1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "jvm.h"
  30 #include "classfile/classLoader.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "logging/log.hpp"
  39 #include "logging/logStream.hpp"
  40 #include "memory/allocation.inline.hpp"
  41 #include "memory/filemap.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "os_share_windows.hpp"
  44 #include "os_windows.inline.hpp"
  45 #include "prims/jniFastGetField.hpp"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.inline.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "services/attachListener.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/align.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 #include "symbolengine.hpp"
  77 #include "windbghelp.hpp"
  78 
  79 
  80 #ifdef _DEBUG
  81 #include <crtdbg.h>
  82 #endif
  83 
  84 
  85 #include <windows.h>
  86 #include <sys/types.h>
  87 #include <sys/stat.h>
  88 #include <sys/timeb.h>
  89 #include <objidl.h>
  90 #include <shlobj.h>
  91 
  92 #include <malloc.h>
  93 #include <signal.h>
  94 #include <direct.h>
  95 #include <errno.h>
  96 #include <fcntl.h>
  97 #include <io.h>
  98 #include <process.h>              // For _beginthreadex(), _endthreadex()
  99 #include <imagehlp.h>             // For os::dll_address_to_function_name
 100 // for enumerating dll libraries
 101 #include <vdmdbg.h>
 102 #include <psapi.h>
 103 #include <mmsystem.h>
 104 #include <winsock2.h>
 105 
 106 // for timer info max values which include all bits
 107 #define ALL_64_BITS CONST64(-1)
 108 
 109 // For DLL loading/load error detection
 110 // Values of PE COFF
 111 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 112 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 113 
 114 static HANDLE main_process;
 115 static HANDLE main_thread;
 116 static int    main_thread_id;
 117 
 118 static FILETIME process_creation_time;
 119 static FILETIME process_exit_time;
 120 static FILETIME process_user_time;
 121 static FILETIME process_kernel_time;
 122 
 123 #ifdef _M_AMD64
 124   #define __CPU__ amd64
 125 #else
 126   #define __CPU__ i486
 127 #endif
 128 
 129 #if INCLUDE_AOT
 130 PVOID  topLevelVectoredExceptionHandler = NULL;
 131 LONG WINAPI topLevelVectoredExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 132 #endif
 133 
 134 // save DLL module handle, used by GetModuleFileName
 135 
 136 HINSTANCE vm_lib_handle;
 137 
 138 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 139   switch (reason) {
 140   case DLL_PROCESS_ATTACH:
 141     vm_lib_handle = hinst;
 142     if (ForceTimeHighResolution) {
 143       timeBeginPeriod(1L);
 144     }
 145     WindowsDbgHelp::pre_initialize();
 146     SymbolEngine::pre_initialize();
 147     break;
 148   case DLL_PROCESS_DETACH:
 149     if (ForceTimeHighResolution) {
 150       timeEndPeriod(1L);
 151     }
 152 #if INCLUDE_AOT
 153     if (topLevelVectoredExceptionHandler != NULL) {
 154       RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
 155       topLevelVectoredExceptionHandler = NULL;
 156     }
 157 #endif
 158     break;
 159   default:
 160     break;
 161   }
 162   return true;
 163 }
 164 
 165 static inline double fileTimeAsDouble(FILETIME* time) {
 166   const double high  = (double) ((unsigned int) ~0);
 167   const double split = 10000000.0;
 168   double result = (time->dwLowDateTime / split) +
 169                    time->dwHighDateTime * (high/split);
 170   return result;
 171 }
 172 
 173 // Implementation of os
 174 
 175 bool os::unsetenv(const char* name) {
 176   assert(name != NULL, "Null pointer");
 177   return (SetEnvironmentVariable(name, NULL) == TRUE);
 178 }
 179 
 180 // No setuid programs under Windows.
 181 bool os::have_special_privileges() {
 182   return false;
 183 }
 184 
 185 
 186 // This method is  a periodic task to check for misbehaving JNI applications
 187 // under CheckJNI, we can add any periodic checks here.
 188 // For Windows at the moment does nothing
 189 void os::run_periodic_checks() {
 190   return;
 191 }
 192 
 193 // previous UnhandledExceptionFilter, if there is one
 194 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 195 
 196 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 197 
 198 void os::init_system_properties_values() {
 199   // sysclasspath, java_home, dll_dir
 200   {
 201     char *home_path;
 202     char *dll_path;
 203     char *pslash;
 204     const char *bin = "\\bin";
 205     char home_dir[MAX_PATH + 1];
 206     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 207 
 208     if (alt_home_dir != NULL)  {
 209       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 210       home_dir[MAX_PATH] = '\0';
 211     } else {
 212       os::jvm_path(home_dir, sizeof(home_dir));
 213       // Found the full path to jvm.dll.
 214       // Now cut the path to <java_home>/jre if we can.
 215       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 216       pslash = strrchr(home_dir, '\\');
 217       if (pslash != NULL) {
 218         *pslash = '\0';                   // get rid of \{client|server}
 219         pslash = strrchr(home_dir, '\\');
 220         if (pslash != NULL) {
 221           *pslash = '\0';                 // get rid of \bin
 222         }
 223       }
 224     }
 225 
 226     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 227     if (home_path == NULL) {
 228       return;
 229     }
 230     strcpy(home_path, home_dir);
 231     Arguments::set_java_home(home_path);
 232     FREE_C_HEAP_ARRAY(char, home_path);
 233 
 234     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 235                                 mtInternal);
 236     if (dll_path == NULL) {
 237       return;
 238     }
 239     strcpy(dll_path, home_dir);
 240     strcat(dll_path, bin);
 241     Arguments::set_dll_dir(dll_path);
 242     FREE_C_HEAP_ARRAY(char, dll_path);
 243 
 244     if (!set_boot_path('\\', ';')) {
 245       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 246     }
 247   }
 248 
 249 // library_path
 250 #define EXT_DIR "\\lib\\ext"
 251 #define BIN_DIR "\\bin"
 252 #define PACKAGE_DIR "\\Sun\\Java"
 253   {
 254     // Win32 library search order (See the documentation for LoadLibrary):
 255     //
 256     // 1. The directory from which application is loaded.
 257     // 2. The system wide Java Extensions directory (Java only)
 258     // 3. System directory (GetSystemDirectory)
 259     // 4. Windows directory (GetWindowsDirectory)
 260     // 5. The PATH environment variable
 261     // 6. The current directory
 262 
 263     char *library_path;
 264     char tmp[MAX_PATH];
 265     char *path_str = ::getenv("PATH");
 266 
 267     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 268                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 269 
 270     library_path[0] = '\0';
 271 
 272     GetModuleFileName(NULL, tmp, sizeof(tmp));
 273     *(strrchr(tmp, '\\')) = '\0';
 274     strcat(library_path, tmp);
 275 
 276     GetWindowsDirectory(tmp, sizeof(tmp));
 277     strcat(library_path, ";");
 278     strcat(library_path, tmp);
 279     strcat(library_path, PACKAGE_DIR BIN_DIR);
 280 
 281     GetSystemDirectory(tmp, sizeof(tmp));
 282     strcat(library_path, ";");
 283     strcat(library_path, tmp);
 284 
 285     GetWindowsDirectory(tmp, sizeof(tmp));
 286     strcat(library_path, ";");
 287     strcat(library_path, tmp);
 288 
 289     if (path_str) {
 290       strcat(library_path, ";");
 291       strcat(library_path, path_str);
 292     }
 293 
 294     strcat(library_path, ";.");
 295 
 296     Arguments::set_library_path(library_path);
 297     FREE_C_HEAP_ARRAY(char, library_path);
 298   }
 299 
 300   // Default extensions directory
 301   {
 302     char path[MAX_PATH];
 303     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 304     GetWindowsDirectory(path, MAX_PATH);
 305     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 306             path, PACKAGE_DIR, EXT_DIR);
 307     Arguments::set_ext_dirs(buf);
 308   }
 309   #undef EXT_DIR
 310   #undef BIN_DIR
 311   #undef PACKAGE_DIR
 312 
 313 #ifndef _WIN64
 314   // set our UnhandledExceptionFilter and save any previous one
 315   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 316 #endif
 317 
 318   // Done
 319   return;
 320 }
 321 
 322 void os::breakpoint() {
 323   DebugBreak();
 324 }
 325 
 326 // Invoked from the BREAKPOINT Macro
 327 extern "C" void breakpoint() {
 328   os::breakpoint();
 329 }
 330 
 331 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 332 // So far, this method is only used by Native Memory Tracking, which is
 333 // only supported on Windows XP or later.
 334 //
 335 int os::get_native_stack(address* stack, int frames, int toSkip) {
 336   int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
 337   for (int index = captured; index < frames; index ++) {
 338     stack[index] = NULL;
 339   }
 340   return captured;
 341 }
 342 
 343 
 344 // os::current_stack_base()
 345 //
 346 //   Returns the base of the stack, which is the stack's
 347 //   starting address.  This function must be called
 348 //   while running on the stack of the thread being queried.
 349 
 350 address os::current_stack_base() {
 351   MEMORY_BASIC_INFORMATION minfo;
 352   address stack_bottom;
 353   size_t stack_size;
 354 
 355   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 356   stack_bottom =  (address)minfo.AllocationBase;
 357   stack_size = minfo.RegionSize;
 358 
 359   // Add up the sizes of all the regions with the same
 360   // AllocationBase.
 361   while (1) {
 362     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 363     if (stack_bottom == (address)minfo.AllocationBase) {
 364       stack_size += minfo.RegionSize;
 365     } else {
 366       break;
 367     }
 368   }
 369   return stack_bottom + stack_size;
 370 }
 371 
 372 size_t os::current_stack_size() {
 373   size_t sz;
 374   MEMORY_BASIC_INFORMATION minfo;
 375   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 376   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 377   return sz;
 378 }
 379 
 380 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
 381   MEMORY_BASIC_INFORMATION minfo;
 382   committed_start = NULL;
 383   committed_size = 0;
 384   address top = start + size;
 385   const address start_addr = start;
 386   while (start < top) {
 387     VirtualQuery(start, &minfo, sizeof(minfo));
 388     if ((minfo.State & MEM_COMMIT) == 0) {  // not committed
 389       if (committed_start != NULL) {
 390         break;
 391       }
 392     } else {  // committed
 393       if (committed_start == NULL) {
 394         committed_start = start;
 395       }
 396       size_t offset = start - (address)minfo.BaseAddress;
 397       committed_size += minfo.RegionSize - offset;
 398     }
 399     start = (address)minfo.BaseAddress + minfo.RegionSize;
 400   }
 401 
 402   if (committed_start == NULL) {
 403     assert(committed_size == 0, "Sanity");
 404     return false;
 405   } else {
 406     assert(committed_start >= start_addr && committed_start < top, "Out of range");
 407     // current region may go beyond the limit, trim to the limit
 408     committed_size = MIN2(committed_size, size_t(top - committed_start));
 409     return true;
 410   }
 411 }
 412 
 413 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 414   const struct tm* time_struct_ptr = localtime(clock);
 415   if (time_struct_ptr != NULL) {
 416     *res = *time_struct_ptr;
 417     return res;
 418   }
 419   return NULL;
 420 }
 421 
 422 struct tm* os::gmtime_pd(const time_t* clock, struct tm* res) {
 423   const struct tm* time_struct_ptr = gmtime(clock);
 424   if (time_struct_ptr != NULL) {
 425     *res = *time_struct_ptr;
 426     return res;
 427   }
 428   return NULL;
 429 }
 430 
 431 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 432 
 433 // Thread start routine for all newly created threads
 434 static unsigned __stdcall thread_native_entry(Thread* thread) {
 435 
 436   thread->record_stack_base_and_size();
 437 
 438   // Try to randomize the cache line index of hot stack frames.
 439   // This helps when threads of the same stack traces evict each other's
 440   // cache lines. The threads can be either from the same JVM instance, or
 441   // from different JVM instances. The benefit is especially true for
 442   // processors with hyperthreading technology.
 443   static int counter = 0;
 444   int pid = os::current_process_id();
 445   _alloca(((pid ^ counter++) & 7) * 128);
 446 
 447   thread->initialize_thread_current();
 448 
 449   OSThread* osthr = thread->osthread();
 450   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 451 
 452   if (UseNUMA) {
 453     int lgrp_id = os::numa_get_group_id();
 454     if (lgrp_id != -1) {
 455       thread->set_lgrp_id(lgrp_id);
 456     }
 457   }
 458 
 459   // Diagnostic code to investigate JDK-6573254
 460   int res = 30115;  // non-java thread
 461   if (thread->is_Java_thread()) {
 462     res = 20115;    // java thread
 463   }
 464 
 465   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
 466 
 467   // Install a win32 structured exception handler around every thread created
 468   // by VM, so VM can generate error dump when an exception occurred in non-
 469   // Java thread (e.g. VM thread).
 470   __try {
 471     thread->call_run();
 472   } __except(topLevelExceptionFilter(
 473                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 474     // Nothing to do.
 475   }
 476 
 477   // Note: at this point the thread object may already have deleted itself.
 478   // Do not dereference it from here on out.
 479 
 480   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 481 
 482   // One less thread is executing
 483   // When the VMThread gets here, the main thread may have already exited
 484   // which frees the CodeHeap containing the Atomic::add code
 485   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 486     Atomic::dec(&os::win32::_os_thread_count);
 487   }
 488 
 489   // Thread must not return from exit_process_or_thread(), but if it does,
 490   // let it proceed to exit normally
 491   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 492 }
 493 
 494 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 495                                   int thread_id) {
 496   // Allocate the OSThread object
 497   OSThread* osthread = new OSThread(NULL, NULL);
 498   if (osthread == NULL) return NULL;
 499 
 500   // Initialize support for Java interrupts
 501   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 502   if (interrupt_event == NULL) {
 503     delete osthread;
 504     return NULL;
 505   }
 506   osthread->set_interrupt_event(interrupt_event);
 507 
 508   // Store info on the Win32 thread into the OSThread
 509   osthread->set_thread_handle(thread_handle);
 510   osthread->set_thread_id(thread_id);
 511 
 512   if (UseNUMA) {
 513     int lgrp_id = os::numa_get_group_id();
 514     if (lgrp_id != -1) {
 515       thread->set_lgrp_id(lgrp_id);
 516     }
 517   }
 518 
 519   // Initial thread state is INITIALIZED, not SUSPENDED
 520   osthread->set_state(INITIALIZED);
 521 
 522   return osthread;
 523 }
 524 
 525 
 526 bool os::create_attached_thread(JavaThread* thread) {
 527 #ifdef ASSERT
 528   thread->verify_not_published();
 529 #endif
 530   HANDLE thread_h;
 531   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 532                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 533     fatal("DuplicateHandle failed\n");
 534   }
 535   OSThread* osthread = create_os_thread(thread, thread_h,
 536                                         (int)current_thread_id());
 537   if (osthread == NULL) {
 538     return false;
 539   }
 540 
 541   // Initial thread state is RUNNABLE
 542   osthread->set_state(RUNNABLE);
 543 
 544   thread->set_osthread(osthread);
 545 
 546   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 547     os::current_thread_id());
 548 
 549   return true;
 550 }
 551 
 552 bool os::create_main_thread(JavaThread* thread) {
 553 #ifdef ASSERT
 554   thread->verify_not_published();
 555 #endif
 556   if (_starting_thread == NULL) {
 557     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 558     if (_starting_thread == NULL) {
 559       return false;
 560     }
 561   }
 562 
 563   // The primordial thread is runnable from the start)
 564   _starting_thread->set_state(RUNNABLE);
 565 
 566   thread->set_osthread(_starting_thread);
 567   return true;
 568 }
 569 
 570 // Helper function to trace _beginthreadex attributes,
 571 //  similar to os::Posix::describe_pthread_attr()
 572 static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
 573                                                size_t stacksize, unsigned initflag) {
 574   stringStream ss(buf, buflen);
 575   if (stacksize == 0) {
 576     ss.print("stacksize: default, ");
 577   } else {
 578     ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 579   }
 580   ss.print("flags: ");
 581   #define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
 582   #define ALL(X) \
 583     X(CREATE_SUSPENDED) \
 584     X(STACK_SIZE_PARAM_IS_A_RESERVATION)
 585   ALL(PRINT_FLAG)
 586   #undef ALL
 587   #undef PRINT_FLAG
 588   return buf;
 589 }
 590 
 591 // Allocate and initialize a new OSThread
 592 bool os::create_thread(Thread* thread, ThreadType thr_type,
 593                        size_t stack_size) {
 594   unsigned thread_id;
 595 
 596   // Allocate the OSThread object
 597   OSThread* osthread = new OSThread(NULL, NULL);
 598   if (osthread == NULL) {
 599     return false;
 600   }
 601 
 602   // Initialize support for Java interrupts
 603   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 604   if (interrupt_event == NULL) {
 605     delete osthread;
 606     return false;
 607   }
 608   osthread->set_interrupt_event(interrupt_event);
 609   osthread->set_interrupted(false);
 610 
 611   thread->set_osthread(osthread);
 612 
 613   if (stack_size == 0) {
 614     switch (thr_type) {
 615     case os::java_thread:
 616       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 617       if (JavaThread::stack_size_at_create() > 0) {
 618         stack_size = JavaThread::stack_size_at_create();
 619       }
 620       break;
 621     case os::compiler_thread:
 622       if (CompilerThreadStackSize > 0) {
 623         stack_size = (size_t)(CompilerThreadStackSize * K);
 624         break;
 625       } // else fall through:
 626         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 627     case os::vm_thread:
 628     case os::pgc_thread:
 629     case os::cgc_thread:
 630     case os::watcher_thread:
 631       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 632       break;
 633     }
 634   }
 635 
 636   // Create the Win32 thread
 637   //
 638   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 639   // does not specify stack size. Instead, it specifies the size of
 640   // initially committed space. The stack size is determined by
 641   // PE header in the executable. If the committed "stack_size" is larger
 642   // than default value in the PE header, the stack is rounded up to the
 643   // nearest multiple of 1MB. For example if the launcher has default
 644   // stack size of 320k, specifying any size less than 320k does not
 645   // affect the actual stack size at all, it only affects the initial
 646   // commitment. On the other hand, specifying 'stack_size' larger than
 647   // default value may cause significant increase in memory usage, because
 648   // not only the stack space will be rounded up to MB, but also the
 649   // entire space is committed upfront.
 650   //
 651   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 652   // for CreateThread() that can treat 'stack_size' as stack size. However we
 653   // are not supposed to call CreateThread() directly according to MSDN
 654   // document because JVM uses C runtime library. The good news is that the
 655   // flag appears to work with _beginthredex() as well.
 656 
 657   const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
 658   HANDLE thread_handle =
 659     (HANDLE)_beginthreadex(NULL,
 660                            (unsigned)stack_size,
 661                            (unsigned (__stdcall *)(void*)) thread_native_entry,
 662                            thread,
 663                            initflag,
 664                            &thread_id);
 665 
 666   char buf[64];
 667   if (thread_handle != NULL) {
 668     log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
 669       thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 670   } else {
 671     log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
 672       os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 673     // Log some OS information which might explain why creating the thread failed.
 674     log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 675     LogStream st(Log(os, thread)::info());
 676     os::print_memory_info(&st);
 677   }
 678 
 679   if (thread_handle == NULL) {
 680     // Need to clean up stuff we've allocated so far
 681     CloseHandle(osthread->interrupt_event());
 682     thread->set_osthread(NULL);
 683     delete osthread;
 684     return false;
 685   }
 686 
 687   Atomic::inc(&os::win32::_os_thread_count);
 688 
 689   // Store info on the Win32 thread into the OSThread
 690   osthread->set_thread_handle(thread_handle);
 691   osthread->set_thread_id(thread_id);
 692 
 693   // Initial thread state is INITIALIZED, not SUSPENDED
 694   osthread->set_state(INITIALIZED);
 695 
 696   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 697   return true;
 698 }
 699 
 700 
 701 // Free Win32 resources related to the OSThread
 702 void os::free_thread(OSThread* osthread) {
 703   assert(osthread != NULL, "osthread not set");
 704 
 705   // We are told to free resources of the argument thread,
 706   // but we can only really operate on the current thread.
 707   assert(Thread::current()->osthread() == osthread,
 708          "os::free_thread but not current thread");
 709 
 710   CloseHandle(osthread->thread_handle());
 711   CloseHandle(osthread->interrupt_event());
 712   delete osthread;
 713 }
 714 
 715 static jlong first_filetime;
 716 static jlong initial_performance_count;
 717 static jlong performance_frequency;
 718 
 719 
 720 jlong as_long(LARGE_INTEGER x) {
 721   jlong result = 0; // initialization to avoid warning
 722   set_high(&result, x.HighPart);
 723   set_low(&result, x.LowPart);
 724   return result;
 725 }
 726 
 727 
 728 jlong os::elapsed_counter() {
 729   LARGE_INTEGER count;
 730   QueryPerformanceCounter(&count);
 731   return as_long(count) - initial_performance_count;
 732 }
 733 
 734 
 735 jlong os::elapsed_frequency() {
 736   return performance_frequency;
 737 }
 738 
 739 
 740 julong os::available_memory() {
 741   return win32::available_memory();
 742 }
 743 
 744 julong os::win32::available_memory() {
 745   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 746   // value if total memory is larger than 4GB
 747   MEMORYSTATUSEX ms;
 748   ms.dwLength = sizeof(ms);
 749   GlobalMemoryStatusEx(&ms);
 750 
 751   return (julong)ms.ullAvailPhys;
 752 }
 753 
 754 julong os::physical_memory() {
 755   return win32::physical_memory();
 756 }
 757 
 758 bool os::has_allocatable_memory_limit(julong* limit) {
 759   MEMORYSTATUSEX ms;
 760   ms.dwLength = sizeof(ms);
 761   GlobalMemoryStatusEx(&ms);
 762 #ifdef _LP64
 763   *limit = (julong)ms.ullAvailVirtual;
 764   return true;
 765 #else
 766   // Limit to 1400m because of the 2gb address space wall
 767   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 768   return true;
 769 #endif
 770 }
 771 
 772 int os::active_processor_count() {
 773   // User has overridden the number of active processors
 774   if (ActiveProcessorCount > 0) {
 775     log_trace(os)("active_processor_count: "
 776                   "active processor count set by user : %d",
 777                   ActiveProcessorCount);
 778     return ActiveProcessorCount;
 779   }
 780 
 781   DWORD_PTR lpProcessAffinityMask = 0;
 782   DWORD_PTR lpSystemAffinityMask = 0;
 783   int proc_count = processor_count();
 784   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 785       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 786     // Nof active processors is number of bits in process affinity mask
 787     int bitcount = 0;
 788     while (lpProcessAffinityMask != 0) {
 789       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 790       bitcount++;
 791     }
 792     return bitcount;
 793   } else {
 794     return proc_count;
 795   }
 796 }
 797 
 798 void os::set_native_thread_name(const char *name) {
 799 
 800   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 801   //
 802   // Note that unfortunately this only works if the process
 803   // is already attached to a debugger; debugger must observe
 804   // the exception below to show the correct name.
