1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/workgroup.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "interpreter/oopMapCache.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/metaspaceShared.hpp"
  51 #include "memory/oopFactory.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "memory/universe.hpp"
  54 #include "oops/access.inline.hpp"
  55 #include "oops/instanceKlass.hpp"
  56 #include "oops/objArrayOop.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/symbol.hpp"
  59 #include "oops/typeArrayOop.inline.hpp"
  60 #include "oops/verifyOopClosure.hpp"
  61 #include "prims/jvm_misc.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "prims/jvmtiThreadState.hpp"
  64 #include "runtime/arguments.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/biasedLocking.hpp"
  67 #include "runtime/fieldDescriptor.inline.hpp"
  68 #include "runtime/flags/jvmFlagConstraintList.hpp"
  69 #include "runtime/flags/jvmFlagRangeList.hpp"
  70 #include "runtime/flags/jvmFlagWriteableList.hpp"
  71 #include "runtime/deoptimization.hpp"
  72 #include "runtime/frame.inline.hpp"
  73 #include "runtime/handles.inline.hpp"
  74 #include "runtime/handshake.hpp"
  75 #include "runtime/init.hpp"
  76 #include "runtime/interfaceSupport.inline.hpp"
  77 #include "runtime/java.hpp"
  78 #include "runtime/javaCalls.hpp"
  79 #include "runtime/jniHandles.inline.hpp"
  80 #include "runtime/jniPeriodicChecker.hpp"
  81 #include "runtime/memprofiler.hpp"
  82 #include "runtime/mutexLocker.hpp"
  83 #include "runtime/objectMonitor.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/osThread.hpp"
  86 #include "runtime/prefetch.inline.hpp"
  87 #include "runtime/safepoint.hpp"
  88 #include "runtime/safepointMechanism.inline.hpp"
  89 #include "runtime/safepointVerifiers.hpp"
  90 #include "runtime/sharedRuntime.hpp"
  91 #include "runtime/statSampler.hpp"
  92 #include "runtime/stubRoutines.hpp"
  93 #include "runtime/sweeper.hpp"
  94 #include "runtime/task.hpp"
  95 #include "runtime/thread.inline.hpp"
  96 #include "runtime/threadCritical.hpp"
  97 #include "runtime/threadSMR.inline.hpp"
  98 #include "runtime/threadStatisticalInfo.hpp"
  99 #include "runtime/timer.hpp"
 100 #include "runtime/timerTrace.hpp"
 101 #include "runtime/vframe.inline.hpp"
 102 #include "runtime/vframeArray.hpp"
 103 #include "runtime/vframe_hp.hpp"
 104 #include "runtime/vmThread.hpp"
 105 #include "runtime/vmOperations.hpp"
 106 #include "runtime/vm_version.hpp"
 107 #include "services/attachListener.hpp"
 108 #include "services/management.hpp"
 109 #include "services/memTracker.hpp"
 110 #include "services/threadService.hpp"
 111 #include "utilities/align.hpp"
 112 #include "utilities/copy.hpp"
 113 #include "utilities/defaultStream.hpp"
 114 #include "utilities/dtrace.hpp"
 115 #include "utilities/events.hpp"
 116 #include "utilities/macros.hpp"
 117 #include "utilities/preserveException.hpp"
 118 #include "utilities/singleWriterSynchronizer.hpp"
 119 #include "utilities/vmError.hpp"
 120 #if INCLUDE_JVMCI
 121 #include "jvmci/jvmci.hpp"
 122 #include "jvmci/jvmciEnv.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 #if INCLUDE_JFR
 135 #include "jfr/jfr.hpp"
 136 #endif
 137 
 138 // Initialization after module runtime initialization
 139 void universe_post_module_init();  // must happen after call_initPhase2
 140 
 141 #ifdef DTRACE_ENABLED
 142 
 143 // Only bother with this argument setup if dtrace is available
 144 
 145   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 149     {                                                                      \
 150       ResourceMark rm(this);                                               \
 151       int len = 0;                                                         \
 152       const char* name = (javathread)->get_thread_name();                  \
 153       len = strlen(name);                                                  \
 154       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 155         (char *) name, len,                                                \
 156         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 157         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 158         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 159     }
 160 
 161 #else //  ndef DTRACE_ENABLED
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)
 164 
 165 #endif // ndef DTRACE_ENABLED
 166 
 167 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 168 // Current thread is maintained as a thread-local variable
 169 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 170 #endif
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const size_t alignment = markWord::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                                          AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (aligned_addr != real_malloc_addr) {
 186       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                               p2i(real_malloc_addr),
 188                               p2i(aligned_addr));
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     FreeHeap(((Thread*) p)->_real_malloc_address);
 201   } else {
 202     FreeHeap(p);
 203   }
 204 }
 205 
 206 void JavaThread::smr_delete() {
 207   if (_on_thread_list) {
 208     ThreadsSMRSupport::smr_delete(this);
 209   } else {
 210     delete this;
 211   }
 212 }
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 218 
 219 Thread::Thread() {
 220 
 221   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 222 
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_lgrp_id(-1);
 227   DEBUG_ONLY(clear_suspendible_thread();)
 228 
 229   // allocated data structures
 230   set_osthread(NULL);
 231   set_resource_area(new (mtThread)ResourceArea());
 232   DEBUG_ONLY(_current_resource_mark = NULL;)
 233   set_handle_area(new (mtThread) HandleArea(NULL));
 234   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 235   set_active_handles(NULL);
 236   set_free_handle_block(NULL);
 237   set_last_handle_mark(NULL);
 238   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 239 
 240   // Initial value of zero ==> never claimed.
 241   _threads_do_token = 0;
 242   _threads_hazard_ptr = NULL;
 243   _threads_list_ptr = NULL;
 244   _nested_threads_hazard_ptr_cnt = 0;
 245   _rcu_counter = 0;
 246 
 247   // the handle mark links itself to last_handle_mark
 248   new HandleMark(this);
 249 
 250   // plain initialization
 251   debug_only(_owned_locks = NULL;)
 252   NOT_PRODUCT(_no_safepoint_count = 0;)
 253   NOT_PRODUCT(_skip_gcalot = false;)
 254   _jvmti_env_iteration_count = 0;
 255   set_allocated_bytes(0);
 256   _vm_operation_started_count = 0;
 257   _vm_operation_completed_count = 0;
 258   _current_pending_monitor = NULL;
 259   _current_pending_monitor_is_from_java = true;
 260   _current_waiting_monitor = NULL;
 261   _num_nested_signal = 0;
 262   om_free_list = NULL;
 263   om_free_count = 0;
 264   om_free_provision = 32;
 265   om_in_use_list = NULL;
 266   om_in_use_count = 0;
 267 
 268 #ifdef ASSERT
 269   _visited_for_critical_count = false;
 270 #endif
 271 
 272   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 273                          Monitor::_safepoint_check_sometimes);
 274   _suspend_flags = 0;
 275 
 276   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 277   _hashStateX = os::random();
 278   _hashStateY = 842502087;
 279   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 280   _hashStateW = 273326509;
 281 
 282   _OnTrap   = 0;
 283   _Stalled  = 0;
 284   _TypeTag  = 0x2BAD;
 285 
 286   // Many of the following fields are effectively final - immutable
 287   // Note that nascent threads can't use the Native Monitor-Mutex
 288   // construct until the _MutexEvent is initialized ...
 289   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 290   // we might instead use a stack of ParkEvents that we could provision on-demand.
 291   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 292   // and ::Release()
 293   _ParkEvent   = ParkEvent::Allocate(this);
 294   _SleepEvent  = ParkEvent::Allocate(this);
 295   _MuxEvent    = ParkEvent::Allocate(this);
 296 
 297 #ifdef CHECK_UNHANDLED_OOPS
 298   if (CheckUnhandledOops) {
 299     _unhandled_oops = new UnhandledOops(this);
 300   }
 301 #endif // CHECK_UNHANDLED_OOPS
 302 #ifdef ASSERT
 303   if (UseBiasedLocking) {
 304     assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
 305     assert(this == _real_malloc_address ||
 306            this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
 307            "bug in forced alignment of thread objects");
 308   }
 309 #endif // ASSERT
 310 
 311   // Notify the barrier set that a thread is being created. The initial
 312   // thread is created before the barrier set is available.  The call to
 313   // BarrierSet::on_thread_create() for this thread is therefore deferred
 314   // to BarrierSet::set_barrier_set().
 315   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 316   if (barrier_set != NULL) {
 317     barrier_set->on_thread_create(this);
 318   } else {
 319     // Only the main thread should be created before the barrier set
 320     // and that happens just before Thread::current is set. No other thread
 321     // can attach as the VM is not created yet, so they can't execute this code.
 322     // If the main thread creates other threads before the barrier set that is an error.
 323     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 324   }
 325 }
 326 
 327 void Thread::initialize_thread_current() {
 328 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 329   assert(_thr_current == NULL, "Thread::current already initialized");
 330   _thr_current = this;
 331 #endif
 332   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 333   ThreadLocalStorage::set_thread(this);
 334   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 335 }
 336 
 337 void Thread::clear_thread_current() {
 338   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 339 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 340   _thr_current = NULL;
 341 #endif
 342   ThreadLocalStorage::set_thread(NULL);
 343 }
 344 
 345 void Thread::record_stack_base_and_size() {
 346   // Note: at this point, Thread object is not yet initialized. Do not rely on
 347   // any members being initialized. Do not rely on Thread::current() being set.
 348   // If possible, refrain from doing anything which may crash or assert since
 349   // quite probably those crash dumps will be useless.
 350   set_stack_base(os::current_stack_base());
 351   set_stack_size(os::current_stack_size());
 352 
 353 #ifdef SOLARIS
 354   if (os::is_primordial_thread()) {
 355     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 356   }
 357 #endif
 358 
 359   // Set stack limits after thread is initialized.
 360   if (is_Java_thread()) {
 361     ((JavaThread*) this)->set_stack_overflow_limit();
 362     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 363   }
 364 }
 365 
 366 #if INCLUDE_NMT
 367 void Thread::register_thread_stack_with_NMT() {
 368   MemTracker::record_thread_stack(stack_end(), stack_size());
 369 }
 370 #endif // INCLUDE_NMT
 371 
 372 void Thread::call_run() {
 373   DEBUG_ONLY(_run_state = CALL_RUN;)
 374 
 375   // At this point, Thread object should be fully initialized and
 376   // Thread::current() should be set.
 377 
 378   assert(Thread::current_or_null() != NULL, "current thread is unset");
 379   assert(Thread::current_or_null() == this, "current thread is wrong");
 380 
 381   // Perform common initialization actions
 382 
 383   register_thread_stack_with_NMT();
 384 
 385   JFR_ONLY(Jfr::on_thread_start(this);)
 386 
 387   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 388     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 389     os::current_thread_id(), p2i(stack_base() - stack_size()),
 390     p2i(stack_base()), stack_size()/1024);
 391 
 392   // Perform <ChildClass> initialization actions
 393   DEBUG_ONLY(_run_state = PRE_RUN;)
 394   this->pre_run();
 395 
 396   // Invoke <ChildClass>::run()
 397   DEBUG_ONLY(_run_state = RUN;)
 398   this->run();
 399   // Returned from <ChildClass>::run(). Thread finished.
 400 
 401   // Perform common tear-down actions
 402 
 403   assert(Thread::current_or_null() != NULL, "current thread is unset");
 404   assert(Thread::current_or_null() == this, "current thread is wrong");
 405 
 406   // Perform <ChildClass> tear-down actions
 407   DEBUG_ONLY(_run_state = POST_RUN;)
 408   this->post_run();
 409 
 410   // Note: at this point the thread object may already have deleted itself,
 411   // so from here on do not dereference *this*. Not all thread types currently
 412   // delete themselves when they terminate. But no thread should ever be deleted
 413   // asynchronously with respect to its termination - that is what _run_state can
 414   // be used to check.
 415 
 416   assert(Thread::current_or_null() == NULL, "current thread still present");
 417 }
 418 
 419 Thread::~Thread() {
 420 
 421   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 422   // get started due to errors etc. Any active thread should at least reach post_run
 423   // before it is deleted (usually in post_run()).
 424   assert(_run_state == PRE_CALL_RUN ||
 425          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 426          "_run_state=%d", (int)_run_state);
 427 
 428   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 429   // set might not be available if we encountered errors during bootstrapping.
 430   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 431   if (barrier_set != NULL) {
 432     barrier_set->on_thread_destroy(this);
 433   }
 434 
 435   // stack_base can be NULL if the thread is never started or exited before
 436   // record_stack_base_and_size called. Although, we would like to ensure
 437   // that all started threads do call record_stack_base_and_size(), there is
 438   // not proper way to enforce that.
 439 #if INCLUDE_NMT
 440   if (_stack_base != NULL) {
 441     MemTracker::release_thread_stack(stack_end(), stack_size());
 442 #ifdef ASSERT
 443     set_stack_base(NULL);
 444 #endif
 445   }
 446 #endif // INCLUDE_NMT
 447 
 448   // deallocate data structures
 449   delete resource_area();
 450   // since the handle marks are using the handle area, we have to deallocated the root
 451   // handle mark before deallocating the thread's handle area,
 452   assert(last_handle_mark() != NULL, "check we have an element");
 453   delete last_handle_mark();
 454   assert(last_handle_mark() == NULL, "check we have reached the end");
 455 
 456   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 457   // We NULL out the fields for good hygiene.
 458   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 459   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 460   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 461 
 462   delete handle_area();
 463   delete metadata_handles();
 464 
 465   // SR_handler uses this as a termination indicator -
 466   // needs to happen before os::free_thread()
 467   delete _SR_lock;
 468   _SR_lock = NULL;
 469 
 470   // osthread() can be NULL, if creation of thread failed.
 471   if (osthread() != NULL) os::free_thread(osthread());
 472 
 473   // Clear Thread::current if thread is deleting itself and it has not
 474   // already been done. This must be done before the memory is deallocated.
 475   // Needed to ensure JNI correctly detects non-attached threads.
 476   if (this == Thread::current_or_null()) {
 477     Thread::clear_thread_current();
 478   }
 479 
 480   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 481 }
 482 
 483 #ifdef ASSERT
 484 // A JavaThread is considered "dangling" if it is not the current
 485 // thread, has been added the Threads list, the system is not at a
 486 // safepoint and the Thread is not "protected".
 487 //
 488 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 489   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 490          !((JavaThread *) thread)->on_thread_list() ||
 491          SafepointSynchronize::is_at_safepoint() ||
 492          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 493          "possibility of dangling Thread pointer");
 494 }
 495 #endif
 496 
 497 ThreadPriority Thread::get_priority(const Thread* const thread) {
 498   ThreadPriority priority;
 499   // Can return an error!
 500   (void)os::get_priority(thread, priority);
 501   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 502   return priority;
 503 }
 504 
 505 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 506   debug_only(check_for_dangling_thread_pointer(thread);)
 507   // Can return an error!
 508   (void)os::set_priority(thread, priority);
 509 }
 510 
 511 
 512 void Thread::start(Thread* thread) {
 513   // Start is different from resume in that its safety is guaranteed by context or
 514   // being called from a Java method synchronized on the Thread object.
 515   if (!DisableStartThread) {
 516     if (thread->is_Java_thread()) {
 517       // Initialize the thread state to RUNNABLE before starting this thread.
 518       // Can not set it after the thread started because we do not know the
 519       // exact thread state at that time. It could be in MONITOR_WAIT or
 520       // in SLEEPING or some other state.
 521       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 522                                           java_lang_Thread::RUNNABLE);
 523     }
 524     os::start_thread(thread);
 525   }
 526 }
 527 
 528 // Enqueue a VM_Operation to do the job for us - sometime later
 529 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 530   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 531   VMThread::execute(vm_stop);
 532 }
 533 
 534 
 535 // Check if an external suspend request has completed (or has been
 536 // cancelled). Returns true if the thread is externally suspended and
 537 // false otherwise.
 538 //
 539 // The bits parameter returns information about the code path through
 540 // the routine. Useful for debugging:
 541 //
 542 // set in is_ext_suspend_completed():
 543 // 0x00000001 - routine was entered
 544 // 0x00000010 - routine return false at end
 545 // 0x00000100 - thread exited (return false)
 546 // 0x00000200 - suspend request cancelled (return false)
 547 // 0x00000400 - thread suspended (return true)
 548 // 0x00001000 - thread is in a suspend equivalent state (return true)
 549 // 0x00002000 - thread is native and walkable (return true)
 550 // 0x00004000 - thread is native_trans and walkable (needed retry)
 551 //
 552 // set in wait_for_ext_suspend_completion():
 553 // 0x00010000 - routine was entered
 554 // 0x00020000 - suspend request cancelled before loop (return false)
 555 // 0x00040000 - thread suspended before loop (return true)
 556 // 0x00080000 - suspend request cancelled in loop (return false)
 557 // 0x00100000 - thread suspended in loop (return true)
 558 // 0x00200000 - suspend not completed during retry loop (return false)
 559 
 560 // Helper class for tracing suspend wait debug bits.
 561 //
 562 // 0x00000100 indicates that the target thread exited before it could
 563 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 564 // 0x00080000 each indicate a cancelled suspend request so they don't
 565 // count as wait failures either.
 566 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 567 
 568 class TraceSuspendDebugBits : public StackObj {
 569  private:
 570   JavaThread * jt;
 571   bool         is_wait;
 572   bool         called_by_wait;  // meaningful when !is_wait
 573   uint32_t *   bits;
 574 
 575  public:
 576   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 577                         uint32_t *_bits) {
 578     jt             = _jt;
 579     is_wait        = _is_wait;
 580     called_by_wait = _called_by_wait;
 581     bits           = _bits;
 582   }
 583 
 584   ~TraceSuspendDebugBits() {
 585     if (!is_wait) {
 586 #if 1
 587       // By default, don't trace bits for is_ext_suspend_completed() calls.
 588       // That trace is very chatty.
 589       return;
 590 #else
 591       if (!called_by_wait) {
 592         // If tracing for is_ext_suspend_completed() is enabled, then only
 593         // trace calls to it from wait_for_ext_suspend_completion()
 594         return;
 595       }
 596 #endif
 597     }
 598 
 599     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 600       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 601         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 602         ResourceMark rm;
 603 
 604         tty->print_cr(
 605                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 606                       jt->get_thread_name(), *bits);
 607 
 608         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 609       }
 610     }
 611   }
 612 };
 613 #undef DEBUG_FALSE_BITS
 614 
 615 
 616 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 617                                           uint32_t *bits) {
 618   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 619 
 620   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 621   bool do_trans_retry;           // flag to force the retry
 622 
 623   *bits |= 0x00000001;
 624 
 625   do {
 626     do_trans_retry = false;
 627 
 628     if (is_exiting()) {
 629       // Thread is in the process of exiting. This is always checked
 630       // first to reduce the risk of dereferencing a freed JavaThread.
 631       *bits |= 0x00000100;
 632       return false;
 633     }
 634 
 635     if (!is_external_suspend()) {
 636       // Suspend request is cancelled. This is always checked before
 637       // is_ext_suspended() to reduce the risk of a rogue resume
 638       // confusing the thread that made the suspend request.
 639       *bits |= 0x00000200;
 640       return false;
 641     }
 642 
 643     if (is_ext_suspended()) {
 644       // thread is suspended
 645       *bits |= 0x00000400;
 646       return true;
 647     }
 648 
 649     // Now that we no longer do hard suspends of threads running
 650     // native code, the target thread can be changing thread state
 651     // while we are in this routine:
 652     //
 653     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 654     //
 655     // We save a copy of the thread state as observed at this moment
 656     // and make our decision about suspend completeness based on the
 657     // copy. This closes the race where the thread state is seen as
 658     // _thread_in_native_trans in the if-thread_blocked check, but is
 659     // seen as _thread_blocked in if-thread_in_native_trans check.
 660     JavaThreadState save_state = thread_state();
 661 
 662     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 663       // If the thread's state is _thread_blocked and this blocking
 664       // condition is known to be equivalent to a suspend, then we can
 665       // consider the thread to be externally suspended. This means that
 666       // the code that sets _thread_blocked has been modified to do
 667       // self-suspension if the blocking condition releases. We also
 668       // used to check for CONDVAR_WAIT here, but that is now covered by
 669       // the _thread_blocked with self-suspension check.
