1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/workgroup.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "interpreter/oopMapCache.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/metaspaceShared.hpp"
  51 #include "memory/oopFactory.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "memory/universe.hpp"
  54 #include "oops/access.inline.hpp"
  55 #include "oops/instanceKlass.hpp"
  56 #include "oops/objArrayOop.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/symbol.hpp"
  59 #include "oops/typeArrayOop.inline.hpp"
  60 #include "oops/verifyOopClosure.hpp"
  61 #include "prims/jvm_misc.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "prims/jvmtiThreadState.hpp"
  64 #include "runtime/arguments.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/biasedLocking.hpp"
  67 #include "runtime/fieldDescriptor.inline.hpp"
  68 #include "runtime/flags/jvmFlagConstraintList.hpp"
  69 #include "runtime/flags/jvmFlagRangeList.hpp"
  70 #include "runtime/flags/jvmFlagWriteableList.hpp"
  71 #include "runtime/deoptimization.hpp"
  72 #include "runtime/frame.inline.hpp"
  73 #include "runtime/handles.inline.hpp"
  74 #include "runtime/handshake.hpp"
  75 #include "runtime/init.hpp"
  76 #include "runtime/interfaceSupport.inline.hpp"
  77 #include "runtime/java.hpp"
  78 #include "runtime/javaCalls.hpp"
  79 #include "runtime/jniHandles.inline.hpp"
  80 #include "runtime/jniPeriodicChecker.hpp"
  81 #include "runtime/memprofiler.hpp"
  82 #include "runtime/mutexLocker.hpp"
  83 #include "runtime/objectMonitor.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/osThread.hpp"
  86 #include "runtime/prefetch.inline.hpp"
  87 #include "runtime/safepoint.hpp"
  88 #include "runtime/safepointMechanism.inline.hpp"
  89 #include "runtime/safepointVerifiers.hpp"
  90 #include "runtime/sharedRuntime.hpp"
  91 #include "runtime/statSampler.hpp"
  92 #include "runtime/stubRoutines.hpp"
  93 #include "runtime/sweeper.hpp"
  94 #include "runtime/task.hpp"
  95 #include "runtime/thread.inline.hpp"
  96 #include "runtime/threadCritical.hpp"
  97 #include "runtime/threadSMR.inline.hpp"
  98 #include "runtime/threadStatisticalInfo.hpp"
  99 #include "runtime/timer.hpp"
 100 #include "runtime/timerTrace.hpp"
 101 #include "runtime/vframe.inline.hpp"
 102 #include "runtime/vframeArray.hpp"
 103 #include "runtime/vframe_hp.hpp"
 104 #include "runtime/vmThread.hpp"
 105 #include "runtime/vmOperations.hpp"
 106 #include "runtime/vm_version.hpp"
 107 #include "services/attachListener.hpp"
 108 #include "services/management.hpp"
 109 #include "services/memTracker.hpp"
 110 #include "services/threadService.hpp"
 111 #include "utilities/align.hpp"
 112 #include "utilities/copy.hpp"
 113 #include "utilities/defaultStream.hpp"
 114 #include "utilities/dtrace.hpp"
 115 #include "utilities/events.hpp"
 116 #include "utilities/macros.hpp"
 117 #include "utilities/preserveException.hpp"
 118 #include "utilities/singleWriterSynchronizer.hpp"
 119 #include "utilities/vmError.hpp"
 120 #if INCLUDE_JVMCI
 121 #include "jvmci/jvmci.hpp"
 122 #include "jvmci/jvmciEnv.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 #if INCLUDE_JFR
 135 #include "jfr/jfr.hpp"
 136 #endif
 137 
 138 // Initialization after module runtime initialization
 139 void universe_post_module_init();  // must happen after call_initPhase2
 140 
 141 #ifdef DTRACE_ENABLED
 142 
 143 // Only bother with this argument setup if dtrace is available
 144 
 145   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 149     {                                                                      \
 150       ResourceMark rm(this);                                               \
 151       int len = 0;                                                         \
 152       const char* name = (javathread)->get_thread_name();                  \
 153       len = strlen(name);                                                  \
 154       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 155         (char *) name, len,                                                \
 156         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 157         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 158         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 159     }
 160 
 161 #else //  ndef DTRACE_ENABLED
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)
 164 
 165 #endif // ndef DTRACE_ENABLED
 166 
 167 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 168 // Current thread is maintained as a thread-local variable
 169 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 170 #endif
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const size_t alignment = markWord::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                                          AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (aligned_addr != real_malloc_addr) {
 186       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                               p2i(real_malloc_addr),
 188                               p2i(aligned_addr));
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     FreeHeap(((Thread*) p)->_real_malloc_address);
 201   } else {
 202     FreeHeap(p);
 203   }
 204 }
 205 
 206 void JavaThread::smr_delete() {
 207   if (_on_thread_list) {
 208     ThreadsSMRSupport::smr_delete(this);
 209   } else {
 210     delete this;
 211   }
 212 }
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 218 
 219 Thread::Thread() {
 220 
 221   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 222 
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_lgrp_id(-1);
 227   DEBUG_ONLY(clear_suspendible_thread();)
 228 
 229   // allocated data structures
 230   set_osthread(NULL);
 231   set_resource_area(new (mtThread)ResourceArea());
 232   DEBUG_ONLY(_current_resource_mark = NULL;)
 233   set_handle_area(new (mtThread) HandleArea(NULL));
 234   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 235   set_active_handles(NULL);
 236   set_free_handle_block(NULL);
 237   set_last_handle_mark(NULL);
 238   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 239 
 240   // Initial value of zero ==> never claimed.
 241   _threads_do_token = 0;
 242   _threads_hazard_ptr = NULL;
 243   _threads_list_ptr = NULL;
 244   _nested_threads_hazard_ptr_cnt = 0;
 245   _rcu_counter = 0;
 246 
 247   // the handle mark links itself to last_handle_mark
 248   new HandleMark(this);
 249 
 250   // plain initialization
 251   debug_only(_owned_locks = NULL;)
 252   NOT_PRODUCT(_no_safepoint_count = 0;)
 253   NOT_PRODUCT(_skip_gcalot = false;)
 254   _jvmti_env_iteration_count = 0;
 255   set_allocated_bytes(0);
 256   _vm_operation_started_count = 0;
 257   _vm_operation_completed_count = 0;
 258   _current_pending_monitor = NULL;
 259   _current_pending_monitor_is_from_java = true;
 260   _current_waiting_monitor = NULL;
 261   _num_nested_signal = 0;
 262   om_free_list = NULL;
 263   om_free_count = 0;
 264   om_free_provision = 32;
 265   om_in_use_list = NULL;
 266   om_in_use_count = 0;
 267 
 268 #ifdef ASSERT
 269   _visited_for_critical_count = false;
 270 #endif
 271 
 272   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 273                          Monitor::_safepoint_check_sometimes);
 274   _suspend_flags = 0;
 275 
 276   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 277   _hashStateX = os::random();
 278   _hashStateY = 842502087;
 279   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 280   _hashStateW = 273326509;
 281 
 282   _OnTrap   = 0;
 283   _Stalled  = 0;
 284   _TypeTag  = 0x2BAD;
 285 
 286   // Many of the following fields are effectively final - immutable
 287   // Note that nascent threads can't use the Native Monitor-Mutex
 288   // construct until the _MutexEvent is initialized ...
 289   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 290   // we might instead use a stack of ParkEvents that we could provision on-demand.
 291   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 292   // and ::Release()
 293   _ParkEvent   = ParkEvent::Allocate(this);
 294   _SleepEvent  = ParkEvent::Allocate(this);
 295   _MuxEvent    = ParkEvent::Allocate(this);
 296 
 297 #ifdef CHECK_UNHANDLED_OOPS
 298   if (CheckUnhandledOops) {
 299     _unhandled_oops = new UnhandledOops(this);
 300   }
 301 #endif // CHECK_UNHANDLED_OOPS
 302 #ifdef ASSERT
 303   if (UseBiasedLocking) {
 304     assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
 305     assert(this == _real_malloc_address ||
 306            this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
 307            "bug in forced alignment of thread objects");
 308   }
 309 #endif // ASSERT
 310 
 311   // Notify the barrier set that a thread is being created. The initial
 312   // thread is created before the barrier set is available.  The call to
 313   // BarrierSet::on_thread_create() for this thread is therefore deferred
 314   // to BarrierSet::set_barrier_set().
 315   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 316   if (barrier_set != NULL) {
 317     barrier_set->on_thread_create(this);
 318   } else {
 319     // Only the main thread should be created before the barrier set
 320     // and that happens just before Thread::current is set. No other thread
 321     // can attach as the VM is not created yet, so they can't execute this code.
 322     // If the main thread creates other threads before the barrier set that is an error.
 323     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 324   }
 325 }
 326 
 327 void Thread::initialize_thread_current() {
 328 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 329   assert(_thr_current == NULL, "Thread::current already initialized");
 330   _thr_current = this;
 331 #endif
 332   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 333   ThreadLocalStorage::set_thread(this);
 334   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 335 }
 336 
 337 void Thread::clear_thread_current() {
 338   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 339 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 340   _thr_current = NULL;
 341 #endif
 342   ThreadLocalStorage::set_thread(NULL);
 343 }
 344 
 345 void Thread::record_stack_base_and_size() {
 346   // Note: at this point, Thread object is not yet initialized. Do not rely on
 347   // any members being initialized. Do not rely on Thread::current() being set.
 348   // If possible, refrain from doing anything which may crash or assert since
 349   // quite probably those crash dumps will be useless.
 350   set_stack_base(os::current_stack_base());
 351   set_stack_size(os::current_stack_size());
 352 
 353 #ifdef SOLARIS
 354   if (os::is_primordial_thread()) {
 355     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 356   }
 357 #endif
 358 
 359   // Set stack limits after thread is initialized.
 360   if (is_Java_thread()) {
 361     ((JavaThread*) this)->set_stack_overflow_limit();
 362     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 363   }
 364 }
 365 
 366 #if INCLUDE_NMT
 367 void Thread::register_thread_stack_with_NMT() {
 368   MemTracker::record_thread_stack(stack_end(), stack_size());
 369 }
 370 #endif // INCLUDE_NMT
 371 
 372 void Thread::call_run() {
 373   DEBUG_ONLY(_run_state = CALL_RUN;)
 374 
 375   // At this point, Thread object should be fully initialized and
 376   // Thread::current() should be set.
 377 
 378   assert(Thread::current_or_null() != NULL, "current thread is unset");
 379   assert(Thread::current_or_null() == this, "current thread is wrong");
 380 
 381   // Perform common initialization actions
 382 
 383   register_thread_stack_with_NMT();
 384 
 385   JFR_ONLY(Jfr::on_thread_start(this);)
 386 
 387   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 388     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 389     os::current_thread_id(), p2i(stack_base() - stack_size()),
 390     p2i(stack_base()), stack_size()/1024);
 391 
 392   // Perform <ChildClass> initialization actions
 393   DEBUG_ONLY(_run_state = PRE_RUN;)
 394   this->pre_run();
 395 
 396   // Invoke <ChildClass>::run()
 397   DEBUG_ONLY(_run_state = RUN;)
 398   this->run();
 399   // Returned from <ChildClass>::run(). Thread finished.