 805 
 806   // If there is no debugger attached skip raising the exception
 807   if (!IsDebuggerPresent()) {
 808     return;
 809   }
 810 
 811   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 812   struct {
 813     DWORD dwType;     // must be 0x1000
 814     LPCSTR szName;    // pointer to name (in user addr space)
 815     DWORD dwThreadID; // thread ID (-1=caller thread)
 816     DWORD dwFlags;    // reserved for future use, must be zero
 817   } info;
 818 
 819   info.dwType = 0x1000;
 820   info.szName = name;
 821   info.dwThreadID = -1;
 822   info.dwFlags = 0;
 823 
 824   __try {
 825     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 826   } __except(EXCEPTION_EXECUTE_HANDLER) {}
 827 }
 828 
 829 bool os::distribute_processes(uint length, uint* distribution) {
 830   // Not yet implemented.
 831   return false;
 832 }
 833 
 834 bool os::bind_to_processor(uint processor_id) {
 835   // Not yet implemented.
 836   return false;
 837 }
 838 
 839 void os::win32::initialize_performance_counter() {
 840   LARGE_INTEGER count;
 841   QueryPerformanceFrequency(&count);
 842   performance_frequency = as_long(count);
 843   QueryPerformanceCounter(&count);
 844   initial_performance_count = as_long(count);
 845 }
 846 
 847 
 848 double os::elapsedTime() {
 849   return (double) elapsed_counter() / (double) elapsed_frequency();
 850 }
 851 
 852 
 853 // Windows format:
 854 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 855 // Java format:
 856 //   Java standards require the number of milliseconds since 1/1/1970
 857 
 858 // Constant offset - calculated using offset()
 859 static jlong  _offset   = 116444736000000000;
 860 // Fake time counter for reproducible results when debugging
 861 static jlong  fake_time = 0;
 862 
 863 #ifdef ASSERT
 864 // Just to be safe, recalculate the offset in debug mode
 865 static jlong _calculated_offset = 0;
 866 static int   _has_calculated_offset = 0;
 867 
 868 jlong offset() {
 869   if (_has_calculated_offset) return _calculated_offset;
 870   SYSTEMTIME java_origin;
 871   java_origin.wYear          = 1970;
 872   java_origin.wMonth         = 1;
 873   java_origin.wDayOfWeek     = 0; // ignored
 874   java_origin.wDay           = 1;
 875   java_origin.wHour          = 0;
 876   java_origin.wMinute        = 0;
 877   java_origin.wSecond        = 0;
 878   java_origin.wMilliseconds  = 0;
 879   FILETIME jot;
 880   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 881     fatal("Error = %d\nWindows error", GetLastError());
 882   }
 883   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 884   _has_calculated_offset = 1;
 885   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 886   return _calculated_offset;
 887 }
 888 #else
 889 jlong offset() {
 890   return _offset;
 891 }
 892 #endif
 893 
 894 jlong windows_to_java_time(FILETIME wt) {
 895   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 896   return (a - offset()) / 10000;
 897 }
 898 
 899 // Returns time ticks in (10th of micro seconds)
 900 jlong windows_to_time_ticks(FILETIME wt) {
 901   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 902   return (a - offset());
 903 }
 904 
 905 FILETIME java_to_windows_time(jlong l) {
 906   jlong a = (l * 10000) + offset();
 907   FILETIME result;
 908   result.dwHighDateTime = high(a);
 909   result.dwLowDateTime  = low(a);
 910   return result;
 911 }
 912 
 913 bool os::supports_vtime() { return true; }
 914 bool os::enable_vtime() { return false; }
 915 bool os::vtime_enabled() { return false; }
 916 
 917 double os::elapsedVTime() {
 918   FILETIME created;
 919   FILETIME exited;
 920   FILETIME kernel;
 921   FILETIME user;
 922   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 923     // the resolution of windows_to_java_time() should be sufficient (ms)
 924     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 925   } else {
 926     return elapsedTime();
 927   }
 928 }
 929 
 930 jlong os::javaTimeMillis() {
 931   FILETIME wt;
 932   GetSystemTimeAsFileTime(&wt);
 933   return windows_to_java_time(wt);
 934 }
 935 
 936 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 937   FILETIME wt;
 938   GetSystemTimeAsFileTime(&wt);
 939   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 940   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 941   seconds = secs;
 942   nanos = jlong(ticks - (secs*10000000)) * 100;
 943 }
 944 
 945 jlong os::javaTimeNanos() {
 946     LARGE_INTEGER current_count;
 947     QueryPerformanceCounter(&current_count);
 948     double current = as_long(current_count);
 949     double freq = performance_frequency;
 950     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 951     return time;
 952 }
 953 
 954 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 955   jlong freq = performance_frequency;
 956   if (freq < NANOSECS_PER_SEC) {
 957     // the performance counter is 64 bits and we will
 958     // be multiplying it -- so no wrap in 64 bits
 959     info_ptr->max_value = ALL_64_BITS;
 960   } else if (freq > NANOSECS_PER_SEC) {
 961     // use the max value the counter can reach to
 962     // determine the max value which could be returned
 963     julong max_counter = (julong)ALL_64_BITS;
 964     info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 965   } else {
 966     // the performance counter is 64 bits and we will
 967     // be using it directly -- so no wrap in 64 bits
 968     info_ptr->max_value = ALL_64_BITS;
 969   }
 970 
 971   // using a counter, so no skipping
 972   info_ptr->may_skip_backward = false;
 973   info_ptr->may_skip_forward = false;
 974 
 975   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 976 }
 977 
 978 char* os::local_time_string(char *buf, size_t buflen) {
 979   SYSTEMTIME st;
 980   GetLocalTime(&st);
 981   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 982                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 983   return buf;
 984 }
 985 
 986 bool os::getTimesSecs(double* process_real_time,
 987                       double* process_user_time,
 988                       double* process_system_time) {
 989   HANDLE h_process = GetCurrentProcess();
 990   FILETIME create_time, exit_time, kernel_time, user_time;
 991   BOOL result = GetProcessTimes(h_process,
 992                                 &create_time,
 993                                 &exit_time,
 994                                 &kernel_time,
 995                                 &user_time);
 996   if (result != 0) {
 997     FILETIME wt;
 998     GetSystemTimeAsFileTime(&wt);
 999     jlong rtc_millis = windows_to_java_time(wt);
1000     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
1001     *process_user_time =
1002       (double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
1003     *process_system_time =
1004       (double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
1005     return true;
1006   } else {
1007     return false;
1008   }
1009 }
1010 
1011 void os::shutdown() {
1012   // allow PerfMemory to attempt cleanup of any persistent resources
1013   perfMemory_exit();
1014 
1015   // flush buffered output, finish log files
1016   ostream_abort();
1017 
1018   // Check for abort hook
1019   abort_hook_t abort_hook = Arguments::abort_hook();
1020   if (abort_hook != NULL) {
1021     abort_hook();
1022   }
1023 }
1024 
1025 
1026 static HANDLE dumpFile = NULL;
1027 
1028 // Check if dump file can be created.
1029 void os::check_dump_limit(char* buffer, size_t buffsz) {
1030   bool status = true;
1031   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1032     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1033     status = false;
1034   }
1035 
1036 #ifndef ASSERT
1037   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1038     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1039     status = false;
1040   }
1041 #endif
1042 
1043   if (status) {
1044     const char* cwd = get_current_directory(NULL, 0);
1045     int pid = current_process_id();
1046     if (cwd != NULL) {
1047       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1048     } else {
1049       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1050     }
1051 
1052     if (dumpFile == NULL &&
1053        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1054                  == INVALID_HANDLE_VALUE) {
1055       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1056       status = false;
1057     }
1058   }
1059   VMError::record_coredump_status(buffer, status);
1060 }
1061 
1062 void os::abort(bool dump_core, void* siginfo, const void* context) {
1063   EXCEPTION_POINTERS ep;
1064   MINIDUMP_EXCEPTION_INFORMATION mei;
1065   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1066 
1067   HANDLE hProcess = GetCurrentProcess();
1068   DWORD processId = GetCurrentProcessId();
1069   MINIDUMP_TYPE dumpType;
1070 
1071   shutdown();
1072   if (!dump_core || dumpFile == NULL) {
1073     if (dumpFile != NULL) {
1074       CloseHandle(dumpFile);
1075     }
1076     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1077   }
1078 
1079   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
1080     MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
1081 
1082   if (siginfo != NULL && context != NULL) {
1083     ep.ContextRecord = (PCONTEXT) context;
1084     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1085 
1086     mei.ThreadId = GetCurrentThreadId();
1087     mei.ExceptionPointers = &ep;
1088     pmei = &mei;
1089   } else {
1090     pmei = NULL;
1091   }
1092 
1093   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1094   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1095   if (!WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) &&
1096       !WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL)) {
1097     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1098   }
1099   CloseHandle(dumpFile);
1100   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1101 }
1102 
1103 // Die immediately, no exit hook, no abort hook, no cleanup.
1104 void os::die() {
1105   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1106 }
1107 
1108 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1109 //  * dirent_md.c       1.15 00/02/02
1110 //
1111 // The declarations for DIR and struct dirent are in jvm_win32.h.
1112 
1113 // Caller must have already run dirname through JVM_NativePath, which removes
1114 // duplicate slashes and converts all instances of '/' into '\\'.
1115 
1116 DIR * os::opendir(const char *dirname) {
1117   assert(dirname != NULL, "just checking");   // hotspot change
1118   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1119   DWORD fattr;                                // hotspot change
1120   char alt_dirname[4] = { 0, 0, 0, 0 };
1121 
1122   if (dirp == 0) {
1123     errno = ENOMEM;
1124     return 0;
1125   }
1126 
1127   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1128   // as a directory in FindFirstFile().  We detect this case here and
1129   // prepend the current drive name.
1130   //
1131   if (dirname[1] == '\0' && dirname[0] == '\\') {
1132     alt_dirname[0] = _getdrive() + 'A' - 1;
1133     alt_dirname[1] = ':';
1134     alt_dirname[2] = '\\';
1135     alt_dirname[3] = '\0';
1136     dirname = alt_dirname;
1137   }
1138 
1139   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1140   if (dirp->path == 0) {
1141     free(dirp);
1142     errno = ENOMEM;
1143     return 0;
1144   }
1145   strcpy(dirp->path, dirname);
1146 
1147   fattr = GetFileAttributes(dirp->path);
1148   if (fattr == 0xffffffff) {
1149     free(dirp->path);
1150     free(dirp);
1151     errno = ENOENT;
1152     return 0;
1153   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1154     free(dirp->path);
1155     free(dirp);
1156     errno = ENOTDIR;
1157     return 0;
1158   }
1159 
1160   // Append "*.*", or possibly "\\*.*", to path
1161   if (dirp->path[1] == ':' &&
1162       (dirp->path[2] == '\0' ||
1163       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1164     // No '\\' needed for cases like "Z:" or "Z:\"
1165     strcat(dirp->path, "*.*");
1166   } else {
1167     strcat(dirp->path, "\\*.*");
1168   }
1169 
1170   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1171   if (dirp->handle == INVALID_HANDLE_VALUE) {
1172     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1173       free(dirp->path);
1174       free(dirp);
1175       errno = EACCES;
1176       return 0;
1177     }
1178   }
1179   return dirp;
1180 }
1181 
1182 struct dirent * os::readdir(DIR *dirp) {
1183   assert(dirp != NULL, "just checking");      // hotspot change
1184   if (dirp->handle == INVALID_HANDLE_VALUE) {
1185     return NULL;
1186   }
1187 
1188   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1189 
1190   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1191     if (GetLastError() == ERROR_INVALID_HANDLE) {
1192       errno = EBADF;
1193       return NULL;
1194     }
1195     FindClose(dirp->handle);
1196     dirp->handle = INVALID_HANDLE_VALUE;
1197   }
1198 
1199   return &dirp->dirent;
1200 }
1201 
1202 int os::closedir(DIR *dirp) {
1203   assert(dirp != NULL, "just checking");      // hotspot change
1204   if (dirp->handle != INVALID_HANDLE_VALUE) {
1205     if (!FindClose(dirp->handle)) {
1206       errno = EBADF;
1207       return -1;
1208     }
1209     dirp->handle = INVALID_HANDLE_VALUE;
1210   }
1211   free(dirp->path);
1212   free(dirp);
1213   return 0;
1214 }
1215 
1216 // This must be hard coded because it's the system's temporary
1217 // directory not the java application's temp directory, ala java.io.tmpdir.
1218 const char* os::get_temp_directory() {
1219   static char path_buf[MAX_PATH];
1220   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1221     return path_buf;
1222   } else {
1223     path_buf[0] = '\0';
1224     return path_buf;
1225   }
1226 }
1227 
1228 // Needs to be in os specific directory because windows requires another
1229 // header file <direct.h>
1230 const char* os::get_current_directory(char *buf, size_t buflen) {
1231   int n = static_cast<int>(buflen);
1232   if (buflen > INT_MAX)  n = INT_MAX;
1233   return _getcwd(buf, n);
1234 }
1235 
1236 //-----------------------------------------------------------
1237 // Helper functions for fatal error handler
1238 #ifdef _WIN64
1239 // Helper routine which returns true if address in
1240 // within the NTDLL address space.
1241 //
1242 static bool _addr_in_ntdll(address addr) {
1243   HMODULE hmod;
1244   MODULEINFO minfo;
1245 
1246   hmod = GetModuleHandle("NTDLL.DLL");
1247   if (hmod == NULL) return false;
1248   if (!GetModuleInformation(GetCurrentProcess(), hmod,
1249                                           &minfo, sizeof(MODULEINFO))) {
1250     return false;
1251   }
1252 
1253   if ((addr >= minfo.lpBaseOfDll) &&
1254       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1255     return true;
1256   } else {
1257     return false;
1258   }
1259 }
1260 #endif
1261 
1262 struct _modinfo {
1263   address addr;
1264   char*   full_path;   // point to a char buffer
1265   int     buflen;      // size of the buffer
1266   address base_addr;
1267 };
1268 
1269 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1270                                   address top_address, void * param) {
1271   struct _modinfo *pmod = (struct _modinfo *)param;
1272   if (!pmod) return -1;
1273 
1274   if (base_addr   <= pmod->addr &&
1275       top_address > pmod->addr) {
1276     // if a buffer is provided, copy path name to the buffer
1277     if (pmod->full_path) {
1278       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1279     }
1280     pmod->base_addr = base_addr;
1281     return 1;
1282   }
1283   return 0;
1284 }
1285 
1286 bool os::dll_address_to_library_name(address addr, char* buf,
1287                                      int buflen, int* offset) {
1288   // buf is not optional, but offset is optional
1289   assert(buf != NULL, "sanity check");
1290 
1291 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1292 //       return the full path to the DLL file, sometimes it returns path
1293 //       to the corresponding PDB file (debug info); sometimes it only
1294 //       returns partial path, which makes life painful.
1295 
1296   struct _modinfo mi;
1297   mi.addr      = addr;
1298   mi.full_path = buf;
1299   mi.buflen    = buflen;
1300   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1301     // buf already contains path name
1302     if (offset) *offset = addr - mi.base_addr;
1303     return true;
1304   }
1305 
1306   buf[0] = '\0';
1307   if (offset) *offset = -1;
1308   return false;
1309 }
1310 
1311 bool os::dll_address_to_function_name(address addr, char *buf,
1312                                       int buflen, int *offset,
1313                                       bool demangle) {
1314   // buf is not optional, but offset is optional
1315   assert(buf != NULL, "sanity check");
1316 
1317   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1318     return true;
1319   }
1320   if (offset != NULL)  *offset  = -1;
1321   buf[0] = '\0';
1322   return false;
1323 }
1324 
1325 // save the start and end address of jvm.dll into param[0] and param[1]
1326 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1327                            address top_address, void * param) {
1328   if (!param) return -1;
1329 
1330   if (base_addr   <= (address)_locate_jvm_dll &&
1331       top_address > (address)_locate_jvm_dll) {
1332     ((address*)param)[0] = base_addr;
1333     ((address*)param)[1] = top_address;
1334     return 1;
1335   }
1336   return 0;
1337 }
1338 
1339 address vm_lib_location[2];    // start and end address of jvm.dll
1340 
1341 // check if addr is inside jvm.dll
1342 bool os::address_is_in_vm(address addr) {
1343   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1344     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1345       assert(false, "Can't find jvm module.");
1346       return false;
1347     }
1348   }
1349 
1350   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1351 }
1352 
1353 // print module info; param is outputStream*
1354 static int _print_module(const char* fname, address base_address,
1355                          address top_address, void* param) {
1356   if (!param) return -1;
1357 
1358   outputStream* st = (outputStream*)param;
1359 
1360   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1361   return 0;
1362 }
1363 
1364 // Loads .dll/.so and
1365 // in case of error it checks if .dll/.so was built for the
1366 // same architecture as Hotspot is running on
1367 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1368   log_info(os)("attempting shared library load of %s", name);
1369 
1370   void * result = LoadLibrary(name);
1371   if (result != NULL) {
1372     Events::log(NULL, "Loaded shared library %s", name);
1373     // Recalculate pdb search path if a DLL was loaded successfully.
1374     SymbolEngine::recalc_search_path();
1375     log_info(os)("shared library load of %s was successful", name);
1376     return result;
1377   }
1378   DWORD errcode = GetLastError();
1379   // Read system error message into ebuf
1380   // It may or may not be overwritten below (in the for loop and just above)
1381   lasterror(ebuf, (size_t) ebuflen);
1382   ebuf[ebuflen - 1] = '\0';
1383   Events::log(NULL, "Loading shared library %s failed, error code %lu", name, errcode);
1384   log_info(os)("shared library load of %s failed, error code %lu", name, errcode);
1385 
1386   if (errcode == ERROR_MOD_NOT_FOUND) {
1387     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1388     ebuf[ebuflen - 1] = '\0';
1389     return NULL;
1390   }
1391 
1392   // Parsing dll below
1393   // If we can read dll-info and find that dll was built
1394   // for an architecture other than Hotspot is running in
1395   // - then print to buffer "DLL was built for a different architecture"
1396   // else call os::lasterror to obtain system error message
1397   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1398   if (fd < 0) {
1399     return NULL;
1400   }
1401 
1402   uint32_t signature_offset;
1403   uint16_t lib_arch = 0;
1404   bool failed_to_get_lib_arch =
1405     ( // Go to position 3c in the dll
1406      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1407      ||
1408      // Read location of signature
1409      (sizeof(signature_offset) !=
1410      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1411      ||
1412      // Go to COFF File Header in dll
1413      // that is located after "signature" (4 bytes long)
1414      (os::seek_to_file_offset(fd,
1415      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1416      ||
1417      // Read field that contains code of architecture
1418      // that dll was built for
1419      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1420     );
1421 
1422   ::close(fd);
1423   if (failed_to_get_lib_arch) {
1424     // file i/o error - report os::lasterror(...) msg
1425     return NULL;
1426   }
1427 
1428   typedef struct {
1429     uint16_t arch_code;
1430     char* arch_name;
1431   } arch_t;
1432 
1433   static const arch_t arch_array[] = {
1434     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1435     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"}
1436   };
1437 #if (defined _M_AMD64)
1438   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1439 #elif (defined _M_IX86)
1440   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1441 #else
1442   #error Method os::dll_load requires that one of following \
1443          is defined :_M_AMD64 or _M_IX86
1444 #endif
1445 
1446 
1447   // Obtain a string for printf operation
1448   // lib_arch_str shall contain string what platform this .dll was built for
1449   // running_arch_str shall string contain what platform Hotspot was built for
1450   char *running_arch_str = NULL, *lib_arch_str = NULL;
1451   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1452     if (lib_arch == arch_array[i].arch_code) {
1453       lib_arch_str = arch_array[i].arch_name;
1454     }
1455     if (running_arch == arch_array[i].arch_code) {
1456       running_arch_str = arch_array[i].arch_name;
1457     }
1458   }
1459 
1460   assert(running_arch_str,
1461          "Didn't find running architecture code in arch_array");
1462 
1463   // If the architecture is right
1464   // but some other error took place - report os::lasterror(...) msg
1465   if (lib_arch == running_arch) {
1466     return NULL;
1467   }
1468 
1469   if (lib_arch_str != NULL) {
1470     ::_snprintf(ebuf, ebuflen - 1,
1471                 "Can't load %s-bit .dll on a %s-bit platform",
1472                 lib_arch_str, running_arch_str);
1473   } else {
1474     // don't know what architecture this dll was build for
1475     ::_snprintf(ebuf, ebuflen - 1,
1476                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1477                 lib_arch, running_arch_str);
1478   }
1479 
1480   return NULL;
1481 }
1482 
1483 void os::print_dll_info(outputStream *st) {
1484   st->print_cr("Dynamic libraries:");
1485   get_loaded_modules_info(_print_module, (void *)st);
1486 }
1487 
1488 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1489   HANDLE   hProcess;
1490 
1491 # define MAX_NUM_MODULES 128
1492   HMODULE     modules[MAX_NUM_MODULES];
1493   static char filename[MAX_PATH];
1494   int         result = 0;
1495 
1496   int pid = os::current_process_id();
1497   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1498                          FALSE, pid);
1499   if (hProcess == NULL) return 0;
1500 
1501   DWORD size_needed;
1502   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
1503     CloseHandle(hProcess);
1504     return 0;
1505   }
1506 
1507   // number of modules that are currently loaded
1508   int num_modules = size_needed / sizeof(HMODULE);
1509 
1510   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1511     // Get Full pathname:
1512     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
1513       filename[0] = '\0';
1514     }
1515 
1516     MODULEINFO modinfo;
1517     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
1518       modinfo.lpBaseOfDll = NULL;
1519       modinfo.SizeOfImage = 0;
1520     }
1521 
1522     // Invoke callback function
1523     result = callback(filename, (address)modinfo.lpBaseOfDll,
1524                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1525     if (result) break;
1526   }
1527 
1528   CloseHandle(hProcess);
1529   return result;
1530 }
1531 
1532 bool os::get_host_name(char* buf, size_t buflen) {
1533   DWORD size = (DWORD)buflen;
1534   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1535 }
1536 
1537 void os::get_summary_os_info(char* buf, size_t buflen) {
1538   stringStream sst(buf, buflen);
1539   os::win32::print_windows_version(&sst);
1540   // chop off newline character
1541   char* nl = strchr(buf, '\n');
1542   if (nl != NULL) *nl = '\0';
1543 }
1544 
1545 int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1546 #if _MSC_VER >= 1900
1547   // Starting with Visual Studio 2015, vsnprint is C99 compliant.
1548   int result = ::vsnprintf(buf, len, fmt, args);
1549   // If an encoding error occurred (result < 0) then it's not clear
1550   // whether the buffer is NUL terminated, so ensure it is.