 670       //
 671       // Return true since we wouldn't be here unless there was still an
 672       // external suspend request.
 673       *bits |= 0x00001000;
 674       return true;
 675     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 676       // Threads running native code will self-suspend on native==>VM/Java
 677       // transitions. If its stack is walkable (should always be the case
 678       // unless this function is called before the actual java_suspend()
 679       // call), then the wait is done.
 680       *bits |= 0x00002000;
 681       return true;
 682     } else if (!called_by_wait && !did_trans_retry &&
 683                save_state == _thread_in_native_trans &&
 684                frame_anchor()->walkable()) {
 685       // The thread is transitioning from thread_in_native to another
 686       // thread state. check_safepoint_and_suspend_for_native_trans()
 687       // will force the thread to self-suspend. If it hasn't gotten
 688       // there yet we may have caught the thread in-between the native
 689       // code check above and the self-suspend. Lucky us. If we were
 690       // called by wait_for_ext_suspend_completion(), then it
 691       // will be doing the retries so we don't have to.
 692       //
 693       // Since we use the saved thread state in the if-statement above,
 694       // there is a chance that the thread has already transitioned to
 695       // _thread_blocked by the time we get here. In that case, we will
 696       // make a single unnecessary pass through the logic below. This
 697       // doesn't hurt anything since we still do the trans retry.
 698 
 699       *bits |= 0x00004000;
 700 
 701       // Once the thread leaves thread_in_native_trans for another
 702       // thread state, we break out of this retry loop. We shouldn't
 703       // need this flag to prevent us from getting back here, but
 704       // sometimes paranoia is good.
 705       did_trans_retry = true;
 706 
 707       // We wait for the thread to transition to a more usable state.
 708       for (int i = 1; i <= SuspendRetryCount; i++) {
 709         // We used to do an "os::yield_all(i)" call here with the intention
 710         // that yielding would increase on each retry. However, the parameter
 711         // is ignored on Linux which means the yield didn't scale up. Waiting
 712         // on the SR_lock below provides a much more predictable scale up for
 713         // the delay. It also provides a simple/direct point to check for any
 714         // safepoint requests from the VMThread
 715 
 716         // temporarily drops SR_lock while doing wait with safepoint check
 717         // (if we're a JavaThread - the WatcherThread can also call this)
 718         // and increase delay with each retry
 719         if (Thread::current()->is_Java_thread()) {
 720           SR_lock()->wait(i * delay);
 721         } else {
 722           SR_lock()->wait_without_safepoint_check(i * delay);
 723         }
 724 
 725         // check the actual thread state instead of what we saved above
 726         if (thread_state() != _thread_in_native_trans) {
 727           // the thread has transitioned to another thread state so
 728           // try all the checks (except this one) one more time.
 729           do_trans_retry = true;
 730           break;
 731         }
 732       } // end retry loop
 733 
 734 
 735     }
 736   } while (do_trans_retry);
 737 
 738   *bits |= 0x00000010;
 739   return false;
 740 }
 741 
 742 // Wait for an external suspend request to complete (or be cancelled).
 743 // Returns true if the thread is externally suspended and false otherwise.
 744 //
 745 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 746                                                  uint32_t *bits) {
 747   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 748                              false /* !called_by_wait */, bits);
 749 
 750   // local flag copies to minimize SR_lock hold time
 751   bool is_suspended;
 752   bool pending;
 753   uint32_t reset_bits;
 754 
 755   // set a marker so is_ext_suspend_completed() knows we are the caller
 756   *bits |= 0x00010000;
 757 
 758   // We use reset_bits to reinitialize the bits value at the top of
 759   // each retry loop. This allows the caller to make use of any
 760   // unused bits for their own marking purposes.
 761   reset_bits = *bits;
 762 
 763   {
 764     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 765     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 766                                             delay, bits);
 767     pending = is_external_suspend();
 768   }
 769   // must release SR_lock to allow suspension to complete
 770 
 771   if (!pending) {
 772     // A cancelled suspend request is the only false return from
 773     // is_ext_suspend_completed() that keeps us from entering the
 774     // retry loop.
 775     *bits |= 0x00020000;
 776     return false;
 777   }
 778 
 779   if (is_suspended) {
 780     *bits |= 0x00040000;
 781     return true;
 782   }
 783 
 784   for (int i = 1; i <= retries; i++) {
 785     *bits = reset_bits;  // reinit to only track last retry
 786 
 787     // We used to do an "os::yield_all(i)" call here with the intention
 788     // that yielding would increase on each retry. However, the parameter
 789     // is ignored on Linux which means the yield didn't scale up. Waiting
 790     // on the SR_lock below provides a much more predictable scale up for
 791     // the delay. It also provides a simple/direct point to check for any
 792     // safepoint requests from the VMThread
 793 
 794     {
 795       Thread* t = Thread::current();
 796       MonitorLocker ml(SR_lock(),
 797                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 798       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 799       // can also call this)  and increase delay with each retry
 800       ml.wait(i * delay);
 801 
 802       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 803                                               delay, bits);
 804 
 805       // It is possible for the external suspend request to be cancelled
 806       // (by a resume) before the actual suspend operation is completed.
 807       // Refresh our local copy to see if we still need to wait.
 808       pending = is_external_suspend();
 809     }
 810 
 811     if (!pending) {
 812       // A cancelled suspend request is the only false return from
 813       // is_ext_suspend_completed() that keeps us from staying in the
 814       // retry loop.
 815       *bits |= 0x00080000;
 816       return false;
 817     }
 818 
 819     if (is_suspended) {
 820       *bits |= 0x00100000;
 821       return true;
 822     }
 823   } // end retry loop
 824 
 825   // thread did not suspend after all our retries
 826   *bits |= 0x00200000;
 827   return false;
 828 }
 829 
 830 // Called from API entry points which perform stack walking. If the
 831 // associated JavaThread is the current thread, then wait_for_suspend
 832 // is not used. Otherwise, it determines if we should wait for the
 833 // "other" thread to complete external suspension. (NOTE: in future
 834 // releases the suspension mechanism should be reimplemented so this
 835 // is not necessary.)
 836 //
 837 bool
 838 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 839   if (this != JavaThread::current()) {
 840     // "other" threads require special handling.
 841     if (wait_for_suspend) {
 842       // We are allowed to wait for the external suspend to complete
 843       // so give the other thread a chance to get suspended.
 844       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 845                                            SuspendRetryDelay, bits)) {
 846         // Didn't make it so let the caller know.
 847         return false;
 848       }
 849     }
 850     // We aren't allowed to wait for the external suspend to complete
 851     // so if the other thread isn't externally suspended we need to
 852     // let the caller know.
 853     else if (!is_ext_suspend_completed_with_lock(bits)) {
 854       return false;
 855     }
 856   }
 857 
 858   return true;
 859 }
 860 
 861 void Thread::interrupt(Thread* thread) {
 862   debug_only(check_for_dangling_thread_pointer(thread);)
 863   os::interrupt(thread);
 864 }
 865 
 866 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 867   debug_only(check_for_dangling_thread_pointer(thread);)
 868   // Note:  If clear_interrupted==false, this simply fetches and
 869   // returns the value of the field osthread()->interrupted().
 870   return os::is_interrupted(thread, clear_interrupted);
 871 }
 872 
 873 
 874 // GC Support
 875 bool Thread::claim_par_threads_do(uintx claim_token) {
 876   uintx token = _threads_do_token;
 877   if (token != claim_token) {
 878     uintx res = Atomic::cmpxchg(claim_token, &_threads_do_token, token);
 879     if (res == token) {
 880       return true;
 881     }
 882     guarantee(res == claim_token, "invariant");
 883   }
 884   return false;
 885 }
 886 
 887 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 888   active_handles()->oops_do(f);
 889   // Do oop for ThreadShadow
 890   f->do_oop((oop*)&_pending_exception);
 891   handle_area()->oops_do(f);
 892 
 893   // We scan thread local monitor lists here, and the remaining global
 894   // monitors in ObjectSynchronizer::oops_do().
 895   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 896 }
 897 
 898 void Thread::metadata_handles_do(void f(Metadata*)) {
 899   // Only walk the Handles in Thread.
 900   if (metadata_handles() != NULL) {
 901     for (int i = 0; i< metadata_handles()->length(); i++) {
 902       f(metadata_handles()->at(i));
 903     }
 904   }
 905 }
 906 
 907 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 908   // get_priority assumes osthread initialized
 909   if (osthread() != NULL) {
 910     int os_prio;
 911     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 912       st->print("os_prio=%d ", os_prio);
 913     }
 914 
 915     st->print("cpu=%.2fms ",
 916               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 917               );
 918     st->print("elapsed=%.2fs ",
 919               _statistical_info.getElapsedTime() / 1000.0
 920               );
 921     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 922       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 923       st->print("allocated=" SIZE_FORMAT "%s ",
 924                 byte_size_in_proper_unit(allocated_bytes),
 925                 proper_unit_for_byte_size(allocated_bytes)
 926                 );
 927       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 928     }
 929 
 930     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 931     osthread()->print_on(st);
 932   }
 933   ThreadsSMRSupport::print_info_on(this, st);
 934   st->print(" ");
 935   debug_only(if (WizardMode) print_owned_locks_on(st);)
 936 }
 937 
 938 void Thread::print() const { print_on(tty); }
 939 
 940 // Thread::print_on_error() is called by fatal error handler. Don't use
 941 // any lock or allocate memory.
 942 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 943   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 944 
 945   if (is_VM_thread())                 { st->print("VMThread"); }
 946   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 947   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 948   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 949   else                                { st->print("Thread"); }
 950 
 951   if (is_Named_thread()) {
 952     st->print(" \"%s\"", name());
 953   }
 954 
 955   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 956             p2i(stack_end()), p2i(stack_base()));
 957 
 958   if (osthread()) {
 959     st->print(" [id=%d]", osthread()->thread_id());
 960   }
 961 
 962   ThreadsSMRSupport::print_info_on(this, st);
 963 }
 964 
 965 void Thread::print_value_on(outputStream* st) const {
 966   if (is_Named_thread()) {
 967     st->print(" \"%s\" ", name());
 968   }
 969   st->print(INTPTR_FORMAT, p2i(this));   // print address
 970 }
 971 
 972 #ifdef ASSERT
 973 void Thread::print_owned_locks_on(outputStream* st) const {
 974   Mutex* cur = _owned_locks;
 975   if (cur == NULL) {
 976     st->print(" (no locks) ");
 977   } else {
 978     st->print_cr(" Locks owned:");
 979     while (cur) {
 980       cur->print_on(st);
 981       cur = cur->next();
 982     }
 983   }
 984 }
 985 
 986 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 987 void Thread::check_possible_safepoint() {
 988   if (!is_Java_thread()) return;
 989 
 990   if (_no_safepoint_count > 0) {
 991     fatal("Possible safepoint reached by thread that does not allow it");
 992   }
 993 #ifdef CHECK_UNHANDLED_OOPS
 994   // Clear unhandled oops in JavaThreads so we get a crash right away.
 995   clear_unhandled_oops();
 996 #endif // CHECK_UNHANDLED_OOPS
 997 }
 998 
 999 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
1000 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
1001 // no locks which allow_vm_block's are held
1002 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
1003   if (!is_Java_thread()) return;
1004 
1005   check_possible_safepoint();
1006 
1007   if (((JavaThread*)this)->thread_state() != _thread_in_vm) {
1008     fatal("LEAF method calling lock?");
1009   }
1010 
1011   if (potential_vm_operation && !Universe::is_bootstrapping()) {
1012     // Make sure we do not hold any locks that the VM thread also uses.
1013     // This could potentially lead to deadlocks
1014     for (Mutex* cur = _owned_locks; cur; cur = cur->next()) {
1015       // Threads_lock is special, since the safepoint synchronization will not start before this is
1016       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
1017       // since it is used to transfer control between JavaThreads and the VMThread
1018       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
1019       if ((cur->allow_vm_block() &&
1020            cur != Threads_lock &&
1021            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1022            cur != VMOperationRequest_lock &&
1023            cur != VMOperationQueue_lock) ||
1024            cur->rank() == Mutex::special) {
1025         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1026       }
1027     }
1028   }
1029 
1030   if (GCALotAtAllSafepoints) {
1031     // We could enter a safepoint here and thus have a gc
1032     InterfaceSupport::check_gc_alot();
1033   }
1034 }
1035 #endif // ASSERT
1036 
1037 bool Thread::is_in_stack(address adr) const {
1038   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1039   address end = os::current_stack_pointer();
1040   // Allow non Java threads to call this without stack_base
1041   if (_stack_base == NULL) return true;
1042   if (stack_base() >= adr && adr >= end) return true;
1043 
1044   return false;
1045 }
1046 
1047 bool Thread::is_in_usable_stack(address adr) const {
1048   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1049   size_t usable_stack_size = _stack_size - stack_guard_size;
1050 
1051   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1052 }
1053 
1054 
1055 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1056 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1057 // used for compilation in the future. If that change is made, the need for these methods
1058 // should be revisited, and they should be removed if possible.
1059 
1060 bool Thread::is_lock_owned(address adr) const {
1061   return on_local_stack(adr);
1062 }
1063 
1064 bool Thread::set_as_starting_thread() {
1065   assert(_starting_thread == NULL, "already initialized: "
1066          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1067   // NOTE: this must be called inside the main thread.
1068   DEBUG_ONLY(_starting_thread = this;)
1069   return os::create_main_thread((JavaThread*)this);
1070 }
1071 
1072 static void initialize_class(Symbol* class_name, TRAPS) {
1073   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1074   InstanceKlass::cast(klass)->initialize(CHECK);
1075 }
1076 
1077 
1078 // Creates the initial ThreadGroup
1079 static Handle create_initial_thread_group(TRAPS) {
1080   Handle system_instance = JavaCalls::construct_new_instance(
1081                             SystemDictionary::ThreadGroup_klass(),
1082                             vmSymbols::void_method_signature(),
1083                             CHECK_NH);
1084   Universe::set_system_thread_group(system_instance());
1085 
1086   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1087   Handle main_instance = JavaCalls::construct_new_instance(
1088                             SystemDictionary::ThreadGroup_klass(),
1089                             vmSymbols::threadgroup_string_void_signature(),
1090                             system_instance,
1091                             string,
1092                             CHECK_NH);
1093   return main_instance;
1094 }
1095 
1096 // Creates the initial Thread
1097 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1098                                  TRAPS) {
1099   InstanceKlass* ik = SystemDictionary::Thread_klass();
1100   assert(ik->is_initialized(), "must be");
1101   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1102 
1103   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1104   // constructor calls Thread.current(), which must be set here for the
1105   // initial thread.
1106   java_lang_Thread::set_thread(thread_oop(), thread);
1107   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1108   thread->set_threadObj(thread_oop());
1109 
1110   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1111 
1112   JavaValue result(T_VOID);
1113   JavaCalls::call_special(&result, thread_oop,
1114                           ik,
1115                           vmSymbols::object_initializer_name(),
1116                           vmSymbols::threadgroup_string_void_signature(),
1117                           thread_group,
1118                           string,
1119                           CHECK_NULL);
1120   return thread_oop();
1121 }
1122 
1123 char java_runtime_name[128] = "";
1124 char java_runtime_version[128] = "";
1125 
1126 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1127 static const char* get_java_runtime_name(TRAPS) {
1128   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1129                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1130   fieldDescriptor fd;
1131   bool found = k != NULL &&
1132                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1133                                                         vmSymbols::string_signature(), &fd);
1134   if (found) {
1135     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1136     if (name_oop == NULL) {
1137       return NULL;
1138     }
1139     const char* name = java_lang_String::as_utf8_string(name_oop,
1140                                                         java_runtime_name,
1141                                                         sizeof(java_runtime_name));
1142     return name;
1143   } else {
1144     return NULL;
1145   }
1146 }
1147 
1148 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1149 static const char* get_java_runtime_version(TRAPS) {
1150   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1151                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1152   fieldDescriptor fd;
1153   bool found = k != NULL &&
1154                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1155                                                         vmSymbols::string_signature(), &fd);
1156   if (found) {
1157     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1158     if (name_oop == NULL) {
1159       return NULL;
1160     }
1161     const char* name = java_lang_String::as_utf8_string(name_oop,
1162                                                         java_runtime_version,
1163                                                         sizeof(java_runtime_version));
1164     return name;
1165   } else {
1166     return NULL;
1167   }
1168 }
1169 
1170 // General purpose hook into Java code, run once when the VM is initialized.
1171 // The Java library method itself may be changed independently from the VM.
1172 static void call_postVMInitHook(TRAPS) {
1173   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1174   if (klass != NULL) {
1175     JavaValue result(T_VOID);
1176     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1177                            vmSymbols::void_method_signature(),
1178                            CHECK);
1179   }
1180 }
1181 
1182 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1183                                     bool daemon, TRAPS) {
1184   assert(thread_group.not_null(), "thread group should be specified");
1185   assert(threadObj() == NULL, "should only create Java thread object once");
1186 
1187   InstanceKlass* ik = SystemDictionary::Thread_klass();
1188   assert(ik->is_initialized(), "must be");
1189   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1190 
1191   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1192   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1193   // constructor calls Thread.current(), which must be set here.
1194   java_lang_Thread::set_thread(thread_oop(), this);
1195   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1196   set_threadObj(thread_oop());
1197 
1198   JavaValue result(T_VOID);
1199   if (thread_name != NULL) {
1200     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1201     // Thread gets assigned specified name and null target
1202     JavaCalls::call_special(&result,
1203                             thread_oop,
1204                             ik,
1205                             vmSymbols::object_initializer_name(),
1206                             vmSymbols::threadgroup_string_void_signature(),
1207                             thread_group,
1208                             name,
1209                             THREAD);
1210   } else {
1211     // Thread gets assigned name "Thread-nnn" and null target
1212     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1213     JavaCalls::call_special(&result,
1214                             thread_oop,
1215                             ik,
1216                             vmSymbols::object_initializer_name(),
1217                             vmSymbols::threadgroup_runnable_void_signature(),
1218                             thread_group,
1219                             Handle(),
1220                             THREAD);
1221   }
1222 
1223 
1224   if (daemon) {
1225     java_lang_Thread::set_daemon(thread_oop());
1226   }
1227 
1228   if (HAS_PENDING_EXCEPTION) {
1229     return;
1230   }
1231 
1232   Klass* group =  SystemDictionary::ThreadGroup_klass();
1233   Handle threadObj(THREAD, this->threadObj());
1234 
1235   JavaCalls::call_special(&result,
1236                           thread_group,
1237                           group,
1238                           vmSymbols::add_method_name(),
1239                           vmSymbols::thread_void_signature(),
1240                           threadObj,          // Arg 1
1241                           THREAD);
1242 }
1243 
1244 // List of all NonJavaThreads and safe iteration over that list.
1245 
1246 class NonJavaThread::List {
1247 public:
1248   NonJavaThread* volatile _head;
1249   SingleWriterSynchronizer _protect;
1250 
1251   List() : _head(NULL), _protect() {}
1252 };
1253 
1254 NonJavaThread::List NonJavaThread::_the_list;
1255 
1256 NonJavaThread::Iterator::Iterator() :
1257   _protect_enter(_the_list._protect.enter()),
1258   _current(OrderAccess::load_acquire(&_the_list._head))
1259 {}
1260 
1261 NonJavaThread::Iterator::~Iterator() {
1262   _the_list._protect.exit(_protect_enter);
1263 }
1264 
1265 void NonJavaThread::Iterator::step() {
1266   assert(!end(), "precondition");
1267   _current = OrderAccess::load_acquire(&_current->_next);
1268 }
1269 
1270 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1271   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1272 }
1273 
1274 NonJavaThread::~NonJavaThread() { }
1275 
1276 void NonJavaThread::add_to_the_list() {
1277   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1278   // Initialize BarrierSet-related data before adding to list.
