1 /*
  2  * Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "gc/g1/g1CollectedHeap.inline.hpp"
 27 #include "gc/g1/g1ConcurrentRefine.hpp"
 28 #include "gc/g1/g1ConcurrentRefineThread.hpp"
 29 #include "gc/g1/g1DirtyCardQueue.hpp"
 30 #include "gc/g1/g1RemSet.hpp"
 31 #include "gc/g1/g1RemSetSummary.hpp"
 32 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
 33 #include "gc/g1/heapRegion.hpp"
 34 #include "gc/g1/heapRegionRemSet.hpp"
 35 #include "memory/allocation.inline.hpp"
 36 #include "runtime/thread.inline.hpp"
 37 
 38 class GetRSThreadVTimeClosure : public ThreadClosure {
 39 private:
 40   G1RemSetSummary* _summary;
 41   uint _counter;
 42 
 43 public:
 44   GetRSThreadVTimeClosure(G1RemSetSummary * summary) : ThreadClosure(), _summary(summary), _counter(0) {
 45     assert(_summary != NULL, "just checking");
 46   }
 47 
 48   virtual void do_thread(Thread* t) {
 49     G1ConcurrentRefineThread* crt = (G1ConcurrentRefineThread*) t;
 50     _summary->set_rs_thread_vtime(_counter, crt->vtime_accum());
 51     _counter++;
 52   }
 53 };
 54 
 55 void G1RemSetSummary::update() {
 56   _num_conc_refined_cards = _rem_set->num_conc_refined_cards();
 57   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 58   _num_processed_buf_mutator = dcqs.processed_buffers_mut();
 59   _num_processed_buf_rs_threads = dcqs.processed_buffers_rs_thread();
 60 
 61   _num_coarsenings = HeapRegionRemSet::n_coarsenings();
 62 
 63   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 64   G1ConcurrentRefine* cg1r = g1h->concurrent_refine();
 65   if (_rs_threads_vtimes != NULL) {
 66     GetRSThreadVTimeClosure p(this);
 67     cg1r->threads_do(&p);
 68   }
 69   set_sampling_thread_vtime(g1h->sampling_thread()->vtime_accum());
 70 }
 71 
 72 void G1RemSetSummary::set_rs_thread_vtime(uint thread, double value) {
 73   assert(_rs_threads_vtimes != NULL, "just checking");
 74   assert(thread < _num_vtimes, "just checking");
 75   _rs_threads_vtimes[thread] = value;
 76 }
 77 
 78 double G1RemSetSummary::rs_thread_vtime(uint thread) const {
 79   assert(_rs_threads_vtimes != NULL, "just checking");
 80   assert(thread < _num_vtimes, "just checking");
 81   return _rs_threads_vtimes[thread];
 82 }
 83 
 84 G1RemSetSummary::G1RemSetSummary() :
 85   _rem_set(NULL),
 86   _num_conc_refined_cards(0),
 87   _num_processed_buf_mutator(0),
 88   _num_processed_buf_rs_threads(0),
 89   _num_coarsenings(0),
 90   _num_vtimes(G1ConcurrentRefine::max_num_threads()),
 91   _rs_threads_vtimes(NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC)),
 92   _sampling_thread_vtime(0.0f) {
 93 
 94   memset(_rs_threads_vtimes, 0, sizeof(double) * _num_vtimes);
 95 }
 96 
 97 G1RemSetSummary::G1RemSetSummary(G1RemSet* rem_set) :
 98   _rem_set(rem_set),
 99   _num_conc_refined_cards(0),
100   _num_processed_buf_mutator(0),
101   _num_processed_buf_rs_threads(0),
102   _num_coarsenings(0),
103   _num_vtimes(G1ConcurrentRefine::max_num_threads()),
104   _rs_threads_vtimes(NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC)),
105   _sampling_thread_vtime(0.0f) {
106   update();
107 }
108 
109 G1RemSetSummary::~G1RemSetSummary() {
110   FREE_C_HEAP_ARRAY(double, _rs_threads_vtimes);
111 }
112 
113 void G1RemSetSummary::set(G1RemSetSummary* other) {
114   assert(other != NULL, "just checking");
115   assert(_num_vtimes == other->_num_vtimes, "just checking");
116 
117   _num_conc_refined_cards = other->num_conc_refined_cards();
118 