1551   if ((result < 0) && (len > 0)) {
1552     buf[len - 1] = '\0';
1553   }
1554   return result;
1555 #else
1556   // Before Visual Studio 2015, vsnprintf is not C99 compliant, so use
1557   // _vsnprintf, whose behavior seems to be *mostly* consistent across
1558   // versions.  However, when len == 0, avoid _vsnprintf too, and just
1559   // go straight to _vscprintf.  The output is going to be truncated in
1560   // that case, except in the unusual case of empty output.  More
1561   // importantly, the documentation for various versions of Visual Studio
1562   // are inconsistent about the behavior of _vsnprintf when len == 0,
1563   // including it possibly being an error.
1564   int result = -1;
1565   if (len > 0) {
1566     result = _vsnprintf(buf, len, fmt, args);
1567     // If output (including NUL terminator) is truncated, the buffer
1568     // won't be NUL terminated.  Add the trailing NUL specified by C99.
1569     if ((result < 0) || ((size_t)result >= len)) {
1570       buf[len - 1] = '\0';
1571     }
1572   }
1573   if (result < 0) {
1574     result = _vscprintf(fmt, args);
1575   }
1576   return result;
1577 #endif // _MSC_VER dispatch
1578 }
1579 
1580 static inline time_t get_mtime(const char* filename) {
1581   struct stat st;
1582   int ret = os::stat(filename, &st);
1583   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
1584   return st.st_mtime;
1585 }
1586 
1587 int os::compare_file_modified_times(const char* file1, const char* file2) {
1588   time_t t1 = get_mtime(file1);
1589   time_t t2 = get_mtime(file2);
1590   return t1 - t2;
1591 }
1592 
1593 void os::print_os_info_brief(outputStream* st) {
1594   os::print_os_info(st);
1595 }
1596 
1597 void os::print_os_info(outputStream* st) {
1598 #ifdef ASSERT
1599   char buffer[1024];
1600   st->print("HostName: ");
1601   if (get_host_name(buffer, sizeof(buffer))) {
1602     st->print("%s ", buffer);
1603   } else {
1604     st->print("N/A ");
1605   }
1606 #endif
1607   st->print("OS:");
1608   os::win32::print_windows_version(st);
1609 
1610 #ifdef _LP64
1611   VM_Version::print_platform_virtualization_info(st);
1612 #endif
1613 }
1614 
1615 void os::win32::print_windows_version(outputStream* st) {
1616   OSVERSIONINFOEX osvi;
1617   VS_FIXEDFILEINFO *file_info;
1618   TCHAR kernel32_path[MAX_PATH];
1619   UINT len, ret;
1620 
1621   // Use the GetVersionEx information to see if we're on a server or
1622   // workstation edition of Windows. Starting with Windows 8.1 we can't
1623   // trust the OS version information returned by this API.
1624   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1625   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1626   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1627     st->print_cr("Call to GetVersionEx failed");
1628     return;
1629   }
1630   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1631 
1632   // Get the full path to \Windows\System32\kernel32.dll and use that for
1633   // determining what version of Windows we're running on.
1634   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1635   ret = GetSystemDirectory(kernel32_path, len);
1636   if (ret == 0 || ret > len) {
1637     st->print_cr("Call to GetSystemDirectory failed");
1638     return;
1639   }
1640   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1641 
1642   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1643   if (version_size == 0) {
1644     st->print_cr("Call to GetFileVersionInfoSize failed");
1645     return;
1646   }
1647 
1648   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1649   if (version_info == NULL) {
1650     st->print_cr("Failed to allocate version_info");
1651     return;
1652   }
1653 
1654   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1655     os::free(version_info);
1656     st->print_cr("Call to GetFileVersionInfo failed");
1657     return;
1658   }
1659 
1660   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1661     os::free(version_info);
1662     st->print_cr("Call to VerQueryValue failed");
1663     return;
1664   }
1665 
1666   int major_version = HIWORD(file_info->dwProductVersionMS);
1667   int minor_version = LOWORD(file_info->dwProductVersionMS);
1668   int build_number = HIWORD(file_info->dwProductVersionLS);
1669   int build_minor = LOWORD(file_info->dwProductVersionLS);
1670   int os_vers = major_version * 1000 + minor_version;
1671   os::free(version_info);
1672 
1673   st->print(" Windows ");
1674   switch (os_vers) {
1675 
1676   case 6000:
1677     if (is_workstation) {
1678       st->print("Vista");
1679     } else {
1680       st->print("Server 2008");
1681     }
1682     break;
1683 
1684   case 6001:
1685     if (is_workstation) {
1686       st->print("7");
1687     } else {
1688       st->print("Server 2008 R2");
1689     }
1690     break;
1691 
1692   case 6002:
1693     if (is_workstation) {
1694       st->print("8");
1695     } else {
1696       st->print("Server 2012");
1697     }
1698     break;
1699 
1700   case 6003:
1701     if (is_workstation) {
1702       st->print("8.1");
1703     } else {
1704       st->print("Server 2012 R2");
1705     }
1706     break;
1707 
1708   case 10000:
1709     if (is_workstation) {
1710       st->print("10");
1711     } else {
1712       // distinguish Windows Server 2016 and 2019 by build number
1713       // Windows server 2019 GA 10/2018 build number is 17763
1714       if (build_number > 17762) {
1715         st->print("Server 2019");
1716       } else {
1717         st->print("Server 2016");
1718       }
1719     }
1720     break;
1721 
1722   default:
1723     // Unrecognized windows, print out its major and minor versions
1724     st->print("%d.%d", major_version, minor_version);
1725     break;
1726   }
1727 
1728   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1729   // find out whether we are running on 64 bit processor or not
1730   SYSTEM_INFO si;
1731   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1732   GetNativeSystemInfo(&si);
1733   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1734     st->print(" , 64 bit");
1735   }
1736 
1737   st->print(" Build %d", build_number);
1738   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1739   st->cr();
1740 }
1741 
1742 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1743   // Nothing to do for now.
1744 }
1745 
1746 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1747   HKEY key;
1748   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1749                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1750   if (status == ERROR_SUCCESS) {
1751     DWORD size = (DWORD)buflen;
1752     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1753     if (status != ERROR_SUCCESS) {
1754         strncpy(buf, "## __CPU__", buflen);
1755     }
1756     RegCloseKey(key);
1757   } else {
1758     // Put generic cpu info to return
1759     strncpy(buf, "## __CPU__", buflen);
1760   }
1761 }
1762 
1763 void os::print_memory_info(outputStream* st) {
1764   st->print("Memory:");
1765   st->print(" %dk page", os::vm_page_size()>>10);
1766 
1767   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1768   // value if total memory is larger than 4GB
1769   MEMORYSTATUSEX ms;
1770   ms.dwLength = sizeof(ms);
1771   int r1 = GlobalMemoryStatusEx(&ms);
1772 
1773   if (r1 != 0) {
1774     st->print(", system-wide physical " INT64_FORMAT "M ",
1775              (int64_t) ms.ullTotalPhys >> 20);
1776     st->print("(" INT64_FORMAT "M free)\n", (int64_t) ms.ullAvailPhys >> 20);
1777 
1778     st->print("TotalPageFile size " INT64_FORMAT "M ",
1779              (int64_t) ms.ullTotalPageFile >> 20);
1780     st->print("(AvailPageFile size " INT64_FORMAT "M)",
1781              (int64_t) ms.ullAvailPageFile >> 20);
1782 
1783     // on 32bit Total/AvailVirtual are interesting (show us how close we get to 2-4 GB per process borders)
1784 #if defined(_M_IX86)
1785     st->print(", user-mode portion of virtual address-space " INT64_FORMAT "M ",
1786              (int64_t) ms.ullTotalVirtual >> 20);
1787     st->print("(" INT64_FORMAT "M free)", (int64_t) ms.ullAvailVirtual >> 20);
1788 #endif
1789   } else {
1790     st->print(", GlobalMemoryStatusEx did not succeed so we miss some memory values.");
1791   }
1792 
1793   // extended memory statistics for a process
1794   PROCESS_MEMORY_COUNTERS_EX pmex;
1795   ZeroMemory(&pmex, sizeof(PROCESS_MEMORY_COUNTERS_EX));
1796   pmex.cb = sizeof(pmex);
1797   int r2 = GetProcessMemoryInfo(GetCurrentProcess(), (PROCESS_MEMORY_COUNTERS*) &pmex, sizeof(pmex));
1798 
1799   if (r2 != 0) {
1800     st->print("\ncurrent process WorkingSet (physical memory assigned to process): " INT64_FORMAT "M, ",
1801              (int64_t) pmex.WorkingSetSize >> 20);
1802     st->print("peak: " INT64_FORMAT "M\n", (int64_t) pmex.PeakWorkingSetSize >> 20);
1803 
1804     st->print("current process commit charge (\"private bytes\"): " INT64_FORMAT "M, ",
1805              (int64_t) pmex.PrivateUsage >> 20);
1806     st->print("peak: " INT64_FORMAT "M", (int64_t) pmex.PeakPagefileUsage >> 20);
1807   } else {
1808     st->print("\nGetProcessMemoryInfo did not succeed so we miss some memory values.");
1809   }
1810 
1811   st->cr();
1812 }
1813 
1814 bool os::signal_sent_by_kill(const void* siginfo) {
1815   // TODO: Is this possible?
1816   return false;
1817 }
1818 
1819 void os::print_siginfo(outputStream *st, const void* siginfo) {
1820   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1821   st->print("siginfo:");
1822 
1823   char tmp[64];
1824   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1825     strcpy(tmp, "EXCEPTION_??");
1826   }
1827   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1828 
1829   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1830        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1831        er->NumberParameters >= 2) {
1832     switch (er->ExceptionInformation[0]) {
1833     case 0: st->print(", reading address"); break;
1834     case 1: st->print(", writing address"); break;
1835     case 8: st->print(", data execution prevention violation at address"); break;
1836     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1837                        er->ExceptionInformation[0]);
1838     }
1839     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1840   } else {
1841     int num = er->NumberParameters;
1842     if (num > 0) {
1843       st->print(", ExceptionInformation=");
1844       for (int i = 0; i < num; i++) {
1845         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1846       }
1847     }
1848   }
1849   st->cr();
1850 }
1851 
1852 bool os::signal_thread(Thread* thread, int sig, const char* reason) {
1853   // TODO: Can we kill thread?
1854   return false;
1855 }
1856 
1857 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1858   // do nothing
1859 }
1860 
1861 static char saved_jvm_path[MAX_PATH] = {0};
1862 
1863 // Find the full path to the current module, jvm.dll
1864 void os::jvm_path(char *buf, jint buflen) {
1865   // Error checking.
1866   if (buflen < MAX_PATH) {
1867     assert(false, "must use a large-enough buffer");
1868     buf[0] = '\0';
1869     return;
1870   }
1871   // Lazy resolve the path to current module.
1872   if (saved_jvm_path[0] != 0) {
1873     strcpy(buf, saved_jvm_path);
1874     return;
1875   }
1876 
1877   buf[0] = '\0';
1878   if (Arguments::sun_java_launcher_is_altjvm()) {
1879     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1880     // for a JAVA_HOME environment variable and fix up the path so it
1881     // looks like jvm.dll is installed there (append a fake suffix
1882     // hotspot/jvm.dll).
1883     char* java_home_var = ::getenv("JAVA_HOME");
1884     if (java_home_var != NULL && java_home_var[0] != 0 &&
1885         strlen(java_home_var) < (size_t)buflen) {
1886       strncpy(buf, java_home_var, buflen);
1887 
1888       // determine if this is a legacy image or modules image
1889       // modules image doesn't have "jre" subdirectory
1890       size_t len = strlen(buf);
1891       char* jrebin_p = buf + len;
1892       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1893       if (0 != _access(buf, 0)) {
1894         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1895       }
1896       len = strlen(buf);
1897       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1898     }
1899   }
1900 
1901   if (buf[0] == '\0') {
1902     GetModuleFileName(vm_lib_handle, buf, buflen);
1903   }
1904   strncpy(saved_jvm_path, buf, MAX_PATH);
1905   saved_jvm_path[MAX_PATH - 1] = '\0';
1906 }
1907 
1908 
1909 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1910 #ifndef _WIN64
1911   st->print("_");
1912 #endif
1913 }
1914 
1915 
1916 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1917 #ifndef _WIN64
1918   st->print("@%d", args_size  * sizeof(int));
1919 #endif
1920 }
1921 
1922 // This method is a copy of JDK's sysGetLastErrorString
1923 // from src/windows/hpi/src/system_md.c
1924 
1925 size_t os::lasterror(char* buf, size_t len) {
1926   DWORD errval;
1927 
1928   if ((errval = GetLastError()) != 0) {
1929     // DOS error
1930     size_t n = (size_t)FormatMessage(
1931                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1932                                      NULL,
1933                                      errval,
1934                                      0,
1935                                      buf,
1936                                      (DWORD)len,
1937                                      NULL);
1938     if (n > 3) {
1939       // Drop final '.', CR, LF
1940       if (buf[n - 1] == '\n') n--;
1941       if (buf[n - 1] == '\r') n--;
1942       if (buf[n - 1] == '.') n--;
1943       buf[n] = '\0';
1944     }
1945     return n;
1946   }
1947 
1948   if (errno != 0) {
1949     // C runtime error that has no corresponding DOS error code
1950     const char* s = os::strerror(errno);
1951     size_t n = strlen(s);
1952     if (n >= len) n = len - 1;
1953     strncpy(buf, s, n);
1954     buf[n] = '\0';
1955     return n;
1956   }
1957 
1958   return 0;
1959 }
1960 
1961 int os::get_last_error() {
1962   DWORD error = GetLastError();
1963   if (error == 0) {
1964     error = errno;
1965   }
1966   return (int)error;
1967 }
1968 
1969 // sun.misc.Signal
1970 // NOTE that this is a workaround for an apparent kernel bug where if
1971 // a signal handler for SIGBREAK is installed then that signal handler
1972 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1973 // See bug 4416763.
1974 static void (*sigbreakHandler)(int) = NULL;
1975 
1976 static void UserHandler(int sig, void *siginfo, void *context) {
1977   os::signal_notify(sig);
1978   // We need to reinstate the signal handler each time...
1979   os::signal(sig, (void*)UserHandler);
1980 }
1981 
1982 void* os::user_handler() {
1983   return (void*) UserHandler;
1984 }
1985 
1986 void* os::signal(int signal_number, void* handler) {
1987   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1988     void (*oldHandler)(int) = sigbreakHandler;
1989     sigbreakHandler = (void (*)(int)) handler;
1990     return (void*) oldHandler;
1991   } else {
1992     return (void*)::signal(signal_number, (void (*)(int))handler);
1993   }
1994 }
1995 
1996 void os::signal_raise(int signal_number) {
1997   raise(signal_number);
1998 }
1999 
2000 // The Win32 C runtime library maps all console control events other than ^C
2001 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
2002 // logoff, and shutdown events.  We therefore install our own console handler
2003 // that raises SIGTERM for the latter cases.
2004 //
2005 static BOOL WINAPI consoleHandler(DWORD event) {
2006   switch (event) {
2007   case CTRL_C_EVENT:
2008     if (VMError::is_error_reported()) {
2009       // Ctrl-C is pressed during error reporting, likely because the error
2010       // handler fails to abort. Let VM die immediately.
2011       os::die();
2012     }
2013 
2014     os::signal_raise(SIGINT);
2015     return TRUE;
2016     break;
2017   case CTRL_BREAK_EVENT:
2018     if (sigbreakHandler != NULL) {
2019       (*sigbreakHandler)(SIGBREAK);
2020     }
2021     return TRUE;
2022     break;
2023   case CTRL_LOGOFF_EVENT: {
2024     // Don't terminate JVM if it is running in a non-interactive session,
2025     // such as a service process.
2026     USEROBJECTFLAGS flags;
2027     HANDLE handle = GetProcessWindowStation();
2028     if (handle != NULL &&
2029         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2030         sizeof(USEROBJECTFLAGS), NULL)) {
2031       // If it is a non-interactive session, let next handler to deal
2032       // with it.
2033       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2034         return FALSE;
2035       }
2036     }
2037   }
2038   case CTRL_CLOSE_EVENT:
2039   case CTRL_SHUTDOWN_EVENT:
2040     os::signal_raise(SIGTERM);
2041     return TRUE;
2042     break;
2043   default:
2044     break;
2045   }
2046   return FALSE;
2047 }
2048 
2049 // The following code is moved from os.cpp for making this
2050 // code platform specific, which it is by its very nature.
2051 
2052 // Return maximum OS signal used + 1 for internal use only
2053 // Used as exit signal for signal_thread
2054 int os::sigexitnum_pd() {
2055   return NSIG;
2056 }
2057 
2058 // a counter for each possible signal value, including signal_thread exit signal
2059 static volatile jint pending_signals[NSIG+1] = { 0 };
2060 static Semaphore* sig_sem = NULL;
2061 
2062 static void jdk_misc_signal_init() {
2063   // Initialize signal structures
2064   memset((void*)pending_signals, 0, sizeof(pending_signals));
2065 
2066   // Initialize signal semaphore
2067   sig_sem = new Semaphore();
2068 
2069   // Programs embedding the VM do not want it to attempt to receive
2070   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2071   // shutdown hooks mechanism introduced in 1.3.  For example, when
2072   // the VM is run as part of a Windows NT service (i.e., a servlet
2073   // engine in a web server), the correct behavior is for any console
2074   // control handler to return FALSE, not TRUE, because the OS's
2075   // "final" handler for such events allows the process to continue if
2076   // it is a service (while terminating it if it is not a service).
2077   // To make this behavior uniform and the mechanism simpler, we
2078   // completely disable the VM's usage of these console events if -Xrs
2079   // (=ReduceSignalUsage) is specified.  This means, for example, that
2080   // the CTRL-BREAK thread dump mechanism is also disabled in this
2081   // case.  See bugs 4323062, 4345157, and related bugs.
2082 
2083   // Add a CTRL-C handler
2084   SetConsoleCtrlHandler(consoleHandler, TRUE);
2085 }
2086 
2087 void os::signal_notify(int sig) {
2088   if (sig_sem != NULL) {
2089     Atomic::inc(&pending_signals[sig]);
2090     sig_sem->signal();
2091   } else {
2092     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2093     // initialization isn't called.
2094     assert(ReduceSignalUsage, "signal semaphore should be created");
2095   }
2096 }
2097 
2098 static int check_pending_signals() {
2099   while (true) {
2100     for (int i = 0; i < NSIG + 1; i++) {
2101       jint n = pending_signals[i];
2102       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2103         return i;
2104       }
2105     }
2106     JavaThread *thread = JavaThread::current();
2107 
2108     ThreadBlockInVM tbivm(thread);
2109 
2110     bool threadIsSuspended;
2111     do {
2112       thread->set_suspend_equivalent();
2113       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2114       sig_sem->wait();
2115 
2116       // were we externally suspended while we were waiting?
2117       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2118       if (threadIsSuspended) {
2119         // The semaphore has been incremented, but while we were waiting
2120         // another thread suspended us. We don't want to continue running
2121         // while suspended because that would surprise the thread that
2122         // suspended us.
2123         sig_sem->signal();
2124 
2125         thread->java_suspend_self();
2126       }
2127     } while (threadIsSuspended);
2128   }
2129 }
2130 
2131 int os::signal_wait() {
2132   return check_pending_signals();
2133 }
2134 
2135 // Implicit OS exception handling
2136 
2137 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2138                       address handler) {
2139   JavaThread* thread = (JavaThread*) Thread::current_or_null();
2140   // Save pc in thread
2141 #ifdef _M_AMD64
2142   // Do not blow up if no thread info available.
2143   if (thread) {
2144     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2145   }
2146   // Set pc to handler
2147   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2148 #else
2149   // Do not blow up if no thread info available.
2150   if (thread) {
2151     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2152   }
2153   // Set pc to handler
2154   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2155 #endif
2156 
2157   // Continue the execution
2158   return EXCEPTION_CONTINUE_EXECUTION;
2159 }
2160 
2161 
2162 // Used for PostMortemDump
2163 extern "C" void safepoints();
2164 extern "C" void find(int x);
2165 extern "C" void events();
2166 
2167 // According to Windows API documentation, an illegal instruction sequence should generate
2168 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2169 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2170 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2171 
2172 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2173 
2174 // From "Execution Protection in the Windows Operating System" draft 0.35
2175 // Once a system header becomes available, the "real" define should be
2176 // included or copied here.
2177 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2178 
2179 // Windows Vista/2008 heap corruption check
2180 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2181 
2182 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2183 // C++ compiler contain this error code. Because this is a compiler-generated
2184 // error, the code is not listed in the Win32 API header files.
2185 // The code is actually a cryptic mnemonic device, with the initial "E"
2186 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2187 // ASCII values of "msc".
2188 
2189 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2190 
2191 #define def_excpt(val) { #val, (val) }
2192 
2193 static const struct { const char* name; uint number; } exceptlabels[] = {
2194     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2195     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2196     def_excpt(EXCEPTION_BREAKPOINT),
2197     def_excpt(EXCEPTION_SINGLE_STEP),
2198     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2199     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2200     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2201     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2202     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2203     def_excpt(EXCEPTION_FLT_OVERFLOW),
2204     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2205     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2206     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2207     def_excpt(EXCEPTION_INT_OVERFLOW),
2208     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2209     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2210     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2211     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2212     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2213     def_excpt(EXCEPTION_STACK_OVERFLOW),
2214     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2215     def_excpt(EXCEPTION_GUARD_PAGE),
2216     def_excpt(EXCEPTION_INVALID_HANDLE),
2217     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2218     def_excpt(EXCEPTION_HEAP_CORRUPTION)
2219 };
2220 
2221 #undef def_excpt
2222 
2223 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2224   uint code = static_cast<uint>(exception_code);
2225   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
2226     if (exceptlabels[i].number == code) {
2227       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2228       return buf;
2229     }
2230   }
2231 
2232   return NULL;
2233 }
2234 
2235 //-----------------------------------------------------------------------------
2236 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2237   // handle exception caused by idiv; should only happen for -MinInt/-1
2238   // (division by zero is handled explicitly)
2239 #ifdef  _M_AMD64
2240   PCONTEXT ctx = exceptionInfo->ContextRecord;
2241   address pc = (address)ctx->Rip;
2242   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2243   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2244   if (pc[0] == 0xF7) {
2245     // set correct result values and continue after idiv instruction
2246     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2247   } else {
2248     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2249   }
2250   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2251   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2252   // idiv opcode (0xF7).