1279   BarrierSet::barrier_set()->on_thread_attach(this);
1280   OrderAccess::release_store(&_next, _the_list._head);
1281   OrderAccess::release_store(&_the_list._head, this);
1282 }
1283 
1284 void NonJavaThread::remove_from_the_list() {
1285   {
1286     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1287     // Cleanup BarrierSet-related data before removing from list.
1288     BarrierSet::barrier_set()->on_thread_detach(this);
1289     NonJavaThread* volatile* p = &_the_list._head;
1290     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1291       if (t == this) {
1292         *p = _next;
1293         break;
1294       }
1295     }
1296   }
1297   // Wait for any in-progress iterators.  Concurrent synchronize is not
1298   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1299   // from NJTList_lock in case an iteration attempts to lock it.
1300   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1301   _the_list._protect.synchronize();
1302   _next = NULL;                 // Safe to drop the link now.
1303 }
1304 
1305 void NonJavaThread::pre_run() {
1306   add_to_the_list();
1307 
1308   // This is slightly odd in that NamedThread is a subclass, but
1309   // in fact name() is defined in Thread
1310   assert(this->name() != NULL, "thread name was not set before it was started");
1311   this->set_native_thread_name(this->name());
1312 }
1313 
1314 void NonJavaThread::post_run() {
1315   JFR_ONLY(Jfr::on_thread_exit(this);)
1316   remove_from_the_list();
1317   // Ensure thread-local-storage is cleared before termination.
1318   Thread::clear_thread_current();
1319 }
1320 
1321 // NamedThread --  non-JavaThread subclasses with multiple
1322 // uniquely named instances should derive from this.
1323 NamedThread::NamedThread() :
1324   NonJavaThread(),
1325   _name(NULL),
1326   _processed_thread(NULL),
1327   _gc_id(GCId::undefined())
1328 {}
1329 
1330 NamedThread::~NamedThread() {
1331   FREE_C_HEAP_ARRAY(char, _name);
1332 }
1333 
1334 void NamedThread::set_name(const char* format, ...) {
1335   guarantee(_name == NULL, "Only get to set name once.");
1336   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1337   va_list ap;
1338   va_start(ap, format);
1339   jio_vsnprintf(_name, max_name_len, format, ap);
1340   va_end(ap);
1341 }
1342 
1343 void NamedThread::print_on(outputStream* st) const {
1344   st->print("\"%s\" ", name());
1345   Thread::print_on(st);
1346   st->cr();
1347 }
1348 
1349 
1350 // ======= WatcherThread ========
1351 
1352 // The watcher thread exists to simulate timer interrupts.  It should
1353 // be replaced by an abstraction over whatever native support for
1354 // timer interrupts exists on the platform.
1355 
1356 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1357 bool WatcherThread::_startable = false;
1358 volatile bool  WatcherThread::_should_terminate = false;
1359 
1360 WatcherThread::WatcherThread() : NonJavaThread() {
1361   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1362   if (os::create_thread(this, os::watcher_thread)) {
1363     _watcher_thread = this;
1364 
1365     // Set the watcher thread to the highest OS priority which should not be
1366     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1367     // is created. The only normal thread using this priority is the reference
1368     // handler thread, which runs for very short intervals only.
1369     // If the VMThread's priority is not lower than the WatcherThread profiling
1370     // will be inaccurate.
1371     os::set_priority(this, MaxPriority);
1372     if (!DisableStartThread) {
1373       os::start_thread(this);
1374     }
1375   }
1376 }
1377 
1378 int WatcherThread::sleep() const {
1379   // The WatcherThread does not participate in the safepoint protocol
1380   // for the PeriodicTask_lock because it is not a JavaThread.
1381   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1382 
1383   if (_should_terminate) {
1384     // check for termination before we do any housekeeping or wait
1385     return 0;  // we did not sleep.
1386   }
1387 
1388   // remaining will be zero if there are no tasks,
1389   // causing the WatcherThread to sleep until a task is
1390   // enrolled
1391   int remaining = PeriodicTask::time_to_wait();
1392   int time_slept = 0;
1393 
1394   // we expect this to timeout - we only ever get unparked when
1395   // we should terminate or when a new task has been enrolled
1396   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1397 
1398   jlong time_before_loop = os::javaTimeNanos();
1399 
1400   while (true) {
1401     bool timedout = ml.wait(remaining);
1402     jlong now = os::javaTimeNanos();
1403 
1404     if (remaining == 0) {
1405       // if we didn't have any tasks we could have waited for a long time
1406       // consider the time_slept zero and reset time_before_loop
1407       time_slept = 0;
1408       time_before_loop = now;
1409     } else {
1410       // need to recalculate since we might have new tasks in _tasks
1411       time_slept = (int) ((now - time_before_loop) / 1000000);
1412     }
1413 
1414     // Change to task list or spurious wakeup of some kind
1415     if (timedout || _should_terminate) {
1416       break;
1417     }
1418 
1419     remaining = PeriodicTask::time_to_wait();
1420     if (remaining == 0) {
1421       // Last task was just disenrolled so loop around and wait until
1422       // another task gets enrolled
1423       continue;
1424     }
1425 
1426     remaining -= time_slept;
1427     if (remaining <= 0) {
1428       break;
1429     }
1430   }
1431 
1432   return time_slept;
1433 }
1434 
1435 void WatcherThread::run() {
1436   assert(this == watcher_thread(), "just checking");
1437 
1438   this->set_active_handles(JNIHandleBlock::allocate_block());
1439   while (true) {
1440     assert(watcher_thread() == Thread::current(), "thread consistency check");
1441     assert(watcher_thread() == this, "thread consistency check");
1442 
1443     // Calculate how long it'll be until the next PeriodicTask work
1444     // should be done, and sleep that amount of time.
1445     int time_waited = sleep();
1446 
1447     if (VMError::is_error_reported()) {
1448       // A fatal error has happened, the error handler(VMError::report_and_die)
1449       // should abort JVM after creating an error log file. However in some
1450       // rare cases, the error handler itself might deadlock. Here periodically
1451       // check for error reporting timeouts, and if it happens, just proceed to
1452       // abort the VM.
1453 
1454       // This code is in WatcherThread because WatcherThread wakes up
1455       // periodically so the fatal error handler doesn't need to do anything;
1456       // also because the WatcherThread is less likely to crash than other
1457       // threads.
1458 
1459       for (;;) {
1460         // Note: we use naked sleep in this loop because we want to avoid using
1461         // any kind of VM infrastructure which may be broken at this point.
1462         if (VMError::check_timeout()) {
1463           // We hit error reporting timeout. Error reporting was interrupted and
1464           // will be wrapping things up now (closing files etc). Give it some more
1465           // time, then quit the VM.
1466           os::naked_short_sleep(200);
1467           // Print a message to stderr.
1468           fdStream err(defaultStream::output_fd());
1469           err.print_raw_cr("# [ timer expired, abort... ]");
1470           // skip atexit/vm_exit/vm_abort hooks
1471           os::die();
1472         }
1473 
1474         // Wait a second, then recheck for timeout.
1475         os::naked_short_sleep(999);
1476       }
1477     }
1478 
1479     if (_should_terminate) {
1480       // check for termination before posting the next tick
1481       break;
1482     }
1483 
1484     PeriodicTask::real_time_tick(time_waited);
1485   }
1486 
1487   // Signal that it is terminated
1488   {
1489     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1490     _watcher_thread = NULL;
1491     Terminator_lock->notify_all();
1492   }
1493 }
1494 
1495 void WatcherThread::start() {
1496   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1497 
1498   if (watcher_thread() == NULL && _startable) {
1499     _should_terminate = false;
1500     // Create the single instance of WatcherThread
1501     new WatcherThread();
1502   }
1503 }
1504 
1505 void WatcherThread::make_startable() {
1506   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1507   _startable = true;
1508 }
1509 
1510 void WatcherThread::stop() {
1511   {
1512     // Follow normal safepoint aware lock enter protocol since the
1513     // WatcherThread is stopped by another JavaThread.
1514     MutexLocker ml(PeriodicTask_lock);
1515     _should_terminate = true;
1516 
1517     WatcherThread* watcher = watcher_thread();
1518     if (watcher != NULL) {
1519       // unpark the WatcherThread so it can see that it should terminate
1520       watcher->unpark();
1521     }
1522   }
1523 
1524   MonitorLocker mu(Terminator_lock);
1525 
1526   while (watcher_thread() != NULL) {
1527     // This wait should make safepoint checks, wait without a timeout,
1528     // and wait as a suspend-equivalent condition.
1529     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1530   }
1531 }
1532 
1533 void WatcherThread::unpark() {
1534   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1535   PeriodicTask_lock->notify();
1536 }
1537 
1538 void WatcherThread::print_on(outputStream* st) const {
1539   st->print("\"%s\" ", name());
1540   Thread::print_on(st);
1541   st->cr();
1542 }
1543 
1544 // ======= JavaThread ========
1545 
1546 #if INCLUDE_JVMCI
1547 
1548 jlong* JavaThread::_jvmci_old_thread_counters;
1549 
1550 bool jvmci_counters_include(JavaThread* thread) {
1551   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1552 }
1553 
1554 void JavaThread::collect_counters(jlong* array, int length) {
1555   assert(length == JVMCICounterSize, "wrong value");
1556   for (int i = 0; i < length; i++) {
1557     array[i] = _jvmci_old_thread_counters[i];
1558   }
1559   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1560     if (jvmci_counters_include(tp)) {
1561       for (int i = 0; i < length; i++) {
1562         array[i] += tp->_jvmci_counters[i];
1563       }
1564     }
1565   }
1566 }
1567 
1568 // Attempt to enlarge the array for per thread counters.
1569 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1570   jlong* new_counters = NEW_C_HEAP_ARRAY(jlong, new_size, mtJVMCI);
1571   if (new_counters == NULL) {
1572     return NULL;
1573   }
1574   if (old_counters == NULL) {
1575     old_counters = new_counters;
1576     memset(old_counters, 0, sizeof(jlong) * new_size);
1577   } else {
1578     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1579       new_counters[i] = old_counters[i];
1580     }
1581     if (new_size > current_size) {
1582       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1583     }
1584     FREE_C_HEAP_ARRAY(jlong, old_counters);
1585   }
1586   return new_counters;
1587 }
1588 
1589 // Attempt to enlarge the array for per thread counters.
1590 bool JavaThread::resize_counters(int current_size, int new_size) {
1591   jlong* new_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1592   if (new_counters == NULL) {
1593     return false;
1594   } else {
1595     _jvmci_counters = new_counters;
1596     return true;
1597   }
1598 }
1599 
1600 class VM_JVMCIResizeCounters : public VM_Operation {
1601  private:
1602   int _new_size;
1603   bool _failed;
1604 
1605  public:
1606   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size), _failed(false) { }
1607   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1608   bool allow_nested_vm_operations() const        { return true; }
1609   void doit() {
1610     // Resize the old thread counters array
1611     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1612     if (new_counters == NULL) {
1613       _failed = true;
1614       return;
1615     } else {
1616       JavaThread::_jvmci_old_thread_counters = new_counters;
1617     }
1618 
1619     // Now resize each threads array
1620     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1621       if (!tp->resize_counters(JVMCICounterSize, _new_size)) {
1622         _failed = true;
1623         break;
1624       }
1625     }
1626     if (!_failed) {
1627       JVMCICounterSize = _new_size;
1628     }
1629   }
1630 
1631   bool failed() { return _failed; }
1632 };
1633 
1634 bool JavaThread::resize_all_jvmci_counters(int new_size) {
1635   VM_JVMCIResizeCounters op(new_size);
1636   VMThread::execute(&op);
1637   return !op.failed();
1638 }
1639 
1640 #endif // INCLUDE_JVMCI
1641 
1642 // A JavaThread is a normal Java thread
1643 
1644 void JavaThread::initialize() {
1645   // Initialize fields
1646 
1647   set_saved_exception_pc(NULL);
1648   set_threadObj(NULL);
1649   _anchor.clear();
1650   set_entry_point(NULL);
1651   set_jni_functions(jni_functions());
1652   set_callee_target(NULL);
1653   set_vm_result(NULL);
1654   set_vm_result_2(NULL);
1655   set_vframe_array_head(NULL);
1656   set_vframe_array_last(NULL);
1657   set_deferred_locals(NULL);
1658   set_deopt_mark(NULL);
1659   set_deopt_compiled_method(NULL);
1660   set_monitor_chunks(NULL);
1661   _on_thread_list = false;
1662   set_thread_state(_thread_new);
1663   _terminated = _not_terminated;
1664   _array_for_gc = NULL;
1665   _suspend_equivalent = false;
1666   _in_deopt_handler = 0;
1667   _doing_unsafe_access = false;
1668   _stack_guard_state = stack_guard_unused;
1669 #if INCLUDE_JVMCI
1670   _pending_monitorenter = false;
1671   _pending_deoptimization = -1;
1672   _pending_failed_speculation = 0;
1673   _pending_transfer_to_interpreter = false;
1674   _in_retryable_allocation = false;
1675   _jvmci._alternate_call_target = NULL;
1676   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1677   _jvmci_counters = NULL;
1678   if (JVMCICounterSize > 0) {
1679     resize_counters(0, (int) JVMCICounterSize);
1680   }
1681 #endif // INCLUDE_JVMCI
1682   _reserved_stack_activation = NULL;  // stack base not known yet
1683   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1684   _exception_pc  = 0;
1685   _exception_handler_pc = 0;
1686   _is_method_handle_return = 0;
1687   _jvmti_thread_state= NULL;
1688   _should_post_on_exceptions_flag = JNI_FALSE;
1689   _interp_only_mode    = 0;
1690   _special_runtime_exit_condition = _no_async_condition;
1691   _pending_async_exception = NULL;
1692   _thread_stat = NULL;
1693   _thread_stat = new ThreadStatistics();
1694   _jni_active_critical = 0;
1695   _pending_jni_exception_check_fn = NULL;
1696   _do_not_unlock_if_synchronized = false;
1697   _cached_monitor_info = NULL;
1698   _parker = Parker::Allocate(this);
1699 
1700   // Setup safepoint state info for this thread
1701   ThreadSafepointState::create(this);
1702 
1703   debug_only(_java_call_counter = 0);
1704 
1705   // JVMTI PopFrame support
1706   _popframe_condition = popframe_inactive;
1707   _popframe_preserved_args = NULL;
1708   _popframe_preserved_args_size = 0;
1709   _frames_to_pop_failed_realloc = 0;
1710 
1711   if (SafepointMechanism::uses_thread_local_poll()) {
1712     SafepointMechanism::initialize_header(this);
1713   }
1714 
1715   _class_to_be_initialized = NULL;
1716 
1717   pd_initialize();
1718 }
1719 
1720 JavaThread::JavaThread(bool is_attaching_via_jni) :
1721                        Thread() {
1722   initialize();
1723   if (is_attaching_via_jni) {
1724     _jni_attach_state = _attaching_via_jni;
1725   } else {
1726     _jni_attach_state = _not_attaching_via_jni;
1727   }
1728   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1729 }
1730 
1731 bool JavaThread::reguard_stack(address cur_sp) {
1732   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1733       && _stack_guard_state != stack_guard_reserved_disabled) {
1734     return true; // Stack already guarded or guard pages not needed.
1735   }
1736 
1737   if (register_stack_overflow()) {
1738     // For those architectures which have separate register and
1739     // memory stacks, we must check the register stack to see if
1740     // it has overflowed.
1741     return false;
1742   }
1743 
1744   // Java code never executes within the yellow zone: the latter is only
1745   // there to provoke an exception during stack banging.  If java code
1746   // is executing there, either StackShadowPages should be larger, or
1747   // some exception code in c1, c2 or the interpreter isn't unwinding
1748   // when it should.
1749   guarantee(cur_sp > stack_reserved_zone_base(),
1750             "not enough space to reguard - increase StackShadowPages");
1751   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1752     enable_stack_yellow_reserved_zone();
1753     if (reserved_stack_activation() != stack_base()) {
1754       set_reserved_stack_activation(stack_base());
1755     }
1756   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1757     set_reserved_stack_activation(stack_base());
1758     enable_stack_reserved_zone();
1759   }
1760   return true;
1761 }
1762 
1763 bool JavaThread::reguard_stack(void) {
1764   return reguard_stack(os::current_stack_pointer());
1765 }
1766 
1767 
1768 void JavaThread::block_if_vm_exited() {
1769   if (_terminated == _vm_exited) {
1770     // _vm_exited is set at safepoint, and Threads_lock is never released
1771     // we will block here forever
1772     Threads_lock->lock();
1773     ShouldNotReachHere();
1774   }
1775 }
1776 
1777 
1778 // Remove this ifdef when C1 is ported to the compiler interface.
1779 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1780 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1781 
1782 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1783                        Thread() {
1784   initialize();
1785   _jni_attach_state = _not_attaching_via_jni;
1786   set_entry_point(entry_point);
1787   // Create the native thread itself.
1788   // %note runtime_23
1789   os::ThreadType thr_type = os::java_thread;
1790   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1791                                                      os::java_thread;
1792   os::create_thread(this, thr_type, stack_sz);
1793   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1794   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1795   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1796   // the exception consists of creating the exception object & initializing it, initialization
1797   // will leave the VM via a JavaCall and then all locks must be unlocked).
1798   //
1799   // The thread is still suspended when we reach here. Thread must be explicit started
1800   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1801   // by calling Threads:add. The reason why this is not done here, is because the thread
1802   // object must be fully initialized (take a look at JVM_Start)
1803 }
1804 
1805 JavaThread::~JavaThread() {
1806 
1807   // JSR166 -- return the parker to the free list
1808   Parker::Release(_parker);
1809   _parker = NULL;
1810 
1811   // Free any remaining  previous UnrollBlock
1812   vframeArray* old_array = vframe_array_last();
1813 
1814   if (old_array != NULL) {
1815     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1816     old_array->set_unroll_block(NULL);
1817     delete old_info;
1818     delete old_array;
1819   }
1820 
1821   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1822   if (deferred != NULL) {
1823     // This can only happen if thread is destroyed before deoptimization occurs.
1824     assert(deferred->length() != 0, "empty array!");
1825     do {
1826       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1827       deferred->remove_at(0);
1828       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1829       delete dlv;
1830     } while (deferred->length() != 0);
1831     delete deferred;
1832   }
1833 
1834   // All Java related clean up happens in exit
1835   ThreadSafepointState::destroy(this);
1836   if (_thread_stat != NULL) delete _thread_stat;
1837 
1838 #if INCLUDE_JVMCI
1839   if (JVMCICounterSize > 0) {
1840     if (jvmci_counters_include(this)) {
1841       for (int i = 0; i < JVMCICounterSize; i++) {
1842         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1843       }
1844     }
1845     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1846   }
1847 #endif // INCLUDE_JVMCI
1848 }
1849 
1850 
1851 // First JavaThread specific code executed by a new Java thread.
1852 void JavaThread::pre_run() {
1853   // empty - see comments in run()
1854 }
1855 
1856 // The main routine called by a new Java thread. This isn't overridden
1857 // by subclasses, instead different subclasses define a different "entry_point"
1858 // which defines the actual logic for that kind of thread.
1859 void JavaThread::run() {
1860   // initialize thread-local alloc buffer related fields
1861   this->initialize_tlab();
1862 
1863   // Used to test validity of stack trace backs.
1864   // This can't be moved into pre_run() else we invalidate
1865   // the requirement that thread_main_inner is lower on
1866   // the stack. Consequently all the initialization logic
1867   // stays here in run() rather than pre_run().
1868   this->record_base_of_stack_pointer();
1869 
1870   this->create_stack_guard_pages();
1871 
1872   this->cache_global_variables();
1873 
1874   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1875   // in the VM. Change thread state from _thread_new to _thread_in_vm
1876   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1877   // Before a thread is on the threads list it is always safe, so after leaving the
1878   // _thread_new we should emit a instruction barrier. The distance to modified code
1879   // from here is probably far enough, but this is consistent and safe.
1880   OrderAccess::cross_modify_fence();
1881 
1882   assert(JavaThread::current() == this, "sanity check");
1883   assert(!Thread::current()->owns_locks(), "sanity check");
1884 
1885   DTRACE_THREAD_PROBE(start, this);
1886 
1887   // This operation might block. We call that after all safepoint checks for a new thread has
1888   // been completed.