119   _num_processed_buf_mutator = other->num_processed_buf_mutator();
120   _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads();
121 
122   _num_coarsenings = other->_num_coarsenings;
123 
124   memcpy(_rs_threads_vtimes, other->_rs_threads_vtimes, sizeof(double) * _num_vtimes);
125 
126   set_sampling_thread_vtime(other->sampling_thread_vtime());
127 }
128 
129 void G1RemSetSummary::subtract_from(G1RemSetSummary* other) {
130   assert(other != NULL, "just checking");
131   assert(_num_vtimes == other->_num_vtimes, "just checking");
132 
133   _num_conc_refined_cards = other->num_conc_refined_cards() - _num_conc_refined_cards;
134 
135   _num_processed_buf_mutator = other->num_processed_buf_mutator() - _num_processed_buf_mutator;
136   _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads() - _num_processed_buf_rs_threads;
137 
138   _num_coarsenings = other->num_coarsenings() - _num_coarsenings;
139 
140   for (uint i = 0; i < _num_vtimes; i++) {
141     set_rs_thread_vtime(i, other->rs_thread_vtime(i) - rs_thread_vtime(i));
142   }
143 
144   _sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime;
145 }
146 
147 class RegionTypeCounter {
148 private:
149   const char* _name;
150 
151   size_t _rs_mem_size;
152   size_t _cards_occupied;
153   size_t _amount;
154 
155   size_t _code_root_mem_size;
156   size_t _code_root_elems;
157 
158   double rs_mem_size_percent_of(size_t total) {
159     return percent_of(_rs_mem_size, total);
160   }
161 
162   double cards_occupied_percent_of(size_t total) {
163     return percent_of(_cards_occupied, total);
164   }
165 
166   double code_root_mem_size_percent_of(size_t total) {
167     return percent_of(_code_root_mem_size, total);
168   }
169 
170   double code_root_elems_percent_of(size_t total) {
171     return percent_of(_code_root_elems, total);
172   }
173 
174   size_t amount() const { return _amount; }
175 
176 public:
177 
178   RegionTypeCounter(const char* name) : _name(name), _rs_mem_size(0), _cards_occupied(0),
179     _amount(0), _code_root_mem_size(0), _code_root_elems(0) { }
180 
181   void add(size_t rs_mem_size, size_t cards_occupied, size_t code_root_mem_size,
182     size_t code_root_elems) {
183     _rs_mem_size += rs_mem_size;
184     _cards_occupied += cards_occupied;
185     _code_root_mem_size += code_root_mem_size;
186     _code_root_elems += code_root_elems;
187     _amount++;
188   }
189 
190   size_t rs_mem_size() const { return _rs_mem_size; }
191   size_t cards_occupied() const { return _cards_occupied; }
192 
193   size_t code_root_mem_size() const { return _code_root_mem_size; }
194   size_t code_root_elems() const { return _code_root_elems; }
195 
196   void print_rs_mem_info_on(outputStream * out, size_t total) {
197     out->print_cr("    " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions",
198         byte_size_in_proper_unit(rs_mem_size()),
199         proper_unit_for_byte_size(rs_mem_size()),
200         rs_mem_size_percent_of(total), amount(), _name);
201   }
202 
203   void print_cards_occupied_info_on(outputStream * out, size_t total) {
204     out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) entries by " SIZE_FORMAT " %s regions",
205         cards_occupied(), cards_occupied_percent_of(total), amount(), _name);
206   }
207 
208   void print_code_root_mem_info_on(outputStream * out, size_t total) {
209     out->print_cr("    " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions",
210         byte_size_in_proper_unit(code_root_mem_size()),