2253   ctx->Rdx = (DWORD)0;             // remainder
2254   // Continue the execution
2255 #else
2256   PCONTEXT ctx = exceptionInfo->ContextRecord;
2257   address pc = (address)ctx->Eip;
2258   assert(pc[0] == 0xF7, "not an idiv opcode");
2259   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2260   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2261   // set correct result values and continue after idiv instruction
2262   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2263   ctx->Eax = (DWORD)min_jint;      // result
2264   ctx->Edx = (DWORD)0;             // remainder
2265   // Continue the execution
2266 #endif
2267   return EXCEPTION_CONTINUE_EXECUTION;
2268 }
2269 
2270 //-----------------------------------------------------------------------------
2271 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2272   PCONTEXT ctx = exceptionInfo->ContextRecord;
2273 #ifndef  _WIN64
2274   // handle exception caused by native method modifying control word
2275   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2276 
2277   switch (exception_code) {
2278   case EXCEPTION_FLT_DENORMAL_OPERAND:
2279   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2280   case EXCEPTION_FLT_INEXACT_RESULT:
2281   case EXCEPTION_FLT_INVALID_OPERATION:
2282   case EXCEPTION_FLT_OVERFLOW:
2283   case EXCEPTION_FLT_STACK_CHECK:
2284   case EXCEPTION_FLT_UNDERFLOW:
2285     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2286     if (fp_control_word != ctx->FloatSave.ControlWord) {
2287       // Restore FPCW and mask out FLT exceptions
2288       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2289       // Mask out pending FLT exceptions
2290       ctx->FloatSave.StatusWord &=  0xffffff00;
2291       return EXCEPTION_CONTINUE_EXECUTION;
2292     }
2293   }
2294 
2295   if (prev_uef_handler != NULL) {
2296     // We didn't handle this exception so pass it to the previous
2297     // UnhandledExceptionFilter.
2298     return (prev_uef_handler)(exceptionInfo);
2299   }
2300 #else // !_WIN64
2301   // On Windows, the mxcsr control bits are non-volatile across calls
2302   // See also CR 6192333
2303   //
2304   jint MxCsr = INITIAL_MXCSR;
2305   // we can't use StubRoutines::addr_mxcsr_std()
2306   // because in Win64 mxcsr is not saved there
2307   if (MxCsr != ctx->MxCsr) {
2308     ctx->MxCsr = MxCsr;
2309     return EXCEPTION_CONTINUE_EXECUTION;
2310   }
2311 #endif // !_WIN64
2312 
2313   return EXCEPTION_CONTINUE_SEARCH;
2314 }
2315 
2316 static inline void report_error(Thread* t, DWORD exception_code,
2317                                 address addr, void* siginfo, void* context) {
2318   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2319 
2320   // If UseOsErrorReporting, this will return here and save the error file
2321   // somewhere where we can find it in the minidump.
2322 }
2323 
2324 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2325         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2326   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2327   address addr = (address) exceptionRecord->ExceptionInformation[1];
2328   if (Interpreter::contains(pc)) {
2329     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2330     if (!fr->is_first_java_frame()) {
2331       // get_frame_at_stack_banging_point() is only called when we
2332       // have well defined stacks so java_sender() calls do not need
2333       // to assert safe_for_sender() first.
2334       *fr = fr->java_sender();
2335     }
2336   } else {
2337     // more complex code with compiled code
2338     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2339     CodeBlob* cb = CodeCache::find_blob(pc);
2340     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2341       // Not sure where the pc points to, fallback to default
2342       // stack overflow handling
2343       return false;
2344     } else {
2345       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2346       // in compiled code, the stack banging is performed just after the return pc
2347       // has been pushed on the stack
2348       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2349       if (!fr->is_java_frame()) {
2350         // See java_sender() comment above.
2351         *fr = fr->java_sender();
2352       }
2353     }
2354   }
2355   assert(fr->is_java_frame(), "Safety check");
2356   return true;
2357 }
2358 
2359 #if INCLUDE_AOT
2360 LONG WINAPI topLevelVectoredExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2361   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2362   address addr = (address) exceptionRecord->ExceptionInformation[1];
2363   address pc = (address) exceptionInfo->ContextRecord->Rip;
2364 
2365   // Handle the case where we get an implicit exception in AOT generated
2366   // code.  AOT DLL's loaded are not registered for structured exceptions.
2367   // If the exception occurred in the codeCache or AOT code, pass control
2368   // to our normal exception handler.
2369   CodeBlob* cb = CodeCache::find_blob(pc);
2370   if (cb != NULL) {
2371     return topLevelExceptionFilter(exceptionInfo);
2372   }
2373 
2374   return EXCEPTION_CONTINUE_SEARCH;
2375 }
2376 #endif
2377 
2378 //-----------------------------------------------------------------------------
2379 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2380   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2381   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2382 #ifdef _M_AMD64
2383   address pc = (address) exceptionInfo->ContextRecord->Rip;
2384 #else
2385   address pc = (address) exceptionInfo->ContextRecord->Eip;
2386 #endif
2387   Thread* t = Thread::current_or_null_safe();
2388 
2389   // Handle SafeFetch32 and SafeFetchN exceptions.
2390   if (StubRoutines::is_safefetch_fault(pc)) {
2391     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2392   }
2393 
2394 #ifndef _WIN64
2395   // Execution protection violation - win32 running on AMD64 only
2396   // Handled first to avoid misdiagnosis as a "normal" access violation;
2397   // This is safe to do because we have a new/unique ExceptionInformation
2398   // code for this condition.
2399   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2400     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2401     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2402     address addr = (address) exceptionRecord->ExceptionInformation[1];
2403 
2404     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2405       int page_size = os::vm_page_size();
2406 
2407       // Make sure the pc and the faulting address are sane.
2408       //
2409       // If an instruction spans a page boundary, and the page containing
2410       // the beginning of the instruction is executable but the following
2411       // page is not, the pc and the faulting address might be slightly
2412       // different - we still want to unguard the 2nd page in this case.
2413       //
2414       // 15 bytes seems to be a (very) safe value for max instruction size.
2415       bool pc_is_near_addr =
2416         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2417       bool instr_spans_page_boundary =
2418         (align_down((intptr_t) pc ^ (intptr_t) addr,
2419                          (intptr_t) page_size) > 0);
2420 
2421       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2422         static volatile address last_addr =
2423           (address) os::non_memory_address_word();
2424 
2425         // In conservative mode, don't unguard unless the address is in the VM
2426         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2427             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2428 
2429           // Set memory to RWX and retry
2430           address page_start = align_down(addr, page_size);
2431           bool res = os::protect_memory((char*) page_start, page_size,
2432                                         os::MEM_PROT_RWX);
2433 
2434           log_debug(os)("Execution protection violation "
2435                         "at " INTPTR_FORMAT
2436                         ", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
2437                         p2i(page_start), (res ? "success" : os::strerror(errno)));
2438 
2439           // Set last_addr so if we fault again at the same address, we don't
2440           // end up in an endless loop.
2441           //
2442           // There are two potential complications here.  Two threads trapping
2443           // at the same address at the same time could cause one of the
2444           // threads to think it already unguarded, and abort the VM.  Likely
2445           // very rare.
2446           //
2447           // The other race involves two threads alternately trapping at
2448           // different addresses and failing to unguard the page, resulting in
2449           // an endless loop.  This condition is probably even more unlikely
2450           // than the first.
2451           //
2452           // Although both cases could be avoided by using locks or thread
2453           // local last_addr, these solutions are unnecessary complication:
2454           // this handler is a best-effort safety net, not a complete solution.
2455           // It is disabled by default and should only be used as a workaround
2456           // in case we missed any no-execute-unsafe VM code.
2457 
2458           last_addr = addr;
2459 
2460           return EXCEPTION_CONTINUE_EXECUTION;
2461         }
2462       }
2463 
2464       // Last unguard failed or not unguarding
2465       tty->print_raw_cr("Execution protection violation");
2466       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2467                    exceptionInfo->ContextRecord);
2468       return EXCEPTION_CONTINUE_SEARCH;
2469     }
2470   }
2471 #endif // _WIN64
2472 
2473   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2474       VM_Version::is_cpuinfo_segv_addr(pc)) {
2475     // Verify that OS save/restore AVX registers.
2476     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2477   }
2478 
2479   if (t != NULL && t->is_Java_thread()) {
2480     JavaThread* thread = (JavaThread*) t;
2481     bool in_java = thread->thread_state() == _thread_in_Java;
2482 
2483     // Handle potential stack overflows up front.
2484     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2485       if (thread->stack_guards_enabled()) {
2486         if (in_java) {
2487           frame fr;
2488           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2489           address addr = (address) exceptionRecord->ExceptionInformation[1];
2490           if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2491             assert(fr.is_java_frame(), "Must be a Java frame");
2492             SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2493           }
2494         }
2495         // Yellow zone violation.  The o/s has unprotected the first yellow
2496         // zone page for us.  Note:  must call disable_stack_yellow_zone to
2497         // update the enabled status, even if the zone contains only one page.
2498         assert(thread->thread_state() != _thread_in_vm, "Undersized StackShadowPages");
2499         thread->disable_stack_yellow_reserved_zone();
2500         // If not in java code, return and hope for the best.
2501         return in_java
2502             ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2503             :  EXCEPTION_CONTINUE_EXECUTION;
2504       } else {
2505         // Fatal red zone violation.
2506         thread->disable_stack_red_zone();
2507         tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2508         report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2509                       exceptionInfo->ContextRecord);
2510         return EXCEPTION_CONTINUE_SEARCH;
2511       }
2512     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2513       // Either stack overflow or null pointer exception.
2514       if (in_java) {
2515         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2516         address addr = (address) exceptionRecord->ExceptionInformation[1];
2517         address stack_end = thread->stack_end();
2518         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2519           // Stack overflow.
2520           assert(!os::uses_stack_guard_pages(),
2521                  "should be caught by red zone code above.");
2522           return Handle_Exception(exceptionInfo,
2523                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2524         }
2525         // Check for safepoint polling and implicit null
2526         // We only expect null pointers in the stubs (vtable)
2527         // the rest are checked explicitly now.
2528         CodeBlob* cb = CodeCache::find_blob(pc);
2529         if (cb != NULL) {
2530           if (os::is_poll_address(addr)) {
2531             address stub = SharedRuntime::get_poll_stub(pc);
2532             return Handle_Exception(exceptionInfo, stub);
2533           }
2534         }
2535         {
2536 #ifdef _WIN64
2537           // If it's a legal stack address map the entire region in
2538           //
2539           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2540           address addr = (address) exceptionRecord->ExceptionInformation[1];
2541           if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
2542             addr = (address)((uintptr_t)addr &
2543                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2544             os::commit_memory((char *)addr, thread->stack_base() - addr,
2545                               !ExecMem);
2546             return EXCEPTION_CONTINUE_EXECUTION;
2547           } else
2548 #endif
2549           {
2550             // Null pointer exception.
2551             if (MacroAssembler::uses_implicit_null_check((void*)addr)) {
2552               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2553               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2554             }
2555             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2556                          exceptionInfo->ContextRecord);
2557             return EXCEPTION_CONTINUE_SEARCH;
2558           }
2559         }
2560       }
2561 
2562 #ifdef _WIN64
2563       // Special care for fast JNI field accessors.
2564       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2565       // in and the heap gets shrunk before the field access.
2566       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2567         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2568         if (addr != (address)-1) {
2569           return Handle_Exception(exceptionInfo, addr);
2570         }
2571       }
2572 #endif
2573 
2574       // Stack overflow or null pointer exception in native code.
2575       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2576                    exceptionInfo->ContextRecord);
2577       return EXCEPTION_CONTINUE_SEARCH;
2578     } // /EXCEPTION_ACCESS_VIOLATION
2579     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2580 
2581     if (exception_code == EXCEPTION_IN_PAGE_ERROR) {
2582       CompiledMethod* nm = NULL;
2583       JavaThread* thread = (JavaThread*)t;
2584       if (in_java) {
2585         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
2586         nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
2587       }
2588 
2589       bool is_unsafe_arraycopy = (thread->thread_state() == _thread_in_native || in_java) && UnsafeCopyMemory::contains_pc(pc);
2590       if (((thread->thread_state() == _thread_in_vm ||
2591            thread->thread_state() == _thread_in_native ||
2592            is_unsafe_arraycopy) &&
2593           thread->doing_unsafe_access()) ||
2594           (nm != NULL && nm->has_unsafe_access())) {
2595         address next_pc =  Assembler::locate_next_instruction(pc);
2596         if (is_unsafe_arraycopy) {
2597           next_pc = UnsafeCopyMemory::page_error_continue_pc(pc);
2598         }
2599         return Handle_Exception(exceptionInfo, SharedRuntime::handle_unsafe_access(thread, next_pc));
2600       }
2601     }
2602 
2603     if (in_java) {
2604       switch (exception_code) {
2605       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2606         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2607 
2608       case EXCEPTION_INT_OVERFLOW:
2609         return Handle_IDiv_Exception(exceptionInfo);
2610 
2611       } // switch
2612     }
2613     if (((thread->thread_state() == _thread_in_Java) ||
2614          (thread->thread_state() == _thread_in_native)) &&
2615          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2616       LONG result=Handle_FLT_Exception(exceptionInfo);
2617       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2618     }
2619   }
2620 
2621   if (exception_code != EXCEPTION_BREAKPOINT) {
2622     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2623                  exceptionInfo->ContextRecord);
2624   }
2625   return EXCEPTION_CONTINUE_SEARCH;
2626 }
2627 
2628 #ifndef _WIN64
2629 // Special care for fast JNI accessors.
2630 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2631 // the heap gets shrunk before the field access.
2632 // Need to install our own structured exception handler since native code may
2633 // install its own.
2634 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2635   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2636   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2637     address pc = (address) exceptionInfo->ContextRecord->Eip;
2638     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2639     if (addr != (address)-1) {
2640       return Handle_Exception(exceptionInfo, addr);
2641     }
2642   }
2643   return EXCEPTION_CONTINUE_SEARCH;
2644 }
2645 
2646 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2647   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2648                                                      jobject obj,           \
2649                                                      jfieldID fieldID) {    \
2650     __try {                                                                 \
2651       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2652                                                                  obj,       \
2653                                                                  fieldID);  \
2654     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2655                                               _exception_info())) {         \
2656     }                                                                       \
2657     return 0;                                                               \
2658   }
2659 
2660 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2661 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2662 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2663 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2664 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2665 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2666 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2667 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2668 
2669 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2670   switch (type) {
2671   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2672   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2673   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2674   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2675   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2676   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2677   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2678   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2679   default:        ShouldNotReachHere();
2680   }
2681   return (address)-1;
2682 }
2683 #endif
2684 
2685 // Virtual Memory
2686 
2687 int os::vm_page_size() { return os::win32::vm_page_size(); }
2688 int os::vm_allocation_granularity() {
2689   return os::win32::vm_allocation_granularity();
2690 }
2691 
2692 // Windows large page support is available on Windows 2003. In order to use
2693 // large page memory, the administrator must first assign additional privilege
2694 // to the user:
2695 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2696 //   + select Local Policies -> User Rights Assignment
2697 //   + double click "Lock pages in memory", add users and/or groups
2698 //   + reboot
2699 // Note the above steps are needed for administrator as well, as administrators
2700 // by default do not have the privilege to lock pages in memory.
2701 //
2702 // Note about Windows 2003: although the API supports committing large page
2703 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2704 // scenario, I found through experiment it only uses large page if the entire
2705 // memory region is reserved and committed in a single VirtualAlloc() call.
2706 // This makes Windows large page support more or less like Solaris ISM, in
2707 // that the entire heap must be committed upfront. This probably will change
2708 // in the future, if so the code below needs to be revisited.
2709 
2710 #ifndef MEM_LARGE_PAGES
2711   #define MEM_LARGE_PAGES 0x20000000
2712 #endif
2713 
2714 static HANDLE    _hProcess;
2715 static HANDLE    _hToken;
2716 
2717 // Container for NUMA node list info
2718 class NUMANodeListHolder {
2719  private:
2720   int *_numa_used_node_list;  // allocated below
2721   int _numa_used_node_count;
2722 
2723   void free_node_list() {
2724     if (_numa_used_node_list != NULL) {
2725       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2726     }
2727   }
2728 
2729  public:
2730   NUMANodeListHolder() {
2731     _numa_used_node_count = 0;
2732     _numa_used_node_list = NULL;
2733     // do rest of initialization in build routine (after function pointers are set up)
2734   }
2735 
2736   ~NUMANodeListHolder() {
2737     free_node_list();
2738   }
2739 
2740   bool build() {
2741     DWORD_PTR proc_aff_mask;
2742     DWORD_PTR sys_aff_mask;
2743     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2744     ULONG highest_node_number;
2745     if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
2746     free_node_list();
2747     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2748     for (unsigned int i = 0; i <= highest_node_number; i++) {
2749       ULONGLONG proc_mask_numa_node;
2750       if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2751       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2752         _numa_used_node_list[_numa_used_node_count++] = i;
2753       }
2754     }
2755     return (_numa_used_node_count > 1);
2756   }
2757 
2758   int get_count() { return _numa_used_node_count; }
2759   int get_node_list_entry(int n) {
2760     // for indexes out of range, returns -1
2761     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2762   }
2763 
2764 } numa_node_list_holder;
2765 
2766 
2767 
2768 static size_t _large_page_size = 0;
2769 
2770 static bool request_lock_memory_privilege() {
2771   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2772                           os::current_process_id());
2773 
2774   LUID luid;
2775   if (_hProcess != NULL &&
2776       OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2777       LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2778 
2779     TOKEN_PRIVILEGES tp;
2780     tp.PrivilegeCount = 1;
2781     tp.Privileges[0].Luid = luid;
2782     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2783 
2784     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2785     // privilege. Check GetLastError() too. See MSDN document.
2786     if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2787         (GetLastError() == ERROR_SUCCESS)) {
2788       return true;
2789     }
2790   }
2791 
2792   return false;
2793 }
2794 
2795 static void cleanup_after_large_page_init() {
2796   if (_hProcess) CloseHandle(_hProcess);
2797   _hProcess = NULL;
2798   if (_hToken) CloseHandle(_hToken);
2799   _hToken = NULL;
2800 }
2801 
2802 static bool numa_interleaving_init() {
2803   bool success = false;
2804   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2805 
2806   // print a warning if UseNUMAInterleaving flag is specified on command line
2807   bool warn_on_failure = use_numa_interleaving_specified;
2808 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2809 
2810   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2811   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2812   NUMAInterleaveGranularity = align_up(NUMAInterleaveGranularity, min_interleave_granularity);
2813 
2814   if (numa_node_list_holder.build()) {
2815     if (log_is_enabled(Debug, os, cpu)) {
2816       Log(os, cpu) log;
2817       log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2818       for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2819         log.debug("  %d ", numa_node_list_holder.get_node_list_entry(i));
2820       }
2821     }
2822     success = true;
2823   } else {
2824     WARN("Process does not cover multiple NUMA nodes.");
2825   }
2826   if (!success) {
2827     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2828   }
2829   return success;
2830 #undef WARN
2831 }
2832 
2833 // this routine is used whenever we need to reserve a contiguous VA range
2834 // but we need to make separate VirtualAlloc calls for each piece of the range
2835 // Reasons for doing this:
2836 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2837 //  * UseNUMAInterleaving requires a separate node for each piece
2838 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2839                                          DWORD prot,
2840                                          bool should_inject_error = false) {
2841   char * p_buf;
2842   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2843   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2844   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2845 
2846   // first reserve enough address space in advance since we want to be
2847   // able to break a single contiguous virtual address range into multiple
2848   // large page commits but WS2003 does not allow reserving large page space
2849   // so we just use 4K pages for reserve, this gives us a legal contiguous
2850   // address space. then we will deallocate that reservation, and re alloc
2851   // using large pages
2852   const size_t size_of_reserve = bytes + chunk_size;
2853   if (bytes > size_of_reserve) {
2854     // Overflowed.
2855     return NULL;
2856   }
2857   p_buf = (char *) VirtualAlloc(addr,
2858                                 size_of_reserve,  // size of Reserve
2859                                 MEM_RESERVE,
2860                                 PAGE_READWRITE);
2861   // If reservation failed, return NULL
2862   if (p_buf == NULL) return NULL;
2863   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2864   os::release_memory(p_buf, bytes + chunk_size);
2865 
2866   // we still need to round up to a page boundary (in case we are using large pages)
2867   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2868   // instead we handle this in the bytes_to_rq computation below
2869   p_buf = align_up(p_buf, page_size);
2870 
2871   // now go through and allocate one chunk at a time until all bytes are
2872   // allocated
2873   size_t  bytes_remaining = bytes;
2874   // An overflow of align_up() would have been caught above
2875   // in the calculation of size_of_reserve.
2876   char * next_alloc_addr = p_buf;
2877   HANDLE hProc = GetCurrentProcess();
2878 
2879 #ifdef ASSERT
2880   // Variable for the failure injection
2881   int ran_num = os::random();
2882   size_t fail_after = ran_num % bytes;
2883 #endif
2884 
2885   int count=0;
2886   while (bytes_remaining) {
2887     // select bytes_to_rq to get to the next chunk_size boundary
2888 
2889     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2890     // Note allocate and commit
2891     char * p_new;
2892 
2893 #ifdef ASSERT
2894     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2895 #else
2896     const bool inject_error_now = false;
2897 #endif
2898 
2899     if (inject_error_now) {
2900       p_new = NULL;
2901     } else {
2902       if (!UseNUMAInterleaving) {
2903         p_new = (char *) VirtualAlloc(next_alloc_addr,
2904                                       bytes_to_rq,
2905                                       flags,
2906                                       prot);
2907       } else {
2908         // get the next node to use from the used_node_list
2909         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2910         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2911         p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
2912       }
2913     }
2914 
2915     if (p_new == NULL) {
2916       // Free any allocated pages
2917       if (next_alloc_addr > p_buf) {
2918         // Some memory was committed so release it.
2919         size_t bytes_to_release = bytes - bytes_remaining;
2920         // NMT has yet to record any individual blocks, so it
2921         // need to create a dummy 'reserve' record to match
2922         // the release.
2923         MemTracker::record_virtual_memory_reserve((address)p_buf,
2924                                                   bytes_to_release, CALLER_PC);
2925         os::release_memory(p_buf, bytes_to_release);
2926       }
2927 #ifdef ASSERT
2928       if (should_inject_error) {
2929         log_develop_debug(pagesize)("Reserving pages individually failed.");
2930       }
2931 #endif
2932       return NULL;
2933     }
2934 
2935     bytes_remaining -= bytes_to_rq;
2936     next_alloc_addr += bytes_to_rq;
2937     count++;
2938   }
2939   // Although the memory is allocated individually, it is returned as one.
2940   // NMT records it as one block.