 400 
 401   // Perform common tear-down actions
 402 
 403   assert(Thread::current_or_null() != NULL, "current thread is unset");
 404   assert(Thread::current_or_null() == this, "current thread is wrong");
 405 
 406   // Perform <ChildClass> tear-down actions
 407   DEBUG_ONLY(_run_state = POST_RUN;)
 408   this->post_run();
 409 
 410   // Note: at this point the thread object may already have deleted itself,
 411   // so from here on do not dereference *this*. Not all thread types currently
 412   // delete themselves when they terminate. But no thread should ever be deleted
 413   // asynchronously with respect to its termination - that is what _run_state can
 414   // be used to check.
 415 
 416   assert(Thread::current_or_null() == NULL, "current thread still present");
 417 }
 418 
 419 Thread::~Thread() {
 420 
 421   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 422   // get started due to errors etc. Any active thread should at least reach post_run
 423   // before it is deleted (usually in post_run()).
 424   assert(_run_state == PRE_CALL_RUN ||
 425          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 426          "_run_state=%d", (int)_run_state);
 427 
 428   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 429   // set might not be available if we encountered errors during bootstrapping.
 430   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 431   if (barrier_set != NULL) {
 432     barrier_set->on_thread_destroy(this);
 433   }
 434 
 435   // stack_base can be NULL if the thread is never started or exited before
 436   // record_stack_base_and_size called. Although, we would like to ensure
 437   // that all started threads do call record_stack_base_and_size(), there is
 438   // not proper way to enforce that.
 439 #if INCLUDE_NMT
 440   if (_stack_base != NULL) {
 441     MemTracker::release_thread_stack(stack_end(), stack_size());
 442 #ifdef ASSERT
 443     set_stack_base(NULL);
 444 #endif
 445   }
 446 #endif // INCLUDE_NMT
 447 
 448   // deallocate data structures
 449   delete resource_area();
 450   // since the handle marks are using the handle area, we have to deallocated the root
 451   // handle mark before deallocating the thread's handle area,
 452   assert(last_handle_mark() != NULL, "check we have an element");
 453   delete last_handle_mark();
 454   assert(last_handle_mark() == NULL, "check we have reached the end");
 455 
 456   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 457   // We NULL out the fields for good hygiene.
 458   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 459   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 460   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 461 
 462   delete handle_area();
 463   delete metadata_handles();
 464 
 465   // SR_handler uses this as a termination indicator -
 466   // needs to happen before os::free_thread()
 467   delete _SR_lock;
 468   _SR_lock = NULL;
 469 
 470   // osthread() can be NULL, if creation of thread failed.
 471   if (osthread() != NULL) os::free_thread(osthread());
 472 
 473   // Clear Thread::current if thread is deleting itself and it has not
 474   // already been done. This must be done before the memory is deallocated.
 475   // Needed to ensure JNI correctly detects non-attached threads.
 476   if (this == Thread::current_or_null()) {
 477     Thread::clear_thread_current();
 478   }
 479 
 480   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 481 }
 482 
 483 #ifdef ASSERT
 484 // A JavaThread is considered "dangling" if it is not the current
 485 // thread, has been added the Threads list, the system is not at a
 486 // safepoint and the Thread is not "protected".
 487 //
 488 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 489   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 490          !((JavaThread *) thread)->on_thread_list() ||
 491          SafepointSynchronize::is_at_safepoint() ||
 492          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 493          "possibility of dangling Thread pointer");
 494 }
 495 #endif
 496 
 497 ThreadPriority Thread::get_priority(const Thread* const thread) {
 498   ThreadPriority priority;
 499   // Can return an error!
 500   (void)os::get_priority(thread, priority);
 501   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 502   return priority;
 503 }
 504 
 505 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 506   debug_only(check_for_dangling_thread_pointer(thread);)
 507   // Can return an error!
 508   (void)os::set_priority(thread, priority);
 509 }
 510 
 511 
 512 void Thread::start(Thread* thread) {
 513   // Start is different from resume in that its safety is guaranteed by context or
 514   // being called from a Java method synchronized on the Thread object.
 515   if (!DisableStartThread) {
 516     if (thread->is_Java_thread()) {
 517       // Initialize the thread state to RUNNABLE before starting this thread.
 518       // Can not set it after the thread started because we do not know the
 519       // exact thread state at that time. It could be in MONITOR_WAIT or
 520       // in SLEEPING or some other state.
 521       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 522                                           java_lang_Thread::RUNNABLE);
 523     }
 524     os::start_thread(thread);
 525   }
 526 }
 527 
 528 // Enqueue a VM_Operation to do the job for us - sometime later
 529 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 530   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 531   VMThread::execute(vm_stop);
 532 }
 533 
 534 
 535 // Check if an external suspend request has completed (or has been
 536 // cancelled). Returns true if the thread is externally suspended and
 537 // false otherwise.
 538 //
 539 // The bits parameter returns information about the code path through
 540 // the routine. Useful for debugging:
 541 //
 542 // set in is_ext_suspend_completed():
 543 // 0x00000001 - routine was entered
 544 // 0x00000010 - routine return false at end
 545 // 0x00000100 - thread exited (return false)
 546 // 0x00000200 - suspend request cancelled (return false)
 547 // 0x00000400 - thread suspended (return true)
 548 // 0x00001000 - thread is in a suspend equivalent state (return true)
 549 // 0x00002000 - thread is native and walkable (return true)
 550 // 0x00004000 - thread is native_trans and walkable (needed retry)
 551 //
 552 // set in wait_for_ext_suspend_completion():
 553 // 0x00010000 - routine was entered
 554 // 0x00020000 - suspend request cancelled before loop (return false)
 555 // 0x00040000 - thread suspended before loop (return true)
 556 // 0x00080000 - suspend request cancelled in loop (return false)
 557 // 0x00100000 - thread suspended in loop (return true)
 558 // 0x00200000 - suspend not completed during retry loop (return false)
 559 
 560 // Helper class for tracing suspend wait debug bits.
 561 //
 562 // 0x00000100 indicates that the target thread exited before it could
 563 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 564 // 0x00080000 each indicate a cancelled suspend request so they don't
 565 // count as wait failures either.
 566 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 567 
 568 class TraceSuspendDebugBits : public StackObj {
 569  private:
 570   JavaThread * jt;
 571   bool         is_wait;
 572   bool         called_by_wait;  // meaningful when !is_wait
 573   uint32_t *   bits;
 574 
 575  public:
 576   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 577                         uint32_t *_bits) {
 578     jt             = _jt;
 579     is_wait        = _is_wait;
 580     called_by_wait = _called_by_wait;
 581     bits           = _bits;
 582   }
 583 
 584   ~TraceSuspendDebugBits() {
 585     if (!is_wait) {
 586 #if 1
 587       // By default, don't trace bits for is_ext_suspend_completed() calls.
 588       // That trace is very chatty.
 589       return;
 590 #else
 591       if (!called_by_wait) {
 592         // If tracing for is_ext_suspend_completed() is enabled, then only
 593         // trace calls to it from wait_for_ext_suspend_completion()
 594         return;
 595       }
 596 #endif
 597     }
 598 
 599     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 600       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 601         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 602         ResourceMark rm;
 603 
 604         tty->print_cr(
 605                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 606                       jt->get_thread_name(), *bits);
 607 
 608         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 609       }
 610     }
 611   }
 612 };
 613 #undef DEBUG_FALSE_BITS
 614 
 615 
 616 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 617                                           uint32_t *bits) {
 618   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 619 
 620   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 621   bool do_trans_retry;           // flag to force the retry
 622 
 623   *bits |= 0x00000001;
 624 
 625   do {
 626     do_trans_retry = false;
 627 
 628     if (is_exiting()) {
 629       // Thread is in the process of exiting. This is always checked
 630       // first to reduce the risk of dereferencing a freed JavaThread.
 631       *bits |= 0x00000100;
 632       return false;
 633     }
 634 
 635     if (!is_external_suspend()) {
 636       // Suspend request is cancelled. This is always checked before
 637       // is_ext_suspended() to reduce the risk of a rogue resume
 638       // confusing the thread that made the suspend request.
 639       *bits |= 0x00000200;
 640       return false;
 641     }
 642 
 643     if (is_ext_suspended()) {
 644       // thread is suspended
 645       *bits |= 0x00000400;
 646       return true;
 647     }
 648 
 649     // Now that we no longer do hard suspends of threads running
 650     // native code, the target thread can be changing thread state
 651     // while we are in this routine:
 652     //
 653     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 654     //
 655     // We save a copy of the thread state as observed at this moment
 656     // and make our decision about suspend completeness based on the
 657     // copy. This closes the race where the thread state is seen as
 658     // _thread_in_native_trans in the if-thread_blocked check, but is
 659     // seen as _thread_blocked in if-thread_in_native_trans check.
 660     JavaThreadState save_state = thread_state();
 661 
 662     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 663       // If the thread's state is _thread_blocked and this blocking
 664       // condition is known to be equivalent to a suspend, then we can
 665       // consider the thread to be externally suspended. This means that
 666       // the code that sets _thread_blocked has been modified to do
 667       // self-suspension if the blocking condition releases. We also
 668       // used to check for CONDVAR_WAIT here, but that is now covered by
 669       // the _thread_blocked with self-suspension check.
 670       //
 671       // Return true since we wouldn't be here unless there was still an
 672       // external suspend request.
 673       *bits |= 0x00001000;
 674       return true;
 675     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 676       // Threads running native code will self-suspend on native==>VM/Java
 677       // transitions. If its stack is walkable (should always be the case
 678       // unless this function is called before the actual java_suspend()
 679       // call), then the wait is done.
 680       *bits |= 0x00002000;
 681       return true;
 682     } else if (!called_by_wait && !did_trans_retry &&
 683                save_state == _thread_in_native_trans &&
 684                frame_anchor()->walkable()) {
 685       // The thread is transitioning from thread_in_native to another
 686       // thread state. check_safepoint_and_suspend_for_native_trans()
 687       // will force the thread to self-suspend. If it hasn't gotten
 688       // there yet we may have caught the thread in-between the native
 689       // code check above and the self-suspend. Lucky us. If we were
 690       // called by wait_for_ext_suspend_completion(), then it
 691       // will be doing the retries so we don't have to.
 692       //
 693       // Since we use the saved thread state in the if-statement above,
 694       // there is a chance that the thread has already transitioned to
 695       // _thread_blocked by the time we get here. In that case, we will
 696       // make a single unnecessary pass through the logic below. This
 697       // doesn't hurt anything since we still do the trans retry.
 698 
 699       *bits |= 0x00004000;
 700 
 701       // Once the thread leaves thread_in_native_trans for another
 702       // thread state, we break out of this retry loop. We shouldn't
 703       // need this flag to prevent us from getting back here, but
 704       // sometimes paranoia is good.
 705       did_trans_retry = true;
 706 
 707       // We wait for the thread to transition to a more usable state.
 708       for (int i = 1; i <= SuspendRetryCount; i++) {
 709         // We used to do an "os::yield_all(i)" call here with the intention
 710         // that yielding would increase on each retry. However, the parameter
 711         // is ignored on Linux which means the yield didn't scale up. Waiting
 712         // on the SR_lock below provides a much more predictable scale up for
 713         // the delay. It also provides a simple/direct point to check for any
 714         // safepoint requests from the VMThread
 715 
 716         // temporarily drops SR_lock while doing wait with safepoint check
 717         // (if we're a JavaThread - the WatcherThread can also call this)
 718         // and increase delay with each retry
 719         if (Thread::current()->is_Java_thread()) {
 720           SR_lock()->wait(i * delay);
 721         } else {
 722           SR_lock()->wait_without_safepoint_check(i * delay);
 723         }
 724 
 725         // check the actual thread state instead of what we saved above
 726         if (thread_state() != _thread_in_native_trans) {
 727           // the thread has transitioned to another thread state so
 728           // try all the checks (except this one) one more time.