1889   this->set_active_handles(JNIHandleBlock::allocate_block());
1890 
1891   if (JvmtiExport::should_post_thread_life()) {
1892     JvmtiExport::post_thread_start(this);
1893 
1894   }
1895 
1896   // We call another function to do the rest so we are sure that the stack addresses used
1897   // from there will be lower than the stack base just computed.
1898   thread_main_inner();
1899 }
1900 
1901 void JavaThread::thread_main_inner() {
1902   assert(JavaThread::current() == this, "sanity check");
1903   assert(this->threadObj() != NULL, "just checking");
1904 
1905   // Execute thread entry point unless this thread has a pending exception
1906   // or has been stopped before starting.
1907   // Note: Due to JVM_StopThread we can have pending exceptions already!
1908   if (!this->has_pending_exception() &&
1909       !java_lang_Thread::is_stillborn(this->threadObj())) {
1910     {
1911       ResourceMark rm(this);
1912       this->set_native_thread_name(this->get_thread_name());
1913     }
1914     HandleMark hm(this);
1915     this->entry_point()(this, this);
1916   }
1917 
1918   DTRACE_THREAD_PROBE(stop, this);
1919 
1920   // Cleanup is handled in post_run()
1921 }
1922 
1923 // Shared teardown for all JavaThreads
1924 void JavaThread::post_run() {
1925   this->exit(false);
1926   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1927   // for any shared tear-down.
1928   this->smr_delete();
1929 }
1930 
1931 static void ensure_join(JavaThread* thread) {
1932   // We do not need to grab the Threads_lock, since we are operating on ourself.
1933   Handle threadObj(thread, thread->threadObj());
1934   assert(threadObj.not_null(), "java thread object must exist");
1935   ObjectLocker lock(threadObj, thread);
1936   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1937   thread->clear_pending_exception();
1938   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1939   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1940   // Clear the native thread instance - this makes isAlive return false and allows the join()
1941   // to complete once we've done the notify_all below
1942   java_lang_Thread::set_thread(threadObj(), NULL);
1943   lock.notify_all(thread);
1944   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1945   thread->clear_pending_exception();
1946 }
1947 
1948 static bool is_daemon(oop threadObj) {
1949   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1950 }
1951 
1952 // For any new cleanup additions, please check to see if they need to be applied to
1953 // cleanup_failed_attach_current_thread as well.
1954 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1955   assert(this == JavaThread::current(), "thread consistency check");
1956 
1957   elapsedTimer _timer_exit_phase1;
1958   elapsedTimer _timer_exit_phase2;
1959   elapsedTimer _timer_exit_phase3;
1960   elapsedTimer _timer_exit_phase4;
1961 
1962   if (log_is_enabled(Debug, os, thread, timer)) {
1963     _timer_exit_phase1.start();
1964   }
1965 
1966   HandleMark hm(this);
1967   Handle uncaught_exception(this, this->pending_exception());
1968   this->clear_pending_exception();
1969   Handle threadObj(this, this->threadObj());
1970   assert(threadObj.not_null(), "Java thread object should be created");
1971 
1972   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1973   {
1974     EXCEPTION_MARK;
1975 
1976     CLEAR_PENDING_EXCEPTION;
1977   }
1978   if (!destroy_vm) {
1979     if (uncaught_exception.not_null()) {
1980       EXCEPTION_MARK;
1981       // Call method Thread.dispatchUncaughtException().
1982       Klass* thread_klass = SystemDictionary::Thread_klass();
1983       JavaValue result(T_VOID);
1984       JavaCalls::call_virtual(&result,
1985                               threadObj, thread_klass,
1986                               vmSymbols::dispatchUncaughtException_name(),
1987                               vmSymbols::throwable_void_signature(),
1988                               uncaught_exception,
1989                               THREAD);
1990       if (HAS_PENDING_EXCEPTION) {
1991         ResourceMark rm(this);
1992         jio_fprintf(defaultStream::error_stream(),
1993                     "\nException: %s thrown from the UncaughtExceptionHandler"
1994                     " in thread \"%s\"\n",
1995                     pending_exception()->klass()->external_name(),
1996                     get_thread_name());
1997         CLEAR_PENDING_EXCEPTION;
1998       }
1999     }
2000     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
2001 
2002     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2003     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2004     // is deprecated anyhow.
2005     if (!is_Compiler_thread()) {
2006       int count = 3;
2007       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2008         EXCEPTION_MARK;
2009         JavaValue result(T_VOID);
2010         Klass* thread_klass = SystemDictionary::Thread_klass();
2011         JavaCalls::call_virtual(&result,
2012                                 threadObj, thread_klass,
2013                                 vmSymbols::exit_method_name(),
2014                                 vmSymbols::void_method_signature(),
2015                                 THREAD);
2016         CLEAR_PENDING_EXCEPTION;
2017       }
2018     }
2019     // notify JVMTI
2020     if (JvmtiExport::should_post_thread_life()) {
2021       JvmtiExport::post_thread_end(this);
2022     }
2023 
2024     // We have notified the agents that we are exiting, before we go on,
2025     // we must check for a pending external suspend request and honor it
2026     // in order to not surprise the thread that made the suspend request.
2027     while (true) {
2028       {
2029         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2030         if (!is_external_suspend()) {
2031           set_terminated(_thread_exiting);
2032           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2033           break;
2034         }
2035         // Implied else:
2036         // Things get a little tricky here. We have a pending external
2037         // suspend request, but we are holding the SR_lock so we
2038         // can't just self-suspend. So we temporarily drop the lock
2039         // and then self-suspend.
2040       }
2041 
2042       ThreadBlockInVM tbivm(this);
2043       java_suspend_self();
2044 
2045       // We're done with this suspend request, but we have to loop around
2046       // and check again. Eventually we will get SR_lock without a pending
2047       // external suspend request and will be able to mark ourselves as
2048       // exiting.
2049     }
2050     // no more external suspends are allowed at this point
2051   } else {
2052     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2053     // before_exit() has already posted JVMTI THREAD_END events
2054   }
2055 
2056   if (log_is_enabled(Debug, os, thread, timer)) {
2057     _timer_exit_phase1.stop();
2058     _timer_exit_phase2.start();
2059   }
2060 
2061   // Capture daemon status before the thread is marked as terminated.
2062   bool daemon = is_daemon(threadObj());
2063 
2064   // Notify waiters on thread object. This has to be done after exit() is called
2065   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2066   // group should have the destroyed bit set before waiters are notified).
2067   ensure_join(this);
2068   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2069 
2070   if (log_is_enabled(Debug, os, thread, timer)) {
2071     _timer_exit_phase2.stop();
2072     _timer_exit_phase3.start();
2073   }
2074   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2075   // held by this thread must be released. The spec does not distinguish
2076   // between JNI-acquired and regular Java monitors. We can only see
2077   // regular Java monitors here if monitor enter-exit matching is broken.
2078   //
2079   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2080   // ObjectSynchronizer::release_monitors_owned_by_thread().
2081   if (exit_type == jni_detach) {
2082     // Sanity check even though JNI DetachCurrentThread() would have
2083     // returned JNI_ERR if there was a Java frame. JavaThread exit
2084     // should be done executing Java code by the time we get here.
2085     assert(!this->has_last_Java_frame(),
2086            "should not have a Java frame when detaching or exiting");
2087     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2088     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2089   }
2090 
2091   // These things needs to be done while we are still a Java Thread. Make sure that thread
2092   // is in a consistent state, in case GC happens
2093   JFR_ONLY(Jfr::on_thread_exit(this);)
2094 
2095   if (active_handles() != NULL) {
2096     JNIHandleBlock* block = active_handles();
2097     set_active_handles(NULL);
2098     JNIHandleBlock::release_block(block);
2099   }
2100 
2101   if (free_handle_block() != NULL) {
2102     JNIHandleBlock* block = free_handle_block();
2103     set_free_handle_block(NULL);
2104     JNIHandleBlock::release_block(block);
2105   }
2106 
2107   // These have to be removed while this is still a valid thread.
2108   remove_stack_guard_pages();
2109 
2110   if (UseTLAB) {
2111     tlab().retire();
2112   }
2113 
2114   if (JvmtiEnv::environments_might_exist()) {
2115     JvmtiExport::cleanup_thread(this);
2116   }
2117 
2118   // We must flush any deferred card marks and other various GC barrier
2119   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2120   // before removing a thread from the list of active threads.
2121   BarrierSet::barrier_set()->on_thread_detach(this);
2122 
2123   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2124     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2125     os::current_thread_id());
2126 
2127   if (log_is_enabled(Debug, os, thread, timer)) {
2128     _timer_exit_phase3.stop();
2129     _timer_exit_phase4.start();
2130   }
2131   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2132   Threads::remove(this, daemon);
2133 
2134   if (log_is_enabled(Debug, os, thread, timer)) {
2135     _timer_exit_phase4.stop();
2136     ResourceMark rm(this);
2137     log_debug(os, thread, timer)("name='%s'"
2138                                  ", exit-phase1=" JLONG_FORMAT
2139                                  ", exit-phase2=" JLONG_FORMAT
2140                                  ", exit-phase3=" JLONG_FORMAT
2141                                  ", exit-phase4=" JLONG_FORMAT,
2142                                  get_thread_name(),
2143                                  _timer_exit_phase1.milliseconds(),
2144                                  _timer_exit_phase2.milliseconds(),
2145                                  _timer_exit_phase3.milliseconds(),
2146                                  _timer_exit_phase4.milliseconds());
2147   }
2148 }
2149 
2150 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2151   if (active_handles() != NULL) {
2152     JNIHandleBlock* block = active_handles();
2153     set_active_handles(NULL);
2154     JNIHandleBlock::release_block(block);
2155   }
2156 
2157   if (free_handle_block() != NULL) {
2158     JNIHandleBlock* block = free_handle_block();
2159     set_free_handle_block(NULL);
2160     JNIHandleBlock::release_block(block);
2161   }
2162 
2163   // These have to be removed while this is still a valid thread.
2164   remove_stack_guard_pages();
2165 
2166   if (UseTLAB) {
2167     tlab().retire();
2168   }
2169 
2170   BarrierSet::barrier_set()->on_thread_detach(this);
2171 
2172   Threads::remove(this, is_daemon);
2173   this->smr_delete();
2174 }
2175 
2176 JavaThread* JavaThread::active() {
2177   Thread* thread = Thread::current();
2178   if (thread->is_Java_thread()) {
2179     return (JavaThread*) thread;
2180   } else {
2181     assert(thread->is_VM_thread(), "this must be a vm thread");
2182     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2183     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2184     assert(ret->is_Java_thread(), "must be a Java thread");
2185     return ret;
2186   }
2187 }
2188 
2189 bool JavaThread::is_lock_owned(address adr) const {
2190   if (Thread::is_lock_owned(adr)) return true;
2191 
2192   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2193     if (chunk->contains(adr)) return true;
2194   }
2195 
2196   return false;
2197 }
2198 
2199 
2200 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2201   chunk->set_next(monitor_chunks());
2202   set_monitor_chunks(chunk);
2203 }
2204 
2205 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2206   guarantee(monitor_chunks() != NULL, "must be non empty");
2207   if (monitor_chunks() == chunk) {
2208     set_monitor_chunks(chunk->next());
2209   } else {
2210     MonitorChunk* prev = monitor_chunks();
2211     while (prev->next() != chunk) prev = prev->next();
2212     prev->set_next(chunk->next());
2213   }
2214 }
2215 
2216 // JVM support.
2217 
2218 // Note: this function shouldn't block if it's called in
2219 // _thread_in_native_trans state (such as from
2220 // check_special_condition_for_native_trans()).
2221 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2222 
2223   if (has_last_Java_frame() && has_async_condition()) {
2224     // If we are at a polling page safepoint (not a poll return)
2225     // then we must defer async exception because live registers
2226     // will be clobbered by the exception path. Poll return is
2227     // ok because the call we a returning from already collides
2228     // with exception handling registers and so there is no issue.
2229     // (The exception handling path kills call result registers but
2230     //  this is ok since the exception kills the result anyway).
2231 
2232     if (is_at_poll_safepoint()) {
2233       // if the code we are returning to has deoptimized we must defer
2234       // the exception otherwise live registers get clobbered on the
2235       // exception path before deoptimization is able to retrieve them.
2236       //
2237       RegisterMap map(this, false);
2238       frame caller_fr = last_frame().sender(&map);
2239       assert(caller_fr.is_compiled_frame(), "what?");
2240       if (caller_fr.is_deoptimized_frame()) {
2241         log_info(exceptions)("deferred async exception at compiled safepoint");
2242         return;
2243       }
2244     }
2245   }
2246 
2247   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2248   if (condition == _no_async_condition) {
2249     // Conditions have changed since has_special_runtime_exit_condition()
2250     // was called:
2251     // - if we were here only because of an external suspend request,
2252     //   then that was taken care of above (or cancelled) so we are done
2253     // - if we were here because of another async request, then it has
2254     //   been cleared between the has_special_runtime_exit_condition()
2255     //   and now so again we are done
2256     return;
2257   }
2258 
2259   // Check for pending async. exception
2260   if (_pending_async_exception != NULL) {
2261     // Only overwrite an already pending exception, if it is not a threadDeath.
2262     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2263 
2264       // We cannot call Exceptions::_throw(...) here because we cannot block
2265       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2266 
2267       LogTarget(Info, exceptions) lt;
2268       if (lt.is_enabled()) {
2269         ResourceMark rm;
2270         LogStream ls(lt);
2271         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2272           if (has_last_Java_frame()) {
2273             frame f = last_frame();
2274            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2275           }
2276         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2277       }
2278       _pending_async_exception = NULL;
2279       clear_has_async_exception();
2280     }
2281   }
2282 
2283   if (check_unsafe_error &&
2284       condition == _async_unsafe_access_error && !has_pending_exception()) {
2285     condition = _no_async_condition;  // done
2286     switch (thread_state()) {
2287     case _thread_in_vm: {
2288       JavaThread* THREAD = this;
2289       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2290     }
2291     case _thread_in_native: {
2292       ThreadInVMfromNative tiv(this);
2293       JavaThread* THREAD = this;
2294       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2295     }
2296     case _thread_in_Java: {
2297       ThreadInVMfromJava tiv(this);
2298       JavaThread* THREAD = this;
2299       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2300     }
2301     default:
2302       ShouldNotReachHere();
2303     }
2304   }
2305 
2306   assert(condition == _no_async_condition || has_pending_exception() ||
2307          (!check_unsafe_error && condition == _async_unsafe_access_error),
2308          "must have handled the async condition, if no exception");
2309 }
2310 
2311 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2312 
2313   // Check for pending external suspend.
2314   if (is_external_suspend_with_lock()) {
2315     frame_anchor()->make_walkable(this);
2316     java_suspend_self_with_safepoint_check();
2317   }
2318 
2319   // We might be here for reasons in addition to the self-suspend request
2320   // so check for other async requests.
2321   if (check_asyncs) {
2322     check_and_handle_async_exceptions();
2323   }
2324 
2325   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2326 }
2327 
2328 void JavaThread::send_thread_stop(oop java_throwable)  {
2329   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2330   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2331   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2332 
2333   // Do not throw asynchronous exceptions against the compiler thread
2334   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2335   if (!can_call_java()) return;
2336 
2337   {
2338     // Actually throw the Throwable against the target Thread - however
2339     // only if there is no thread death exception installed already.
2340     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2341       // If the topmost frame is a runtime stub, then we are calling into
2342       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2343       // must deoptimize the caller before continuing, as the compiled  exception handler table
2344       // may not be valid
2345       if (has_last_Java_frame()) {
2346         frame f = last_frame();
2347         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2348           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2349           RegisterMap reg_map(this, UseBiasedLocking);
2350           frame compiled_frame = f.sender(&reg_map);
2351           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2352             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2353           }
2354         }
2355       }
2356 
2357       // Set async. pending exception in thread.
2358       set_pending_async_exception(java_throwable);
2359 
2360       if (log_is_enabled(Info, exceptions)) {
2361          ResourceMark rm;
2362         log_info(exceptions)("Pending Async. exception installed of type: %s",
2363                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2364       }
2365       // for AbortVMOnException flag
2366       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2367     }
2368   }
2369 
2370 
2371   // Interrupt thread so it will wake up from a potential wait()
2372   Thread::interrupt(this);
2373 }
2374 
2375 // External suspension mechanism.
2376 //
2377 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2378 // to any VM_locks and it is at a transition
2379 // Self-suspension will happen on the transition out of the vm.
2380 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2381 //
2382 // Guarantees on return:
2383 //   + Target thread will not execute any new bytecode (that's why we need to
2384 //     force a safepoint)
2385 //   + Target thread will not enter any new monitors
2386 //
2387 void JavaThread::java_suspend() {
2388   ThreadsListHandle tlh;
2389   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2390     return;
2391   }
2392 
2393   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2394     if (!is_external_suspend()) {
2395       // a racing resume has cancelled us; bail out now
2396       return;
2397     }
2398 
2399     // suspend is done
2400     uint32_t debug_bits = 0;
2401     // Warning: is_ext_suspend_completed() may temporarily drop the
2402     // SR_lock to allow the thread to reach a stable thread state if
2403     // it is currently in a transient thread state.
2404     if (is_ext_suspend_completed(false /* !called_by_wait */,
2405                                  SuspendRetryDelay, &debug_bits)) {
2406       return;
2407     }
2408   }
2409 
2410   if (Thread::current() == this) {
2411     // Safely self-suspend.
2412     // If we don't do this explicitly it will implicitly happen
2413     // before we transition back to Java, and on some other thread-state
2414     // transition paths, but not as we exit a JVM TI SuspendThread call.
2415     // As SuspendThread(current) must not return (until resumed) we must
2416     // self-suspend here.
2417     ThreadBlockInVM tbivm(this);
2418     java_suspend_self();
2419   } else {
2420     VM_ThreadSuspend vm_suspend;
2421     VMThread::execute(&vm_suspend);
2422   }
2423 }
2424 
2425 // Part II of external suspension.
2426 // A JavaThread self suspends when it detects a pending external suspend
2427 // request. This is usually on transitions. It is also done in places
2428 // where continuing to the next transition would surprise the caller,
2429 // e.g., monitor entry.
2430 //
2431 // Returns the number of times that the thread self-suspended.
2432 //
2433 // Note: DO NOT call java_suspend_self() when you just want to block current
2434 //       thread. java_suspend_self() is the second stage of cooperative
2435 //       suspension for external suspend requests and should only be used
2436 //       to complete an external suspend request.
2437 //
2438 int JavaThread::java_suspend_self() {
2439   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2440   int ret = 0;
2441 
2442   // we are in the process of exiting so don't suspend
2443   if (is_exiting()) {
2444     clear_external_suspend();
2445     return ret;
2446   }
2447 
2448   assert(_anchor.walkable() ||
2449          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2450          "must have walkable stack");
2451 
2452   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2453 
2454   assert(!this->is_ext_suspended(),
2455          "a thread trying to self-suspend should not already be suspended");
2456 
2457   if (this->is_suspend_equivalent()) {
2458     // If we are self-suspending as a result of the lifting of a
2459     // suspend equivalent condition, then the suspend_equivalent
2460     // flag is not cleared until we set the ext_suspended flag so
2461     // that wait_for_ext_suspend_completion() returns consistent
2462     // results.
2463     this->clear_suspend_equivalent();
2464   }
2465 
2466   // A racing resume may have cancelled us before we grabbed SR_lock
2467   // above. Or another external suspend request could be waiting for us
2468   // by the time we return from SR_lock()->wait(). The thread
2469   // that requested the suspension may already be trying to walk our
2470   // stack and if we return now, we can change the stack out from under
2471   // it. This would be a "bad thing (TM)" and cause the stack walker
2472   // to crash. We stay self-suspended until there are no more pending
2473   // external suspend requests.
2474   while (is_external_suspend()) {
2475     ret++;
2476     this->set_ext_suspended();
2477 
2478     // _ext_suspended flag is cleared by java_resume()
2479     while (is_ext_suspended()) {
2480       ml.wait();
2481     }
2482   }
2483   return ret;
2484 }
2485 
2486 // Helper routine to set up the correct thread state before calling java_suspend_self.