2941   if ((flags & MEM_COMMIT) != 0) {
2942     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2943   } else {
2944     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2945   }
2946 
2947   // made it this far, success
2948   return p_buf;
2949 }
2950 
2951 
2952 
2953 void os::large_page_init() {
2954   if (!UseLargePages) return;
2955 
2956   // print a warning if any large page related flag is specified on command line
2957   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2958                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2959   bool success = false;
2960 
2961 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2962   if (request_lock_memory_privilege()) {
2963     size_t s = GetLargePageMinimum();
2964     if (s) {
2965 #if defined(IA32) || defined(AMD64)
2966       if (s > 4*M || LargePageSizeInBytes > 4*M) {
2967         WARN("JVM cannot use large pages bigger than 4mb.");
2968       } else {
2969 #endif
2970         if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2971           _large_page_size = LargePageSizeInBytes;
2972         } else {
2973           _large_page_size = s;
2974         }
2975         success = true;
2976 #if defined(IA32) || defined(AMD64)
2977       }
2978 #endif
2979     } else {
2980       WARN("Large page is not supported by the processor.");
2981     }
2982   } else {
2983     WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2984   }
2985 #undef WARN
2986 
2987   const size_t default_page_size = (size_t) vm_page_size();
2988   if (success && _large_page_size > default_page_size) {
2989     _page_sizes[0] = _large_page_size;
2990     _page_sizes[1] = default_page_size;
2991     _page_sizes[2] = 0;
2992   }
2993 
2994   cleanup_after_large_page_init();
2995   UseLargePages = success;
2996 }
2997 
2998 int os::create_file_for_heap(const char* dir) {
2999 
3000   const char name_template[] = "/jvmheap.XXXXXX";
3001 
3002   size_t fullname_len = strlen(dir) + strlen(name_template);
3003   char *fullname = (char*)os::malloc(fullname_len + 1, mtInternal);
3004   if (fullname == NULL) {
3005     vm_exit_during_initialization(err_msg("Malloc failed during creation of backing file for heap (%s)", os::strerror(errno)));
3006     return -1;
3007   }
3008   int n = snprintf(fullname, fullname_len + 1, "%s%s", dir, name_template);
3009   assert((size_t)n == fullname_len, "Unexpected number of characters in string");
3010 
3011   os::native_path(fullname);
3012 
3013   char *path = _mktemp(fullname);
3014   if (path == NULL) {
3015     warning("_mktemp could not create file name from template %s (%s)", fullname, os::strerror(errno));
3016     os::free(fullname);
3017     return -1;
3018   }
3019 
3020   int fd = _open(path, O_RDWR | O_CREAT | O_TEMPORARY | O_EXCL, S_IWRITE | S_IREAD);
3021 
3022   os::free(fullname);
3023   if (fd < 0) {
3024     warning("Problem opening file for heap (%s)", os::strerror(errno));
3025     return -1;
3026   }
3027   return fd;
3028 }
3029 
3030 // If 'base' is not NULL, function will return NULL if it cannot get 'base'
3031 char* os::map_memory_to_file(char* base, size_t size, int fd) {
3032   assert(fd != -1, "File descriptor is not valid");
3033 
3034   HANDLE fh = (HANDLE)_get_osfhandle(fd);
3035 #ifdef _LP64
3036   HANDLE fileMapping = CreateFileMapping(fh, NULL, PAGE_READWRITE,
3037     (DWORD)(size >> 32), (DWORD)(size & 0xFFFFFFFF), NULL);
3038 #else
3039   HANDLE fileMapping = CreateFileMapping(fh, NULL, PAGE_READWRITE,
3040     0, (DWORD)size, NULL);
3041 #endif
3042   if (fileMapping == NULL) {
3043     if (GetLastError() == ERROR_DISK_FULL) {
3044       vm_exit_during_initialization(err_msg("Could not allocate sufficient disk space for Java heap"));
3045     }
3046     else {
3047       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3048     }
3049 
3050     return NULL;
3051   }
3052 
3053   LPVOID addr = MapViewOfFileEx(fileMapping, FILE_MAP_WRITE, 0, 0, size, base);
3054 
3055   CloseHandle(fileMapping);
3056 
3057   return (char*)addr;
3058 }
3059 
3060 char* os::replace_existing_mapping_with_file_mapping(char* base, size_t size, int fd) {
3061   assert(fd != -1, "File descriptor is not valid");
3062   assert(base != NULL, "Base address cannot be NULL");
3063 
3064   release_memory(base, size);
3065   return map_memory_to_file(base, size, fd);
3066 }
3067 
3068 // On win32, one cannot release just a part of reserved memory, it's an
3069 // all or nothing deal.  When we split a reservation, we must break the
3070 // reservation into two reservations.
3071 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3072                                   bool realloc) {
3073   if (size > 0) {
3074     release_memory(base, size);
3075     if (realloc) {
3076       reserve_memory(split, base);
3077     }
3078     if (size != split) {
3079       reserve_memory(size - split, base + split);
3080     }
3081   }
3082 }
3083 
3084 // Multiple threads can race in this code but it's not possible to unmap small sections of
3085 // virtual space to get requested alignment, like posix-like os's.
3086 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3087 char* os::reserve_memory_aligned(size_t size, size_t alignment, int file_desc) {
3088   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3089          "Alignment must be a multiple of allocation granularity (page size)");
3090   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3091 
3092   size_t extra_size = size + alignment;
3093   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3094 
3095   char* aligned_base = NULL;
3096 
3097   do {
3098     char* extra_base = os::reserve_memory(extra_size, NULL, alignment, file_desc);
3099     if (extra_base == NULL) {
3100       return NULL;
3101     }
3102     // Do manual alignment
3103     aligned_base = align_up(extra_base, alignment);
3104 
3105     if (file_desc != -1) {
3106       os::unmap_memory(extra_base, extra_size);
3107     } else {
3108       os::release_memory(extra_base, extra_size);
3109     }
3110 
3111     aligned_base = os::reserve_memory(size, aligned_base, 0, file_desc);
3112 
3113   } while (aligned_base == NULL);
3114 
3115   return aligned_base;
3116 }
3117 
3118 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3119   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3120          "reserve alignment");
3121   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3122   char* res;
3123   // note that if UseLargePages is on, all the areas that require interleaving
3124   // will go thru reserve_memory_special rather than thru here.
3125   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3126   if (!use_individual) {
3127     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3128   } else {
3129     elapsedTimer reserveTimer;
3130     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3131     // in numa interleaving, we have to allocate pages individually
3132     // (well really chunks of NUMAInterleaveGranularity size)
3133     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3134     if (res == NULL) {
3135       warning("NUMA page allocation failed");
3136     }
3137     if (Verbose && PrintMiscellaneous) {
3138       reserveTimer.stop();
3139       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3140                     reserveTimer.milliseconds(), reserveTimer.ticks());
3141     }
3142   }
3143   assert(res == NULL || addr == NULL || addr == res,
3144          "Unexpected address from reserve.");
3145 
3146   return res;
3147 }
3148 
3149 // Reserve memory at an arbitrary address, only if that area is
3150 // available (and not reserved for something else).
3151 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3152   // Windows os::reserve_memory() fails of the requested address range is
3153   // not avilable.
3154   return reserve_memory(bytes, requested_addr);
3155 }
3156 
3157 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3158   assert(file_desc >= 0, "file_desc is not valid");
3159   return map_memory_to_file(requested_addr, bytes, file_desc);
3160 }
3161 
3162 size_t os::large_page_size() {
3163   return _large_page_size;
3164 }
3165 
3166 bool os::can_commit_large_page_memory() {
3167   // Windows only uses large page memory when the entire region is reserved
3168   // and committed in a single VirtualAlloc() call. This may change in the
3169   // future, but with Windows 2003 it's not possible to commit on demand.
3170   return false;
3171 }
3172 
3173 bool os::can_execute_large_page_memory() {
3174   return true;
3175 }
3176 
3177 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3178                                  bool exec) {
3179   assert(UseLargePages, "only for large pages");
3180 
3181   if (!is_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3182     return NULL; // Fallback to small pages.
3183   }
3184 
3185   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3186   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3187 
3188   // with large pages, there are two cases where we need to use Individual Allocation
3189   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3190   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3191   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3192     log_debug(pagesize)("Reserving large pages individually.");
3193 
3194     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3195     if (p_buf == NULL) {
3196       // give an appropriate warning message
3197       if (UseNUMAInterleaving) {
3198         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3199       }
3200       if (UseLargePagesIndividualAllocation) {
3201         warning("Individually allocated large pages failed, "
3202                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3203       }
3204       return NULL;
3205     }
3206 
3207     return p_buf;
3208 
3209   } else {
3210     log_debug(pagesize)("Reserving large pages in a single large chunk.");
3211 
3212     // normal policy just allocate it all at once
3213     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3214     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3215     if (res != NULL) {
3216       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3217     }
3218 
3219     return res;
3220   }
3221 }
3222 
3223 bool os::release_memory_special(char* base, size_t bytes) {
3224   assert(base != NULL, "Sanity check");
3225   return release_memory(base, bytes);
3226 }
3227 
3228 void os::print_statistics() {
3229 }
3230 
3231 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3232   int err = os::get_last_error();
3233   char buf[256];
3234   size_t buf_len = os::lasterror(buf, sizeof(buf));
3235   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3236           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3237           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3238 }
3239 
3240 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3241   if (bytes == 0) {
3242     // Don't bother the OS with noops.
3243     return true;
3244   }
3245   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3246   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3247   // Don't attempt to print anything if the OS call fails. We're
3248   // probably low on resources, so the print itself may cause crashes.
3249 
3250   // unless we have NUMAInterleaving enabled, the range of a commit
3251   // is always within a reserve covered by a single VirtualAlloc
3252   // in that case we can just do a single commit for the requested size
3253   if (!UseNUMAInterleaving) {
3254     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3255       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3256       return false;
3257     }
3258     if (exec) {
3259       DWORD oldprot;
3260       // Windows doc says to use VirtualProtect to get execute permissions
3261       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3262         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3263         return false;
3264       }
3265     }
3266     return true;
3267   } else {
3268 
3269     // when NUMAInterleaving is enabled, the commit might cover a range that
3270     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3271     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3272     // returns represents the number of bytes that can be committed in one step.
3273     size_t bytes_remaining = bytes;
3274     char * next_alloc_addr = addr;
3275     while (bytes_remaining > 0) {
3276       MEMORY_BASIC_INFORMATION alloc_info;
3277       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3278       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3279       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3280                        PAGE_READWRITE) == NULL) {
3281         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3282                                             exec);)
3283         return false;
3284       }
3285       if (exec) {
3286         DWORD oldprot;
3287         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3288                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3289           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3290                                               exec);)
3291           return false;
3292         }
3293       }
3294       bytes_remaining -= bytes_to_rq;
3295       next_alloc_addr += bytes_to_rq;
3296     }
3297   }
3298   // if we made it this far, return true
3299   return true;
3300 }
3301 
3302 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3303                           bool exec) {
3304   // alignment_hint is ignored on this OS
3305   return pd_commit_memory(addr, size, exec);
3306 }
3307 
3308 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3309                                   const char* mesg) {
3310   assert(mesg != NULL, "mesg must be specified");
3311   if (!pd_commit_memory(addr, size, exec)) {
3312     warn_fail_commit_memory(addr, size, exec);
3313     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3314   }
3315 }
3316 
3317 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3318                                   size_t alignment_hint, bool exec,
3319                                   const char* mesg) {
3320   // alignment_hint is ignored on this OS
3321   pd_commit_memory_or_exit(addr, size, exec, mesg);
3322 }
3323 
3324 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3325   if (bytes == 0) {
3326     // Don't bother the OS with noops.
3327     return true;
3328   }
3329   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3330   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3331   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3332 }
3333 
3334 bool os::pd_release_memory(char* addr, size_t bytes) {
3335   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3336 }
3337 
3338 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3339   return os::commit_memory(addr, size, !ExecMem);
3340 }
3341 
3342 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3343   return os::uncommit_memory(addr, size);
3344 }
3345 
3346 static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
3347   uint count = 0;
3348   bool ret = false;
3349   size_t bytes_remaining = bytes;
3350   char * next_protect_addr = addr;
3351 
3352   // Use VirtualQuery() to get the chunk size.
3353   while (bytes_remaining) {
3354     MEMORY_BASIC_INFORMATION alloc_info;
3355     if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
3356       return false;
3357     }
3358 
3359     size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3360     // We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
3361     // but we don't distinguish here as both cases are protected by same API.
3362     ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
3363     warning("Failed protecting pages individually for chunk #%u", count);
3364     if (!ret) {
3365       return false;
3366     }
3367 
3368     bytes_remaining -= bytes_to_protect;
3369     next_protect_addr += bytes_to_protect;
3370     count++;
3371   }
3372   return ret;
3373 }
3374 
3375 // Set protections specified
3376 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3377                         bool is_committed) {
3378   unsigned int p = 0;
3379   switch (prot) {
3380   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3381   case MEM_PROT_READ: p = PAGE_READONLY; break;
3382   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3383   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3384   default:
3385     ShouldNotReachHere();
3386   }
3387 
3388   DWORD old_status;
3389 
3390   // Strange enough, but on Win32 one can change protection only for committed
3391   // memory, not a big deal anyway, as bytes less or equal than 64K
3392   if (!is_committed) {
3393     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3394                           "cannot commit protection page");
3395   }
3396   // One cannot use os::guard_memory() here, as on Win32 guard page
3397   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3398   //
3399   // Pages in the region become guard pages. Any attempt to access a guard page
3400   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3401   // the guard page status. Guard pages thus act as a one-time access alarm.
3402   bool ret;
3403   if (UseNUMAInterleaving) {
3404     // If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
3405     // so we must protect the chunks individually.
3406     ret = protect_pages_individually(addr, bytes, p, &old_status);
3407   } else {
3408     ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
3409   }
3410 #ifdef ASSERT
3411   if (!ret) {
3412     int err = os::get_last_error();
3413     char buf[256];
3414     size_t buf_len = os::lasterror(buf, sizeof(buf));
3415     warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
3416           ") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3417           buf_len != 0 ? buf : "<no_error_string>", err);
3418   }
3419 #endif
3420   return ret;
3421 }
3422 
3423 bool os::guard_memory(char* addr, size_t bytes) {
3424   DWORD old_status;
3425   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3426 }
3427 
3428 bool os::unguard_memory(char* addr, size_t bytes) {
3429   DWORD old_status;
3430   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3431 }
3432 
3433 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3434 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3435 void os::numa_make_global(char *addr, size_t bytes)    { }
3436 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3437 bool os::numa_topology_changed()                       { return false; }
3438 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3439 int os::numa_get_group_id()                            { return 0; }
3440 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3441   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3442     // Provide an answer for UMA systems
3443     ids[0] = 0;
3444     return 1;
3445   } else {
3446     // check for size bigger than actual groups_num
3447     size = MIN2(size, numa_get_groups_num());
3448     for (int i = 0; i < (int)size; i++) {
3449       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3450     }
3451     return size;
3452   }
3453 }
3454 
3455 bool os::get_page_info(char *start, page_info* info) {
3456   return false;
3457 }
3458 
3459 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3460                      page_info* page_found) {
3461   return end;
3462 }
3463 
3464 char* os::non_memory_address_word() {
3465   // Must never look like an address returned by reserve_memory,
3466   // even in its subfields (as defined by the CPU immediate fields,
3467   // if the CPU splits constants across multiple instructions).
3468   return (char*)-1;
3469 }
3470 
3471 #define MAX_ERROR_COUNT 100
3472 #define SYS_THREAD_ERROR 0xffffffffUL
3473 
3474 void os::pd_start_thread(Thread* thread) {
3475   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3476   // Returns previous suspend state:
3477   // 0:  Thread was not suspended
3478   // 1:  Thread is running now
3479   // >1: Thread is still suspended.
3480   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3481 }
3482 
3483 class HighResolutionInterval : public CHeapObj<mtThread> {
3484   // The default timer resolution seems to be 10 milliseconds.
3485   // (Where is this written down?)
3486   // If someone wants to sleep for only a fraction of the default,
3487   // then we set the timer resolution down to 1 millisecond for
3488   // the duration of their interval.
3489   // We carefully set the resolution back, since otherwise we
3490   // seem to incur an overhead (3%?) that we don't need.
3491   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3492   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3493   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3494   // timeBeginPeriod() if the relative error exceeded some threshold.
3495   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3496   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3497   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3498   // resolution timers running.
3499  private:
3500   jlong resolution;
3501  public:
3502   HighResolutionInterval(jlong ms) {
3503     resolution = ms % 10L;
3504     if (resolution != 0) {
3505       MMRESULT result = timeBeginPeriod(1L);
3506     }
3507   }
3508   ~HighResolutionInterval() {
3509     if (resolution != 0) {
3510       MMRESULT result = timeEndPeriod(1L);
3511     }
3512     resolution = 0L;
3513   }
3514 };
3515 
3516 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3517   jlong limit = (jlong) MAXDWORD;
3518 
3519   while (ms > limit) {
3520     int res;
3521     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3522       return res;
3523     }
3524     ms -= limit;
3525   }
3526 
3527   assert(thread == Thread::current(), "thread consistency check");
3528   OSThread* osthread = thread->osthread();
3529   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3530   int result;
3531   if (interruptable) {
3532     assert(thread->is_Java_thread(), "must be java thread");
3533     JavaThread *jt = (JavaThread *) thread;
3534     ThreadBlockInVM tbivm(jt);
3535 
3536     jt->set_suspend_equivalent();
3537     // cleared by handle_special_suspend_equivalent_condition() or
3538     // java_suspend_self() via check_and_wait_while_suspended()
3539 
3540     HANDLE events[1];
3541     events[0] = osthread->interrupt_event();
3542     HighResolutionInterval *phri=NULL;
3543     if (!ForceTimeHighResolution) {
3544       phri = new HighResolutionInterval(ms);
3545     }
3546     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3547       result = OS_TIMEOUT;
3548     } else {
3549       ResetEvent(osthread->interrupt_event());
3550       osthread->set_interrupted(false);
3551       result = OS_INTRPT;
3552     }
3553     delete phri; //if it is NULL, harmless
3554 
3555     // were we externally suspended while we were waiting?
3556     jt->check_and_wait_while_suspended();
3557   } else {
3558     assert(!thread->is_Java_thread(), "must not be java thread");
3559     Sleep((long) ms);
3560     result = OS_TIMEOUT;
3561   }
3562   return result;
3563 }
3564 
3565 // Short sleep, direct OS call.
3566 //
3567 // ms = 0, means allow others (if any) to run.
3568 //
3569 void os::naked_short_sleep(jlong ms) {
3570   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3571   Sleep(ms);
3572 }
3573 
3574 // Windows does not provide sleep functionality with nanosecond resolution, so we
3575 // try to approximate this with spinning combined with yielding if another thread
3576 // is ready to run on the current processor.
3577 void os::naked_short_nanosleep(jlong ns) {
3578   assert(ns > -1 && ns < NANOUNITS, "Un-interruptable sleep, short time use only");
3579 
3580   int64_t start = os::javaTimeNanos();
3581   do {
3582     if (SwitchToThread() == 0) {
3583       // Nothing else is ready to run on this cpu, spin a little
3584       SpinPause();
3585     }
3586   } while (os::javaTimeNanos() - start < ns);
3587 }
3588 
3589 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3590 void os::infinite_sleep() {
3591   while (true) {    // sleep forever ...
3592     Sleep(100000);  // ... 100 seconds at a time
3593   }
3594 }
3595 
3596 typedef BOOL (WINAPI * STTSignature)(void);
3597 
3598 void os::naked_yield() {
3599   // Consider passing back the return value from SwitchToThread().
3600   SwitchToThread();
3601 }
3602 
3603 // Win32 only gives you access to seven real priorities at a time,
3604 // so we compress Java's ten down to seven.  It would be better
3605 // if we dynamically adjusted relative priorities.
3606 
3607 int os::java_to_os_priority[CriticalPriority + 1] = {
3608   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3609   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3610   THREAD_PRIORITY_LOWEST,                       // 2
3611   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3612   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3613   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3614   THREAD_PRIORITY_NORMAL,                       // 6
3615   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3616   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3617   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3618   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3619   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3620 };
3621 
3622 int prio_policy1[CriticalPriority + 1] = {
3623   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3624   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3625   THREAD_PRIORITY_LOWEST,                       // 2
3626   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3627   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3628   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3629   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3630   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3631   THREAD_PRIORITY_HIGHEST,                      // 8
3632   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3633   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3634   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3635 };
3636 
3637 static int prio_init() {
3638   // If ThreadPriorityPolicy is 1, switch tables
3639   if (ThreadPriorityPolicy == 1) {
3640     int i;
3641     for (i = 0; i < CriticalPriority + 1; i++) {
3642       os::java_to_os_priority[i] = prio_policy1[i];
3643     }
3644   }
3645   if (UseCriticalJavaThreadPriority) {
3646     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3647   }
3648   return 0;
3649 }
3650 
3651 OSReturn os::set_native_priority(Thread* thread, int priority) {
3652   if (!UseThreadPriorities) return OS_OK;
3653   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3654   return ret ? OS_OK : OS_ERR;
3655 }
3656 
3657 OSReturn os::get_native_priority(const Thread* const thread,
3658                                  int* priority_ptr) {
3659   if (!UseThreadPriorities) {
3660     *priority_ptr = java_to_os_priority[NormPriority];
3661     return OS_OK;
3662   }
3663   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3664   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3665     assert(false, "GetThreadPriority failed");
3666     return OS_ERR;
3667   }
3668   *priority_ptr = os_prio;
3669   return OS_OK;
3670 }
3671 
3672 void os::interrupt(Thread* thread) {
3673   debug_only(Thread::check_for_dangling_thread_pointer(thread);)
3674 
3675   OSThread* osthread = thread->osthread();
3676   osthread->set_interrupted(true);
3677   // More than one thread can get here with the same value of osthread,
3678   // resulting in multiple notifications.  We do, however, want the store
3679   // to interrupted() to be visible to other threads before we post
3680   // the interrupt event.
3681   OrderAccess::release();
3682   SetEvent(osthread->interrupt_event());
3683   // For JSR166:  unpark after setting status
3684   if (thread->is_Java_thread()) {
3685     ((JavaThread*)thread)->parker()->unpark();
3686   }
3687 
3688   ParkEvent * ev = thread->_ParkEvent;
3689   if (ev != NULL) ev->unpark();
3690 }
3691 
3692 
3693 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3694   debug_only(Thread::check_for_dangling_thread_pointer(thread);)
3695 
3696   OSThread* osthread = thread->osthread();
3697   // There is no synchronization between the setting of the interrupt
3698   // and it being cleared here. It is critical - see 6535709 - that
3699   // we only clear the interrupt state, and reset the interrupt event,
3700   // if we are going to report that we were indeed interrupted - else
3701   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3702   // depending on the timing. By checking thread interrupt event to see
3703   // if the thread gets real interrupt thus prevent spurious wakeup.