 729           do_trans_retry = true;
 730           break;
 731         }
 732       } // end retry loop
 733 
 734 
 735     }
 736   } while (do_trans_retry);
 737 
 738   *bits |= 0x00000010;
 739   return false;
 740 }
 741 
 742 // Wait for an external suspend request to complete (or be cancelled).
 743 // Returns true if the thread is externally suspended and false otherwise.
 744 //
 745 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 746                                                  uint32_t *bits) {
 747   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 748                              false /* !called_by_wait */, bits);
 749 
 750   // local flag copies to minimize SR_lock hold time
 751   bool is_suspended;
 752   bool pending;
 753   uint32_t reset_bits;
 754 
 755   // set a marker so is_ext_suspend_completed() knows we are the caller
 756   *bits |= 0x00010000;
 757 
 758   // We use reset_bits to reinitialize the bits value at the top of
 759   // each retry loop. This allows the caller to make use of any
 760   // unused bits for their own marking purposes.
 761   reset_bits = *bits;
 762 
 763   {
 764     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 765     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 766                                             delay, bits);
 767     pending = is_external_suspend();
 768   }
 769   // must release SR_lock to allow suspension to complete
 770 
 771   if (!pending) {
 772     // A cancelled suspend request is the only false return from
 773     // is_ext_suspend_completed() that keeps us from entering the
 774     // retry loop.
 775     *bits |= 0x00020000;
 776     return false;
 777   }
 778 
 779   if (is_suspended) {
 780     *bits |= 0x00040000;
 781     return true;
 782   }
 783 
 784   for (int i = 1; i <= retries; i++) {
 785     *bits = reset_bits;  // reinit to only track last retry
 786 
 787     // We used to do an "os::yield_all(i)" call here with the intention
 788     // that yielding would increase on each retry. However, the parameter
 789     // is ignored on Linux which means the yield didn't scale up. Waiting
 790     // on the SR_lock below provides a much more predictable scale up for
 791     // the delay. It also provides a simple/direct point to check for any
 792     // safepoint requests from the VMThread
 793 
 794     {
 795       Thread* t = Thread::current();
 796       MonitorLocker ml(SR_lock(),
 797                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 798       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 799       // can also call this)  and increase delay with each retry
 800       ml.wait(i * delay);
 801 
 802       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 803                                               delay, bits);
 804 
 805       // It is possible for the external suspend request to be cancelled
 806       // (by a resume) before the actual suspend operation is completed.
 807       // Refresh our local copy to see if we still need to wait.
 808       pending = is_external_suspend();
 809     }
 810 
 811     if (!pending) {
 812       // A cancelled suspend request is the only false return from
 813       // is_ext_suspend_completed() that keeps us from staying in the
 814       // retry loop.
 815       *bits |= 0x00080000;
 816       return false;
 817     }
 818 
 819     if (is_suspended) {
 820       *bits |= 0x00100000;
 821       return true;
 822     }
 823   } // end retry loop
 824 
 825   // thread did not suspend after all our retries
 826   *bits |= 0x00200000;
 827   return false;
 828 }
 829 
 830 // Called from API entry points which perform stack walking. If the
 831 // associated JavaThread is the current thread, then wait_for_suspend
 832 // is not used. Otherwise, it determines if we should wait for the
 833 // "other" thread to complete external suspension. (NOTE: in future
 834 // releases the suspension mechanism should be reimplemented so this
 835 // is not necessary.)
 836 //
 837 bool
 838 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 839   if (this != JavaThread::current()) {
 840     // "other" threads require special handling.
 841     if (wait_for_suspend) {
 842       // We are allowed to wait for the external suspend to complete
 843       // so give the other thread a chance to get suspended.
 844       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 845                                            SuspendRetryDelay, bits)) {
 846         // Didn't make it so let the caller know.
 847         return false;
 848       }
 849     }
 850     // We aren't allowed to wait for the external suspend to complete
 851     // so if the other thread isn't externally suspended we need to
 852     // let the caller know.
 853     else if (!is_ext_suspend_completed_with_lock(bits)) {
 854       return false;
 855     }
 856   }
 857 
 858   return true;
 859 }
 860 
 861 void Thread::interrupt(Thread* thread) {
 862   debug_only(check_for_dangling_thread_pointer(thread);)
 863   os::interrupt(thread);
 864 }
 865 
 866 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 867   debug_only(check_for_dangling_thread_pointer(thread);)
 868   // Note:  If clear_interrupted==false, this simply fetches and
 869   // returns the value of the field osthread()->interrupted().
 870   return os::is_interrupted(thread, clear_interrupted);
 871 }
 872 
 873 
 874 // GC Support
 875 bool Thread::claim_par_threads_do(uintx claim_token) {
 876   uintx token = _threads_do_token;
 877   if (token != claim_token) {
 878     uintx res = Atomic::cmpxchg(claim_token, &_threads_do_token, token);
 879     if (res == token) {
 880       return true;
 881     }
 882     guarantee(res == claim_token, "invariant");
 883   }
 884   return false;
 885 }
 886 
 887 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 888   active_handles()->oops_do(f);
 889   // Do oop for ThreadShadow
 890   f->do_oop((oop*)&_pending_exception);
 891   handle_area()->oops_do(f);
 892 
 893   // We scan thread local monitor lists here, and the remaining global
 894   // monitors in ObjectSynchronizer::oops_do().
 895   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 896 }
 897 
 898 void Thread::metadata_handles_do(void f(Metadata*)) {
 899   // Only walk the Handles in Thread.
 900   if (metadata_handles() != NULL) {
 901     for (int i = 0; i< metadata_handles()->length(); i++) {
 902       f(metadata_handles()->at(i));
 903     }
 904   }
 905 }
 906 
 907 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 908   // get_priority assumes osthread initialized
 909   if (osthread() != NULL) {
 910     int os_prio;
 911     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 912       st->print("os_prio=%d ", os_prio);
 913     }
 914 
 915     st->print("cpu=%.2fms ",
 916               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 917               );
 918     st->print("elapsed=%.2fs ",
 919               _statistical_info.getElapsedTime() / 1000.0
 920               );
 921     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 922       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 923       st->print("allocated=" SIZE_FORMAT "%s ",
 924                 byte_size_in_proper_unit(allocated_bytes),
 925                 proper_unit_for_byte_size(allocated_bytes)
 926                 );
 927       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 928     }
 929 
 930     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 931     osthread()->print_on(st);
 932   }
 933   ThreadsSMRSupport::print_info_on(this, st);
 934   st->print(" ");
 935   debug_only(if (WizardMode) print_owned_locks_on(st);)
 936 }
 937 
 938 void Thread::print() const { print_on(tty); }
 939 
 940 // Thread::print_on_error() is called by fatal error handler. Don't use
 941 // any lock or allocate memory.
 942 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 943   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 944 
 945   if (is_VM_thread())                 { st->print("VMThread"); }
 946   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 947   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 948   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 949   else                                { st->print("Thread"); }
 950 
 951   if (is_Named_thread()) {
 952     st->print(" \"%s\"", name());
 953   }
 954 
 955   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 956             p2i(stack_end()), p2i(stack_base()));
 957 
 958   if (osthread()) {
 959     st->print(" [id=%d]", osthread()->thread_id());
 960   }
 961 
 962   ThreadsSMRSupport::print_info_on(this, st);
 963 }
 964 
 965 void Thread::print_value_on(outputStream* st) const {
 966   if (is_Named_thread()) {
 967     st->print(" \"%s\" ", name());
 968   }
 969   st->print(INTPTR_FORMAT, p2i(this));   // print address
 970 }
 971 
 972 #ifdef ASSERT
 973 void Thread::print_owned_locks_on(outputStream* st) const {
 974   Mutex* cur = _owned_locks;
 975   if (cur == NULL) {
 976     st->print(" (no locks) ");
 977   } else {
 978     st->print_cr(" Locks owned:");
 979     while (cur) {
 980       cur->print_on(st);
 981       cur = cur->next();
 982     }
 983   }
 984 }
 985 
 986 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 987 void Thread::check_possible_safepoint() {
 988   if (!is_Java_thread()) return;
 989 
 990   if (_no_safepoint_count > 0) {
 991     fatal("Possible safepoint reached by thread that does not allow it");
 992   }
 993 #ifdef CHECK_UNHANDLED_OOPS
 994   // Clear unhandled oops in JavaThreads so we get a crash right away.
 995   clear_unhandled_oops();
 996 #endif // CHECK_UNHANDLED_OOPS
 997 }
 998 
 999 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
1000 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
1001 // no locks which allow_vm_block's are held
1002 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
1003   if (!is_Java_thread()) return;
1004 
1005   check_possible_safepoint();
1006 
1007   if (((JavaThread*)this)->thread_state() != _thread_in_vm) {
1008     fatal("LEAF method calling lock?");
1009   }
1010 
1011   if (potential_vm_operation && !Universe::is_bootstrapping()) {
1012     // Make sure we do not hold any locks that the VM thread also uses.
1013     // This could potentially lead to deadlocks
1014     for (Mutex* cur = _owned_locks; cur; cur = cur->next()) {
1015       // Threads_lock is special, since the safepoint synchronization will not start before this is
1016       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
1017       // since it is used to transfer control between JavaThreads and the VMThread
1018       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
1019       if ((cur->allow_vm_block() &&
1020            cur != Threads_lock &&
1021            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1022            cur != VMOperationRequest_lock &&
1023            cur != VMOperationQueue_lock) ||
1024            cur->rank() == Mutex::special) {
1025         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1026       }
1027     }
1028   }
1029 
1030   if (GCALotAtAllSafepoints) {
1031     // We could enter a safepoint here and thus have a gc
1032     InterfaceSupport::check_gc_alot();
1033   }
1034 }
1035 #endif // ASSERT
1036 
1037 bool Thread::is_in_stack(address adr) const {
1038   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1039   address end = os::current_stack_pointer();
1040   // Allow non Java threads to call this without stack_base
1041   if (_stack_base == NULL) return true;
1042   if (stack_base() >= adr && adr >= end) return true;
1043 
1044   return false;
1045 }
1046 
1047 bool Thread::is_in_usable_stack(address adr) const {
1048   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1049   size_t usable_stack_size = _stack_size - stack_guard_size;
1050 
1051   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1052 }
1053 
1054 
1055 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1056 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1057 // used for compilation in the future. If that change is made, the need for these methods
1058 // should be revisited, and they should be removed if possible.
1059 
1060 bool Thread::is_lock_owned(address adr) const {
1061   return on_local_stack(adr);
1062 }
1063 
1064 bool Thread::set_as_starting_thread() {
1065   assert(_starting_thread == NULL, "already initialized: "
1066          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1067   // NOTE: this must be called inside the main thread.