2487 // This is called when regular thread-state transition helpers can't be used because
2488 // we can be in various states, in particular _thread_in_native_trans.
2489 // Because this thread is external suspended the safepoint code will count it as at
2490 // a safepoint, regardless of what its actual current thread-state is. But
2491 // is_ext_suspend_completed() may be waiting to see a thread transition from
2492 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2493 // to _thread_blocked. The problem with setting thread state directly is that a
2494 // safepoint could happen just after java_suspend_self() returns after being resumed,
2495 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2496 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2497 // However, not all initial-states are allowed when performing a safepoint check, as we
2498 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2499 // only _thread_in_native is possible when executing this code (based on our two callers).
2500 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2501 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2502 // and so we don't need the explicit safepoint check.
2503 
2504 void JavaThread::java_suspend_self_with_safepoint_check() {
2505   assert(this == Thread::current(), "invariant");
2506   JavaThreadState state = thread_state();
2507   set_thread_state(_thread_blocked);
2508   java_suspend_self();
2509   set_thread_state_fence(state);
2510   // Since we are not using a regular thread-state transition helper here,
2511   // we must manually emit the instruction barrier after leaving a safe state.
2512   OrderAccess::cross_modify_fence();
2513   if (state != _thread_in_native) {
2514     SafepointMechanism::block_if_requested(this);
2515   }
2516 }
2517 
2518 #ifdef ASSERT
2519 // Verify the JavaThread has not yet been published in the Threads::list, and
2520 // hence doesn't need protection from concurrent access at this stage.
2521 void JavaThread::verify_not_published() {
2522   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2523   // since an unpublished JavaThread doesn't participate in the
2524   // Thread-SMR protocol for keeping a ThreadsList alive.
2525   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2526 }
2527 #endif
2528 
2529 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2530 // progress or when _suspend_flags is non-zero.
2531 // Current thread needs to self-suspend if there is a suspend request and/or
2532 // block if a safepoint is in progress.
2533 // Async exception ISN'T checked.
2534 // Note only the ThreadInVMfromNative transition can call this function
2535 // directly and when thread state is _thread_in_native_trans
2536 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2537   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2538 
2539   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2540 
2541   if (thread->is_external_suspend()) {
2542     thread->java_suspend_self_with_safepoint_check();
2543   } else {
2544     SafepointMechanism::block_if_requested(thread);
2545   }
2546 
2547   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2548 }
2549 
2550 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2551 // progress or when _suspend_flags is non-zero.
2552 // Current thread needs to self-suspend if there is a suspend request and/or
2553 // block if a safepoint is in progress.
2554 // Also check for pending async exception (not including unsafe access error).
2555 // Note only the native==>VM/Java barriers can call this function and when
2556 // thread state is _thread_in_native_trans.
2557 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2558   check_safepoint_and_suspend_for_native_trans(thread);
2559 
2560   if (thread->has_async_exception()) {
2561     // We are in _thread_in_native_trans state, don't handle unsafe
2562     // access error since that may block.
2563     thread->check_and_handle_async_exceptions(false);
2564   }
2565 }
2566 
2567 // This is a variant of the normal
2568 // check_special_condition_for_native_trans with slightly different
2569 // semantics for use by critical native wrappers.  It does all the
2570 // normal checks but also performs the transition back into
2571 // thread_in_Java state.  This is required so that critical natives
2572 // can potentially block and perform a GC if they are the last thread
2573 // exiting the GCLocker.
2574 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2575   check_special_condition_for_native_trans(thread);
2576 
2577   // Finish the transition
2578   thread->set_thread_state(_thread_in_Java);
2579 
2580   if (thread->do_critical_native_unlock()) {
2581     ThreadInVMfromJavaNoAsyncException tiv(thread);
2582     GCLocker::unlock_critical(thread);
2583     thread->clear_critical_native_unlock();
2584   }
2585 }
2586 
2587 // We need to guarantee the Threads_lock here, since resumes are not
2588 // allowed during safepoint synchronization
2589 // Can only resume from an external suspension
2590 void JavaThread::java_resume() {
2591   assert_locked_or_safepoint(Threads_lock);
2592 
2593   // Sanity check: thread is gone, has started exiting or the thread
2594   // was not externally suspended.
2595   ThreadsListHandle tlh;
2596   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2597     return;
2598   }
2599 
2600   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2601 
2602   clear_external_suspend();
2603 
2604   if (is_ext_suspended()) {
2605     clear_ext_suspended();
2606     SR_lock()->notify_all();
2607   }
2608 }
2609 
2610 size_t JavaThread::_stack_red_zone_size = 0;
2611 size_t JavaThread::_stack_yellow_zone_size = 0;
2612 size_t JavaThread::_stack_reserved_zone_size = 0;
2613 size_t JavaThread::_stack_shadow_zone_size = 0;
2614 
2615 void JavaThread::create_stack_guard_pages() {
2616   if (!os::uses_stack_guard_pages() ||
2617       _stack_guard_state != stack_guard_unused ||
2618       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2619       log_info(os, thread)("Stack guard page creation for thread "
2620                            UINTX_FORMAT " disabled", os::current_thread_id());
2621     return;
2622   }
2623   address low_addr = stack_end();
2624   size_t len = stack_guard_zone_size();
2625 
2626   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2627   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2628 
2629   int must_commit = os::must_commit_stack_guard_pages();
2630   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2631 
2632   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2633     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2634     return;
2635   }
2636 
2637   if (os::guard_memory((char *) low_addr, len)) {
2638     _stack_guard_state = stack_guard_enabled;
2639   } else {
2640     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2641       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2642     if (os::uncommit_memory((char *) low_addr, len)) {
2643       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2644     }
2645     return;
2646   }
2647 
2648   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2649     PTR_FORMAT "-" PTR_FORMAT ".",
2650     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2651 }
2652 
2653 void JavaThread::remove_stack_guard_pages() {
2654   assert(Thread::current() == this, "from different thread");
2655   if (_stack_guard_state == stack_guard_unused) return;
2656   address low_addr = stack_end();
2657   size_t len = stack_guard_zone_size();
2658 
2659   if (os::must_commit_stack_guard_pages()) {
2660     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2661       _stack_guard_state = stack_guard_unused;
2662     } else {
2663       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2664         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2665       return;
2666     }
2667   } else {
2668     if (_stack_guard_state == stack_guard_unused) return;
2669     if (os::unguard_memory((char *) low_addr, len)) {
2670       _stack_guard_state = stack_guard_unused;
2671     } else {
2672       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2673         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2674       return;
2675     }
2676   }
2677 
2678   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2679     PTR_FORMAT "-" PTR_FORMAT ".",
2680     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2681 }
2682 
2683 void JavaThread::enable_stack_reserved_zone() {
2684   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2685 
2686   // The base notation is from the stack's point of view, growing downward.
2687   // We need to adjust it to work correctly with guard_memory()
2688   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2689 
2690   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2691   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2692 
2693   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2694     _stack_guard_state = stack_guard_enabled;
2695   } else {
2696     warning("Attempt to guard stack reserved zone failed.");
2697   }
2698   enable_register_stack_guard();
2699 }
2700 
2701 void JavaThread::disable_stack_reserved_zone() {
2702   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2703 
2704   // Simply return if called for a thread that does not use guard pages.
2705   if (_stack_guard_state != stack_guard_enabled) return;
2706 
2707   // The base notation is from the stack's point of view, growing downward.
2708   // We need to adjust it to work correctly with guard_memory()
2709   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2710 
2711   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2712     _stack_guard_state = stack_guard_reserved_disabled;
2713   } else {
2714     warning("Attempt to unguard stack reserved zone failed.");
2715   }
2716   disable_register_stack_guard();
2717 }
2718 
2719 void JavaThread::enable_stack_yellow_reserved_zone() {
2720   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2721   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2722 
2723   // The base notation is from the stacks point of view, growing downward.
2724   // We need to adjust it to work correctly with guard_memory()
2725   address base = stack_red_zone_base();
2726 
2727   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2728   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2729 
2730   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2731     _stack_guard_state = stack_guard_enabled;
2732   } else {
2733     warning("Attempt to guard stack yellow zone failed.");
2734   }
2735   enable_register_stack_guard();
2736 }
2737 
2738 void JavaThread::disable_stack_yellow_reserved_zone() {
2739   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2740   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2741 
2742   // Simply return if called for a thread that does not use guard pages.
2743   if (_stack_guard_state == stack_guard_unused) return;
2744 
2745   // The base notation is from the stacks point of view, growing downward.
2746   // We need to adjust it to work correctly with guard_memory()
2747   address base = stack_red_zone_base();
2748 
2749   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2750     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2751   } else {
2752     warning("Attempt to unguard stack yellow zone failed.");
2753   }
2754   disable_register_stack_guard();
2755 }
2756 
2757 void JavaThread::enable_stack_red_zone() {
2758   // The base notation is from the stacks point of view, growing downward.
2759   // We need to adjust it to work correctly with guard_memory()
2760   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2761   address base = stack_red_zone_base() - stack_red_zone_size();
2762 
2763   guarantee(base < stack_base(), "Error calculating stack red zone");
2764   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2765 
2766   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2767     warning("Attempt to guard stack red zone failed.");
2768   }
2769 }
2770 
2771 void JavaThread::disable_stack_red_zone() {
2772   // The base notation is from the stacks point of view, growing downward.
2773   // We need to adjust it to work correctly with guard_memory()
2774   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2775   address base = stack_red_zone_base() - stack_red_zone_size();
2776   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2777     warning("Attempt to unguard stack red zone failed.");
2778   }
2779 }
2780 
2781 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2782   // ignore is there is no stack
2783   if (!has_last_Java_frame()) return;
2784   // traverse the stack frames. Starts from top frame.
2785   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2786     frame* fr = fst.current();
2787     f(fr, fst.register_map());
2788   }
2789 }
2790 
2791 
2792 #ifndef PRODUCT
2793 // Deoptimization
2794 // Function for testing deoptimization
2795 void JavaThread::deoptimize() {
2796   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2797   StackFrameStream fst(this, UseBiasedLocking);
2798   bool deopt = false;           // Dump stack only if a deopt actually happens.
2799   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2800   // Iterate over all frames in the thread and deoptimize
2801   for (; !fst.is_done(); fst.next()) {
2802     if (fst.current()->can_be_deoptimized()) {
2803 
2804       if (only_at) {
2805         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2806         // consists of comma or carriage return separated numbers so
2807         // search for the current bci in that string.
2808         address pc = fst.current()->pc();
2809         nmethod* nm =  (nmethod*) fst.current()->cb();
2810         ScopeDesc* sd = nm->scope_desc_at(pc);
2811         char buffer[8];
2812         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2813         size_t len = strlen(buffer);
2814         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2815         while (found != NULL) {
2816           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2817               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2818             // Check that the bci found is bracketed by terminators.
2819             break;
2820           }
2821           found = strstr(found + 1, buffer);
2822         }
2823         if (!found) {
2824           continue;
2825         }
2826       }
2827 
2828       if (DebugDeoptimization && !deopt) {
2829         deopt = true; // One-time only print before deopt
2830         tty->print_cr("[BEFORE Deoptimization]");
2831         trace_frames();
2832         trace_stack();
2833       }
2834       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2835     }
2836   }
2837 
2838   if (DebugDeoptimization && deopt) {
2839     tty->print_cr("[AFTER Deoptimization]");
2840     trace_frames();
2841   }
2842 }
2843 
2844 
2845 // Make zombies
2846 void JavaThread::make_zombies() {
2847   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2848     if (fst.current()->can_be_deoptimized()) {
2849       // it is a Java nmethod
2850       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2851       nm->make_not_entrant();
2852     }
2853   }
2854 }
2855 #endif // PRODUCT
2856 
2857 
2858 void JavaThread::deoptimized_wrt_marked_nmethods() {
2859   if (!has_last_Java_frame()) return;
2860   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2861   StackFrameStream fst(this, UseBiasedLocking);
2862   for (; !fst.is_done(); fst.next()) {
2863     if (fst.current()->should_be_deoptimized()) {
2864       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2865     }
2866   }
2867 }
2868 
2869 
2870 // If the caller is a NamedThread, then remember, in the current scope,
2871 // the given JavaThread in its _processed_thread field.
2872 class RememberProcessedThread: public StackObj {
2873   NamedThread* _cur_thr;
2874  public:
2875   RememberProcessedThread(JavaThread* jthr) {
2876     Thread* thread = Thread::current();
2877     if (thread->is_Named_thread()) {
2878       _cur_thr = (NamedThread *)thread;
2879       _cur_thr->set_processed_thread(jthr);
2880     } else {
2881       _cur_thr = NULL;
2882     }
2883   }
2884 
2885   ~RememberProcessedThread() {
2886     if (_cur_thr) {
2887       _cur_thr->set_processed_thread(NULL);
2888     }
2889   }
2890 };
2891 
2892 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2893   // Verify that the deferred card marks have been flushed.
2894   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2895 
2896   // Traverse the GCHandles
2897   Thread::oops_do(f, cf);
2898 
2899   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2900          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2901 
2902   if (has_last_Java_frame()) {
2903     // Record JavaThread to GC thread
2904     RememberProcessedThread rpt(this);
2905 
2906     // traverse the registered growable array
2907     if (_array_for_gc != NULL) {
2908       for (int index = 0; index < _array_for_gc->length(); index++) {
2909         f->do_oop(_array_for_gc->adr_at(index));
2910       }
2911     }
2912 
2913     // Traverse the monitor chunks
2914     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2915       chunk->oops_do(f);
2916     }
2917 
2918     // Traverse the execution stack
2919     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2920       fst.current()->oops_do(f, cf, fst.register_map());
2921     }
2922   }
2923 
2924   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2925   // If we have deferred set_locals there might be oops waiting to be
2926   // written
2927   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2928   if (list != NULL) {
2929     for (int i = 0; i < list->length(); i++) {
2930       list->at(i)->oops_do(f);
2931     }
2932   }
2933 
2934   // Traverse instance variables at the end since the GC may be moving things
2935   // around using this function
2936   f->do_oop((oop*) &_threadObj);
2937   f->do_oop((oop*) &_vm_result);
2938   f->do_oop((oop*) &_exception_oop);
2939   f->do_oop((oop*) &_pending_async_exception);
2940 
2941   if (jvmti_thread_state() != NULL) {
2942     jvmti_thread_state()->oops_do(f);
2943   }
2944 }
2945 
2946 #ifdef ASSERT
2947 void JavaThread::verify_states_for_handshake() {
2948   // This checks that the thread has a correct frame state during a handshake.
2949   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2950          (has_last_Java_frame() && java_call_counter() > 0),
2951          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2952          has_last_Java_frame(), java_call_counter());
2953 }
2954 #endif
2955 
2956 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2957   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2958          (has_last_Java_frame() && java_call_counter() > 0),
2959          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2960          has_last_Java_frame(), java_call_counter());
2961 
2962   if (has_last_Java_frame()) {
2963     // Traverse the execution stack
2964     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2965       fst.current()->nmethods_do(cf);
2966     }
2967   }
2968 }
2969 
2970 void JavaThread::metadata_do(MetadataClosure* f) {
2971   if (has_last_Java_frame()) {
2972     // Traverse the execution stack to call f() on the methods in the stack
2973     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2974       fst.current()->metadata_do(f);
2975     }
2976   } else if (is_Compiler_thread()) {
2977     // need to walk ciMetadata in current compile tasks to keep alive.
2978     CompilerThread* ct = (CompilerThread*)this;
2979     if (ct->env() != NULL) {
2980       ct->env()->metadata_do(f);
2981     }
2982     CompileTask* task = ct->task();
2983     if (task != NULL) {
2984       task->metadata_do(f);
2985     }
2986   }
2987 }
2988 
2989 // Printing
2990 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2991   switch (_thread_state) {
2992   case _thread_uninitialized:     return "_thread_uninitialized";
2993   case _thread_new:               return "_thread_new";
2994   case _thread_new_trans:         return "_thread_new_trans";
2995   case _thread_in_native:         return "_thread_in_native";
2996   case _thread_in_native_trans:   return "_thread_in_native_trans";
2997   case _thread_in_vm:             return "_thread_in_vm";
2998   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2999   case _thread_in_Java:           return "_thread_in_Java";
3000   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3001   case _thread_blocked:           return "_thread_blocked";
3002   case _thread_blocked_trans:     return "_thread_blocked_trans";
3003   default:                        return "unknown thread state";
3004   }
3005 }
3006 
3007 #ifndef PRODUCT
3008 void JavaThread::print_thread_state_on(outputStream *st) const {
3009   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3010 };
3011 #endif // PRODUCT
3012 
3013 // Called by Threads::print() for VM_PrintThreads operation
3014 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3015   st->print_raw("\"");
3016   st->print_raw(get_thread_name());
3017   st->print_raw("\" ");
3018   oop thread_oop = threadObj();
3019   if (thread_oop != NULL) {
3020     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3021     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3022     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3023   }
3024   Thread::print_on(st, print_extended_info);
3025   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3026   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3027   if (thread_oop != NULL) {
3028     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3029   }
3030 #ifndef PRODUCT
3031   _safepoint_state->print_on(st);
3032 #endif // PRODUCT
3033   if (is_Compiler_thread()) {
3034     CompileTask *task = ((CompilerThread*)this)->task();
3035     if (task != NULL) {
3036       st->print("   Compiling: ");
3037       task->print(st, NULL, true, false);
3038     } else {
3039       st->print("   No compile task");
3040     }
3041     st->cr();
3042   }
3043 }
3044 
3045 void JavaThread::print() const { print_on(tty); }
3046 
3047 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3048   st->print("%s", get_thread_name_string(buf, buflen));
3049 }
3050 
3051 // Called by fatal error handler. The difference between this and
3052 // JavaThread::print() is that we can't grab lock or allocate memory.
3053 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3054   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3055   oop thread_obj = threadObj();
3056   if (thread_obj != NULL) {
3057     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3058   }
3059   st->print(" [");
3060   st->print("%s", _get_thread_state_name(_thread_state));
3061   if (osthread()) {
3062     st->print(", id=%d", osthread()->thread_id());
3063   }
3064   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3065             p2i(stack_end()), p2i(stack_base()));
3066   st->print("]");
3067 
3068   ThreadsSMRSupport::print_info_on(this, st);
3069   return;
3070 }
3071 
3072 // Verification
3073 
3074 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3075 
3076 void JavaThread::verify() {
3077   // Verify oops in the thread.
3078   oops_do(&VerifyOopClosure::verify_oop, NULL);
3079 
3080   // Verify the stack frames.
3081   frames_do(frame_verify);
3082 }
3083 
3084 // CR 6300358 (sub-CR 2137150)
3085 // Most callers of this method assume that it can't return NULL but a
3086 // thread may not have a name whilst it is in the process of attaching to
3087 // the VM - see CR 6412693, and there are places where a JavaThread can be
3088 // seen prior to having it's threadObj set (eg JNI attaching threads and
3089 // if vm exit occurs during initialization). These cases can all be accounted
3090 // for such that this method never returns NULL.
3091 const char* JavaThread::get_thread_name() const {
3092 #ifdef ASSERT
3093   // early safepoints can hit while current thread does not yet have TLS
3094   if (!SafepointSynchronize::is_at_safepoint()) {
3095     Thread *cur = Thread::current();
3096     if (!(cur->is_Java_thread() && cur == this)) {
3097       // Current JavaThreads are allowed to get their own name without
3098       // the Threads_lock.
3099       assert_locked_or_safepoint(Threads_lock);
3100     }
3101   }
3102 #endif // ASSERT
3103   return get_thread_name_string();
3104 }
3105 
3106 // Returns a non-NULL representation of this thread's name, or a suitable
3107 // descriptive string if there is no set name
3108 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3109   const char* name_str;
3110   oop thread_obj = threadObj();
3111   if (thread_obj != NULL) {
3112     oop name = java_lang_Thread::name(thread_obj);
3113     if (name != NULL) {
3114       if (buf == NULL) {
3115         name_str = java_lang_String::as_utf8_string(name);
3116       } else {
3117         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3118       }
3119     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3120       name_str = "<no-name - thread is attaching>";
3121     } else {
3122       name_str = Thread::name();
3123     }
3124   } else {
3125     name_str = Thread::name();
3126   }
3127   assert(name_str != NULL, "unexpected NULL thread name");
3128   return name_str;
3129 }
3130 
3131 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3132 
3133   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3134   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
3135   // Link Java Thread object <-> C++ Thread
3136 
3137   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3138   // and put it into a new Handle.  The Handle "thread_oop" can then
3139   // be used to pass the C++ thread object to other methods.