3704   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3705   if (interrupted && clear_interrupted) {
3706     osthread->set_interrupted(false);
3707     ResetEvent(osthread->interrupt_event());
3708   } // Otherwise leave the interrupted state alone
3709 
3710   return interrupted;
3711 }
3712 
3713 // GetCurrentThreadId() returns DWORD
3714 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3715 
3716 static int _initial_pid = 0;
3717 
3718 int os::current_process_id() {
3719   return (_initial_pid ? _initial_pid : _getpid());
3720 }
3721 
3722 int    os::win32::_vm_page_size              = 0;
3723 int    os::win32::_vm_allocation_granularity = 0;
3724 int    os::win32::_processor_type            = 0;
3725 // Processor level is not available on non-NT systems, use vm_version instead
3726 int    os::win32::_processor_level           = 0;
3727 julong os::win32::_physical_memory           = 0;
3728 size_t os::win32::_default_stack_size        = 0;
3729 
3730 intx          os::win32::_os_thread_limit    = 0;
3731 volatile intx os::win32::_os_thread_count    = 0;
3732 
3733 bool   os::win32::_is_windows_server         = false;
3734 
3735 // 6573254
3736 // Currently, the bug is observed across all the supported Windows releases,
3737 // including the latest one (as of this writing - Windows Server 2012 R2)
3738 bool   os::win32::_has_exit_bug              = true;
3739 
3740 void os::win32::initialize_system_info() {
3741   SYSTEM_INFO si;
3742   GetSystemInfo(&si);
3743   _vm_page_size    = si.dwPageSize;
3744   _vm_allocation_granularity = si.dwAllocationGranularity;
3745   _processor_type  = si.dwProcessorType;
3746   _processor_level = si.wProcessorLevel;
3747   set_processor_count(si.dwNumberOfProcessors);
3748 
3749   MEMORYSTATUSEX ms;
3750   ms.dwLength = sizeof(ms);
3751 
3752   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3753   // dwMemoryLoad (% of memory in use)
3754   GlobalMemoryStatusEx(&ms);
3755   _physical_memory = ms.ullTotalPhys;
3756 
3757   if (FLAG_IS_DEFAULT(MaxRAM)) {
3758     // Adjust MaxRAM according to the maximum virtual address space available.
3759     FLAG_SET_DEFAULT(MaxRAM, MIN2(MaxRAM, (uint64_t) ms.ullTotalVirtual));
3760   }
3761 
3762   OSVERSIONINFOEX oi;
3763   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3764   GetVersionEx((OSVERSIONINFO*)&oi);
3765   switch (oi.dwPlatformId) {
3766   case VER_PLATFORM_WIN32_NT:
3767     {
3768       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3769       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3770           oi.wProductType == VER_NT_SERVER) {
3771         _is_windows_server = true;
3772       }
3773     }
3774     break;
3775   default: fatal("Unknown platform");
3776   }
3777 
3778   _default_stack_size = os::current_stack_size();
3779   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3780   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3781          "stack size not a multiple of page size");
3782 
3783   initialize_performance_counter();
3784 }
3785 
3786 
3787 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3788                                       int ebuflen) {
3789   char path[MAX_PATH];
3790   DWORD size;
3791   DWORD pathLen = (DWORD)sizeof(path);
3792   HINSTANCE result = NULL;
3793 
3794   // only allow library name without path component
3795   assert(strchr(name, '\\') == NULL, "path not allowed");
3796   assert(strchr(name, ':') == NULL, "path not allowed");
3797   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3798     jio_snprintf(ebuf, ebuflen,
3799                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3800     return NULL;
3801   }
3802 
3803   // search system directory
3804   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3805     if (size >= pathLen) {
3806       return NULL; // truncated
3807     }
3808     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3809       return NULL; // truncated
3810     }
3811     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3812       return result;
3813     }
3814   }
3815 
3816   // try Windows directory
3817   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3818     if (size >= pathLen) {
3819       return NULL; // truncated
3820     }
3821     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3822       return NULL; // truncated
3823     }
3824     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3825       return result;
3826     }
3827   }
3828 
3829   jio_snprintf(ebuf, ebuflen,
3830                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3831   return NULL;
3832 }
3833 
3834 #define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
3835 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3836 
3837 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3838   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3839   return TRUE;
3840 }
3841 
3842 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3843   // Basic approach:
3844   //  - Each exiting thread registers its intent to exit and then does so.
3845   //  - A thread trying to terminate the process must wait for all
3846   //    threads currently exiting to complete their exit.
3847 
3848   if (os::win32::has_exit_bug()) {
3849     // The array holds handles of the threads that have started exiting by calling
3850     // _endthreadex().
3851     // Should be large enough to avoid blocking the exiting thread due to lack of
3852     // a free slot.
3853     static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
3854     static int handle_count = 0;
3855 
3856     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3857     static CRITICAL_SECTION crit_sect;
3858     static volatile DWORD process_exiting = 0;
3859     int i, j;
3860     DWORD res;
3861     HANDLE hproc, hthr;
3862 
3863     // We only attempt to register threads until a process exiting
3864     // thread manages to set the process_exiting flag. Any threads
3865     // that come through here after the process_exiting flag is set
3866     // are unregistered and will be caught in the SuspendThread()
3867     // infinite loop below.
3868     bool registered = false;
3869 
3870     // The first thread that reached this point, initializes the critical section.
3871     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3872       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3873     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3874       if (what != EPT_THREAD) {
3875         // Atomically set process_exiting before the critical section
3876         // to increase the visibility between racing threads.
3877         Atomic::cmpxchg(GetCurrentThreadId(), &process_exiting, (DWORD)0);
3878       }
3879       EnterCriticalSection(&crit_sect);
3880 
3881       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3882         // Remove from the array those handles of the threads that have completed exiting.
3883         for (i = 0, j = 0; i < handle_count; ++i) {
3884           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3885           if (res == WAIT_TIMEOUT) {
3886             handles[j++] = handles[i];
3887           } else {
3888             if (res == WAIT_FAILED) {
3889               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3890                       GetLastError(), __FILE__, __LINE__);
3891             }
3892             // Don't keep the handle, if we failed waiting for it.
3893             CloseHandle(handles[i]);
3894           }
3895         }
3896 
3897         // If there's no free slot in the array of the kept handles, we'll have to
3898         // wait until at least one thread completes exiting.
3899         if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
3900           // Raise the priority of the oldest exiting thread to increase its chances
3901           // to complete sooner.
3902           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3903           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3904           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3905             i = (res - WAIT_OBJECT_0);
3906             handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
3907             for (; i < handle_count; ++i) {
3908               handles[i] = handles[i + 1];
3909             }
3910           } else {
3911             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3912                     (res == WAIT_FAILED ? "failed" : "timed out"),
3913                     GetLastError(), __FILE__, __LINE__);
3914             // Don't keep handles, if we failed waiting for them.
3915             for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
3916               CloseHandle(handles[i]);
3917             }
3918             handle_count = 0;
3919           }
3920         }
3921 
3922         // Store a duplicate of the current thread handle in the array of handles.
3923         hproc = GetCurrentProcess();
3924         hthr = GetCurrentThread();
3925         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3926                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3927           warning("DuplicateHandle failed (%u) in %s: %d\n",
3928                   GetLastError(), __FILE__, __LINE__);
3929 
3930           // We can't register this thread (no more handles) so this thread
3931           // may be racing with a thread that is calling exit(). If the thread
3932           // that is calling exit() has managed to set the process_exiting
3933           // flag, then this thread will be caught in the SuspendThread()
3934           // infinite loop below which closes that race. A small timing
3935           // window remains before the process_exiting flag is set, but it
3936           // is only exposed when we are out of handles.
3937         } else {
3938           ++handle_count;
3939           registered = true;
3940 
3941           // The current exiting thread has stored its handle in the array, and now
3942           // should leave the critical section before calling _endthreadex().
3943         }
3944 
3945       } else if (what != EPT_THREAD && handle_count > 0) {
3946         jlong start_time, finish_time, timeout_left;
3947         // Before ending the process, make sure all the threads that had called
3948         // _endthreadex() completed.
3949 
3950         // Set the priority level of the current thread to the same value as
3951         // the priority level of exiting threads.
3952         // This is to ensure it will be given a fair chance to execute if
3953         // the timeout expires.
3954         hthr = GetCurrentThread();
3955         SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3956         start_time = os::javaTimeNanos();
3957         finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
3958         for (i = 0; ; ) {
3959           int portion_count = handle_count - i;
3960           if (portion_count > MAXIMUM_WAIT_OBJECTS) {
3961             portion_count = MAXIMUM_WAIT_OBJECTS;
3962           }
3963           for (j = 0; j < portion_count; ++j) {
3964             SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
3965           }
3966           timeout_left = (finish_time - start_time) / 1000000L;
3967           if (timeout_left < 0) {
3968             timeout_left = 0;
3969           }
3970           res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
3971           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3972             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3973                     (res == WAIT_FAILED ? "failed" : "timed out"),
3974                     GetLastError(), __FILE__, __LINE__);
3975             // Reset portion_count so we close the remaining
3976             // handles due to this error.
3977             portion_count = handle_count - i;
3978           }
3979           for (j = 0; j < portion_count; ++j) {
3980             CloseHandle(handles[i + j]);
3981           }
3982           if ((i += portion_count) >= handle_count) {
3983             break;
3984           }
3985           start_time = os::javaTimeNanos();
3986         }
3987         handle_count = 0;
3988       }
3989 
3990       LeaveCriticalSection(&crit_sect);
3991     }
3992 
3993     if (!registered &&
3994         OrderAccess::load_acquire(&process_exiting) != 0 &&
3995         process_exiting != GetCurrentThreadId()) {
3996       // Some other thread is about to call exit(), so we don't let
3997       // the current unregistered thread proceed to exit() or _endthreadex()
3998       while (true) {
3999         SuspendThread(GetCurrentThread());
4000         // Avoid busy-wait loop, if SuspendThread() failed.
4001         Sleep(EXIT_TIMEOUT);
4002       }
4003     }
4004   }
4005 
4006   // We are here if either
4007   // - there's no 'race at exit' bug on this OS release;
4008   // - initialization of the critical section failed (unlikely);
4009   // - the current thread has registered itself and left the critical section;
4010   // - the process-exiting thread has raised the flag and left the critical section.
4011   if (what == EPT_THREAD) {
4012     _endthreadex((unsigned)exit_code);
4013   } else if (what == EPT_PROCESS) {
4014     ::exit(exit_code);
4015   } else {
4016     _exit(exit_code);
4017   }
4018 
4019   // Should not reach here
4020   return exit_code;
4021 }
4022 
4023 #undef EXIT_TIMEOUT
4024 
4025 void os::win32::setmode_streams() {
4026   _setmode(_fileno(stdin), _O_BINARY);
4027   _setmode(_fileno(stdout), _O_BINARY);
4028   _setmode(_fileno(stderr), _O_BINARY);
4029 }
4030 
4031 
4032 bool os::is_debugger_attached() {
4033   return IsDebuggerPresent() ? true : false;
4034 }
4035 
4036 
4037 void os::wait_for_keypress_at_exit(void) {
4038   if (PauseAtExit) {
4039     fprintf(stderr, "Press any key to continue...\n");
4040     fgetc(stdin);
4041   }
4042 }
4043 
4044 
4045 bool os::message_box(const char* title, const char* message) {
4046   int result = MessageBox(NULL, message, title,
4047                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4048   return result == IDYES;
4049 }
4050 
4051 #ifndef PRODUCT
4052 #ifndef _WIN64
4053 // Helpers to check whether NX protection is enabled
4054 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4055   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4056       pex->ExceptionRecord->NumberParameters > 0 &&
4057       pex->ExceptionRecord->ExceptionInformation[0] ==
4058       EXCEPTION_INFO_EXEC_VIOLATION) {
4059     return EXCEPTION_EXECUTE_HANDLER;
4060   }
4061   return EXCEPTION_CONTINUE_SEARCH;
4062 }
4063 
4064 void nx_check_protection() {
4065   // If NX is enabled we'll get an exception calling into code on the stack
4066   char code[] = { (char)0xC3 }; // ret
4067   void *code_ptr = (void *)code;
4068   __try {
4069     __asm call code_ptr
4070   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4071     tty->print_raw_cr("NX protection detected.");
4072   }
4073 }
4074 #endif // _WIN64
4075 #endif // PRODUCT
4076 
4077 // This is called _before_ the global arguments have been parsed
4078 void os::init(void) {
4079   _initial_pid = _getpid();
4080 
4081   init_random(1234567);
4082 
4083   win32::initialize_system_info();
4084   win32::setmode_streams();
4085   init_page_sizes((size_t) win32::vm_page_size());
4086 
4087   // This may be overridden later when argument processing is done.
4088   FLAG_SET_ERGO(UseLargePagesIndividualAllocation, false);
4089 
4090   // Initialize main_process and main_thread
4091   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4092   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4093                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4094     fatal("DuplicateHandle failed\n");
4095   }
4096   main_thread_id = (int) GetCurrentThreadId();
4097 
4098   // initialize fast thread access - only used for 32-bit
4099   win32::initialize_thread_ptr_offset();
4100 }
4101 
4102 // To install functions for atexit processing
4103 extern "C" {
4104   static void perfMemory_exit_helper() {
4105     perfMemory_exit();
4106   }
4107 }
4108 
4109 static jint initSock();
4110 
4111 // this is called _after_ the global arguments have been parsed
4112 jint os::init_2(void) {
4113 
4114   // This could be set any time but all platforms
4115   // have to set it the same so we have to mirror Solaris.
4116   DEBUG_ONLY(os::set_mutex_init_done();)
4117 
4118   // Setup Windows Exceptions
4119 
4120 #if INCLUDE_AOT
4121   // If AOT is enabled we need to install a vectored exception handler
4122   // in order to forward implicit exceptions from code in AOT
4123   // generated DLLs.  This is necessary since these DLLs are not
4124   // registered for structured exceptions like codecache methods are.
4125   if (AOTLibrary != NULL && (UseAOT || FLAG_IS_DEFAULT(UseAOT))) {
4126     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelVectoredExceptionFilter);
4127   }
4128 #endif
4129 
4130   // for debugging float code generation bugs
4131   if (ForceFloatExceptions) {
4132 #ifndef  _WIN64
4133     static long fp_control_word = 0;
4134     __asm { fstcw fp_control_word }
4135     // see Intel PPro Manual, Vol. 2, p 7-16
4136     const long precision = 0x20;
4137     const long underflow = 0x10;
4138     const long overflow  = 0x08;
4139     const long zero_div  = 0x04;
4140     const long denorm    = 0x02;
4141     const long invalid   = 0x01;
4142     fp_control_word |= invalid;
4143     __asm { fldcw fp_control_word }
4144 #endif
4145   }
4146 
4147   // If stack_commit_size is 0, windows will reserve the default size,
4148   // but only commit a small portion of it.
4149   size_t stack_commit_size = align_up(ThreadStackSize*K, os::vm_page_size());
4150   size_t default_reserve_size = os::win32::default_stack_size();
4151   size_t actual_reserve_size = stack_commit_size;
4152   if (stack_commit_size < default_reserve_size) {
4153     // If stack_commit_size == 0, we want this too
4154     actual_reserve_size = default_reserve_size;
4155   }
4156 
4157   // Check minimum allowable stack size for thread creation and to initialize
4158   // the java system classes, including StackOverflowError - depends on page
4159   // size.  Add two 4K pages for compiler2 recursion in main thread.
4160   // Add in 4*BytesPerWord 4K pages to account for VM stack during
4161   // class initialization depending on 32 or 64 bit VM.
4162   size_t min_stack_allowed =
4163             (size_t)(JavaThread::stack_guard_zone_size() +
4164                      JavaThread::stack_shadow_zone_size() +
4165                      (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
4166 
4167   min_stack_allowed = align_up(min_stack_allowed, os::vm_page_size());
4168 
4169   if (actual_reserve_size < min_stack_allowed) {
4170     tty->print_cr("\nThe Java thread stack size specified is too small. "
4171                   "Specify at least %dk",
4172                   min_stack_allowed / K);
4173     return JNI_ERR;
4174   }
4175 
4176   JavaThread::set_stack_size_at_create(stack_commit_size);
4177 
4178   // Calculate theoretical max. size of Threads to guard gainst artifical
4179   // out-of-memory situations, where all available address-space has been
4180   // reserved by thread stacks.
4181   assert(actual_reserve_size != 0, "Must have a stack");
4182 
4183   // Calculate the thread limit when we should start doing Virtual Memory
4184   // banging. Currently when the threads will have used all but 200Mb of space.
4185   //
4186   // TODO: consider performing a similar calculation for commit size instead
4187   // as reserve size, since on a 64-bit platform we'll run into that more
4188   // often than running out of virtual memory space.  We can use the
4189   // lower value of the two calculations as the os_thread_limit.
4190   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4191   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4192 
4193   // at exit methods are called in the reverse order of their registration.
4194   // there is no limit to the number of functions registered. atexit does
4195   // not set errno.
4196 
4197   if (PerfAllowAtExitRegistration) {
4198     // only register atexit functions if PerfAllowAtExitRegistration is set.
4199     // atexit functions can be delayed until process exit time, which
4200     // can be problematic for embedded VM situations. Embedded VMs should
4201     // call DestroyJavaVM() to assure that VM resources are released.
4202 
4203     // note: perfMemory_exit_helper atexit function may be removed in
4204     // the future if the appropriate cleanup code can be added to the
4205     // VM_Exit VMOperation's doit method.
4206     if (atexit(perfMemory_exit_helper) != 0) {
4207       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4208     }
4209   }
4210 
4211 #ifndef _WIN64
4212   // Print something if NX is enabled (win32 on AMD64)
4213   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4214 #endif
4215 
4216   // initialize thread priority policy
4217   prio_init();
4218 
4219   if (UseNUMA && !ForceNUMA) {
4220     UseNUMA = false; // We don't fully support this yet
4221   }
4222 
4223   if (UseNUMAInterleaving) {
4224     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4225     bool success = numa_interleaving_init();
4226     if (!success) UseNUMAInterleaving = false;
4227   }
4228 
4229   if (initSock() != JNI_OK) {
4230     return JNI_ERR;
4231   }
4232 
4233   SymbolEngine::recalc_search_path();
4234 
4235   // Initialize data for jdk.internal.misc.Signal
4236   if (!ReduceSignalUsage) {
4237     jdk_misc_signal_init();
4238   }
4239 
4240   return JNI_OK;
4241 }
4242 
4243 // Mark the polling page as unreadable
4244 void os::make_polling_page_unreadable(void) {
4245   DWORD old_status;
4246   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4247                       PAGE_NOACCESS, &old_status)) {
4248     fatal("Could not disable polling page");
4249   }
4250 }
4251 
4252 // Mark the polling page as readable
4253 void os::make_polling_page_readable(void) {
4254   DWORD old_status;
4255   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4256                       PAGE_READONLY, &old_status)) {
4257     fatal("Could not enable polling page");
4258   }
4259 }
4260 
4261 // combine the high and low DWORD into a ULONGLONG
4262 static ULONGLONG make_double_word(DWORD high_word, DWORD low_word) {
4263   ULONGLONG value = high_word;
4264   value <<= sizeof(high_word) * 8;
4265   value |= low_word;
4266   return value;
4267 }
4268 
4269 // Transfers data from WIN32_FILE_ATTRIBUTE_DATA structure to struct stat
4270 static void file_attribute_data_to_stat(struct stat* sbuf, WIN32_FILE_ATTRIBUTE_DATA file_data) {
4271   ::memset((void*)sbuf, 0, sizeof(struct stat));
4272   sbuf->st_size = (_off_t)make_double_word(file_data.nFileSizeHigh, file_data.nFileSizeLow);
4273   sbuf->st_mtime = make_double_word(file_data.ftLastWriteTime.dwHighDateTime,
4274                                   file_data.ftLastWriteTime.dwLowDateTime);
4275   sbuf->st_ctime = make_double_word(file_data.ftCreationTime.dwHighDateTime,
4276                                   file_data.ftCreationTime.dwLowDateTime);
4277   sbuf->st_atime = make_double_word(file_data.ftLastAccessTime.dwHighDateTime,
4278                                   file_data.ftLastAccessTime.dwLowDateTime);
4279   if ((file_data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0) {
4280     sbuf->st_mode |= S_IFDIR;
4281   } else {
4282     sbuf->st_mode |= S_IFREG;
4283   }
4284 }
4285 
4286 // The following function is adapted from java.base/windows/native/libjava/canonicalize_md.c
4287 // Creates an UNC path from a single byte path. Return buffer is
4288 // allocated in C heap and needs to be freed by the caller.
4289 // Returns NULL on error.