1068   DEBUG_ONLY(_starting_thread = this;)
1069   return os::create_main_thread((JavaThread*)this);
1070 }
1071 
1072 static void initialize_class(Symbol* class_name, TRAPS) {
1073   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1074   InstanceKlass::cast(klass)->initialize(CHECK);
1075 }
1076 
1077 
1078 // Creates the initial ThreadGroup
1079 static Handle create_initial_thread_group(TRAPS) {
1080   Handle system_instance = JavaCalls::construct_new_instance(
1081                             SystemDictionary::ThreadGroup_klass(),
1082                             vmSymbols::void_method_signature(),
1083                             CHECK_NH);
1084   Universe::set_system_thread_group(system_instance());
1085 
1086   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1087   Handle main_instance = JavaCalls::construct_new_instance(
1088                             SystemDictionary::ThreadGroup_klass(),
1089                             vmSymbols::threadgroup_string_void_signature(),
1090                             system_instance,
1091                             string,
1092                             CHECK_NH);
1093   return main_instance;
1094 }
1095 
1096 // Creates the initial Thread
1097 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1098                                  TRAPS) {
1099   InstanceKlass* ik = SystemDictionary::Thread_klass();
1100   assert(ik->is_initialized(), "must be");
1101   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1102 
1103   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1104   // constructor calls Thread.current(), which must be set here for the
1105   // initial thread.
1106   java_lang_Thread::set_thread(thread_oop(), thread);
1107   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1108   thread->set_threadObj(thread_oop());
1109 
1110   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1111 
1112   JavaValue result(T_VOID);
1113   JavaCalls::call_special(&result, thread_oop,
1114                           ik,
1115                           vmSymbols::object_initializer_name(),
1116                           vmSymbols::threadgroup_string_void_signature(),
1117                           thread_group,
1118                           string,
1119                           CHECK_NULL);
1120   return thread_oop();
1121 }
1122 
1123 char java_runtime_name[128] = "";
1124 char java_runtime_version[128] = "";
1125 
1126 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1127 static const char* get_java_runtime_name(TRAPS) {
1128   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1129                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1130   fieldDescriptor fd;
1131   bool found = k != NULL &&
1132                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1133                                                         vmSymbols::string_signature(), &fd);
1134   if (found) {
1135     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1136     if (name_oop == NULL) {
1137       return NULL;
1138     }
1139     const char* name = java_lang_String::as_utf8_string(name_oop,
1140                                                         java_runtime_name,
1141                                                         sizeof(java_runtime_name));
1142     return name;
1143   } else {
1144     return NULL;
1145   }
1146 }
1147 
1148 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1149 static const char* get_java_runtime_version(TRAPS) {
1150   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1151                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1152   fieldDescriptor fd;
1153   bool found = k != NULL &&
1154                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1155                                                         vmSymbols::string_signature(), &fd);
1156   if (found) {
1157     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1158     if (name_oop == NULL) {
1159       return NULL;
1160     }
1161     const char* name = java_lang_String::as_utf8_string(name_oop,
1162                                                         java_runtime_version,
1163                                                         sizeof(java_runtime_version));
1164     return name;
1165   } else {
1166     return NULL;
1167   }
1168 }
1169 
1170 // General purpose hook into Java code, run once when the VM is initialized.
1171 // The Java library method itself may be changed independently from the VM.
1172 static void call_postVMInitHook(TRAPS) {
1173   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1174   if (klass != NULL) {
1175     JavaValue result(T_VOID);
1176     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1177                            vmSymbols::void_method_signature(),
1178                            CHECK);
1179   }
1180 }
1181 
1182 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1183                                     bool daemon, TRAPS) {
1184   assert(thread_group.not_null(), "thread group should be specified");
1185   assert(threadObj() == NULL, "should only create Java thread object once");
1186 
1187   InstanceKlass* ik = SystemDictionary::Thread_klass();
1188   assert(ik->is_initialized(), "must be");
1189   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1190 
1191   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1192   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1193   // constructor calls Thread.current(), which must be set here.
1194   java_lang_Thread::set_thread(thread_oop(), this);
1195   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1196   set_threadObj(thread_oop());
1197 
1198   JavaValue result(T_VOID);
1199   if (thread_name != NULL) {
1200     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1201     // Thread gets assigned specified name and null target
1202     JavaCalls::call_special(&result,
1203                             thread_oop,
1204                             ik,
1205                             vmSymbols::object_initializer_name(),
1206                             vmSymbols::threadgroup_string_void_signature(),
1207                             thread_group,
1208                             name,
1209                             THREAD);
1210   } else {
1211     // Thread gets assigned name "Thread-nnn" and null target
1212     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1213     JavaCalls::call_special(&result,
1214                             thread_oop,
1215                             ik,
1216                             vmSymbols::object_initializer_name(),
1217                             vmSymbols::threadgroup_runnable_void_signature(),
1218                             thread_group,
1219                             Handle(),
1220                             THREAD);
1221   }
1222 
1223 
1224   if (daemon) {
1225     java_lang_Thread::set_daemon(thread_oop());
1226   }
1227 
1228   if (HAS_PENDING_EXCEPTION) {
1229     return;
1230   }
1231 
1232   Klass* group =  SystemDictionary::ThreadGroup_klass();
1233   Handle threadObj(THREAD, this->threadObj());
1234 
1235   JavaCalls::call_special(&result,
1236                           thread_group,
1237                           group,
1238                           vmSymbols::add_method_name(),
1239                           vmSymbols::thread_void_signature(),
1240                           threadObj,          // Arg 1
1241                           THREAD);
1242 }
1243 
1244 // List of all NonJavaThreads and safe iteration over that list.
1245 
1246 class NonJavaThread::List {
1247 public:
1248   NonJavaThread* volatile _head;
1249   SingleWriterSynchronizer _protect;
1250 
1251   List() : _head(NULL), _protect() {}
1252 };
1253 
1254 NonJavaThread::List NonJavaThread::_the_list;
1255 
1256 NonJavaThread::Iterator::Iterator() :
1257   _protect_enter(_the_list._protect.enter()),
1258   _current(OrderAccess::load_acquire(&_the_list._head))
1259 {}
1260 
1261 NonJavaThread::Iterator::~Iterator() {
1262   _the_list._protect.exit(_protect_enter);
1263 }
1264 
1265 void NonJavaThread::Iterator::step() {
1266   assert(!end(), "precondition");
1267   _current = OrderAccess::load_acquire(&_current->_next);
1268 }
1269 
1270 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1271   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1272 }
1273 
1274 NonJavaThread::~NonJavaThread() { }
1275 
1276 void NonJavaThread::add_to_the_list() {
1277   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1278   // Initialize BarrierSet-related data before adding to list.
1279   BarrierSet::barrier_set()->on_thread_attach(this);
1280   OrderAccess::release_store(&_next, _the_list._head);
1281   OrderAccess::release_store(&_the_list._head, this);
1282 }
1283 
1284 void NonJavaThread::remove_from_the_list() {
1285   {
1286     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1287     // Cleanup BarrierSet-related data before removing from list.
1288     BarrierSet::barrier_set()->on_thread_detach(this);
1289     NonJavaThread* volatile* p = &_the_list._head;
1290     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1291       if (t == this) {
1292         *p = _next;
1293         break;
1294       }
1295     }
1296   }
1297   // Wait for any in-progress iterators.  Concurrent synchronize is not
1298   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1299   // from NJTList_lock in case an iteration attempts to lock it.
1300   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1301   _the_list._protect.synchronize();
1302   _next = NULL;                 // Safe to drop the link now.
1303 }
1304 
1305 void NonJavaThread::pre_run() {
1306   add_to_the_list();
1307 
1308   // This is slightly odd in that NamedThread is a subclass, but
1309   // in fact name() is defined in Thread
1310   assert(this->name() != NULL, "thread name was not set before it was started");
1311   this->set_native_thread_name(this->name());
1312 }
1313 
1314 void NonJavaThread::post_run() {
1315   JFR_ONLY(Jfr::on_thread_exit(this);)
1316   remove_from_the_list();
1317   // Ensure thread-local-storage is cleared before termination.
1318   Thread::clear_thread_current();
1319 }
1320 
1321 // NamedThread --  non-JavaThread subclasses with multiple
1322 // uniquely named instances should derive from this.
1323 NamedThread::NamedThread() :
1324   NonJavaThread(),
1325   _name(NULL),
1326   _processed_thread(NULL),
1327   _gc_id(GCId::undefined())
1328 {}
1329 
1330 NamedThread::~NamedThread() {
1331   FREE_C_HEAP_ARRAY(char, _name);
1332   _name = NULL;
1333 }
1334 
1335 void NamedThread::set_name(const char* format, ...) {
1336   guarantee(_name == NULL, "Only get to set name once.");
1337   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1338   va_list ap;
1339   va_start(ap, format);
1340   jio_vsnprintf(_name, max_name_len, format, ap);
1341   va_end(ap);
1342 }
1343 
1344 void NamedThread::print_on(outputStream* st) const {
1345   st->print("\"%s\" ", name());
1346   Thread::print_on(st);
1347   st->cr();
1348 }
1349 
1350 
1351 // ======= WatcherThread ========
1352 
1353 // The watcher thread exists to simulate timer interrupts.  It should
1354 // be replaced by an abstraction over whatever native support for
1355 // timer interrupts exists on the platform.
1356 
1357 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1358 bool WatcherThread::_startable = false;
1359 volatile bool  WatcherThread::_should_terminate = false;
1360 
1361 WatcherThread::WatcherThread() : NonJavaThread() {
1362   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1363   if (os::create_thread(this, os::watcher_thread)) {
1364     _watcher_thread = this;
1365 
1366     // Set the watcher thread to the highest OS priority which should not be
1367     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1368     // is created. The only normal thread using this priority is the reference
1369     // handler thread, which runs for very short intervals only.
1370     // If the VMThread's priority is not lower than the WatcherThread profiling
1371     // will be inaccurate.
1372     os::set_priority(this, MaxPriority);
1373     if (!DisableStartThread) {
1374       os::start_thread(this);
1375     }
1376   }
1377 }
1378 
1379 int WatcherThread::sleep() const {
1380   // The WatcherThread does not participate in the safepoint protocol
1381   // for the PeriodicTask_lock because it is not a JavaThread.
1382   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1383 
1384   if (_should_terminate) {
1385     // check for termination before we do any housekeeping or wait
1386     return 0;  // we did not sleep.
1387   }
1388 
1389   // remaining will be zero if there are no tasks,
1390   // causing the WatcherThread to sleep until a task is
1391   // enrolled
1392   int remaining = PeriodicTask::time_to_wait();
1393   int time_slept = 0;
1394 
1395   // we expect this to timeout - we only ever get unparked when
1396   // we should terminate or when a new task has been enrolled
1397   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1398 
1399   jlong time_before_loop = os::javaTimeNanos();
1400 
1401   while (true) {
1402     bool timedout = ml.wait(remaining);
1403     jlong now = os::javaTimeNanos();
1404 
1405     if (remaining == 0) {
1406       // if we didn't have any tasks we could have waited for a long time
1407       // consider the time_slept zero and reset time_before_loop
1408       time_slept = 0;
1409       time_before_loop = now;
1410     } else {
1411       // need to recalculate since we might have new tasks in _tasks
1412       time_slept = (int) ((now - time_before_loop) / 1000000);
1413     }
1414 
1415     // Change to task list or spurious wakeup of some kind
1416     if (timedout || _should_terminate) {
1417       break;
1418     }
1419 
1420     remaining = PeriodicTask::time_to_wait();
1421     if (remaining == 0) {
1422       // Last task was just disenrolled so loop around and wait until
1423       // another task gets enrolled
1424       continue;
1425     }
1426 
1427     remaining -= time_slept;
1428     if (remaining <= 0) {
1429       break;
1430     }
1431   }
1432 
1433   return time_slept;
1434 }
1435 
1436 void WatcherThread::run() {
1437   assert(this == watcher_thread(), "just checking");
1438 
1439   this->set_active_handles(JNIHandleBlock::allocate_block());
1440   while (true) {
1441     assert(watcher_thread() == Thread::current(), "thread consistency check");
1442     assert(watcher_thread() == this, "thread consistency check");
1443 
1444     // Calculate how long it'll be until the next PeriodicTask work
1445     // should be done, and sleep that amount of time.