3140 
3141   // Set the Java level thread object (jthread) field of the
3142   // new thread (a JavaThread *) to C++ thread object using the
3143   // "thread_oop" handle.
3144 
3145   // Set the thread field (a JavaThread *) of the
3146   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3147 
3148   Handle thread_oop(Thread::current(),
3149                     JNIHandles::resolve_non_null(jni_thread));
3150   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3151          "must be initialized");
3152   set_threadObj(thread_oop());
3153   java_lang_Thread::set_thread(thread_oop(), this);
3154 
3155   if (prio == NoPriority) {
3156     prio = java_lang_Thread::priority(thread_oop());
3157     assert(prio != NoPriority, "A valid priority should be present");
3158   }
3159 
3160   // Push the Java priority down to the native thread; needs Threads_lock
3161   Thread::set_priority(this, prio);
3162 
3163   // Add the new thread to the Threads list and set it in motion.
3164   // We must have threads lock in order to call Threads::add.
3165   // It is crucial that we do not block before the thread is
3166   // added to the Threads list for if a GC happens, then the java_thread oop
3167   // will not be visited by GC.
3168   Threads::add(this);
3169 }
3170 
3171 oop JavaThread::current_park_blocker() {
3172   // Support for JSR-166 locks
3173   oop thread_oop = threadObj();
3174   if (thread_oop != NULL) {
3175     return java_lang_Thread::park_blocker(thread_oop);
3176   }
3177   return NULL;
3178 }
3179 
3180 
3181 void JavaThread::print_stack_on(outputStream* st) {
3182   if (!has_last_Java_frame()) return;
3183   ResourceMark rm;
3184   HandleMark   hm;
3185 
3186   RegisterMap reg_map(this);
3187   vframe* start_vf = last_java_vframe(&reg_map);
3188   int count = 0;
3189   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3190     if (f->is_java_frame()) {
3191       javaVFrame* jvf = javaVFrame::cast(f);
3192       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3193 
3194       // Print out lock information
3195       if (JavaMonitorsInStackTrace) {
3196         jvf->print_lock_info_on(st, count);
3197       }
3198     } else {
3199       // Ignore non-Java frames
3200     }
3201 
3202     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3203     count++;
3204     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3205   }
3206 }
3207 
3208 
3209 // JVMTI PopFrame support
3210 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3211   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3212   if (in_bytes(size_in_bytes) != 0) {
3213     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3214     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3215     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3216   }
3217 }
3218 
3219 void* JavaThread::popframe_preserved_args() {
3220   return _popframe_preserved_args;
3221 }
3222 
3223 ByteSize JavaThread::popframe_preserved_args_size() {
3224   return in_ByteSize(_popframe_preserved_args_size);
3225 }
3226 
3227 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3228   int sz = in_bytes(popframe_preserved_args_size());
3229   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3230   return in_WordSize(sz / wordSize);
3231 }
3232 
3233 void JavaThread::popframe_free_preserved_args() {
3234   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3235   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
3236   _popframe_preserved_args = NULL;
3237   _popframe_preserved_args_size = 0;
3238 }
3239 
3240 #ifndef PRODUCT
3241 
3242 void JavaThread::trace_frames() {
3243   tty->print_cr("[Describe stack]");
3244   int frame_no = 1;
3245   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3246     tty->print("  %d. ", frame_no++);
3247     fst.current()->print_value_on(tty, this);
3248     tty->cr();
3249   }
3250 }
3251 
3252 class PrintAndVerifyOopClosure: public OopClosure {
3253  protected:
3254   template <class T> inline void do_oop_work(T* p) {
3255     oop obj = RawAccess<>::oop_load(p);
3256     if (obj == NULL) return;
3257     tty->print(INTPTR_FORMAT ": ", p2i(p));
3258     if (oopDesc::is_oop_or_null(obj)) {
3259       if (obj->is_objArray()) {
3260         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3261       } else {
3262         obj->print();
3263       }
3264     } else {
3265       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3266     }
3267     tty->cr();
3268   }
3269  public:
3270   virtual void do_oop(oop* p) { do_oop_work(p); }
3271   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3272 };
3273 
3274 #ifdef ASSERT
3275 // Print or validate the layout of stack frames
3276 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3277   ResourceMark rm;
3278   PRESERVE_EXCEPTION_MARK;
3279   FrameValues values;
3280   int frame_no = 0;
3281   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3282     fst.current()->describe(values, ++frame_no);
3283     if (depth == frame_no) break;
3284   }
3285   if (validate_only) {
3286     values.validate();
3287   } else {
3288     tty->print_cr("[Describe stack layout]");
3289     values.print(this);
3290   }
3291 }
3292 #endif
3293 
3294 void JavaThread::trace_stack_from(vframe* start_vf) {
3295   ResourceMark rm;
3296   int vframe_no = 1;
3297   for (vframe* f = start_vf; f; f = f->sender()) {
3298     if (f->is_java_frame()) {
3299       javaVFrame::cast(f)->print_activation(vframe_no++);
3300     } else {
3301       f->print();
3302     }
3303     if (vframe_no > StackPrintLimit) {
3304       tty->print_cr("...<more frames>...");
3305       return;
3306     }
3307   }
3308 }
3309 
3310 
3311 void JavaThread::trace_stack() {
3312   if (!has_last_Java_frame()) return;
3313   ResourceMark rm;
3314   HandleMark   hm;
3315   RegisterMap reg_map(this);
3316   trace_stack_from(last_java_vframe(&reg_map));
3317 }
3318 
3319 
3320 #endif // PRODUCT
3321 
3322 
3323 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3324   assert(reg_map != NULL, "a map must be given");
3325   frame f = last_frame();
3326   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3327     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3328   }
3329   return NULL;
3330 }
3331 
3332 
3333 Klass* JavaThread::security_get_caller_class(int depth) {
3334   vframeStream vfst(this);
3335   vfst.security_get_caller_frame(depth);
3336   if (!vfst.at_end()) {
3337     return vfst.method()->method_holder();
3338   }
3339   return NULL;
3340 }
3341 
3342 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3343   assert(thread->is_Compiler_thread(), "must be compiler thread");
3344   CompileBroker::compiler_thread_loop();
3345 }
3346 
3347 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3348   NMethodSweeper::sweeper_loop();
3349 }
3350 
3351 // Create a CompilerThread
3352 CompilerThread::CompilerThread(CompileQueue* queue,
3353                                CompilerCounters* counters)
3354                                : JavaThread(&compiler_thread_entry) {
3355   _env   = NULL;
3356   _log   = NULL;
3357   _task  = NULL;
3358   _queue = queue;
3359   _counters = counters;
3360   _buffer_blob = NULL;
3361   _compiler = NULL;
3362 
3363   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3364   resource_area()->bias_to(mtCompiler);
3365 
3366 #ifndef PRODUCT
3367   _ideal_graph_printer = NULL;
3368 #endif
3369 }
3370 
3371 CompilerThread::~CompilerThread() {
3372   // Delete objects which were allocated on heap.
3373   delete _counters;
3374 }
3375 
3376 bool CompilerThread::can_call_java() const {
3377   return _compiler != NULL && _compiler->is_jvmci();
3378 }
3379 
3380 // Create sweeper thread
3381 CodeCacheSweeperThread::CodeCacheSweeperThread()
3382 : JavaThread(&sweeper_thread_entry) {
3383   _scanned_compiled_method = NULL;
3384 }
3385 
3386 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3387   JavaThread::oops_do(f, cf);
3388   if (_scanned_compiled_method != NULL && cf != NULL) {
3389     // Safepoints can occur when the sweeper is scanning an nmethod so
3390     // process it here to make sure it isn't unloaded in the middle of
3391     // a scan.
3392     cf->do_code_blob(_scanned_compiled_method);
3393   }
3394 }
3395 
3396 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3397   JavaThread::nmethods_do(cf);
3398   if (_scanned_compiled_method != NULL && cf != NULL) {
3399     // Safepoints can occur when the sweeper is scanning an nmethod so
3400     // process it here to make sure it isn't unloaded in the middle of
3401     // a scan.
3402     cf->do_code_blob(_scanned_compiled_method);
3403   }
3404 }
3405 
3406 
3407 // ======= Threads ========
3408 
3409 // The Threads class links together all active threads, and provides
3410 // operations over all threads. It is protected by the Threads_lock,
3411 // which is also used in other global contexts like safepointing.
3412 // ThreadsListHandles are used to safely perform operations on one
3413 // or more threads without the risk of the thread exiting during the
3414 // operation.
3415 //
3416 // Note: The Threads_lock is currently more widely used than we
3417 // would like. We are actively migrating Threads_lock uses to other
3418 // mechanisms in order to reduce Threads_lock contention.
3419 
3420 int         Threads::_number_of_threads = 0;
3421 int         Threads::_number_of_non_daemon_threads = 0;
3422 int         Threads::_return_code = 0;
3423 uintx       Threads::_thread_claim_token = 1; // Never zero.
3424 size_t      JavaThread::_stack_size_at_create = 0;
3425 
3426 #ifdef ASSERT
3427 bool        Threads::_vm_complete = false;
3428 #endif
3429 
3430 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3431   Prefetch::read((void*)addr, prefetch_interval);
3432   return *addr;
3433 }
3434 
3435 // Possibly the ugliest for loop the world has seen. C++ does not allow
3436 // multiple types in the declaration section of the for loop. In this case
3437 // we are only dealing with pointers and hence can cast them. It looks ugly
3438 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3439 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3440     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3441              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3442              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3443              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3444              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3445          MACRO_current_p != MACRO_end;                                                                                    \
3446          MACRO_current_p++,                                                                                               \
3447              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3448 
3449 // All JavaThreads
3450 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3451 
3452 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3453 void Threads::non_java_threads_do(ThreadClosure* tc) {
3454   NoSafepointVerifier nsv;
3455   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3456     tc->do_thread(njti.current());
3457   }
3458 }
3459 
3460 // All JavaThreads
3461 void Threads::java_threads_do(ThreadClosure* tc) {
3462   assert_locked_or_safepoint(Threads_lock);
3463   // ALL_JAVA_THREADS iterates through all JavaThreads.
3464   ALL_JAVA_THREADS(p) {
3465     tc->do_thread(p);
3466   }
3467 }
3468 
3469 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3470   assert_locked_or_safepoint(Threads_lock);
3471   java_threads_do(tc);
3472   tc->do_thread(VMThread::vm_thread());
3473 }
3474 
3475 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3476 void Threads::threads_do(ThreadClosure* tc) {
3477   assert_locked_or_safepoint(Threads_lock);
3478   java_threads_do(tc);
3479   non_java_threads_do(tc);
3480 }
3481 
3482 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3483   uintx claim_token = Threads::thread_claim_token();
3484   ALL_JAVA_THREADS(p) {
3485     if (p->claim_threads_do(is_par, claim_token)) {
3486       tc->do_thread(p);
3487     }
3488   }
3489   VMThread* vmt = VMThread::vm_thread();
3490   if (vmt->claim_threads_do(is_par, claim_token)) {
3491     tc->do_thread(vmt);
3492   }
3493 }
3494 
3495 // The system initialization in the library has three phases.
3496 //
3497 // Phase 1: java.lang.System class initialization
3498 //     java.lang.System is a primordial class loaded and initialized
3499 //     by the VM early during startup.  java.lang.System.<clinit>
3500 //     only does registerNatives and keeps the rest of the class
3501 //     initialization work later until thread initialization completes.
3502 //
3503 //     System.initPhase1 initializes the system properties, the static
3504 //     fields in, out, and err. Set up java signal handlers, OS-specific
3505 //     system settings, and thread group of the main thread.
3506 static void call_initPhase1(TRAPS) {
3507   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3508   JavaValue result(T_VOID);
3509   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3510                                          vmSymbols::void_method_signature(), CHECK);
3511 }
3512 
3513 // Phase 2. Module system initialization
3514 //     This will initialize the module system.  Only java.base classes
3515 //     can be loaded until phase 2 completes.
3516 //
3517 //     Call System.initPhase2 after the compiler initialization and jsr292
3518 //     classes get initialized because module initialization runs a lot of java
3519 //     code, that for performance reasons, should be compiled.  Also, this will
3520 //     enable the startup code to use lambda and other language features in this
3521 //     phase and onward.
3522 //
3523 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3524 static void call_initPhase2(TRAPS) {
3525   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3526 
3527   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3528 
3529   JavaValue result(T_INT);
3530   JavaCallArguments args;
3531   args.push_int(DisplayVMOutputToStderr);
3532   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3533   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3534                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3535   if (result.get_jint() != JNI_OK) {
3536     vm_exit_during_initialization(); // no message or exception
3537   }
3538 
3539   universe_post_module_init();
3540 }
3541 
3542 // Phase 3. final setup - set security manager, system class loader and TCCL
3543 //
3544 //     This will instantiate and set the security manager, set the system class
3545 //     loader as well as the thread context class loader.  The security manager
3546 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3547 //     other modules or the application's classpath.
3548 static void call_initPhase3(TRAPS) {
3549   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3550   JavaValue result(T_VOID);
3551   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3552                                          vmSymbols::void_method_signature(), CHECK);
3553 }
3554 
3555 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3556   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3557 
3558   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3559     create_vm_init_libraries();
3560   }
3561 
3562   initialize_class(vmSymbols::java_lang_String(), CHECK);
3563 
3564   // Inject CompactStrings value after the static initializers for String ran.
3565   java_lang_String::set_compact_strings(CompactStrings);
3566 
3567   // Initialize java_lang.System (needed before creating the thread)
3568   initialize_class(vmSymbols::java_lang_System(), CHECK);
3569   // The VM creates & returns objects of this class. Make sure it's initialized.
3570   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3571   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3572   Handle thread_group = create_initial_thread_group(CHECK);
3573   Universe::set_main_thread_group(thread_group());
3574   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3575   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3576   main_thread->set_threadObj(thread_object);
3577 
3578   // Set thread status to running since main thread has
3579   // been started and running.
3580   java_lang_Thread::set_thread_status(thread_object,
3581                                       java_lang_Thread::RUNNABLE);
3582 
3583   // The VM creates objects of this class.
3584   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3585 
3586 #ifdef ASSERT
3587   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3588   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3589 #endif
3590 
3591   // initialize the hardware-specific constants needed by Unsafe
3592   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3593   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3594 
3595   // The VM preresolves methods to these classes. Make sure that they get initialized
3596   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3597   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3598 
3599   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3600   call_initPhase1(CHECK);
3601 
3602   // get the Java runtime name after java.lang.System is initialized
3603   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3604   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3605 
3606   // an instance of OutOfMemory exception has been allocated earlier
3607   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3608   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3609   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3610   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3611   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3612   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3613   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3614   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3615 
3616   // Eager box cache initialization only if AOT is on and any library is loaded.
3617   AOTLoader::initialize_box_caches(CHECK);
3618 }
3619 
3620 void Threads::initialize_jsr292_core_classes(TRAPS) {
3621   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3622 
3623   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3624   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3625   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3626   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3627 }
3628 
3629 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3630   extern void JDK_Version_init();
3631 
3632   // Preinitialize version info.
3633   VM_Version::early_initialize();
3634 
3635   // Check version
3636   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3637 
3638   // Initialize library-based TLS
3639   ThreadLocalStorage::init();
3640 
3641   // Initialize the output stream module
3642   ostream_init();
3643 
3644   // Process java launcher properties.
3645   Arguments::process_sun_java_launcher_properties(args);
3646 
3647   // Initialize the os module
3648   os::init();
3649 
3650   // Record VM creation timing statistics
3651   TraceVmCreationTime create_vm_timer;
3652   create_vm_timer.start();
3653 
3654   // Initialize system properties.
3655   Arguments::init_system_properties();
3656 
3657   // So that JDK version can be used as a discriminator when parsing arguments
3658   JDK_Version_init();
3659 
3660   // Update/Initialize System properties after JDK version number is known
3661   Arguments::init_version_specific_system_properties();
3662 
3663   // Make sure to initialize log configuration *before* parsing arguments
3664   LogConfiguration::initialize(create_vm_timer.begin_time());
3665 
3666   // Parse arguments
3667   // Note: this internally calls os::init_container_support()
3668   jint parse_result = Arguments::parse(args);
3669   if (parse_result != JNI_OK) return parse_result;
3670 
3671   os::init_before_ergo();
3672 
3673   jint ergo_result = Arguments::apply_ergo();
3674   if (ergo_result != JNI_OK) return ergo_result;
3675 
3676   // Final check of all ranges after ergonomics which may change values.
3677   if (!JVMFlagRangeList::check_ranges()) {
3678     return JNI_EINVAL;
3679   }
3680 
3681   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3682   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3683   if (!constraint_result) {
3684     return JNI_EINVAL;
3685   }
3686 
3687   JVMFlagWriteableList::mark_startup();
3688 
3689   if (PauseAtStartup) {
3690     os::pause();
3691   }
3692 
3693   HOTSPOT_VM_INIT_BEGIN();
3694 
3695   // Timing (must come after argument parsing)
3696   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3697 
3698   // Initialize the os module after parsing the args
3699   jint os_init_2_result = os::init_2();
3700   if (os_init_2_result != JNI_OK) return os_init_2_result;
3701 
3702 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3703   // Initialize assert poison page mechanism.
3704   if (ShowRegistersOnAssert) {
3705     initialize_assert_poison();
3706   }
3707 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3708 
3709   SafepointMechanism::initialize();
3710 
3711   jint adjust_after_os_result = Arguments::adjust_after_os();
3712   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3713 
3714   // Initialize output stream logging
3715   ostream_init_log();
3716 
3717   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3718   // Must be before create_vm_init_agents()
3719   if (Arguments::init_libraries_at_startup()) {
3720     convert_vm_init_libraries_to_agents();
3721   }
3722 
3723   // Launch -agentlib/-agentpath and converted -Xrun agents
3724   if (Arguments::init_agents_at_startup()) {
3725     create_vm_init_agents();
3726   }
3727 
3728   // Initialize Threads state
3729   _number_of_threads = 0;
3730   _number_of_non_daemon_threads = 0;
3731 
3732   // Initialize global data structures and create system classes in heap
3733   vm_init_globals();
3734 
3735 #if INCLUDE_JVMCI
3736   if (JVMCICounterSize > 0) {
3737     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3738     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3739   } else {
3740     JavaThread::_jvmci_old_thread_counters = NULL;
3741   }
3742 #endif // INCLUDE_JVMCI
3743 
3744   // Attach the main thread to this os thread
3745   JavaThread* main_thread = new JavaThread();
3746   main_thread->set_thread_state(_thread_in_vm);
3747   main_thread->initialize_thread_current();
3748   // must do this before set_active_handles
3749   main_thread->record_stack_base_and_size();
3750   main_thread->register_thread_stack_with_NMT();
3751   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3752 
3753   if (!main_thread->set_as_starting_thread()) {
3754     vm_shutdown_during_initialization(
3755                                       "Failed necessary internal allocation. Out of swap space");
3756     main_thread->smr_delete();
3757     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3758     return JNI_ENOMEM;
3759   }
3760 
3761   // Enable guard page *after* os::create_main_thread(), otherwise it would
3762   // crash Linux VM, see notes in os_linux.cpp.
3763   main_thread->create_stack_guard_pages();
3764 
3765   // Initialize Java-Level synchronization subsystem
3766   ObjectMonitor::Initialize();
3767 
3768   // Initialize global modules
3769   jint status = init_globals();
3770   if (status != JNI_OK) {
3771     main_thread->smr_delete();
3772     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3773     return status;
3774   }
3775 
3776   JFR_ONLY(Jfr::on_vm_init();)
3777 
3778   // Should be done after the heap is fully created
3779   main_thread->cache_global_variables();
3780 
3781   HandleMark hm;
3782 
3783   { MutexLocker mu(Threads_lock);
3784     Threads::add(main_thread);
3785   }
3786 
3787   // Any JVMTI raw monitors entered in onload will transition into
3788   // real raw monitor. VM is setup enough here for raw monitor enter.