211         proper_unit_for_byte_size(code_root_mem_size()),
212         code_root_mem_size_percent_of(total), amount(), _name);
213   }
214 
215   void print_code_root_elems_info_on(outputStream * out, size_t total) {
216     out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) elements by " SIZE_FORMAT " %s regions",
217         code_root_elems(), code_root_elems_percent_of(total), amount(), _name);
218   }
219 };
220 
221 
222 class HRRSStatsIter: public HeapRegionClosure {
223 private:
224   RegionTypeCounter _young;
225   RegionTypeCounter _humongous;
226   RegionTypeCounter _free;
227   RegionTypeCounter _old;
228   RegionTypeCounter _archive;
229   RegionTypeCounter _all;
230 
231   size_t _max_rs_mem_sz;
232   HeapRegion* _max_rs_mem_sz_region;
233 
234   size_t total_rs_mem_sz() const            { return _all.rs_mem_size(); }
235   size_t total_cards_occupied() const       { return _all.cards_occupied(); }
236 
237   size_t max_rs_mem_sz() const              { return _max_rs_mem_sz; }
238   HeapRegion* max_rs_mem_sz_region() const  { return _max_rs_mem_sz_region; }
239 
240   size_t _max_code_root_mem_sz;
241   HeapRegion* _max_code_root_mem_sz_region;
242 
243   size_t total_code_root_mem_sz() const     { return _all.code_root_mem_size(); }
244   size_t total_code_root_elems() const      { return _all.code_root_elems(); }
245 
246   size_t max_code_root_mem_sz() const       { return _max_code_root_mem_sz; }
247   HeapRegion* max_code_root_mem_sz_region() const { return _max_code_root_mem_sz_region; }
248 
249 public:
250   HRRSStatsIter() : _young("Young"), _humongous("Humongous"),
251     _free("Free"), _old("Old"), _archive("Archive"), _all("All"),
252     _max_rs_mem_sz(0), _max_rs_mem_sz_region(NULL),
253     _max_code_root_mem_sz(0), _max_code_root_mem_sz_region(NULL)
254   {}
255 
256   bool do_heap_region(HeapRegion* r) {
257     HeapRegionRemSet* hrrs = r->rem_set();
258 
259     // HeapRegionRemSet::mem_size() includes the
260     // size of the strong code roots
261     size_t rs_mem_sz = hrrs->mem_size();
262     if (rs_mem_sz > _max_rs_mem_sz) {
263       _max_rs_mem_sz = rs_mem_sz;
264       _max_rs_mem_sz_region = r;
265     }
266     size_t occupied_cards = hrrs->occupied();
267     size_t code_root_mem_sz = hrrs->strong_code_roots_mem_size();
268     if (code_root_mem_sz > max_code_root_mem_sz()) {
269       _max_code_root_mem_sz = code_root_mem_sz;
270       _max_code_root_mem_sz_region = r;
271     }
272     size_t code_root_elems = hrrs->strong_code_roots_list_length();
273 
274     RegionTypeCounter* current = NULL;
275     if (r->is_free()) {
276       current = &_free;
277     } else if (r->is_young()) {
278       current = &_young;
279     } else if (r->is_humongous()) {
280       current = &_humongous;
281     } else if (r->is_old()) {
282       current = &_old;
283     } else if (r->is_archive()) {
284       current = &_archive;
285     } else {
286       ShouldNotReachHere();
287     }
288     current->add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems);
289     _all.add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems);
290 
291     return false;
292   }
293 
294   void print_summary_on(outputStream* out) {
295     RegionTypeCounter* counters[] = { &_young, &_humongous, &_free, &_old, &_archive, NULL };
296 
297     out->print_cr(" Current rem set statistics");
298     out->print_cr("  Total per region rem sets sizes = " SIZE_FORMAT "%s."