1446     int time_waited = sleep();
1447 
1448     if (VMError::is_error_reported()) {
1449       // A fatal error has happened, the error handler(VMError::report_and_die)
1450       // should abort JVM after creating an error log file. However in some
1451       // rare cases, the error handler itself might deadlock. Here periodically
1452       // check for error reporting timeouts, and if it happens, just proceed to
1453       // abort the VM.
1454 
1455       // This code is in WatcherThread because WatcherThread wakes up
1456       // periodically so the fatal error handler doesn't need to do anything;
1457       // also because the WatcherThread is less likely to crash than other
1458       // threads.
1459 
1460       for (;;) {
1461         // Note: we use naked sleep in this loop because we want to avoid using
1462         // any kind of VM infrastructure which may be broken at this point.
1463         if (VMError::check_timeout()) {
1464           // We hit error reporting timeout. Error reporting was interrupted and
1465           // will be wrapping things up now (closing files etc). Give it some more
1466           // time, then quit the VM.
1467           os::naked_short_sleep(200);
1468           // Print a message to stderr.
1469           fdStream err(defaultStream::output_fd());
1470           err.print_raw_cr("# [ timer expired, abort... ]");
1471           // skip atexit/vm_exit/vm_abort hooks
1472           os::die();
1473         }
1474 
1475         // Wait a second, then recheck for timeout.
1476         os::naked_short_sleep(999);
1477       }
1478     }
1479 
1480     if (_should_terminate) {
1481       // check for termination before posting the next tick
1482       break;
1483     }
1484 
1485     PeriodicTask::real_time_tick(time_waited);
1486   }
1487 
1488   // Signal that it is terminated
1489   {
1490     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1491     _watcher_thread = NULL;
1492     Terminator_lock->notify_all();
1493   }
1494 }
1495 
1496 void WatcherThread::start() {
1497   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1498 
1499   if (watcher_thread() == NULL && _startable) {
1500     _should_terminate = false;
1501     // Create the single instance of WatcherThread
1502     new WatcherThread();
1503   }
1504 }
1505 
1506 void WatcherThread::make_startable() {
1507   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1508   _startable = true;
1509 }
1510 
1511 void WatcherThread::stop() {
1512   {
1513     // Follow normal safepoint aware lock enter protocol since the
1514     // WatcherThread is stopped by another JavaThread.
1515     MutexLocker ml(PeriodicTask_lock);
1516     _should_terminate = true;
1517 
1518     WatcherThread* watcher = watcher_thread();
1519     if (watcher != NULL) {
1520       // unpark the WatcherThread so it can see that it should terminate
1521       watcher->unpark();
1522     }
1523   }
1524 
1525   MonitorLocker mu(Terminator_lock);
1526 
1527   while (watcher_thread() != NULL) {
1528     // This wait should make safepoint checks, wait without a timeout,
1529     // and wait as a suspend-equivalent condition.
1530     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1531   }
1532 }
1533 
1534 void WatcherThread::unpark() {
1535   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1536   PeriodicTask_lock->notify();
1537 }
1538 
1539 void WatcherThread::print_on(outputStream* st) const {
1540   st->print("\"%s\" ", name());
1541   Thread::print_on(st);
1542   st->cr();
1543 }
1544 
1545 // ======= JavaThread ========
1546 
1547 #if INCLUDE_JVMCI
1548 
1549 jlong* JavaThread::_jvmci_old_thread_counters;
1550 
1551 bool jvmci_counters_include(JavaThread* thread) {
1552   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1553 }
1554 
1555 void JavaThread::collect_counters(jlong* array, int length) {
1556   assert(length == JVMCICounterSize, "wrong value");
1557   for (int i = 0; i < length; i++) {
1558     array[i] = _jvmci_old_thread_counters[i];
1559   }
1560   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1561     if (jvmci_counters_include(tp)) {
1562       for (int i = 0; i < length; i++) {
1563         array[i] += tp->_jvmci_counters[i];
1564       }
1565     }
1566   }
1567 }
1568 
1569 // Attempt to enlarge the array for per thread counters.
1570 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1571   jlong* new_counters = NEW_C_HEAP_ARRAY(jlong, new_size, mtJVMCI);
1572   if (new_counters == NULL) {
1573     return NULL;
1574   }
1575   if (old_counters == NULL) {
1576     old_counters = new_counters;
1577     memset(old_counters, 0, sizeof(jlong) * new_size);
1578   } else {
1579     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1580       new_counters[i] = old_counters[i];
1581     }
1582     if (new_size > current_size) {
1583       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1584     }
1585     FREE_C_HEAP_ARRAY(jlong, old_counters);
1586   }
1587   return new_counters;
1588 }
1589 
1590 // Attempt to enlarge the array for per thread counters.
1591 bool JavaThread::resize_counters(int current_size, int new_size) {
1592   jlong* new_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1593   if (new_counters == NULL) {
1594     return false;
1595   } else {
1596     _jvmci_counters = new_counters;
1597     return true;
1598   }
1599 }
1600 
1601 class VM_JVMCIResizeCounters : public VM_Operation {
1602  private:
1603   int _new_size;
1604   bool _failed;
1605 
1606  public:
1607   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size), _failed(false) { }
1608   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1609   bool allow_nested_vm_operations() const        { return true; }
1610   void doit() {
1611     // Resize the old thread counters array
1612     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1613     if (new_counters == NULL) {
1614       _failed = true;
1615       return;
1616     } else {
1617       JavaThread::_jvmci_old_thread_counters = new_counters;
1618     }
1619 
1620     // Now resize each threads array
1621     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1622       if (!tp->resize_counters(JVMCICounterSize, _new_size)) {
1623         _failed = true;
1624         break;
1625       }
1626     }
1627     if (!_failed) {
1628       JVMCICounterSize = _new_size;
1629     }
1630   }
1631 
1632   bool failed() { return _failed; }
1633 };
1634 
1635 bool JavaThread::resize_all_jvmci_counters(int new_size) {
1636   VM_JVMCIResizeCounters op(new_size);
1637   VMThread::execute(&op);
1638   return !op.failed();
1639 }
1640 
1641 #endif // INCLUDE_JVMCI
1642 
1643 // A JavaThread is a normal Java thread
1644 
1645 void JavaThread::initialize() {
1646   // Initialize fields
1647 
1648   set_saved_exception_pc(NULL);
1649   set_threadObj(NULL);
1650   _anchor.clear();
1651   set_entry_point(NULL);
1652   set_jni_functions(jni_functions());
1653   set_callee_target(NULL);
1654   set_vm_result(NULL);
1655   set_vm_result_2(NULL);
1656   set_vframe_array_head(NULL);
1657   set_vframe_array_last(NULL);
1658   set_deferred_locals(NULL);
1659   set_deopt_mark(NULL);
1660   set_deopt_compiled_method(NULL);
1661   set_monitor_chunks(NULL);
1662   _on_thread_list = false;
1663   set_thread_state(_thread_new);
1664   _terminated = _not_terminated;
1665   _array_for_gc = NULL;
1666   _suspend_equivalent = false;
1667   _in_deopt_handler = 0;
1668   _doing_unsafe_access = false;
1669   _stack_guard_state = stack_guard_unused;
1670 #if INCLUDE_JVMCI
1671   _pending_monitorenter = false;
1672   _pending_deoptimization = -1;
1673   _pending_failed_speculation = 0;
1674   _pending_transfer_to_interpreter = false;
1675   _in_retryable_allocation = false;
1676   _jvmci._alternate_call_target = NULL;
1677   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1678   _jvmci_counters = NULL;
1679   if (JVMCICounterSize > 0) {
1680     resize_counters(0, (int) JVMCICounterSize);
1681   }
1682 #endif // INCLUDE_JVMCI
1683   _reserved_stack_activation = NULL;  // stack base not known yet
1684   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1685   _exception_pc  = 0;
1686   _exception_handler_pc = 0;
1687   _is_method_handle_return = 0;
1688   _jvmti_thread_state= NULL;
1689   _should_post_on_exceptions_flag = JNI_FALSE;
1690   _interp_only_mode    = 0;
1691   _special_runtime_exit_condition = _no_async_condition;
1692   _pending_async_exception = NULL;
1693   _thread_stat = NULL;
1694   _thread_stat = new ThreadStatistics();
1695   _jni_active_critical = 0;
1696   _pending_jni_exception_check_fn = NULL;
1697   _do_not_unlock_if_synchronized = false;
1698   _cached_monitor_info = NULL;
1699   _parker = Parker::Allocate(this);
1700 
1701   // Setup safepoint state info for this thread
1702   ThreadSafepointState::create(this);
1703 
1704   debug_only(_java_call_counter = 0);
1705 
1706   // JVMTI PopFrame support
1707   _popframe_condition = popframe_inactive;
1708   _popframe_preserved_args = NULL;
1709   _popframe_preserved_args_size = 0;
1710   _frames_to_pop_failed_realloc = 0;
1711 
1712   if (SafepointMechanism::uses_thread_local_poll()) {
1713     SafepointMechanism::initialize_header(this);
1714   }
1715 
1716   _class_to_be_initialized = NULL;
1717 
1718   pd_initialize();
1719 }
1720 
1721 JavaThread::JavaThread(bool is_attaching_via_jni) :
1722                        Thread() {
1723   initialize();
1724   if (is_attaching_via_jni) {
1725     _jni_attach_state = _attaching_via_jni;
1726   } else {
1727     _jni_attach_state = _not_attaching_via_jni;
1728   }
1729   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1730 }
1731 
1732 bool JavaThread::reguard_stack(address cur_sp) {
1733   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1734       && _stack_guard_state != stack_guard_reserved_disabled) {
1735     return true; // Stack already guarded or guard pages not needed.
1736   }
1737 
1738   if (register_stack_overflow()) {
1739     // For those architectures which have separate register and
1740     // memory stacks, we must check the register stack to see if
1741     // it has overflowed.
1742     return false;
1743   }
1744 
1745   // Java code never executes within the yellow zone: the latter is only
1746   // there to provoke an exception during stack banging.  If java code
1747   // is executing there, either StackShadowPages should be larger, or
1748   // some exception code in c1, c2 or the interpreter isn't unwinding
1749   // when it should.
1750   guarantee(cur_sp > stack_reserved_zone_base(),
1751             "not enough space to reguard - increase StackShadowPages");
1752   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1753     enable_stack_yellow_reserved_zone();
1754     if (reserved_stack_activation() != stack_base()) {
1755       set_reserved_stack_activation(stack_base());
1756     }
1757   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1758     set_reserved_stack_activation(stack_base());
1759     enable_stack_reserved_zone();
1760   }
1761   return true;
1762 }
1763 
1764 bool JavaThread::reguard_stack(void) {
1765   return reguard_stack(os::current_stack_pointer());
1766 }
1767 
1768 
1769 void JavaThread::block_if_vm_exited() {
1770   if (_terminated == _vm_exited) {
1771     // _vm_exited is set at safepoint, and Threads_lock is never released
1772     // we will block here forever
1773     Threads_lock->lock();
1774     ShouldNotReachHere();
1775   }
1776 }
1777 
1778 
1779 // Remove this ifdef when C1 is ported to the compiler interface.