3789   JvmtiExport::transition_pending_onload_raw_monitors();
3790 
3791   // Create the VMThread
3792   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3793 
3794   VMThread::create();
3795     Thread* vmthread = VMThread::vm_thread();
3796 
3797     if (!os::create_thread(vmthread, os::vm_thread)) {
3798       vm_exit_during_initialization("Cannot create VM thread. "
3799                                     "Out of system resources.");
3800     }
3801 
3802     // Wait for the VM thread to become ready, and VMThread::run to initialize
3803     // Monitors can have spurious returns, must always check another state flag
3804     {
3805       MonitorLocker ml(Notify_lock);
3806       os::start_thread(vmthread);
3807       while (vmthread->active_handles() == NULL) {
3808         ml.wait();
3809       }
3810     }
3811   }
3812 
3813   assert(Universe::is_fully_initialized(), "not initialized");
3814   if (VerifyDuringStartup) {
3815     // Make sure we're starting with a clean slate.
3816     VM_Verify verify_op;
3817     VMThread::execute(&verify_op);
3818   }
3819 
3820   // We need this to update the java.vm.info property in case any flags used
3821   // to initially define it have been changed. This is needed for both CDS and
3822   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3823   // is initially computed. See Abstract_VM_Version::vm_info_string().
3824   // This update must happen before we initialize the java classes, but
3825   // after any initialization logic that might modify the flags.
3826   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3827 
3828   Thread* THREAD = Thread::current();
3829 
3830   // Always call even when there are not JVMTI environments yet, since environments
3831   // may be attached late and JVMTI must track phases of VM execution
3832   JvmtiExport::enter_early_start_phase();
3833 
3834   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3835   JvmtiExport::post_early_vm_start();
3836 
3837   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3838 
3839   quicken_jni_functions();
3840 
3841   // No more stub generation allowed after that point.
3842   StubCodeDesc::freeze();
3843 
3844   // Set flag that basic initialization has completed. Used by exceptions and various
3845   // debug stuff, that does not work until all basic classes have been initialized.
3846   set_init_completed();
3847 
3848   LogConfiguration::post_initialize();
3849   Metaspace::post_initialize();
3850 
3851   HOTSPOT_VM_INIT_END();
3852 
3853   // record VM initialization completion time
3854 #if INCLUDE_MANAGEMENT
3855   Management::record_vm_init_completed();
3856 #endif // INCLUDE_MANAGEMENT
3857 
3858   // Signal Dispatcher needs to be started before VMInit event is posted
3859   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3860 
3861   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3862   if (!DisableAttachMechanism) {
3863     AttachListener::vm_start();
3864     if (StartAttachListener || AttachListener::init_at_startup()) {
3865       AttachListener::init();
3866     }
3867   }
3868 
3869   // Launch -Xrun agents
3870   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3871   // back-end can launch with -Xdebug -Xrunjdwp.
3872   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3873     create_vm_init_libraries();
3874   }
3875 
3876   if (CleanChunkPoolAsync) {
3877     Chunk::start_chunk_pool_cleaner_task();
3878   }
3879 
3880 
3881   // initialize compiler(s)
3882 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3883 #if INCLUDE_JVMCI
3884   bool force_JVMCI_intialization = false;
3885   if (EnableJVMCI) {
3886     // Initialize JVMCI eagerly when it is explicitly requested.
3887     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
3888     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
3889 
3890     if (!force_JVMCI_intialization) {
3891       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3892       // compilations via JVMCI will not actually block until JVMCI is initialized.
3893       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3894     }
3895   }
3896 #endif
3897   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3898   // Postpone completion of compiler initialization to after JVMCI
3899   // is initialized to avoid timeouts of blocking compilations.
3900   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3901     CompileBroker::compilation_init_phase2();
3902   }
3903 #endif
3904 
3905   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3906   // It is done after compilers are initialized, because otherwise compilations of
3907   // signature polymorphic MH intrinsics can be missed
3908   // (see SystemDictionary::find_method_handle_intrinsic).
3909   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3910 
3911   // This will initialize the module system.  Only java.base classes can be
3912   // loaded until phase 2 completes
3913   call_initPhase2(CHECK_JNI_ERR);
3914 
3915   // Always call even when there are not JVMTI environments yet, since environments
3916   // may be attached late and JVMTI must track phases of VM execution
3917   JvmtiExport::enter_start_phase();
3918 
3919   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3920   JvmtiExport::post_vm_start();
3921 
3922   // Final system initialization including security manager and system class loader
3923   call_initPhase3(CHECK_JNI_ERR);
3924 
3925   // cache the system and platform class loaders
3926   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3927 
3928 #if INCLUDE_CDS
3929   // capture the module path info from the ModuleEntryTable
3930   ClassLoader::initialize_module_path(THREAD);
3931 #endif
3932 
3933 #if INCLUDE_JVMCI
3934   if (force_JVMCI_intialization) {
3935     JVMCI::initialize_compiler(CHECK_JNI_ERR);
3936     CompileBroker::compilation_init_phase2();
3937   }
3938 #endif
3939 
3940   // Always call even when there are not JVMTI environments yet, since environments
3941   // may be attached late and JVMTI must track phases of VM execution
3942   JvmtiExport::enter_live_phase();
3943 
3944   // Make perfmemory accessible
3945   PerfMemory::set_accessible(true);
3946 
3947   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3948   JvmtiExport::post_vm_initialized();
3949 
3950   JFR_ONLY(Jfr::on_vm_start();)
3951 
3952 #if INCLUDE_MANAGEMENT
3953   Management::initialize(THREAD);
3954 
3955   if (HAS_PENDING_EXCEPTION) {
3956     // management agent fails to start possibly due to
3957     // configuration problem and is responsible for printing
3958     // stack trace if appropriate. Simply exit VM.
3959     vm_exit(1);
3960   }
3961 #endif // INCLUDE_MANAGEMENT
3962 
3963   if (MemProfiling)                   MemProfiler::engage();
3964   StatSampler::engage();
3965   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3966 
3967   BiasedLocking::init();
3968 
3969 #if INCLUDE_RTM_OPT
3970   RTMLockingCounters::init();
3971 #endif
3972 
3973   call_postVMInitHook(THREAD);
3974   // The Java side of PostVMInitHook.run must deal with all
3975   // exceptions and provide means of diagnosis.
3976   if (HAS_PENDING_EXCEPTION) {
3977     CLEAR_PENDING_EXCEPTION;
3978   }
3979 
3980   {
3981     MutexLocker ml(PeriodicTask_lock);
3982     // Make sure the WatcherThread can be started by WatcherThread::start()
3983     // or by dynamic enrollment.
3984     WatcherThread::make_startable();
3985     // Start up the WatcherThread if there are any periodic tasks
3986     // NOTE:  All PeriodicTasks should be registered by now. If they
3987     //   aren't, late joiners might appear to start slowly (we might
3988     //   take a while to process their first tick).
3989     if (PeriodicTask::num_tasks() > 0) {
3990       WatcherThread::start();
3991     }
3992   }
3993 
3994   create_vm_timer.end();
3995 #ifdef ASSERT
3996   _vm_complete = true;
3997 #endif
3998 
3999   if (DumpSharedSpaces) {
4000     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4001     ShouldNotReachHere();
4002   }
4003 
4004   return JNI_OK;
4005 }
4006 
4007 // type for the Agent_OnLoad and JVM_OnLoad entry points
4008 extern "C" {
4009   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4010 }
4011 // Find a command line agent library and return its entry point for
4012 //         -agentlib:  -agentpath:   -Xrun
4013 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4014 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4015                                     const char *on_load_symbols[],
4016                                     size_t num_symbol_entries) {
4017   OnLoadEntry_t on_load_entry = NULL;
4018   void *library = NULL;
4019 
4020   if (!agent->valid()) {
4021     char buffer[JVM_MAXPATHLEN];
4022     char ebuf[1024] = "";
4023     const char *name = agent->name();
4024     const char *msg = "Could not find agent library ";
4025 
4026     // First check to see if agent is statically linked into executable
4027     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4028       library = agent->os_lib();
4029     } else if (agent->is_absolute_path()) {
4030       library = os::dll_load(name, ebuf, sizeof ebuf);
4031       if (library == NULL) {
4032         const char *sub_msg = " in absolute path, with error: ";
4033         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4034         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4035         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4036         // If we can't find the agent, exit.
4037         vm_exit_during_initialization(buf, NULL);
4038         FREE_C_HEAP_ARRAY(char, buf);
4039       }
4040     } else {
4041       // Try to load the agent from the standard dll directory
4042       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4043                              name)) {
4044         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4045       }
4046       if (library == NULL) { // Try the library path directory.
4047         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4048           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4049         }
4050         if (library == NULL) {
4051           const char *sub_msg = " on the library path, with error: ";
4052           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4053 
4054           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4055                        strlen(ebuf) + strlen(sub_msg2) + 1;
4056           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4057           if (!agent->is_instrument_lib()) {
4058             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4059           } else {
4060             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4061           }
4062           // If we can't find the agent, exit.
4063           vm_exit_during_initialization(buf, NULL);
4064           FREE_C_HEAP_ARRAY(char, buf);
4065         }
4066       }
4067     }
4068     agent->set_os_lib(library);
4069     agent->set_valid();
4070   }
4071 
4072   // Find the OnLoad function.
4073   on_load_entry =
4074     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4075                                                           false,
4076                                                           on_load_symbols,
4077                                                           num_symbol_entries));
4078   return on_load_entry;
4079 }
4080 
4081 // Find the JVM_OnLoad entry point
4082 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4083   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4084   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4085 }
4086 
4087 // Find the Agent_OnLoad entry point
4088 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4089   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4090   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4091 }
4092 
4093 // For backwards compatibility with -Xrun
4094 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4095 // treated like -agentpath:
4096 // Must be called before agent libraries are created
4097 void Threads::convert_vm_init_libraries_to_agents() {
4098   AgentLibrary* agent;
4099   AgentLibrary* next;
4100 
4101   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4102     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4103     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4104 
4105     // If there is an JVM_OnLoad function it will get called later,
4106     // otherwise see if there is an Agent_OnLoad
4107     if (on_load_entry == NULL) {
4108       on_load_entry = lookup_agent_on_load(agent);
4109       if (on_load_entry != NULL) {
4110         // switch it to the agent list -- so that Agent_OnLoad will be called,
4111         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4112         Arguments::convert_library_to_agent(agent);
4113       } else {
4114         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4115       }
4116     }
4117   }
4118 }
4119 
4120 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4121 // Invokes Agent_OnLoad
4122 // Called very early -- before JavaThreads exist
4123 void Threads::create_vm_init_agents() {
4124   extern struct JavaVM_ main_vm;
4125   AgentLibrary* agent;
4126 
4127   JvmtiExport::enter_onload_phase();
4128 
4129   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4130     // CDS dumping does not support native JVMTI agent.
4131     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4132     if (DumpSharedSpaces || DynamicDumpSharedSpaces) {
4133       if(!agent->is_instrument_lib()) {
4134         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4135       } else if (!AllowArchivingWithJavaAgent) {
4136         vm_exit_during_cds_dumping(
4137           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4138       }
4139     }
4140 
4141     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4142 
4143     if (on_load_entry != NULL) {
4144       // Invoke the Agent_OnLoad function
4145       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4146       if (err != JNI_OK) {
4147         vm_exit_during_initialization("agent library failed to init", agent->name());
4148       }
4149     } else {
4150       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4151     }
4152   }
4153 
4154   JvmtiExport::enter_primordial_phase();
4155 }
4156 
4157 extern "C" {
4158   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4159 }
4160 
4161 void Threads::shutdown_vm_agents() {
4162   // Send any Agent_OnUnload notifications
4163   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4164   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4165   extern struct JavaVM_ main_vm;
4166   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4167 
4168     // Find the Agent_OnUnload function.
4169     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4170                                                    os::find_agent_function(agent,
4171                                                    false,
4172                                                    on_unload_symbols,
4173                                                    num_symbol_entries));
4174 
4175     // Invoke the Agent_OnUnload function
4176     if (unload_entry != NULL) {
4177       JavaThread* thread = JavaThread::current();
4178       ThreadToNativeFromVM ttn(thread);
4179       HandleMark hm(thread);
4180       (*unload_entry)(&main_vm);
4181     }
4182   }
4183 }
4184 
4185 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4186 // Invokes JVM_OnLoad
4187 void Threads::create_vm_init_libraries() {
4188   extern struct JavaVM_ main_vm;
4189   AgentLibrary* agent;
4190 
4191   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4192     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4193 
4194     if (on_load_entry != NULL) {
4195       // Invoke the JVM_OnLoad function
4196       JavaThread* thread = JavaThread::current();
4197       ThreadToNativeFromVM ttn(thread);
4198       HandleMark hm(thread);
4199       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4200       if (err != JNI_OK) {
4201         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4202       }
4203     } else {
4204       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4205     }
4206   }
4207 }
4208 
4209 
4210 // Last thread running calls java.lang.Shutdown.shutdown()
4211 void JavaThread::invoke_shutdown_hooks() {
4212   HandleMark hm(this);
4213 
4214   // We could get here with a pending exception, if so clear it now.
4215   if (this->has_pending_exception()) {
4216     this->clear_pending_exception();
4217   }
4218 
4219   EXCEPTION_MARK;
4220   Klass* shutdown_klass =
4221     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4222                                       THREAD);
4223   if (shutdown_klass != NULL) {
4224     // SystemDictionary::resolve_or_null will return null if there was
4225     // an exception.  If we cannot load the Shutdown class, just don't
4226     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4227     // won't be run.  Note that if a shutdown hook was registered,
4228     // the Shutdown class would have already been loaded
4229     // (Runtime.addShutdownHook will load it).
4230     JavaValue result(T_VOID);
4231     JavaCalls::call_static(&result,
4232                            shutdown_klass,
4233                            vmSymbols::shutdown_name(),
4234                            vmSymbols::void_method_signature(),
4235                            THREAD);
4236   }
4237   CLEAR_PENDING_EXCEPTION;
4238 }
4239 
4240 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4241 // the program falls off the end of main(). Another VM exit path is through
4242 // vm_exit() when the program calls System.exit() to return a value or when
4243 // there is a serious error in VM. The two shutdown paths are not exactly
4244 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4245 // and VM_Exit op at VM level.
4246 //
4247 // Shutdown sequence:
4248 //   + Shutdown native memory tracking if it is on
4249 //   + Wait until we are the last non-daemon thread to execute
4250 //     <-- every thing is still working at this moment -->
4251 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4252 //        shutdown hooks
4253 //   + Call before_exit(), prepare for VM exit
4254 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4255 //        currently the only user of this mechanism is File.deleteOnExit())
4256 //      > stop StatSampler, watcher thread, CMS threads,
4257 //        post thread end and vm death events to JVMTI,
4258 //        stop signal thread
4259 //   + Call JavaThread::exit(), it will:
4260 //      > release JNI handle blocks, remove stack guard pages
4261 //      > remove this thread from Threads list
4262 //     <-- no more Java code from this thread after this point -->
4263 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4264 //     the compiler threads at safepoint
4265 //     <-- do not use anything that could get blocked by Safepoint -->
4266 //   + Disable tracing at JNI/JVM barriers
4267 //   + Set _vm_exited flag for threads that are still running native code
4268 //   + Call exit_globals()
4269 //      > deletes tty
4270 //      > deletes PerfMemory resources
4271 //   + Delete this thread
4272 //   + Return to caller
4273 
4274 bool Threads::destroy_vm() {
4275   JavaThread* thread = JavaThread::current();
4276 
4277 #ifdef ASSERT
4278   _vm_complete = false;
4279 #endif
4280   // Wait until we are the last non-daemon thread to execute
4281   { MonitorLocker nu(Threads_lock);
4282     while (Threads::number_of_non_daemon_threads() > 1)
4283       // This wait should make safepoint checks, wait without a timeout,
4284       // and wait as a suspend-equivalent condition.
4285       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4286   }
4287 
4288   EventShutdown e;
4289   if (e.should_commit()) {
4290     e.set_reason("No remaining non-daemon Java threads");
4291     e.commit();
4292   }
4293 
4294   // Hang forever on exit if we are reporting an error.
4295   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4296     os::infinite_sleep();
4297   }
4298   os::wait_for_keypress_at_exit();
4299 
4300   // run Java level shutdown hooks
4301   thread->invoke_shutdown_hooks();
4302 
4303   before_exit(thread);
4304 
4305   thread->exit(true);
4306 
4307   // Stop VM thread.
4308   {
4309     // 4945125 The vm thread comes to a safepoint during exit.
4310     // GC vm_operations can get caught at the safepoint, and the
4311     // heap is unparseable if they are caught. Grab the Heap_lock
4312     // to prevent this. The GC vm_operations will not be able to
4313     // queue until after the vm thread is dead. After this point,
4314     // we'll never emerge out of the safepoint before the VM exits.
4315 
4316     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4317 
4318     VMThread::wait_for_vm_thread_exit();
4319     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4320     VMThread::destroy();
4321   }
4322 
4323   // Now, all Java threads are gone except daemon threads. Daemon threads
4324   // running Java code or in VM are stopped by the Safepoint. However,
4325   // daemon threads executing native code are still running.  But they
4326   // will be stopped at native=>Java/VM barriers. Note that we can't
4327   // simply kill or suspend them, as it is inherently deadlock-prone.
4328 
4329   VM_Exit::set_vm_exited();
4330 
4331   // Clean up ideal graph printers after the VMThread has started
4332   // the final safepoint which will block all the Compiler threads.
4333   // Note that this Thread has already logically exited so the
4334   // clean_up() function's use of a JavaThreadIteratorWithHandle
4335   // would be a problem except set_vm_exited() has remembered the
4336   // shutdown thread which is granted a policy exception.
4337 #if defined(COMPILER2) && !defined(PRODUCT)
4338   IdealGraphPrinter::clean_up();
4339 #endif
4340 
4341   notify_vm_shutdown();
4342 
4343   // exit_globals() will delete tty
4344   exit_globals();
4345 
4346   // We are after VM_Exit::set_vm_exited() so we can't call
4347   // thread->smr_delete() or we will block on the Threads_lock.
4348   // Deleting the shutdown thread here is safe because another
4349   // JavaThread cannot have an active ThreadsListHandle for
4350   // this JavaThread.
4351   delete thread;
4352 
4353 #if INCLUDE_JVMCI
4354   if (JVMCICounterSize > 0) {
4355     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4356   }
4357 #endif
4358 
4359   LogConfiguration::finalize();
4360 
4361   return true;
4362 }
4363 
4364 
4365 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4366   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4367   return is_supported_jni_version(version);
4368 }
4369 
4370 
4371 jboolean Threads::is_supported_jni_version(jint version) {
4372   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4373   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4374   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4375   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4376   if (version == JNI_VERSION_9) return JNI_TRUE;
4377   if (version == JNI_VERSION_10) return JNI_TRUE;
4378   return JNI_FALSE;
4379 }
4380 
4381 
4382 void Threads::add(JavaThread* p, bool force_daemon) {
4383   // The threads lock must be owned at this point
4384   assert(Threads_lock->owned_by_self(), "must have threads lock");
4385 
4386   BarrierSet::barrier_set()->on_thread_attach(p);
4387 
4388   // Once a JavaThread is added to the Threads list, smr_delete() has
4389   // to be used to delete it. Otherwise we can just delete it directly.
4390   p->set_on_thread_list();
4391 
4392   _number_of_threads++;
4393   oop threadObj = p->threadObj();
4394   bool daemon = true;
4395   // Bootstrapping problem: threadObj can be null for initial
4396   // JavaThread (or for threads attached via JNI)
4397   if ((!force_daemon) && !is_daemon((threadObj))) {
4398     _number_of_non_daemon_threads++;
4399     daemon = false;
4400   }
4401 
4402   ThreadService::add_thread(p, daemon);
4403 
4404   // Maintain fast thread list
4405   ThreadsSMRSupport::add_thread(p);
4406 
4407   // Possible GC point.