4290 static wchar_t* create_unc_path(const char* path, errno_t &err) {
4291   wchar_t* wpath = NULL;
4292   size_t converted_chars = 0;
4293   size_t path_len = strlen(path) + 1; // includes the terminating NULL
4294   if (path[0] == '\\' && path[1] == '\\') {
4295     if (path[2] == '?' && path[3] == '\\'){
4296       // if it already has a \\?\ don't do the prefix
4297       wpath = (wchar_t*)os::malloc(path_len * sizeof(wchar_t), mtInternal);
4298       if (wpath != NULL) {
4299         err = ::mbstowcs_s(&converted_chars, wpath, path_len, path, path_len);
4300       } else {
4301         err = ENOMEM;
4302       }
4303     } else {
4304       // only UNC pathname includes double slashes here
4305       wpath = (wchar_t*)os::malloc((path_len + 7) * sizeof(wchar_t), mtInternal);
4306       if (wpath != NULL) {
4307         ::wcscpy(wpath, L"\\\\?\\UNC\0");
4308         err = ::mbstowcs_s(&converted_chars, &wpath[7], path_len, path, path_len);
4309       } else {
4310         err = ENOMEM;
4311       }
4312     }
4313   } else {
4314     wpath = (wchar_t*)os::malloc((path_len + 4) * sizeof(wchar_t), mtInternal);
4315     if (wpath != NULL) {
4316       ::wcscpy(wpath, L"\\\\?\\\0");
4317       err = ::mbstowcs_s(&converted_chars, &wpath[4], path_len, path, path_len);
4318     } else {
4319       err = ENOMEM;
4320     }
4321   }
4322   return wpath;
4323 }
4324 
4325 static void destroy_unc_path(wchar_t* wpath) {
4326   os::free(wpath);
4327 }
4328 
4329 int os::stat(const char *path, struct stat *sbuf) {
4330   char* pathbuf = (char*)os::strdup(path, mtInternal);
4331   if (pathbuf == NULL) {
4332     errno = ENOMEM;
4333     return -1;
4334   }
4335   os::native_path(pathbuf);
4336   int ret;
4337   WIN32_FILE_ATTRIBUTE_DATA file_data;
4338   // Not using stat() to avoid the problem described in JDK-6539723
4339   if (strlen(path) < MAX_PATH) {
4340     BOOL bret = ::GetFileAttributesExA(pathbuf, GetFileExInfoStandard, &file_data);
4341     if (!bret) {
4342       errno = ::GetLastError();
4343       ret = -1;
4344     }
4345     else {
4346       file_attribute_data_to_stat(sbuf, file_data);
4347       ret = 0;
4348     }
4349   } else {
4350     errno_t err = ERROR_SUCCESS;
4351     wchar_t* wpath = create_unc_path(pathbuf, err);
4352     if (err != ERROR_SUCCESS) {
4353       if (wpath != NULL) {
4354         destroy_unc_path(wpath);
4355       }
4356       os::free(pathbuf);
4357       errno = err;
4358       return -1;
4359     }
4360     BOOL bret = ::GetFileAttributesExW(wpath, GetFileExInfoStandard, &file_data);
4361     if (!bret) {
4362       errno = ::GetLastError();
4363       ret = -1;
4364     } else {
4365       file_attribute_data_to_stat(sbuf, file_data);
4366       ret = 0;
4367     }
4368     destroy_unc_path(wpath);
4369   }
4370   os::free(pathbuf);
4371   return ret;
4372 }
4373 
4374 static HANDLE create_read_only_file_handle(const char* file) {
4375   if (file == NULL) {
4376     return INVALID_HANDLE_VALUE;
4377   }
4378 
4379   char* nativepath = (char*)os::strdup(file, mtInternal);
4380   if (nativepath == NULL) {
4381     errno = ENOMEM;
4382     return INVALID_HANDLE_VALUE;
4383   }
4384   os::native_path(nativepath);
4385 
4386   size_t len = strlen(nativepath);
4387   HANDLE handle = INVALID_HANDLE_VALUE;
4388 
4389   if (len < MAX_PATH) {
4390     handle = ::CreateFile(nativepath, 0, FILE_SHARE_READ,
4391                           NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4392   } else {
4393     errno_t err = ERROR_SUCCESS;
4394     wchar_t* wfile = create_unc_path(nativepath, err);
4395     if (err != ERROR_SUCCESS) {
4396       if (wfile != NULL) {
4397         destroy_unc_path(wfile);
4398       }
4399       os::free(nativepath);
4400       return INVALID_HANDLE_VALUE;
4401     }
4402     handle = ::CreateFileW(wfile, 0, FILE_SHARE_READ,
4403                            NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4404     destroy_unc_path(wfile);
4405   }
4406 
4407   os::free(nativepath);
4408   return handle;
4409 }
4410 
4411 bool os::same_files(const char* file1, const char* file2) {
4412 
4413   if (file1 == NULL && file2 == NULL) {
4414     return true;
4415   }
4416 
4417   if (file1 == NULL || file2 == NULL) {
4418     return false;
4419   }
4420 
4421   if (strcmp(file1, file2) == 0) {
4422     return true;
4423   }
4424 
4425   HANDLE handle1 = create_read_only_file_handle(file1);
4426   HANDLE handle2 = create_read_only_file_handle(file2);
4427   bool result = false;
4428 
4429   // if we could open both paths...
4430   if (handle1 != INVALID_HANDLE_VALUE && handle2 != INVALID_HANDLE_VALUE) {
4431     BY_HANDLE_FILE_INFORMATION fileInfo1;
4432     BY_HANDLE_FILE_INFORMATION fileInfo2;
4433     if (::GetFileInformationByHandle(handle1, &fileInfo1) &&
4434       ::GetFileInformationByHandle(handle2, &fileInfo2)) {
4435       // the paths are the same if they refer to the same file (fileindex) on the same volume (volume serial number)
4436       if (fileInfo1.dwVolumeSerialNumber == fileInfo2.dwVolumeSerialNumber &&
4437         fileInfo1.nFileIndexHigh == fileInfo2.nFileIndexHigh &&
4438         fileInfo1.nFileIndexLow == fileInfo2.nFileIndexLow) {
4439         result = true;
4440       }
4441     }
4442   }
4443 
4444   //free the handles
4445   if (handle1 != INVALID_HANDLE_VALUE) {
4446     ::CloseHandle(handle1);
4447   }
4448 
4449   if (handle2 != INVALID_HANDLE_VALUE) {
4450     ::CloseHandle(handle2);
4451   }
4452 
4453   return result;
4454 }
4455 
4456 
4457 #define FT2INT64(ft) \
4458   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4459 
4460 
4461 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4462 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4463 // of a thread.
4464 //
4465 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4466 // the fast estimate available on the platform.
4467 
4468 // current_thread_cpu_time() is not optimized for Windows yet
4469 jlong os::current_thread_cpu_time() {
4470   // return user + sys since the cost is the same
4471   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4472 }
4473 
4474 jlong os::thread_cpu_time(Thread* thread) {
4475   // consistent with what current_thread_cpu_time() returns.
4476   return os::thread_cpu_time(thread, true /* user+sys */);
4477 }
4478 
4479 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4480   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4481 }
4482 
4483 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4484   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4485   // If this function changes, os::is_thread_cpu_time_supported() should too
4486   FILETIME CreationTime;
4487   FILETIME ExitTime;
4488   FILETIME KernelTime;
4489   FILETIME UserTime;
4490 
4491   if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4492                       &ExitTime, &KernelTime, &UserTime) == 0) {
4493     return -1;
4494   } else if (user_sys_cpu_time) {
4495     return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4496   } else {
4497     return FT2INT64(UserTime) * 100;
4498   }
4499 }
4500 
4501 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4502   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4503   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4504   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4505   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4506 }
4507 
4508 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4509   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4510   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4511   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4512   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4513 }
4514 
4515 bool os::is_thread_cpu_time_supported() {
4516   // see os::thread_cpu_time
4517   FILETIME CreationTime;
4518   FILETIME ExitTime;
4519   FILETIME KernelTime;
4520   FILETIME UserTime;
4521 
4522   if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4523                       &KernelTime, &UserTime) == 0) {
4524     return false;
4525   } else {
4526     return true;
4527   }
4528 }
4529 
4530 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4531 // It does have primitives (PDH API) to get CPU usage and run queue length.
4532 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4533 // If we wanted to implement loadavg on Windows, we have a few options:
4534 //
4535 // a) Query CPU usage and run queue length and "fake" an answer by
4536 //    returning the CPU usage if it's under 100%, and the run queue
4537 //    length otherwise.  It turns out that querying is pretty slow
4538 //    on Windows, on the order of 200 microseconds on a fast machine.
4539 //    Note that on the Windows the CPU usage value is the % usage
4540 //    since the last time the API was called (and the first call
4541 //    returns 100%), so we'd have to deal with that as well.
4542 //
4543 // b) Sample the "fake" answer using a sampling thread and store
4544 //    the answer in a global variable.  The call to loadavg would
4545 //    just return the value of the global, avoiding the slow query.
4546 //
4547 // c) Sample a better answer using exponential decay to smooth the
4548 //    value.  This is basically the algorithm used by UNIX kernels.
4549 //
4550 // Note that sampling thread starvation could affect both (b) and (c).
4551 int os::loadavg(double loadavg[], int nelem) {
4552   return -1;
4553 }
4554 
4555 
4556 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4557 bool os::dont_yield() {
4558   return DontYieldALot;
4559 }
4560 
4561 // This method is a slightly reworked copy of JDK's sysOpen
4562 // from src/windows/hpi/src/sys_api_md.c
4563 
4564 int os::open(const char *path, int oflag, int mode) {
4565   char* pathbuf = (char*)os::strdup(path, mtInternal);
4566   if (pathbuf == NULL) {
4567     errno = ENOMEM;
4568     return -1;
4569   }
4570   os::native_path(pathbuf);
4571   int ret;
4572   if (strlen(path) < MAX_PATH) {
4573     ret = ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4574   } else {
4575     errno_t err = ERROR_SUCCESS;
4576     wchar_t* wpath = create_unc_path(pathbuf, err);
4577     if (err != ERROR_SUCCESS) {
4578       if (wpath != NULL) {
4579         destroy_unc_path(wpath);
4580       }
4581       os::free(pathbuf);
4582       errno = err;
4583       return -1;
4584     }
4585     ret = ::_wopen(wpath, oflag | O_BINARY | O_NOINHERIT, mode);
4586     if (ret == -1) {
4587       errno = ::GetLastError();
4588     }
4589     destroy_unc_path(wpath);
4590   }
4591   os::free(pathbuf);
4592   return ret;
4593 }
4594 
4595 FILE* os::open(int fd, const char* mode) {
4596   return ::_fdopen(fd, mode);
4597 }
4598 
4599 // Is a (classpath) directory empty?
4600 bool os::dir_is_empty(const char* path) {
4601   char* search_path = (char*)os::malloc(strlen(path) + 3, mtInternal);
4602   if (search_path == NULL) {
4603     errno = ENOMEM;
4604     return false;
4605   }
4606   strcpy(search_path, path);
4607   os::native_path(search_path);
4608   // Append "*", or possibly "\\*", to path
4609   if (search_path[1] == ':' &&
4610        (search_path[2] == '\0' ||
4611          (search_path[2] == '\\' && search_path[3] == '\0'))) {
4612     // No '\\' needed for cases like "Z:" or "Z:\"
4613     strcat(search_path, "*");
4614   }
4615   else {
4616     strcat(search_path, "\\*");
4617   }
4618   errno_t err = ERROR_SUCCESS;
4619   wchar_t* wpath = create_unc_path(search_path, err);
4620   if (err != ERROR_SUCCESS) {
4621     if (wpath != NULL) {
4622       destroy_unc_path(wpath);
4623     }
4624     os::free(search_path);
4625     errno = err;
4626     return false;
4627   }
4628   WIN32_FIND_DATAW fd;
4629   HANDLE f = ::FindFirstFileW(wpath, &fd);
4630   destroy_unc_path(wpath);
4631   bool is_empty = true;
4632   if (f != INVALID_HANDLE_VALUE) {
4633     while (is_empty && ::FindNextFileW(f, &fd)) {
4634       // An empty directory contains only the current directory file
4635       // and the previous directory file.
4636       if ((wcscmp(fd.cFileName, L".") != 0) &&
4637           (wcscmp(fd.cFileName, L"..") != 0)) {
4638         is_empty = false;
4639       }
4640     }
4641     FindClose(f);
4642   }
4643   os::free(search_path);
4644   return is_empty;
4645 }
4646 
4647 // create binary file, rewriting existing file if required
4648 int os::create_binary_file(const char* path, bool rewrite_existing) {
4649   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4650   if (!rewrite_existing) {
4651     oflags |= _O_EXCL;
4652   }
4653   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4654 }
4655 
4656 // return current position of file pointer
4657 jlong os::current_file_offset(int fd) {
4658   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4659 }
4660 
4661 // move file pointer to the specified offset
4662 jlong os::seek_to_file_offset(int fd, jlong offset) {
4663   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4664 }
4665 
4666 
4667 jlong os::lseek(int fd, jlong offset, int whence) {
4668   return (jlong) ::_lseeki64(fd, offset, whence);
4669 }
4670 
4671 ssize_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4672   OVERLAPPED ov;
4673   DWORD nread;
4674   BOOL result;
4675 
4676   ZeroMemory(&ov, sizeof(ov));
4677   ov.Offset = (DWORD)offset;
4678   ov.OffsetHigh = (DWORD)(offset >> 32);
4679 
4680   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4681 
4682   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4683 
4684   return result ? nread : 0;
4685 }
4686 
4687 
4688 // This method is a slightly reworked copy of JDK's sysNativePath
4689 // from src/windows/hpi/src/path_md.c
4690 
4691 // Convert a pathname to native format.  On win32, this involves forcing all
4692 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4693 // sometimes rejects '/') and removing redundant separators.  The input path is
4694 // assumed to have been converted into the character encoding used by the local
4695 // system.  Because this might be a double-byte encoding, care is taken to
4696 // treat double-byte lead characters correctly.
4697 //
4698 // This procedure modifies the given path in place, as the result is never
4699 // longer than the original.  There is no error return; this operation always
4700 // succeeds.
4701 char * os::native_path(char *path) {
4702   char *src = path, *dst = path, *end = path;
4703   char *colon = NULL;  // If a drive specifier is found, this will
4704                        // point to the colon following the drive letter
4705 
4706   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4707   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4708           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4709 
4710   // Check for leading separators
4711 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4712   while (isfilesep(*src)) {
4713     src++;
4714   }
4715 
4716   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4717     // Remove leading separators if followed by drive specifier.  This
4718     // hack is necessary to support file URLs containing drive
4719     // specifiers (e.g., "file://c:/path").  As a side effect,
4720     // "/c:/path" can be used as an alternative to "c:/path".
4721     *dst++ = *src++;
4722     colon = dst;
4723     *dst++ = ':';
4724     src++;
4725   } else {
4726     src = path;
4727     if (isfilesep(src[0]) && isfilesep(src[1])) {
4728       // UNC pathname: Retain first separator; leave src pointed at
4729       // second separator so that further separators will be collapsed
4730       // into the second separator.  The result will be a pathname
4731       // beginning with "\\\\" followed (most likely) by a host name.
4732       src = dst = path + 1;
4733       path[0] = '\\';     // Force first separator to '\\'
4734     }
4735   }
4736 
4737   end = dst;
4738 
4739   // Remove redundant separators from remainder of path, forcing all
4740   // separators to be '\\' rather than '/'. Also, single byte space
4741   // characters are removed from the end of the path because those
4742   // are not legal ending characters on this operating system.
4743   //
4744   while (*src != '\0') {
4745     if (isfilesep(*src)) {
4746       *dst++ = '\\'; src++;
4747       while (isfilesep(*src)) src++;
4748       if (*src == '\0') {
4749         // Check for trailing separator
4750         end = dst;
4751         if (colon == dst - 2) break;  // "z:\\"
4752         if (dst == path + 1) break;   // "\\"
4753         if (dst == path + 2 && isfilesep(path[0])) {
4754           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4755           // beginning of a UNC pathname.  Even though it is not, by
4756           // itself, a valid UNC pathname, we leave it as is in order
4757           // to be consistent with the path canonicalizer as well
4758           // as the win32 APIs, which treat this case as an invalid
4759           // UNC pathname rather than as an alias for the root
4760           // directory of the current drive.
4761           break;
4762         }
4763         end = --dst;  // Path does not denote a root directory, so
4764                       // remove trailing separator
4765         break;
4766       }
4767       end = dst;
4768     } else {
4769       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4770         *dst++ = *src++;
4771         if (*src) *dst++ = *src++;
4772         end = dst;
4773       } else {  // Copy a single-byte character
4774         char c = *src++;
4775         *dst++ = c;
4776         // Space is not a legal ending character
4777         if (c != ' ') end = dst;
4778       }
4779     }
4780   }
4781 
4782   *end = '\0';
4783 
4784   // For "z:", add "." to work around a bug in the C runtime library
4785   if (colon == dst - 1) {
4786     path[2] = '.';
4787     path[3] = '\0';
4788   }
4789 
4790   return path;
4791 }
4792 
4793 // This code is a copy of JDK's sysSetLength
4794 // from src/windows/hpi/src/sys_api_md.c
4795 
4796 int os::ftruncate(int fd, jlong length) {
4797   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4798   long high = (long)(length >> 32);
4799   DWORD ret;
4800 
4801   if (h == (HANDLE)(-1)) {
4802     return -1;
4803   }
4804 
4805   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4806   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4807     return -1;
4808   }
4809 
4810   if (::SetEndOfFile(h) == FALSE) {
4811     return -1;
4812   }
4813 
4814   return 0;
4815 }
4816 
4817 int os::get_fileno(FILE* fp) {
4818   return _fileno(fp);
4819 }
4820 
4821 // This code is a copy of JDK's sysSync
4822 // from src/windows/hpi/src/sys_api_md.c
4823 // except for the legacy workaround for a bug in Win 98
4824 
4825 int os::fsync(int fd) {
4826   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4827 
4828   if ((!::FlushFileBuffers(handle)) &&
4829       (GetLastError() != ERROR_ACCESS_DENIED)) {
4830     // from winerror.h
4831     return -1;
4832   }
4833   return 0;
4834 }
4835 
4836 static int nonSeekAvailable(int, long *);
4837 static int stdinAvailable(int, long *);
4838 
4839 // This code is a copy of JDK's sysAvailable
4840 // from src/windows/hpi/src/sys_api_md.c
4841 
4842 int os::available(int fd, jlong *bytes) {
4843   jlong cur, end;
4844   struct _stati64 stbuf64;
4845 
4846   if (::_fstati64(fd, &stbuf64) >= 0) {
4847     int mode = stbuf64.st_mode;
4848     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4849       int ret;
4850       long lpbytes;
4851       if (fd == 0) {
4852         ret = stdinAvailable(fd, &lpbytes);
4853       } else {
4854         ret = nonSeekAvailable(fd, &lpbytes);
4855       }
4856       (*bytes) = (jlong)(lpbytes);
4857       return ret;
4858     }
4859     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4860       return FALSE;
4861     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4862       return FALSE;
4863     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4864       return FALSE;
4865     }
4866     *bytes = end - cur;
4867     return TRUE;
4868   } else {
4869     return FALSE;
4870   }
4871 }
4872 
4873 void os::flockfile(FILE* fp) {
4874   _lock_file(fp);
4875 }
4876 
4877 void os::funlockfile(FILE* fp) {
4878   _unlock_file(fp);
4879 }
4880 
4881 // This code is a copy of JDK's nonSeekAvailable
4882 // from src/windows/hpi/src/sys_api_md.c
4883 
4884 static int nonSeekAvailable(int fd, long *pbytes) {
4885   // This is used for available on non-seekable devices
4886   // (like both named and anonymous pipes, such as pipes
4887   //  connected to an exec'd process).
4888   // Standard Input is a special case.
4889   HANDLE han;
4890 
4891   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4892     return FALSE;
4893   }
4894 
4895   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4896     // PeekNamedPipe fails when at EOF.  In that case we
4897     // simply make *pbytes = 0 which is consistent with the
4898     // behavior we get on Solaris when an fd is at EOF.
4899     // The only alternative is to raise an Exception,
4900     // which isn't really warranted.
4901     //
4902     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4903       return FALSE;
4904     }
4905     *pbytes = 0;
4906   }
4907   return TRUE;
4908 }
4909 
4910 #define MAX_INPUT_EVENTS 2000
4911 
4912 // This code is a copy of JDK's stdinAvailable
4913 // from src/windows/hpi/src/sys_api_md.c
4914 
4915 static int stdinAvailable(int fd, long *pbytes) {
4916   HANDLE han;
4917   DWORD numEventsRead = 0;  // Number of events read from buffer
4918   DWORD numEvents = 0;      // Number of events in buffer
4919   DWORD i = 0;              // Loop index
4920   DWORD curLength = 0;      // Position marker
4921   DWORD actualLength = 0;   // Number of bytes readable
4922   BOOL error = FALSE;       // Error holder
4923   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4924 
4925   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4926     return FALSE;
4927   }
4928 
4929   // Construct an array of input records in the console buffer
4930   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4931   if (error == 0) {
4932     return nonSeekAvailable(fd, pbytes);
4933   }
4934 
4935   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4936   if (numEvents > MAX_INPUT_EVENTS) {
4937     numEvents = MAX_INPUT_EVENTS;
4938   }
4939 
4940   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4941   if (lpBuffer == NULL) {
4942     return FALSE;
4943   }
4944 
4945   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4946   if (error == 0) {
4947     os::free(lpBuffer);
4948     return FALSE;
4949   }
4950 
4951   // Examine input records for the number of bytes available
4952   for (i=0; i<numEvents; i++) {
4953     if (lpBuffer[i].EventType == KEY_EVENT) {
4954 
4955       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4956                                       &(lpBuffer[i].Event);
4957       if (keyRecord->bKeyDown == TRUE) {
4958         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4959         curLength++;
4960         if (*keyPressed == '\r') {
4961           actualLength = curLength;
4962         }
4963       }
4964     }
4965   }
4966 
4967   if (lpBuffer != NULL) {
4968     os::free(lpBuffer);
4969   }
4970 
4971   *pbytes = (long) actualLength;
4972   return TRUE;
4973 }
4974 
4975 // Map a block of memory.
4976 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4977                         char *addr, size_t bytes, bool read_only,
4978                         bool allow_exec) {
4979   HANDLE hFile;
4980   char* base;
4981 
4982   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4983                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4984   if (hFile == NULL) {
4985     log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
4986     return NULL;
4987   }
4988 
4989   if (allow_exec) {
4990     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4991     // unless it comes from a PE image (which the shared archive is not.)
4992     // Even VirtualProtect refuses to give execute access to mapped memory
4993     // that was not previously executable.
4994     //
4995     // Instead, stick the executable region in anonymous memory.  Yuck.
4996     // Penalty is that ~4 pages will not be shareable - in the future
4997     // we might consider DLLizing the shared archive with a proper PE
4998     // header so that mapping executable + sharing is possible.
4999 
5000     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
5001                                 PAGE_READWRITE);
5002     if (base == NULL) {
5003       log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
5004       CloseHandle(hFile);
5005       return NULL;
5006     }
5007 
5008     // Record virtual memory allocation
5009     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
5010 
5011     DWORD bytes_read;
5012     OVERLAPPED overlapped;
5013     overlapped.Offset = (DWORD)file_offset;
5014     overlapped.OffsetHigh = 0;
5015     overlapped.hEvent = NULL;
5016     // ReadFile guarantees that if the return value is true, the requested
5017     // number of bytes were read before returning.
5018     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
5019     if (!res) {
5020       log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
5021       release_memory(base, bytes);
5022       CloseHandle(hFile);
5023       return NULL;
5024     }
5025   } else {
5026     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
5027                                     NULL /* file_name */);
5028     if (hMap == NULL) {
5029       log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
5030       CloseHandle(hFile);
5031       return NULL;
5032     }
5033 
5034     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
5035     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
5036                                   (DWORD)bytes, addr);
5037     if (base == NULL) {
5038       log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
5039       CloseHandle(hMap);
5040       CloseHandle(hFile);
5041       return NULL;
5042     }
5043 
5044     if (CloseHandle(hMap) == 0) {
5045       log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
5046       CloseHandle(hFile);
5047       return base;
5048     }
5049   }
5050 
5051   if (allow_exec) {
5052     DWORD old_protect;
5053     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
5054     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
5055 
5056     if (!res) {
5057       log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
5058       // Don't consider this a hard error, on IA32 even if the
5059       // VirtualProtect fails, we should still be able to execute
5060       CloseHandle(hFile);
5061       return base;
5062     }
5063   }
5064 
5065   if (CloseHandle(hFile) == 0) {
5066     log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
5067     return base;
5068   }
5069 
5070   return base;
5071 }
5072 
5073 
5074 // Remap a block of memory.
5075 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5076                           char *addr, size_t bytes, bool read_only,
5077                           bool allow_exec) {
5078   // This OS does not allow existing memory maps to be remapped so we
5079   // would have to unmap the memory before we remap it.
5080 
5081   // Because there is a small window between unmapping memory and mapping
5082   // it in again with different protections, CDS archives are mapped RW
5083   // on windows, so this function isn't called.
5084   ShouldNotReachHere();
5085   return NULL;
5086 }
5087 
5088 
5089 // Unmap a block of memory.