1780 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1781 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1782 
1783 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1784                        Thread() {
1785   initialize();
1786   _jni_attach_state = _not_attaching_via_jni;
1787   set_entry_point(entry_point);
1788   // Create the native thread itself.
1789   // %note runtime_23
1790   os::ThreadType thr_type = os::java_thread;
1791   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1792                                                      os::java_thread;
1793   os::create_thread(this, thr_type, stack_sz);
1794   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1795   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1796   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1797   // the exception consists of creating the exception object & initializing it, initialization
1798   // will leave the VM via a JavaCall and then all locks must be unlocked).
1799   //
1800   // The thread is still suspended when we reach here. Thread must be explicit started
1801   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1802   // by calling Threads:add. The reason why this is not done here, is because the thread
1803   // object must be fully initialized (take a look at JVM_Start)
1804 }
1805 
1806 JavaThread::~JavaThread() {
1807 
1808   // JSR166 -- return the parker to the free list
1809   Parker::Release(_parker);
1810   _parker = NULL;
1811 
1812   // Free any remaining  previous UnrollBlock
1813   vframeArray* old_array = vframe_array_last();
1814 
1815   if (old_array != NULL) {
1816     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1817     old_array->set_unroll_block(NULL);
1818     delete old_info;
1819     delete old_array;
1820   }
1821 
1822   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1823   if (deferred != NULL) {
1824     // This can only happen if thread is destroyed before deoptimization occurs.
1825     assert(deferred->length() != 0, "empty array!");
1826     do {
1827       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1828       deferred->remove_at(0);
1829       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1830       delete dlv;
1831     } while (deferred->length() != 0);
1832     delete deferred;
1833   }
1834 
1835   // All Java related clean up happens in exit
1836   ThreadSafepointState::destroy(this);
1837   if (_thread_stat != NULL) delete _thread_stat;
1838 
1839 #if INCLUDE_JVMCI
1840   if (JVMCICounterSize > 0) {
1841     if (jvmci_counters_include(this)) {
1842       for (int i = 0; i < JVMCICounterSize; i++) {
1843         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1844       }
1845     }
1846     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1847   }
1848 #endif // INCLUDE_JVMCI
1849 }
1850 
1851 
1852 // First JavaThread specific code executed by a new Java thread.
1853 void JavaThread::pre_run() {
1854   // empty - see comments in run()
1855 }
1856 
1857 // The main routine called by a new Java thread. This isn't overridden
1858 // by subclasses, instead different subclasses define a different "entry_point"
1859 // which defines the actual logic for that kind of thread.
1860 void JavaThread::run() {
1861   // initialize thread-local alloc buffer related fields
1862   this->initialize_tlab();
1863 
1864   // Used to test validity of stack trace backs.
1865   // This can't be moved into pre_run() else we invalidate
1866   // the requirement that thread_main_inner is lower on
1867   // the stack. Consequently all the initialization logic
1868   // stays here in run() rather than pre_run().
1869   this->record_base_of_stack_pointer();
1870 
1871   this->create_stack_guard_pages();
1872 
1873   this->cache_global_variables();
1874 
1875   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1876   // in the VM. Change thread state from _thread_new to _thread_in_vm
1877   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1878   // Before a thread is on the threads list it is always safe, so after leaving the
1879   // _thread_new we should emit a instruction barrier. The distance to modified code
1880   // from here is probably far enough, but this is consistent and safe.
1881   OrderAccess::cross_modify_fence();
1882 
1883   assert(JavaThread::current() == this, "sanity check");
1884   assert(!Thread::current()->owns_locks(), "sanity check");
1885 
1886   DTRACE_THREAD_PROBE(start, this);
1887 
1888   // This operation might block. We call that after all safepoint checks for a new thread has
1889   // been completed.
1890   this->set_active_handles(JNIHandleBlock::allocate_block());
1891 
1892   if (JvmtiExport::should_post_thread_life()) {
1893     JvmtiExport::post_thread_start(this);
1894 
1895   }
1896 
1897   // We call another function to do the rest so we are sure that the stack addresses used
1898   // from there will be lower than the stack base just computed.
1899   thread_main_inner();
1900 }
1901 
1902 void JavaThread::thread_main_inner() {
1903   assert(JavaThread::current() == this, "sanity check");
1904   assert(this->threadObj() != NULL, "just checking");
1905 
1906   // Execute thread entry point unless this thread has a pending exception
1907   // or has been stopped before starting.
1908   // Note: Due to JVM_StopThread we can have pending exceptions already!
1909   if (!this->has_pending_exception() &&
1910       !java_lang_Thread::is_stillborn(this->threadObj())) {
1911     {
1912       ResourceMark rm(this);
1913       this->set_native_thread_name(this->get_thread_name());
1914     }
1915     HandleMark hm(this);
1916     this->entry_point()(this, this);
1917   }
1918 
1919   DTRACE_THREAD_PROBE(stop, this);
1920 
1921   // Cleanup is handled in post_run()
1922 }
1923 
1924 // Shared teardown for all JavaThreads
1925 void JavaThread::post_run() {
1926   this->exit(false);
1927   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1928   // for any shared tear-down.
1929   this->smr_delete();
1930 }
1931 
1932 static void ensure_join(JavaThread* thread) {
1933   // We do not need to grab the Threads_lock, since we are operating on ourself.
1934   Handle threadObj(thread, thread->threadObj());
1935   assert(threadObj.not_null(), "java thread object must exist");
1936   ObjectLocker lock(threadObj, thread);
1937   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1938   thread->clear_pending_exception();
1939   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1940   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1941   // Clear the native thread instance - this makes isAlive return false and allows the join()
1942   // to complete once we've done the notify_all below
1943   java_lang_Thread::set_thread(threadObj(), NULL);
1944   lock.notify_all(thread);
1945   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1946   thread->clear_pending_exception();
1947 }
1948 
1949 static bool is_daemon(oop threadObj) {
1950   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1951 }
1952 
1953 // For any new cleanup additions, please check to see if they need to be applied to
1954 // cleanup_failed_attach_current_thread as well.
1955 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1956   assert(this == JavaThread::current(), "thread consistency check");
1957 
1958   elapsedTimer _timer_exit_phase1;
1959   elapsedTimer _timer_exit_phase2;
1960   elapsedTimer _timer_exit_phase3;
1961   elapsedTimer _timer_exit_phase4;
1962 
1963   if (log_is_enabled(Debug, os, thread, timer)) {
1964     _timer_exit_phase1.start();
1965   }
1966 
1967   HandleMark hm(this);
1968   Handle uncaught_exception(this, this->pending_exception());
1969   this->clear_pending_exception();
1970   Handle threadObj(this, this->threadObj());
1971   assert(threadObj.not_null(), "Java thread object should be created");
1972 
1973   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1974   {
1975     EXCEPTION_MARK;
1976 
1977     CLEAR_PENDING_EXCEPTION;
1978   }
1979   if (!destroy_vm) {
1980     if (uncaught_exception.not_null()) {
1981       EXCEPTION_MARK;
1982       // Call method Thread.dispatchUncaughtException().
1983       Klass* thread_klass = SystemDictionary::Thread_klass();
1984       JavaValue result(T_VOID);
1985       JavaCalls::call_virtual(&result,
1986                               threadObj, thread_klass,
1987                               vmSymbols::dispatchUncaughtException_name(),
1988                               vmSymbols::throwable_void_signature(),
1989                               uncaught_exception,
1990                               THREAD);
1991       if (HAS_PENDING_EXCEPTION) {
1992         ResourceMark rm(this);
1993         jio_fprintf(defaultStream::error_stream(),
1994                     "\nException: %s thrown from the UncaughtExceptionHandler"
1995                     " in thread \"%s\"\n",
1996                     pending_exception()->klass()->external_name(),
1997                     get_thread_name());
1998         CLEAR_PENDING_EXCEPTION;
1999       }
2000     }
2001     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
2002 
2003     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2004     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2005     // is deprecated anyhow.
2006     if (!is_Compiler_thread()) {
2007       int count = 3;
2008       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2009         EXCEPTION_MARK;
2010         JavaValue result(T_VOID);
2011         Klass* thread_klass = SystemDictionary::Thread_klass();
2012         JavaCalls::call_virtual(&result,
2013                                 threadObj, thread_klass,
2014                                 vmSymbols::exit_method_name(),
2015                                 vmSymbols::void_method_signature(),
2016                                 THREAD);
2017         CLEAR_PENDING_EXCEPTION;
2018       }
2019     }
2020     // notify JVMTI
2021     if (JvmtiExport::should_post_thread_life()) {
2022       JvmtiExport::post_thread_end(this);
2023     }
2024 
2025     // We have notified the agents that we are exiting, before we go on,
2026     // we must check for a pending external suspend request and honor it
2027     // in order to not surprise the thread that made the suspend request.
2028     while (true) {
2029       {
2030         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2031         if (!is_external_suspend()) {
2032           set_terminated(_thread_exiting);
2033           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2034           break;
2035         }
2036         // Implied else:
2037         // Things get a little tricky here. We have a pending external
2038         // suspend request, but we are holding the SR_lock so we
2039         // can't just self-suspend. So we temporarily drop the lock
2040         // and then self-suspend.
2041       }
2042 
2043       ThreadBlockInVM tbivm(this);
2044       java_suspend_self();
2045 
2046       // We're done with this suspend request, but we have to loop around
2047       // and check again. Eventually we will get SR_lock without a pending
2048       // external suspend request and will be able to mark ourselves as
2049       // exiting.
2050     }
2051     // no more external suspends are allowed at this point
2052   } else {
2053     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2054     // before_exit() has already posted JVMTI THREAD_END events
2055   }
2056 
2057   if (log_is_enabled(Debug, os, thread, timer)) {
2058     _timer_exit_phase1.stop();
2059     _timer_exit_phase2.start();
2060   }
2061 
2062   // Capture daemon status before the thread is marked as terminated.
2063   bool daemon = is_daemon(threadObj());
2064 
2065   // Notify waiters on thread object. This has to be done after exit() is called
2066   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2067   // group should have the destroyed bit set before waiters are notified).
2068   ensure_join(this);
2069   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2070 
2071   if (log_is_enabled(Debug, os, thread, timer)) {
2072     _timer_exit_phase2.stop();
2073     _timer_exit_phase3.start();
2074   }
2075   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2076   // held by this thread must be released. The spec does not distinguish
2077   // between JNI-acquired and regular Java monitors. We can only see
2078   // regular Java monitors here if monitor enter-exit matching is broken.
2079   //
2080   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2081   // ObjectSynchronizer::release_monitors_owned_by_thread().
2082   if (exit_type == jni_detach) {
2083     // Sanity check even though JNI DetachCurrentThread() would have
2084     // returned JNI_ERR if there was a Java frame. JavaThread exit
2085     // should be done executing Java code by the time we get here.
2086     assert(!this->has_last_Java_frame(),
2087            "should not have a Java frame when detaching or exiting");
2088     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2089     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2090   }
2091 
2092   // These things needs to be done while we are still a Java Thread. Make sure that thread
2093   // is in a consistent state, in case GC happens
2094   JFR_ONLY(Jfr::on_thread_exit(this);)
2095 
2096   if (active_handles() != NULL) {
2097     JNIHandleBlock* block = active_handles();
2098     set_active_handles(NULL);
2099     JNIHandleBlock::release_block(block);
2100   }
2101 
2102   if (free_handle_block() != NULL) {
2103     JNIHandleBlock* block = free_handle_block();
2104     set_free_handle_block(NULL);
2105     JNIHandleBlock::release_block(block);
2106   }
2107 
2108   // These have to be removed while this is still a valid thread.