4408   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4409 }
4410 
4411 void Threads::remove(JavaThread* p, bool is_daemon) {
4412 
4413   // Reclaim the ObjectMonitors from the om_in_use_list and om_free_list of the moribund thread.
4414   ObjectSynchronizer::om_flush(p);
4415 
4416   // Extra scope needed for Thread_lock, so we can check
4417   // that we do not remove thread without safepoint code notice
4418   { MonitorLocker ml(Threads_lock);
4419 
4420     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4421 
4422     // Maintain fast thread list
4423     ThreadsSMRSupport::remove_thread(p);
4424 
4425     _number_of_threads--;
4426     if (!is_daemon) {
4427       _number_of_non_daemon_threads--;
4428 
4429       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4430       // on destroy_vm will wake up.
4431       if (number_of_non_daemon_threads() == 1) {
4432         ml.notify_all();
4433       }
4434     }
4435     ThreadService::remove_thread(p, is_daemon);
4436 
4437     // Make sure that safepoint code disregard this thread. This is needed since
4438     // the thread might mess around with locks after this point. This can cause it
4439     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4440     // of this thread since it is removed from the queue.
4441     p->set_terminated_value();
4442   } // unlock Threads_lock
4443 
4444   // Since Events::log uses a lock, we grab it outside the Threads_lock
4445   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4446 }
4447 
4448 // Operations on the Threads list for GC.  These are not explicitly locked,
4449 // but the garbage collector must provide a safe context for them to run.
4450 // In particular, these things should never be called when the Threads_lock
4451 // is held by some other thread. (Note: the Safepoint abstraction also
4452 // uses the Threads_lock to guarantee this property. It also makes sure that
4453 // all threads gets blocked when exiting or starting).
4454 
4455 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4456   ALL_JAVA_THREADS(p) {
4457     p->oops_do(f, cf);
4458   }
4459   VMThread::vm_thread()->oops_do(f, cf);
4460 }
4461 
4462 void Threads::change_thread_claim_token() {
4463   if (++_thread_claim_token == 0) {
4464     // On overflow of the token counter, there is a risk of future
4465     // collisions between a new global token value and a stale token
4466     // for a thread, because not all iterations visit all threads.
4467     // (Though it's pretty much a theoretical concern for non-trivial
4468     // token counter sizes.)  To deal with the possibility, reset all
4469     // the thread tokens to zero on global token overflow.
4470     struct ResetClaims : public ThreadClosure {
4471       virtual void do_thread(Thread* t) {
4472         t->claim_threads_do(false, 0);
4473       }
4474     } reset_claims;
4475     Threads::threads_do(&reset_claims);
4476     // On overflow, update the global token to non-zero, to
4477     // avoid the special "never claimed" initial thread value.
4478     _thread_claim_token = 1;
4479   }
4480 }
4481 
4482 #ifdef ASSERT
4483 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4484   const uintx token = t->threads_do_token();
4485   assert(token == expected,
4486          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4487          UINTX_FORMAT, kind, p2i(t), token, expected);
4488 }
4489 
4490 void Threads::assert_all_threads_claimed() {
4491   ALL_JAVA_THREADS(p) {
4492     assert_thread_claimed("Thread", p, _thread_claim_token);
4493   }
4494   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4495 }
4496 #endif // ASSERT
4497 
4498 class ParallelOopsDoThreadClosure : public ThreadClosure {
4499 private:
4500   OopClosure* _f;
4501   CodeBlobClosure* _cf;
4502 public:
4503   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4504   void do_thread(Thread* t) {
4505     t->oops_do(_f, _cf);
4506   }
4507 };
4508 
4509 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4510   ParallelOopsDoThreadClosure tc(f, cf);
4511   possibly_parallel_threads_do(is_par, &tc);
4512 }
4513 
4514 void Threads::nmethods_do(CodeBlobClosure* cf) {
4515   ALL_JAVA_THREADS(p) {
4516     // This is used by the code cache sweeper to mark nmethods that are active
4517     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4518     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4519     if(!p->is_Code_cache_sweeper_thread()) {
4520       p->nmethods_do(cf);
4521     }
4522   }
4523 }
4524 
4525 void Threads::metadata_do(MetadataClosure* f) {
4526   ALL_JAVA_THREADS(p) {
4527     p->metadata_do(f);
4528   }
4529 }
4530 
4531 class ThreadHandlesClosure : public ThreadClosure {
4532   void (*_f)(Metadata*);
4533  public:
4534   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4535   virtual void do_thread(Thread* thread) {
4536     thread->metadata_handles_do(_f);
4537   }
4538 };
4539 
4540 void Threads::metadata_handles_do(void f(Metadata*)) {
4541   // Only walk the Handles in Thread.
4542   ThreadHandlesClosure handles_closure(f);
4543   threads_do(&handles_closure);
4544 }
4545 
4546 void Threads::deoptimized_wrt_marked_nmethods() {
4547   ALL_JAVA_THREADS(p) {
4548     p->deoptimized_wrt_marked_nmethods();
4549   }
4550 }
4551 
4552 
4553 // Get count Java threads that are waiting to enter the specified monitor.
4554 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4555                                                          int count,
4556                                                          address monitor) {
4557   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4558 
4559   int i = 0;
4560   DO_JAVA_THREADS(t_list, p) {
4561     if (!p->can_call_java()) continue;
4562 
4563     address pending = (address)p->current_pending_monitor();
4564     if (pending == monitor) {             // found a match
4565       if (i < count) result->append(p);   // save the first count matches
4566       i++;
4567     }
4568   }
4569 
4570   return result;
4571 }
4572 
4573 
4574 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4575                                                       address owner) {
4576   // NULL owner means not locked so we can skip the search
4577   if (owner == NULL) return NULL;
4578 
4579   DO_JAVA_THREADS(t_list, p) {
4580     // first, see if owner is the address of a Java thread
4581     if (owner == (address)p) return p;
4582   }
4583 
4584   // Cannot assert on lack of success here since this function may be
4585   // used by code that is trying to report useful problem information
4586   // like deadlock detection.
4587   if (UseHeavyMonitors) return NULL;
4588 
4589   // If we didn't find a matching Java thread and we didn't force use of
4590   // heavyweight monitors, then the owner is the stack address of the
4591   // Lock Word in the owning Java thread's stack.
4592   //
4593   JavaThread* the_owner = NULL;
4594   DO_JAVA_THREADS(t_list, q) {
4595     if (q->is_lock_owned(owner)) {
4596       the_owner = q;
4597       break;
4598     }
4599   }
4600 
4601   // cannot assert on lack of success here; see above comment
4602   return the_owner;
4603 }
4604 
4605 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4606 void Threads::print_on(outputStream* st, bool print_stacks,
4607                        bool internal_format, bool print_concurrent_locks,
4608                        bool print_extended_info) {
4609   char buf[32];
4610   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4611 
4612   st->print_cr("Full thread dump %s (%s %s):",
4613                VM_Version::vm_name(),
4614                VM_Version::vm_release(),
4615                VM_Version::vm_info_string());
4616   st->cr();
4617 
4618 #if INCLUDE_SERVICES
4619   // Dump concurrent locks
4620   ConcurrentLocksDump concurrent_locks;
4621   if (print_concurrent_locks) {
4622     concurrent_locks.dump_at_safepoint();
4623   }
4624 #endif // INCLUDE_SERVICES
4625 
4626   ThreadsSMRSupport::print_info_on(st);
4627   st->cr();
4628 
4629   ALL_JAVA_THREADS(p) {
4630     ResourceMark rm;
4631     p->print_on(st, print_extended_info);
4632     if (print_stacks) {
4633       if (internal_format) {
4634         p->trace_stack();
4635       } else {
4636         p->print_stack_on(st);
4637       }
4638     }
4639     st->cr();
4640 #if INCLUDE_SERVICES
4641     if (print_concurrent_locks) {
4642       concurrent_locks.print_locks_on(p, st);
4643     }
4644 #endif // INCLUDE_SERVICES
4645   }
4646 
4647   VMThread::vm_thread()->print_on(st);
4648   st->cr();
4649   Universe::heap()->print_gc_threads_on(st);
4650   WatcherThread* wt = WatcherThread::watcher_thread();
4651   if (wt != NULL) {
4652     wt->print_on(st);
4653     st->cr();
4654   }
4655 
4656   st->flush();
4657 }
4658 
4659 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4660                              int buflen, bool* found_current) {
4661   if (this_thread != NULL) {
4662     bool is_current = (current == this_thread);
4663     *found_current = *found_current || is_current;
4664     st->print("%s", is_current ? "=>" : "  ");
4665 
4666     st->print(PTR_FORMAT, p2i(this_thread));
4667     st->print(" ");
4668     this_thread->print_on_error(st, buf, buflen);
4669     st->cr();
4670   }
4671 }
4672 
4673 class PrintOnErrorClosure : public ThreadClosure {
4674   outputStream* _st;
4675   Thread* _current;
4676   char* _buf;
4677   int _buflen;
4678   bool* _found_current;
4679  public:
4680   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4681                       int buflen, bool* found_current) :
4682    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4683 
4684   virtual void do_thread(Thread* thread) {
4685     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4686   }
4687 };
4688 
4689 // Threads::print_on_error() is called by fatal error handler. It's possible
4690 // that VM is not at safepoint and/or current thread is inside signal handler.
4691 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4692 // memory (even in resource area), it might deadlock the error handler.
4693 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4694                              int buflen) {
4695   ThreadsSMRSupport::print_info_on(st);
4696   st->cr();
4697 
4698   bool found_current = false;
4699   st->print_cr("Java Threads: ( => current thread )");
4700   ALL_JAVA_THREADS(thread) {
4701     print_on_error(thread, st, current, buf, buflen, &found_current);
4702   }
4703   st->cr();
4704 
4705   st->print_cr("Other Threads:");
4706   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4707   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4708 
4709   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4710   Universe::heap()->gc_threads_do(&print_closure);
4711 
4712   if (!found_current) {
4713     st->cr();
4714     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4715     current->print_on_error(st, buf, buflen);
4716     st->cr();
4717   }
4718   st->cr();
4719 
4720   st->print_cr("Threads with active compile tasks:");
4721   print_threads_compiling(st, buf, buflen);
4722 }
4723 
4724 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4725   ALL_JAVA_THREADS(thread) {
4726     if (thread->is_Compiler_thread()) {
4727       CompilerThread* ct = (CompilerThread*) thread;
4728 
4729       // Keep task in local variable for NULL check.
4730       // ct->_task might be set to NULL by concurring compiler thread
4731       // because it completed the compilation. The task is never freed,
4732       // though, just returned to a free list.
4733       CompileTask* task = ct->task();
4734       if (task != NULL) {
4735         thread->print_name_on_error(st, buf, buflen);
4736         st->print("  ");
4737         task->print(st, NULL, short_form, true);
4738       }
4739     }
4740   }
4741 }
4742 
4743 
4744 // Internal SpinLock and Mutex
4745 // Based on ParkEvent
4746 
4747 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4748 //
4749 // We employ SpinLocks _only for low-contention, fixed-length
4750 // short-duration critical sections where we're concerned
4751 // about native mutex_t or HotSpot Mutex:: latency.
4752 // The mux construct provides a spin-then-block mutual exclusion
4753 // mechanism.
4754 //
4755 // Testing has shown that contention on the ListLock guarding gFreeList
4756 // is common.  If we implement ListLock as a simple SpinLock it's common
4757 // for the JVM to devolve to yielding with little progress.  This is true
4758 // despite the fact that the critical sections protected by ListLock are
4759 // extremely short.
4760 //
4761 // TODO-FIXME: ListLock should be of type SpinLock.
4762 // We should make this a 1st-class type, integrated into the lock
4763 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4764 // should have sufficient padding to avoid false-sharing and excessive
4765 // cache-coherency traffic.
4766 
4767 
4768 typedef volatile int SpinLockT;
4769 
4770 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4771   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4772     return;   // normal fast-path return
4773   }
4774 
4775   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4776   int ctr = 0;
4777   int Yields = 0;
4778   for (;;) {
4779     while (*adr != 0) {
4780       ++ctr;
4781       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4782         if (Yields > 5) {
4783           os::naked_short_sleep(1);
4784         } else {
4785           os::naked_yield();
4786           ++Yields;
4787         }
4788       } else {
4789         SpinPause();
4790       }
4791     }
4792     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4793   }
4794 }
4795 
4796 void Thread::SpinRelease(volatile int * adr) {
4797   assert(*adr != 0, "invariant");
4798   OrderAccess::fence();      // guarantee at least release consistency.
4799   // Roach-motel semantics.
4800   // It's safe if subsequent LDs and STs float "up" into the critical section,
4801   // but prior LDs and STs within the critical section can't be allowed
4802   // to reorder or float past the ST that releases the lock.
4803   // Loads and stores in the critical section - which appear in program
4804   // order before the store that releases the lock - must also appear
4805   // before the store that releases the lock in memory visibility order.
4806   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4807   // the ST of 0 into the lock-word which releases the lock, so fence
4808   // more than covers this on all platforms.
4809   *adr = 0;
4810 }
4811 
4812 // muxAcquire and muxRelease:
4813 //
4814 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4815 //    The LSB of the word is set IFF the lock is held.
4816 //    The remainder of the word points to the head of a singly-linked list
4817 //    of threads blocked on the lock.
4818 //
4819 // *  The current implementation of muxAcquire-muxRelease uses its own
4820 //    dedicated Thread._MuxEvent instance.  If we're interested in
4821 //    minimizing the peak number of extant ParkEvent instances then
4822 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4823 //    as certain invariants were satisfied.  Specifically, care would need
4824 //    to be taken with regards to consuming unpark() "permits".
4825 //    A safe rule of thumb is that a thread would never call muxAcquire()
4826 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4827 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4828 //    consume an unpark() permit intended for monitorenter, for instance.
4829 //    One way around this would be to widen the restricted-range semaphore
4830 //    implemented in park().  Another alternative would be to provide
4831 //    multiple instances of the PlatformEvent() for each thread.  One
4832 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4833 //
4834 // *  Usage:
4835 //    -- Only as leaf locks
4836 //    -- for short-term locking only as muxAcquire does not perform
4837 //       thread state transitions.
4838 //
4839 // Alternatives:
4840 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4841 //    but with parking or spin-then-park instead of pure spinning.
4842 // *  Use Taura-Oyama-Yonenzawa locks.
4843 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4844 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4845 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4846 //    acquiring threads use timers (ParkTimed) to detect and recover from
4847 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4848 //    boundaries by using placement-new.
4849 // *  Augment MCS with advisory back-link fields maintained with CAS().
4850 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4851 //    The validity of the backlinks must be ratified before we trust the value.
4852 //    If the backlinks are invalid the exiting thread must back-track through the
4853 //    the forward links, which are always trustworthy.
4854 // *  Add a successor indication.  The LockWord is currently encoded as
4855 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4856 //    to provide the usual futile-wakeup optimization.
4857 //    See RTStt for details.
4858 //
4859 
4860 
4861 const intptr_t LOCKBIT = 1;
4862 
4863 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4864   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4865   if (w == 0) return;
4866   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4867     return;
4868   }
4869 
4870   ParkEvent * const Self = Thread::current()->_MuxEvent;
4871   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4872   for (;;) {
4873     int its = (os::is_MP() ? 100 : 0) + 1;
4874 
4875     // Optional spin phase: spin-then-park strategy
4876     while (--its >= 0) {
4877       w = *Lock;
4878       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4879         return;
4880       }
4881     }
4882 
4883     Self->reset();
4884     Self->OnList = intptr_t(Lock);
4885     // The following fence() isn't _strictly necessary as the subsequent
4886     // CAS() both serializes execution and ratifies the fetched *Lock value.
4887     OrderAccess::fence();
4888     for (;;) {
4889       w = *Lock;
4890       if ((w & LOCKBIT) == 0) {
4891         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4892           Self->OnList = 0;   // hygiene - allows stronger asserts
4893           return;
4894         }
4895         continue;      // Interference -- *Lock changed -- Just retry
4896       }
4897       assert(w & LOCKBIT, "invariant");
4898       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4899       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4900     }
4901 
4902     while (Self->OnList != 0) {
4903       Self->park();
4904     }
4905   }
4906 }
4907 
4908 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4909   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4910   if (w == 0) return;
4911   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4912     return;
4913   }
4914 
4915   ParkEvent * ReleaseAfter = NULL;
4916   if (ev == NULL) {
4917     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4918   }
4919   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4920   for (;;) {
4921     guarantee(ev->OnList == 0, "invariant");
4922     int its = (os::is_MP() ? 100 : 0) + 1;
4923 
4924     // Optional spin phase: spin-then-park strategy
4925     while (--its >= 0) {
4926       w = *Lock;
4927       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4928         if (ReleaseAfter != NULL) {
4929           ParkEvent::Release(ReleaseAfter);
4930         }
4931         return;
4932       }
4933     }
4934 
4935     ev->reset();
4936     ev->OnList = intptr_t(Lock);
4937     // The following fence() isn't _strictly necessary as the subsequent
4938     // CAS() both serializes execution and ratifies the fetched *Lock value.
4939     OrderAccess::fence();
4940     for (;;) {
4941       w = *Lock;
4942       if ((w & LOCKBIT) == 0) {
4943         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4944           ev->OnList = 0;
4945           // We call ::Release while holding the outer lock, thus
4946           // artificially lengthening the critical section.
4947           // Consider deferring the ::Release() until the subsequent unlock(),
4948           // after we've dropped the outer lock.
4949           if (ReleaseAfter != NULL) {
4950             ParkEvent::Release(ReleaseAfter);
4951           }
4952           return;
4953         }
4954         continue;      // Interference -- *Lock changed -- Just retry
4955       }
4956       assert(w & LOCKBIT, "invariant");
4957       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4958       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4959     }
4960 
4961     while (ev->OnList != 0) {
4962       ev->park();
4963     }
4964   }
4965 }
4966 
4967 // Release() must extract a successor from the list and then wake that thread.
4968 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4969 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4970 // Release() would :
4971 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4972 // (B) Extract a successor from the private list "in-hand"
4973 // (C) attempt to CAS() the residual back into *Lock over null.
4974 //     If there were any newly arrived threads and the CAS() would fail.
4975 //     In that case Release() would detach the RATs, re-merge the list in-hand
4976 //     with the RATs and repeat as needed.  Alternately, Release() might
4977 //     detach and extract a successor, but then pass the residual list to the wakee.
4978 //     The wakee would be responsible for reattaching and remerging before it
4979 //     competed for the lock.
4980 //
4981 // Both "pop" and DMR are immune from ABA corruption -- there can be
4982 // multiple concurrent pushers, but only one popper or detacher.
4983 // This implementation pops from the head of the list.  This is unfair,
4984 // but tends to provide excellent throughput as hot threads remain hot.
4985 // (We wake recently run threads first).
4986 //
4987 // All paths through muxRelease() will execute a CAS.
4988 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4989 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4990 // executed within the critical section are complete and globally visible before the
4991 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4992 void Thread::muxRelease(volatile intptr_t * Lock)  {
4993   for (;;) {
4994     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
4995     assert(w & LOCKBIT, "invariant");
4996     if (w == LOCKBIT) return;
4997     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4998     assert(List != NULL, "invariant");
4999     assert(List->OnList == intptr_t(Lock), "invariant");
5000     ParkEvent * const nxt = List->ListNext;
5001     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5002 
5003     // The following CAS() releases the lock and pops the head element.
5004     // The CAS() also ratifies the previously fetched lock-word value.
5005     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5006       continue;
5007     }
5008     List->OnList = 0;
5009     OrderAccess::fence();
5010     List->unpark();
5011     return;
5012   }
5013 }
5014 
5015 
5016 void Threads::verify() {
5017   ALL_JAVA_THREADS(p) {
5018     p->verify();
5019   }
5020   VMThread* thread = VMThread::vm_thread();
5021   if (thread != NULL) thread->verify();
5022 }