5090 // Returns true=success, otherwise false.
5091 
5092 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5093   MEMORY_BASIC_INFORMATION mem_info;
5094   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
5095     log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
5096     return false;
5097   }
5098 
5099   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
5100   // Instead, executable region was allocated using VirtualAlloc(). See
5101   // pd_map_memory() above.
5102   //
5103   // The following flags should match the 'exec_access' flages used for
5104   // VirtualProtect() in pd_map_memory().
5105   if (mem_info.Protect == PAGE_EXECUTE_READ ||
5106       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
5107     return pd_release_memory(addr, bytes);
5108   }
5109 
5110   BOOL result = UnmapViewOfFile(addr);
5111   if (result == 0) {
5112     log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
5113     return false;
5114   }
5115   return true;
5116 }
5117 
5118 void os::pause() {
5119   char filename[MAX_PATH];
5120   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5121     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5122   } else {
5123     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5124   }
5125 
5126   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5127   if (fd != -1) {
5128     struct stat buf;
5129     ::close(fd);
5130     while (::stat(filename, &buf) == 0) {
5131       Sleep(100);
5132     }
5133   } else {
5134     jio_fprintf(stderr,
5135                 "Could not open pause file '%s', continuing immediately.\n", filename);
5136   }
5137 }
5138 
5139 Thread* os::ThreadCrashProtection::_protected_thread = NULL;
5140 os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
5141 volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
5142 
5143 os::ThreadCrashProtection::ThreadCrashProtection() {
5144 }
5145 
5146 // See the caveats for this class in os_windows.hpp
5147 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
5148 // into this method and returns false. If no OS EXCEPTION was raised, returns
5149 // true.
5150 // The callback is supposed to provide the method that should be protected.
5151 //
5152 bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
5153 
5154   Thread::muxAcquire(&_crash_mux, "CrashProtection");
5155 
5156   _protected_thread = Thread::current_or_null();
5157   assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
5158 
5159   bool success = true;
5160   __try {
5161     _crash_protection = this;
5162     cb.call();
5163   } __except(EXCEPTION_EXECUTE_HANDLER) {
5164     // only for protection, nothing to do
5165     success = false;
5166   }
5167   _crash_protection = NULL;
5168   _protected_thread = NULL;
5169   Thread::muxRelease(&_crash_mux);
5170   return success;
5171 }
5172 
5173 // An Event wraps a win32 "CreateEvent" kernel handle.
5174 //
5175 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
5176 //
5177 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
5178 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
5179 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
5180 //     In addition, an unpark() operation might fetch the handle field, but the
5181 //     event could recycle between the fetch and the SetEvent() operation.
5182 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
5183 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
5184 //     on an stale but recycled handle would be harmless, but in practice this might
5185 //     confuse other non-Sun code, so it's not a viable approach.
5186 //
5187 // 2:  Once a win32 event handle is associated with an Event, it remains associated
5188 //     with the Event.  The event handle is never closed.  This could be construed
5189 //     as handle leakage, but only up to the maximum # of threads that have been extant
5190 //     at any one time.  This shouldn't be an issue, as windows platforms typically
5191 //     permit a process to have hundreds of thousands of open handles.
5192 //
5193 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
5194 //     and release unused handles.
5195 //
5196 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
5197 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
5198 //
5199 // 5.  Use an RCU-like mechanism (Read-Copy Update).
5200 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
5201 //
5202 // We use (2).
5203 //
5204 // TODO-FIXME:
5205 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
5206 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
5207 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
5208 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
5209 //     into a single win32 CreateEvent() handle.
5210 //
5211 // Assumption:
5212 //    Only one parker can exist on an event, which is why we allocate
5213 //    them per-thread. Multiple unparkers can coexist.
5214 //
5215 // _Event transitions in park()
5216 //   -1 => -1 : illegal
5217 //    1 =>  0 : pass - return immediately
5218 //    0 => -1 : block; then set _Event to 0 before returning
5219 //
5220 // _Event transitions in unpark()
5221 //    0 => 1 : just return
5222 //    1 => 1 : just return
5223 //   -1 => either 0 or 1; must signal target thread
5224 //         That is, we can safely transition _Event from -1 to either
5225 //         0 or 1.
5226 //
5227 // _Event serves as a restricted-range semaphore.
5228 //   -1 : thread is blocked, i.e. there is a waiter
5229 //    0 : neutral: thread is running or ready,
5230 //        could have been signaled after a wait started
5231 //    1 : signaled - thread is running or ready
5232 //
5233 // Another possible encoding of _Event would be with
5234 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5235 //
5236 
5237 int os::PlatformEvent::park(jlong Millis) {
5238   // Transitions for _Event:
5239   //   -1 => -1 : illegal
5240   //    1 =>  0 : pass - return immediately
5241   //    0 => -1 : block; then set _Event to 0 before returning
5242 
5243   guarantee(_ParkHandle != NULL , "Invariant");
5244   guarantee(Millis > 0          , "Invariant");
5245 
5246   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5247   // the initial park() operation.
5248   // Consider: use atomic decrement instead of CAS-loop
5249 
5250   int v;
5251   for (;;) {
5252     v = _Event;
5253     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5254   }
5255   guarantee((v == 0) || (v == 1), "invariant");
5256   if (v != 0) return OS_OK;
5257 
5258   // Do this the hard way by blocking ...
5259   // TODO: consider a brief spin here, gated on the success of recent
5260   // spin attempts by this thread.
5261   //
5262   // We decompose long timeouts into series of shorter timed waits.
5263   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5264   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5265   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5266   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5267   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5268   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5269   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5270   // for the already waited time.  This policy does not admit any new outcomes.
5271   // In the future, however, we might want to track the accumulated wait time and
5272   // adjust Millis accordingly if we encounter a spurious wakeup.
5273 
5274   const int MAXTIMEOUT = 0x10000000;
5275   DWORD rv = WAIT_TIMEOUT;
5276   while (_Event < 0 && Millis > 0) {
5277     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5278     if (Millis > MAXTIMEOUT) {
5279       prd = MAXTIMEOUT;
5280     }
5281     rv = ::WaitForSingleObject(_ParkHandle, prd);
5282     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5283     if (rv == WAIT_TIMEOUT) {
5284       Millis -= prd;
5285     }
5286   }
5287   v = _Event;
5288   _Event = 0;
5289   // see comment at end of os::PlatformEvent::park() below:
5290   OrderAccess::fence();
5291   // If we encounter a nearly simultanous timeout expiry and unpark()
5292   // we return OS_OK indicating we awoke via unpark().
5293   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5294   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5295 }
5296 
5297 void os::PlatformEvent::park() {
5298   // Transitions for _Event:
5299   //   -1 => -1 : illegal
5300   //    1 =>  0 : pass - return immediately
5301   //    0 => -1 : block; then set _Event to 0 before returning
5302 
5303   guarantee(_ParkHandle != NULL, "Invariant");
5304   // Invariant: Only the thread associated with the Event/PlatformEvent
5305   // may call park().
5306   // Consider: use atomic decrement instead of CAS-loop
5307   int v;
5308   for (;;) {
5309     v = _Event;
5310     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5311   }
5312   guarantee((v == 0) || (v == 1), "invariant");
5313   if (v != 0) return;
5314 
5315   // Do this the hard way by blocking ...
5316   // TODO: consider a brief spin here, gated on the success of recent
5317   // spin attempts by this thread.
5318   while (_Event < 0) {
5319     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5320     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5321   }
5322 
5323   // Usually we'll find _Event == 0 at this point, but as
5324   // an optional optimization we clear it, just in case can
5325   // multiple unpark() operations drove _Event up to 1.
5326   _Event = 0;
5327   OrderAccess::fence();
5328   guarantee(_Event >= 0, "invariant");
5329 }
5330 
5331 void os::PlatformEvent::unpark() {
5332   guarantee(_ParkHandle != NULL, "Invariant");
5333 
5334   // Transitions for _Event:
5335   //    0 => 1 : just return
5336   //    1 => 1 : just return
5337   //   -1 => either 0 or 1; must signal target thread
5338   //         That is, we can safely transition _Event from -1 to either
5339   //         0 or 1.
5340   // See also: "Semaphores in Plan 9" by Mullender & Cox
5341   //
5342   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5343   // that it will take two back-to-back park() calls for the owning
5344   // thread to block. This has the benefit of forcing a spurious return
5345   // from the first park() call after an unpark() call which will help
5346   // shake out uses of park() and unpark() without condition variables.
5347 
5348   if (Atomic::xchg(1, &_Event) >= 0) return;
5349 
5350   ::SetEvent(_ParkHandle);
5351 }
5352 
5353 
5354 // JSR166
5355 // -------------------------------------------------------
5356 
5357 // The Windows implementation of Park is very straightforward: Basic
5358 // operations on Win32 Events turn out to have the right semantics to
5359 // use them directly. We opportunistically resuse the event inherited
5360 // from Monitor.
5361 
5362 void Parker::park(bool isAbsolute, jlong time) {
5363   guarantee(_ParkEvent != NULL, "invariant");
5364   // First, demultiplex/decode time arguments
5365   if (time < 0) { // don't wait
5366     return;
5367   } else if (time == 0 && !isAbsolute) {
5368     time = INFINITE;
5369   } else if (isAbsolute) {
5370     time -= os::javaTimeMillis(); // convert to relative time
5371     if (time <= 0) {  // already elapsed
5372       return;
5373     }
5374   } else { // relative
5375     time /= 1000000;  // Must coarsen from nanos to millis
5376     if (time == 0) {  // Wait for the minimal time unit if zero
5377       time = 1;
5378     }
5379   }
5380 
5381   JavaThread* thread = JavaThread::current();
5382 
5383   // Don't wait if interrupted or already triggered
5384   if (Thread::is_interrupted(thread, false) ||
5385       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5386     ResetEvent(_ParkEvent);
5387     return;
5388   } else {
5389     ThreadBlockInVM tbivm(thread);
5390     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5391     thread->set_suspend_equivalent();
5392 
5393     WaitForSingleObject(_ParkEvent, time);
5394     ResetEvent(_ParkEvent);
5395 
5396     // If externally suspended while waiting, re-suspend
5397     if (thread->handle_special_suspend_equivalent_condition()) {
5398       thread->java_suspend_self();
5399     }
5400   }
5401 }
5402 
5403 void Parker::unpark() {
5404   guarantee(_ParkEvent != NULL, "invariant");
5405   SetEvent(_ParkEvent);
5406 }
5407 
5408 // Platform Monitor implementation
5409 
5410 // Must already be locked
5411 int os::PlatformMonitor::wait(jlong millis) {
5412   assert(millis >= 0, "negative timeout");
5413   int ret = OS_TIMEOUT;
5414   int status = SleepConditionVariableCS(&_cond, &_mutex,
5415                                         millis == 0 ? INFINITE : millis);
5416   if (status != 0) {
5417     ret = OS_OK;
5418   }
5419   #ifndef PRODUCT
5420   else {
5421     DWORD err = GetLastError();
5422     assert(err == ERROR_TIMEOUT, "SleepConditionVariableCS: %ld:", err);
5423   }
5424   #endif
5425   return ret;
5426 }
5427 
5428 // Run the specified command in a separate process. Return its exit value,
5429 // or -1 on failure (e.g. can't create a new process).
5430 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5431   STARTUPINFO si;
5432   PROCESS_INFORMATION pi;
5433   DWORD exit_code;
5434 
5435   char * cmd_string;
5436   const char * cmd_prefix = "cmd /C ";
5437   size_t len = strlen(cmd) + strlen(cmd_prefix) + 1;
5438   cmd_string = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtInternal);
5439   if (cmd_string == NULL) {
5440     return -1;
5441   }
5442   cmd_string[0] = '\0';
5443   strcat(cmd_string, cmd_prefix);
5444   strcat(cmd_string, cmd);
5445 
5446   // now replace all '\n' with '&'
5447   char * substring = cmd_string;
5448   while ((substring = strchr(substring, '\n')) != NULL) {
5449     substring[0] = '&';
5450     substring++;
5451   }
5452   memset(&si, 0, sizeof(si));
5453   si.cb = sizeof(si);
5454   memset(&pi, 0, sizeof(pi));
5455   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5456                             cmd_string,    // command line
5457                             NULL,   // process security attribute
5458                             NULL,   // thread security attribute
5459                             TRUE,   // inherits system handles
5460                             0,      // no creation flags
5461                             NULL,   // use parent's environment block
5462                             NULL,   // use parent's starting directory
5463                             &si,    // (in) startup information
5464                             &pi);   // (out) process information
5465 
5466   if (rslt) {
5467     // Wait until child process exits.
5468     WaitForSingleObject(pi.hProcess, INFINITE);
5469 
5470     GetExitCodeProcess(pi.hProcess, &exit_code);
5471 
5472     // Close process and thread handles.
5473     CloseHandle(pi.hProcess);
5474     CloseHandle(pi.hThread);
5475   } else {
5476     exit_code = -1;
5477   }
5478 
5479   FREE_C_HEAP_ARRAY(char, cmd_string);
5480   return (int)exit_code;
5481 }
5482 
5483 bool os::find(address addr, outputStream* st) {
5484   int offset = -1;
5485   bool result = false;
5486   char buf[256];
5487   if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
5488     st->print(PTR_FORMAT " ", addr);
5489     if (strlen(buf) < sizeof(buf) - 1) {
5490       char* p = strrchr(buf, '\\');
5491       if (p) {
5492         st->print("%s", p + 1);
5493       } else {
5494         st->print("%s", buf);
5495       }
5496     } else {
5497         // The library name is probably truncated. Let's omit the library name.
5498         // See also JDK-8147512.
5499     }
5500     if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
5501       st->print("::%s + 0x%x", buf, offset);
5502     }
5503     st->cr();
5504     result = true;
5505   }
5506   return result;
5507 }
5508 
5509 static jint initSock() {
5510   WSADATA wsadata;
5511 
5512   if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5513     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5514                 ::GetLastError());
5515     return JNI_ERR;
5516   }
5517   return JNI_OK;
5518 }
5519 
5520 struct hostent* os::get_host_by_name(char* name) {
5521   return (struct hostent*)gethostbyname(name);
5522 }
5523 
5524 int os::socket_close(int fd) {
5525   return ::closesocket(fd);
5526 }
5527 
5528 int os::socket(int domain, int type, int protocol) {
5529   return ::socket(domain, type, protocol);
5530 }
5531 
5532 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5533   return ::connect(fd, him, len);
5534 }
5535 
5536 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5537   return ::recv(fd, buf, (int)nBytes, flags);
5538 }
5539 
5540 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5541   return ::send(fd, buf, (int)nBytes, flags);
5542 }
5543 
5544 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5545   return ::send(fd, buf, (int)nBytes, flags);
5546 }
5547 
5548 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5549 #if defined(IA32)
5550   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5551 #elif defined (AMD64)
5552   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5553 #endif
5554 
5555 // returns true if thread could be suspended,
5556 // false otherwise
5557 static bool do_suspend(HANDLE* h) {
5558   if (h != NULL) {
5559     if (SuspendThread(*h) != ~0) {
5560       return true;
5561     }
5562   }
5563   return false;
5564 }
5565 
5566 // resume the thread
5567 // calling resume on an active thread is a no-op
5568 static void do_resume(HANDLE* h) {
5569   if (h != NULL) {
5570     ResumeThread(*h);
5571   }
5572 }
5573 
5574 // retrieve a suspend/resume context capable handle
5575 // from the tid. Caller validates handle return value.
5576 void get_thread_handle_for_extended_context(HANDLE* h,
5577                                             OSThread::thread_id_t tid) {
5578   if (h != NULL) {
5579     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5580   }
5581 }
5582 
5583 // Thread sampling implementation
5584 //
5585 void os::SuspendedThreadTask::internal_do_task() {
5586   CONTEXT    ctxt;
5587   HANDLE     h = NULL;
5588 
5589   // get context capable handle for thread
5590   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5591 
5592   // sanity
5593   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5594     return;
5595   }
5596 
5597   // suspend the thread
5598   if (do_suspend(&h)) {
5599     ctxt.ContextFlags = sampling_context_flags;
5600     // get thread context
5601     GetThreadContext(h, &ctxt);
5602     SuspendedThreadTaskContext context(_thread, &ctxt);
5603     // pass context to Thread Sampling impl
5604     do_task(context);
5605     // resume thread
5606     do_resume(&h);
5607   }
5608 
5609   // close handle
5610   CloseHandle(h);
5611 }
5612 
5613 bool os::start_debugging(char *buf, int buflen) {
5614   int len = (int)strlen(buf);
5615   char *p = &buf[len];
5616 
5617   jio_snprintf(p, buflen-len,
5618              "\n\n"
5619              "Do you want to debug the problem?\n\n"
5620              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5621              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5622              "Otherwise, select 'No' to abort...",
5623              os::current_process_id(), os::current_thread_id());
5624 
5625   bool yes = os::message_box("Unexpected Error", buf);
5626 
5627   if (yes) {
5628     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5629     // exception. If VM is running inside a debugger, the debugger will
5630     // catch the exception. Otherwise, the breakpoint exception will reach
5631     // the default windows exception handler, which can spawn a debugger and
5632     // automatically attach to the dying VM.
5633     os::breakpoint();
5634     yes = false;
5635   }
5636   return yes;
5637 }
5638 
5639 void* os::get_default_process_handle() {
5640   return (void*)GetModuleHandle(NULL);
5641 }
5642 
5643 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5644 // which is used to find statically linked in agents.
5645 // Additionally for windows, takes into account __stdcall names.
5646 // Parameters:
5647 //            sym_name: Symbol in library we are looking for
5648 //            lib_name: Name of library to look in, NULL for shared libs.
5649 //            is_absolute_path == true if lib_name is absolute path to agent
5650 //                                     such as "C:/a/b/L.dll"
5651 //            == false if only the base name of the library is passed in
5652 //               such as "L"
5653 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5654                                     bool is_absolute_path) {
5655   char *agent_entry_name;
5656   size_t len;
5657   size_t name_len;
5658   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5659   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5660   const char *start;
5661 
5662   if (lib_name != NULL) {
5663     len = name_len = strlen(lib_name);
5664     if (is_absolute_path) {
5665       // Need to strip path, prefix and suffix
5666       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5667         lib_name = ++start;
5668       } else {
5669         // Need to check for drive prefix
5670         if ((start = strchr(lib_name, ':')) != NULL) {
5671           lib_name = ++start;
5672         }
5673       }
5674       if (len <= (prefix_len + suffix_len)) {
5675         return NULL;
5676       }
5677       lib_name += prefix_len;
5678       name_len = strlen(lib_name) - suffix_len;
5679     }
5680   }
5681   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5682   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5683   if (agent_entry_name == NULL) {
5684     return NULL;
5685   }
5686   if (lib_name != NULL) {
5687     const char *p = strrchr(sym_name, '@');
5688     if (p != NULL && p != sym_name) {
5689       // sym_name == _Agent_OnLoad@XX
5690       strncpy(agent_entry_name, sym_name, (p - sym_name));
5691       agent_entry_name[(p-sym_name)] = '\0';
5692       // agent_entry_name == _Agent_OnLoad
5693       strcat(agent_entry_name, "_");
5694       strncat(agent_entry_name, lib_name, name_len);
5695       strcat(agent_entry_name, p);
5696       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5697     } else {
5698       strcpy(agent_entry_name, sym_name);
5699       strcat(agent_entry_name, "_");
5700       strncat(agent_entry_name, lib_name, name_len);
5701     }
5702   } else {
5703     strcpy(agent_entry_name, sym_name);
5704   }
5705   return agent_entry_name;
5706 }
5707 
5708 #ifndef PRODUCT
5709 
5710 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5711 // contiguous memory block at a particular address.
5712 // The test first tries to find a good approximate address to allocate at by using the same
5713 // method to allocate some memory at any address. The test then tries to allocate memory in
5714 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5715 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5716 // the previously allocated memory is available for allocation. The only actual failure
5717 // that is reported is when the test tries to allocate at a particular location but gets a
5718 // different valid one. A NULL return value at this point is not considered an error but may
5719 // be legitimate.
5720 void TestReserveMemorySpecial_test() {
5721   if (!UseLargePages) {
5722     return;
5723   }
5724   // save current value of globals
5725   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5726   bool old_use_numa_interleaving = UseNUMAInterleaving;
5727 
5728   // set globals to make sure we hit the correct code path
5729   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5730 
5731   // do an allocation at an address selected by the OS to get a good one.
5732   const size_t large_allocation_size = os::large_page_size() * 4;
5733   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5734   if (result == NULL) {
5735   } else {
5736     os::release_memory_special(result, large_allocation_size);
5737 
5738     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5739     // we managed to get it once.
5740     const size_t expected_allocation_size = os::large_page_size();
5741     char* expected_location = result + os::large_page_size();
5742     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5743     if (actual_location == NULL) {
5744     } else {
5745       // release memory
5746       os::release_memory_special(actual_location, expected_allocation_size);
5747       // only now check, after releasing any memory to avoid any leaks.
5748       assert(actual_location == expected_location,
5749              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5750              expected_location, expected_allocation_size, actual_location);
5751     }
5752   }
5753 
5754   // restore globals
5755   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5756   UseNUMAInterleaving = old_use_numa_interleaving;
5757 }
5758 #endif // PRODUCT
5759 
5760 /*
5761   All the defined signal names for Windows.
5762 
5763   NOTE that not all of these names are accepted by FindSignal!
5764 
5765   For various reasons some of these may be rejected at runtime.
5766 
5767   Here are the names currently accepted by a user of sun.misc.Signal with
5768   1.4.1 (ignoring potential interaction with use of chaining, etc):
5769 
5770      (LIST TBD)
5771 
5772 */
5773 int os::get_signal_number(const char* name) {
5774   static const struct {
5775     const char* name;
5776     int         number;
5777   } siglabels [] =
5778     // derived from version 6.0 VC98/include/signal.h
5779   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5780   "FPE",        SIGFPE,         // floating point exception
5781   "SEGV",       SIGSEGV,        // segment violation
5782   "INT",        SIGINT,         // interrupt
5783   "TERM",       SIGTERM,        // software term signal from kill
5784   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5785   "ILL",        SIGILL};        // illegal instruction
5786   for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
5787     if (strcmp(name, siglabels[i].name) == 0) {
5788       return siglabels[i].number;
5789     }
5790   }
5791   return -1;
5792 }
5793 
5794 // Fast current thread access
5795 
5796 int os::win32::_thread_ptr_offset = 0;
5797 
5798 static void call_wrapper_dummy() {}
5799 
5800 // We need to call the os_exception_wrapper once so that it sets
5801 // up the offset from FS of the thread pointer.
5802 void os::win32::initialize_thread_ptr_offset() {
5803   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5804                            NULL, NULL, NULL, NULL);
5805 }
5806 
5807 bool os::supports_map_sync() {
5808   return false;
5809 }