2109   remove_stack_guard_pages();
2110 
2111   if (UseTLAB) {
2112     tlab().retire();
2113   }
2114 
2115   if (JvmtiEnv::environments_might_exist()) {
2116     JvmtiExport::cleanup_thread(this);
2117   }
2118 
2119   // We must flush any deferred card marks and other various GC barrier
2120   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2121   // before removing a thread from the list of active threads.
2122   BarrierSet::barrier_set()->on_thread_detach(this);
2123 
2124   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2125     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2126     os::current_thread_id());
2127 
2128   if (log_is_enabled(Debug, os, thread, timer)) {
2129     _timer_exit_phase3.stop();
2130     _timer_exit_phase4.start();
2131   }
2132   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2133   Threads::remove(this, daemon);
2134 
2135   if (log_is_enabled(Debug, os, thread, timer)) {
2136     _timer_exit_phase4.stop();
2137     ResourceMark rm(this);
2138     log_debug(os, thread, timer)("name='%s'"
2139                                  ", exit-phase1=" JLONG_FORMAT
2140                                  ", exit-phase2=" JLONG_FORMAT
2141                                  ", exit-phase3=" JLONG_FORMAT
2142                                  ", exit-phase4=" JLONG_FORMAT,
2143                                  get_thread_name(),
2144                                  _timer_exit_phase1.milliseconds(),
2145                                  _timer_exit_phase2.milliseconds(),
2146                                  _timer_exit_phase3.milliseconds(),
2147                                  _timer_exit_phase4.milliseconds());
2148   }
2149 }
2150 
2151 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2152   if (active_handles() != NULL) {
2153     JNIHandleBlock* block = active_handles();
2154     set_active_handles(NULL);
2155     JNIHandleBlock::release_block(block);
2156   }
2157 
2158   if (free_handle_block() != NULL) {
2159     JNIHandleBlock* block = free_handle_block();
2160     set_free_handle_block(NULL);
2161     JNIHandleBlock::release_block(block);
2162   }
2163 
2164   // These have to be removed while this is still a valid thread.
2165   remove_stack_guard_pages();
2166 
2167   if (UseTLAB) {
2168     tlab().retire();
2169   }
2170 
2171   BarrierSet::barrier_set()->on_thread_detach(this);
2172 
2173   Threads::remove(this, is_daemon);
2174   this->smr_delete();
2175 }
2176 
2177 JavaThread* JavaThread::active() {
2178   Thread* thread = Thread::current();
2179   if (thread->is_Java_thread()) {
2180     return (JavaThread*) thread;
2181   } else {
2182     assert(thread->is_VM_thread(), "this must be a vm thread");
2183     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2184     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2185     assert(ret->is_Java_thread(), "must be a Java thread");
2186     return ret;
2187   }
2188 }
2189 
2190 bool JavaThread::is_lock_owned(address adr) const {
2191   if (Thread::is_lock_owned(adr)) return true;
2192 
2193   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2194     if (chunk->contains(adr)) return true;
2195   }
2196 
2197   return false;
2198 }
2199 
2200 
2201 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2202   chunk->set_next(monitor_chunks());
2203   set_monitor_chunks(chunk);
2204 }
2205 
2206 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2207   guarantee(monitor_chunks() != NULL, "must be non empty");
2208   if (monitor_chunks() == chunk) {
2209     set_monitor_chunks(chunk->next());
2210   } else {
2211     MonitorChunk* prev = monitor_chunks();
2212     while (prev->next() != chunk) prev = prev->next();
2213     prev->set_next(chunk->next());
2214   }
2215 }
2216 
2217 // JVM support.
2218 
2219 // Note: this function shouldn't block if it's called in
2220 // _thread_in_native_trans state (such as from
2221 // check_special_condition_for_native_trans()).
2222 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2223 
2224   if (has_last_Java_frame() && has_async_condition()) {
2225     // If we are at a polling page safepoint (not a poll return)
2226     // then we must defer async exception because live registers
2227     // will be clobbered by the exception path. Poll return is
2228     // ok because the call we a returning from already collides
2229     // with exception handling registers and so there is no issue.
2230     // (The exception handling path kills call result registers but
2231     //  this is ok since the exception kills the result anyway).
2232 
2233     if (is_at_poll_safepoint()) {
2234       // if the code we are returning to has deoptimized we must defer
2235       // the exception otherwise live registers get clobbered on the
2236       // exception path before deoptimization is able to retrieve them.
2237       //
2238       RegisterMap map(this, false);
2239       frame caller_fr = last_frame().sender(&map);
2240       assert(caller_fr.is_compiled_frame(), "what?");
2241       if (caller_fr.is_deoptimized_frame()) {
2242         log_info(exceptions)("deferred async exception at compiled safepoint");
2243         return;
2244       }
2245     }
2246   }
2247 
2248   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2249   if (condition == _no_async_condition) {
2250     // Conditions have changed since has_special_runtime_exit_condition()
2251     // was called:
2252     // - if we were here only because of an external suspend request,
2253     //   then that was taken care of above (or cancelled) so we are done
2254     // - if we were here because of another async request, then it has
2255     //   been cleared between the has_special_runtime_exit_condition()
2256     //   and now so again we are done
2257     return;
2258   }
2259 
2260   // Check for pending async. exception
2261   if (_pending_async_exception != NULL) {
2262     // Only overwrite an already pending exception, if it is not a threadDeath.
2263     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2264 
2265       // We cannot call Exceptions::_throw(...) here because we cannot block
2266       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2267 
2268       LogTarget(Info, exceptions) lt;
2269       if (lt.is_enabled()) {
2270         ResourceMark rm;
2271         LogStream ls(lt);
2272         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2273           if (has_last_Java_frame()) {
2274             frame f = last_frame();
2275            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2276           }
2277         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2278       }
2279       _pending_async_exception = NULL;
2280       clear_has_async_exception();
2281     }
2282   }
2283 
2284   if (check_unsafe_error &&
2285       condition == _async_unsafe_access_error && !has_pending_exception()) {
2286     condition = _no_async_condition;  // done
2287     switch (thread_state()) {
2288     case _thread_in_vm: {
2289       JavaThread* THREAD = this;
2290       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2291     }
2292     case _thread_in_native: {
2293       ThreadInVMfromNative tiv(this);
2294       JavaThread* THREAD = this;
2295       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2296     }
2297     case _thread_in_Java: {
2298       ThreadInVMfromJava tiv(this);
2299       JavaThread* THREAD = this;
2300       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2301     }
2302     default:
2303       ShouldNotReachHere();
2304     }
2305   }
2306 
2307   assert(condition == _no_async_condition || has_pending_exception() ||
2308          (!check_unsafe_error && condition == _async_unsafe_access_error),
2309          "must have handled the async condition, if no exception");
2310 }
2311 
2312 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2313 
2314   // Check for pending external suspend.
2315   if (is_external_suspend_with_lock()) {
2316     frame_anchor()->make_walkable(this);
2317     java_suspend_self_with_safepoint_check();
2318   }
2319 
2320   // We might be here for reasons in addition to the self-suspend request
2321   // so check for other async requests.
2322   if (check_asyncs) {
2323     check_and_handle_async_exceptions();
2324   }
2325 
2326   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2327 }
2328 
2329 void JavaThread::send_thread_stop(oop java_throwable)  {
2330   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2331   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2332   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2333 
2334   // Do not throw asynchronous exceptions against the compiler thread
2335   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2336   if (!can_call_java()) return;
2337 
2338   {
2339     // Actually throw the Throwable against the target Thread - however
2340     // only if there is no thread death exception installed already.
2341     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2342       // If the topmost frame is a runtime stub, then we are calling into
2343       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2344       // must deoptimize the caller before continuing, as the compiled  exception handler table
2345       // may not be valid
2346       if (has_last_Java_frame()) {
2347         frame f = last_frame();
2348         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2349           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2350           RegisterMap reg_map(this, UseBiasedLocking);
2351           frame compiled_frame = f.sender(&reg_map);
2352           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2353             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2354           }
2355         }
2356       }
2357 
2358       // Set async. pending exception in thread.
2359       set_pending_async_exception(java_throwable);
2360 
2361       if (log_is_enabled(Info, exceptions)) {
2362          ResourceMark rm;
2363         log_info(exceptions)("Pending Async. exception installed of type: %s",
2364                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2365       }
2366       // for AbortVMOnException flag
2367       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2368     }
2369   }
2370 
2371 
2372   // Interrupt thread so it will wake up from a potential wait()
2373   Thread::interrupt(this);
2374 }
2375 
2376 // External suspension mechanism.
2377 //
2378 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2379 // to any VM_locks and it is at a transition
2380 // Self-suspension will happen on the transition out of the vm.
2381 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2382 //
2383 // Guarantees on return:
2384 //   + Target thread will not execute any new bytecode (that's why we need to
2385 //     force a safepoint)
2386 //   + Target thread will not enter any new monitors
2387 //
2388 void JavaThread::java_suspend() {
2389   ThreadsListHandle tlh;
2390   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2391     return;
2392   }
2393 
2394   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2395     if (!is_external_suspend()) {
2396       // a racing resume has cancelled us; bail out now
2397       return;
2398     }
2399 
2400     // suspend is done
2401     uint32_t debug_bits = 0;
2402     // Warning: is_ext_suspend_completed() may temporarily drop the
2403     // SR_lock to allow the thread to reach a stable thread state if
2404     // it is currently in a transient thread state.
2405     if (is_ext_suspend_completed(false /* !called_by_wait */,
2406                                  SuspendRetryDelay, &debug_bits)) {
2407       return;
2408     }
2409   }
2410 
2411   if (Thread::current() == this) {
2412     // Safely self-suspend.
2413     // If we don't do this explicitly it will implicitly happen
2414     // before we transition back to Java, and on some other thread-state
2415     // transition paths, but not as we exit a JVM TI SuspendThread call.
2416     // As SuspendThread(current) must not return (until resumed) we must
2417     // self-suspend here.
2418     ThreadBlockInVM tbivm(this);
2419     java_suspend_self();
2420   } else {
2421     VM_ThreadSuspend vm_suspend;
2422     VMThread::execute(&vm_suspend);
2423   }
2424 }
2425 
2426 // Part II of external suspension.
2427 // A JavaThread self suspends when it detects a pending external suspend
2428 // request. This is usually on transitions. It is also done in places
2429 // where continuing to the next transition would surprise the caller,
2430 // e.g., monitor entry.
2431 //
2432 // Returns the number of times that the thread self-suspended.
2433 //
2434 // Note: DO NOT call java_suspend_self() when you just want to block current
2435 //       thread. java_suspend_self() is the second stage of cooperative
2436 //       suspension for external suspend requests and should only be used
2437 //       to complete an external suspend request.
2438 //
2439 int JavaThread::java_suspend_self() {
2440   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2441   int ret = 0;
2442 
2443   // we are in the process of exiting so don't suspend
2444   if (is_exiting()) {
2445     clear_external_suspend();
2446     return ret;
2447   }
2448 
2449   assert(_anchor.walkable() ||
2450          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2451          "must have walkable stack");
2452 
2453   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2454 
2455   assert(!this->is_ext_suspended(),
2456          "a thread trying to self-suspend should not already be suspended");
2457 
2458   if (this->is_suspend_equivalent()) {
2459     // If we are self-suspending as a result of the lifting of a
2460     // suspend equivalent condition, then the suspend_equivalent
2461     // flag is not cleared until we set the ext_suspended flag so
2462     // that wait_for_ext_suspend_completion() returns consistent
2463     // results.