299                   " Max = " SIZE_FORMAT "%s.",
300                   byte_size_in_proper_unit(total_rs_mem_sz()),
301                   proper_unit_for_byte_size(total_rs_mem_sz()),
302                   byte_size_in_proper_unit(max_rs_mem_sz()),
303                   proper_unit_for_byte_size(max_rs_mem_sz()));
304     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
305       (*current)->print_rs_mem_info_on(out, total_rs_mem_sz());
306     }
307 
308     out->print_cr("   Static structures = " SIZE_FORMAT "%s,"
309                   " free_lists = " SIZE_FORMAT "%s.",
310                   byte_size_in_proper_unit(HeapRegionRemSet::static_mem_size()),
311                   proper_unit_for_byte_size(HeapRegionRemSet::static_mem_size()),
312                   byte_size_in_proper_unit(HeapRegionRemSet::fl_mem_size()),
313                   proper_unit_for_byte_size(HeapRegionRemSet::fl_mem_size()));
314 
315     out->print_cr("    " SIZE_FORMAT " occupied cards represented.",
316                   total_cards_occupied());
317     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
318       (*current)->print_cards_occupied_info_on(out, total_cards_occupied());
319     }
320 
321     // Largest sized rem set region statistics
322     HeapRegionRemSet* rem_set = max_rs_mem_sz_region()->rem_set();
323     out->print_cr("    Region with largest rem set = " HR_FORMAT ", "
324                   "size = " SIZE_FORMAT "%s, occupied = " SIZE_FORMAT "%s.",
325                   HR_FORMAT_PARAMS(max_rs_mem_sz_region()),
326                   byte_size_in_proper_unit(rem_set->mem_size()),
327                   proper_unit_for_byte_size(rem_set->mem_size()),
328                   byte_size_in_proper_unit(rem_set->occupied()),
329                   proper_unit_for_byte_size(rem_set->occupied()));
330     // Strong code root statistics
331     HeapRegionRemSet* max_code_root_rem_set = max_code_root_mem_sz_region()->rem_set();
332     out->print_cr("  Total heap region code root sets sizes = " SIZE_FORMAT "%s."
333                   "  Max = " SIZE_FORMAT "%s.",
334                   byte_size_in_proper_unit(total_code_root_mem_sz()),
335                   proper_unit_for_byte_size(total_code_root_mem_sz()),
336                   byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()),
337                   proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size()));
338     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
339       (*current)->print_code_root_mem_info_on(out, total_code_root_mem_sz());
340     }
341 
342     out->print_cr("    " SIZE_FORMAT " code roots represented.",
343                   total_code_root_elems());
344     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
345       (*current)->print_code_root_elems_info_on(out, total_code_root_elems());
346     }
347 
348     out->print_cr("    Region with largest amount of code roots = " HR_FORMAT ", "
349                   "size = " SIZE_FORMAT "%s, num_elems = " SIZE_FORMAT ".",
350                   HR_FORMAT_PARAMS(max_code_root_mem_sz_region()),
351                   byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()),
352                   proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size()),
353                   max_code_root_rem_set->strong_code_roots_list_length());
354   }
355 };
356 
357 void G1RemSetSummary::print_on(outputStream* out) {
358   out->print_cr(" Recent concurrent refinement statistics");
359   out->print_cr("  Processed " SIZE_FORMAT " cards concurrently", num_conc_refined_cards());
360   out->print_cr("  Of " SIZE_FORMAT " completed buffers:", num_processed_buf_total());
361   out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) by concurrent RS threads.",
362                 num_processed_buf_total(),
363                 percent_of(num_processed_buf_rs_threads(), num_processed_buf_total()));
364   out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) by mutator threads.",
365                 num_processed_buf_mutator(),
366                 percent_of(num_processed_buf_mutator(), num_processed_buf_total()));
367   out->print_cr("  Did " SIZE_FORMAT " coarsenings.", num_coarsenings());
368   out->print_cr("  Concurrent RS threads times (s)");
369   out->print("     ");
370   for (uint i = 0; i < _num_vtimes; i++) {
371     out->print("    %5.2f", rs_thread_vtime(i));
372   }
373   out->cr();
374   out->print_cr("  Concurrent sampling threads times (s)");
375   out->print_cr("         %5.2f", sampling_thread_vtime());
376 
377   HRRSStatsIter blk;
378   G1CollectedHeap::heap()->heap_region_iterate(&blk);
379   blk.print_summary_on(out);
380 }