476       return true;
477     }
478     t = res;
479   }
480   return false;
481 }
482 
483 bool SequentialSubTasksDone::all_tasks_completed() {
484   uint complete = _n_completed;
485   while (true) {
486     uint res = Atomic::cmpxchg(complete+1, &_n_completed, complete);
487     if (res == complete) {
488       break;
489     }
490     complete = res;
491   }
492   if (complete+1 == _n_threads) {
493     clear();
494     return true;
495   }
496   return false;
497 }