2464     this->clear_suspend_equivalent();
2465   }
2466 
2467   // A racing resume may have cancelled us before we grabbed SR_lock
2468   // above. Or another external suspend request could be waiting for us
2469   // by the time we return from SR_lock()->wait(). The thread
2470   // that requested the suspension may already be trying to walk our
2471   // stack and if we return now, we can change the stack out from under
2472   // it. This would be a "bad thing (TM)" and cause the stack walker
2473   // to crash. We stay self-suspended until there are no more pending
2474   // external suspend requests.
2475   while (is_external_suspend()) {
2476     ret++;
2477     this->set_ext_suspended();
2478 
2479     // _ext_suspended flag is cleared by java_resume()
2480     while (is_ext_suspended()) {
2481       ml.wait();
2482     }
2483   }
2484   return ret;
2485 }
2486 
2487 // Helper routine to set up the correct thread state before calling java_suspend_self.
2488 // This is called when regular thread-state transition helpers can't be used because
2489 // we can be in various states, in particular _thread_in_native_trans.
2490 // Because this thread is external suspended the safepoint code will count it as at
2491 // a safepoint, regardless of what its actual current thread-state is. But
2492 // is_ext_suspend_completed() may be waiting to see a thread transition from
2493 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2494 // to _thread_blocked. The problem with setting thread state directly is that a
2495 // safepoint could happen just after java_suspend_self() returns after being resumed,
2496 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2497 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2498 // However, not all initial-states are allowed when performing a safepoint check, as we
2499 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2500 // only _thread_in_native is possible when executing this code (based on our two callers).
2501 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2502 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2503 // and so we don't need the explicit safepoint check.
2504 
2505 void JavaThread::java_suspend_self_with_safepoint_check() {
2506   assert(this == Thread::current(), "invariant");
2507   JavaThreadState state = thread_state();
2508   set_thread_state(_thread_blocked);
2509   java_suspend_self();
2510   set_thread_state_fence(state);
2511   // Since we are not using a regular thread-state transition helper here,
2512   // we must manually emit the instruction barrier after leaving a safe state.
2513   OrderAccess::cross_modify_fence();
2514   if (state != _thread_in_native) {
2515     SafepointMechanism::block_if_requested(this);
2516   }
2517 }
2518 
2519 #ifdef ASSERT
2520 // Verify the JavaThread has not yet been published in the Threads::list, and
2521 // hence doesn't need protection from concurrent access at this stage.
2522 void JavaThread::verify_not_published() {
2523   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2524   // since an unpublished JavaThread doesn't participate in the
2525   // Thread-SMR protocol for keeping a ThreadsList alive.
2526   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2527 }
2528 #endif
2529 
2530 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2531 // progress or when _suspend_flags is non-zero.
2532 // Current thread needs to self-suspend if there is a suspend request and/or
2533 // block if a safepoint is in progress.
2534 // Async exception ISN'T checked.
2535 // Note only the ThreadInVMfromNative transition can call this function
2536 // directly and when thread state is _thread_in_native_trans
2537 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2538   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2539 
2540   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2541 
2542   if (thread->is_external_suspend()) {
2543     thread->java_suspend_self_with_safepoint_check();
2544   } else {
2545     SafepointMechanism::block_if_requested(thread);
2546   }
2547 
2548   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2549 }
2550 
2551 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2552 // progress or when _suspend_flags is non-zero.
2553 // Current thread needs to self-suspend if there is a suspend request and/or
2554 // block if a safepoint is in progress.
2555 // Also check for pending async exception (not including unsafe access error).
2556 // Note only the native==>VM/Java barriers can call this function and when
2557 // thread state is _thread_in_native_trans.
2558 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2559   check_safepoint_and_suspend_for_native_trans(thread);
2560 
2561   if (thread->has_async_exception()) {
2562     // We are in _thread_in_native_trans state, don't handle unsafe
2563     // access error since that may block.
2564     thread->check_and_handle_async_exceptions(false);
2565   }
2566 }
2567 
2568 // This is a variant of the normal
2569 // check_special_condition_for_native_trans with slightly different
2570 // semantics for use by critical native wrappers.  It does all the
2571 // normal checks but also performs the transition back into
2572 // thread_in_Java state.  This is required so that critical natives
2573 // can potentially block and perform a GC if they are the last thread
2574 // exiting the GCLocker.
2575 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2576   check_special_condition_for_native_trans(thread);
2577 
2578   // Finish the transition
2579   thread->set_thread_state(_thread_in_Java);
2580 
2581   if (thread->do_critical_native_unlock()) {
2582     ThreadInVMfromJavaNoAsyncException tiv(thread);
2583     GCLocker::unlock_critical(thread);
2584     thread->clear_critical_native_unlock();
2585   }
2586 }
2587 
2588 // We need to guarantee the Threads_lock here, since resumes are not
2589 // allowed during safepoint synchronization
2590 // Can only resume from an external suspension
2591 void JavaThread::java_resume() {
2592   assert_locked_or_safepoint(Threads_lock);
2593 
2594   // Sanity check: thread is gone, has started exiting or the thread
2595   // was not externally suspended.
2596   ThreadsListHandle tlh;
2597   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2598     return;
2599   }
2600 
2601   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2602 
2603   clear_external_suspend();
2604 
2605   if (is_ext_suspended()) {
2606     clear_ext_suspended();
2607     SR_lock()->notify_all();
2608   }
2609 }
2610 
2611 size_t JavaThread::_stack_red_zone_size = 0;
2612 size_t JavaThread::_stack_yellow_zone_size = 0;
2613 size_t JavaThread::_stack_reserved_zone_size = 0;
2614 size_t JavaThread::_stack_shadow_zone_size = 0;
2615 
2616 void JavaThread::create_stack_guard_pages() {
2617   if (!os::uses_stack_guard_pages() ||
2618       _stack_guard_state != stack_guard_unused ||
2619       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2620       log_info(os, thread)("Stack guard page creation for thread "
2621                            UINTX_FORMAT " disabled", os::current_thread_id());
2622     return;
2623   }
2624   address low_addr = stack_end();
2625   size_t len = stack_guard_zone_size();
2626 
2627   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2628   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2629 
2630   int must_commit = os::must_commit_stack_guard_pages();
2631   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2632 
2633   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2634     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2635     return;
2636   }
2637 
2638   if (os::guard_memory((char *) low_addr, len)) {
2639     _stack_guard_state = stack_guard_enabled;
2640   } else {
2641     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2642       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2643     if (os::uncommit_memory((char *) low_addr, len)) {
2644       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2645     }
2646     return;
2647   }
2648 
2649   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2650     PTR_FORMAT "-" PTR_FORMAT ".",
2651     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2652 }
2653 
2654 void JavaThread::remove_stack_guard_pages() {
2655   assert(Thread::current() == this, "from different thread");
2656   if (_stack_guard_state == stack_guard_unused) return;
2657   address low_addr = stack_end();
2658   size_t len = stack_guard_zone_size();
2659 
2660   if (os::must_commit_stack_guard_pages()) {
2661     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2662       _stack_guard_state = stack_guard_unused;
2663     } else {
2664       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2665         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2666       return;
2667     }
2668   } else {
2669     if (_stack_guard_state == stack_guard_unused) return;
2670     if (os::unguard_memory((char *) low_addr, len)) {
2671       _stack_guard_state = stack_guard_unused;
2672     } else {
2673       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2674         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2675       return;
2676     }
2677   }
2678 
2679   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2680     PTR_FORMAT "-" PTR_FORMAT ".",
2681     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2682 }
2683 
2684 void JavaThread::enable_stack_reserved_zone() {
2685   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2686 
2687   // The base notation is from the stack's point of view, growing downward.
2688   // We need to adjust it to work correctly with guard_memory()
2689   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2690 
2691   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2692   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2693 
2694   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2695     _stack_guard_state = stack_guard_enabled;
2696   } else {
2697     warning("Attempt to guard stack reserved zone failed.");
2698   }
2699   enable_register_stack_guard();
2700 }
2701 
2702 void JavaThread::disable_stack_reserved_zone() {
2703   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2704 
2705   // Simply return if called for a thread that does not use guard pages.
2706   if (_stack_guard_state != stack_guard_enabled) return;
2707 
2708   // The base notation is from the stack's point of view, growing downward.
2709   // We need to adjust it to work correctly with guard_memory()
2710   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2711 
2712   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2713     _stack_guard_state = stack_guard_reserved_disabled;
2714   } else {
2715     warning("Attempt to unguard stack reserved zone failed.");
2716   }
2717   disable_register_stack_guard();
2718 }
2719 
2720 void JavaThread::enable_stack_yellow_reserved_zone() {
2721   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2722   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2723 
2724   // The base notation is from the stacks point of view, growing downward.
2725   // We need to adjust it to work correctly with guard_memory()
2726   address base = stack_red_zone_base();
2727 
2728   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2729   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2730 
2731   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2732     _stack_guard_state = stack_guard_enabled;
2733   } else {
2734     warning("Attempt to guard stack yellow zone failed.");
2735   }
2736   enable_register_stack_guard();
2737 }
2738 
2739 void JavaThread::disable_stack_yellow_reserved_zone() {
2740   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2741   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2742 
2743   // Simply return if called for a thread that does not use guard pages.
2744   if (_stack_guard_state == stack_guard_unused) return;
2745 
2746   // The base notation is from the stacks point of view, growing downward.
2747   // We need to adjust it to work correctly with guard_memory()
2748   address base = stack_red_zone_base();
2749 
2750   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2751     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2752   } else {
2753     warning("Attempt to unguard stack yellow zone failed.");
2754   }
2755   disable_register_stack_guard();
2756 }
2757 
2758 void JavaThread::enable_stack_red_zone() {
2759   // The base notation is from the stacks point of view, growing downward.
2760   // We need to adjust it to work correctly with guard_memory()
2761   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2762   address base = stack_red_zone_base() - stack_red_zone_size();
2763 
2764   guarantee(base < stack_base(), "Error calculating stack red zone");
2765   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2766 
2767   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2768     warning("Attempt to guard stack red zone failed.");
2769   }
2770 }
2771 
2772 void JavaThread::disable_stack_red_zone() {
2773   // The base notation is from the stacks point of view, growing downward.
2774   // We need to adjust it to work correctly with guard_memory()
2775   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2776   address base = stack_red_zone_base() - stack_red_zone_size();
2777   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2778     warning("Attempt to unguard stack red zone failed.");
2779   }
2780 }
2781 
2782 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2783   // ignore is there is no stack
2784   if (!has_last_Java_frame()) return;
2785   // traverse the stack frames. Starts from top frame.
2786   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2787     frame* fr = fst.current();
2788     f(fr, fst.register_map());
2789   }
2790 }
2791 
2792 
2793 #ifndef PRODUCT
2794 // Deoptimization
2795 // Function for testing deoptimization
2796 void JavaThread::deoptimize() {
2797   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2798   StackFrameStream fst(this, UseBiasedLocking);
2799   bool deopt = false;           // Dump stack only if a deopt actually happens.
2800   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2801   // Iterate over all frames in the thread and deoptimize
2802   for (; !fst.is_done(); fst.next()) {
2803     if (fst.current()->can_be_deoptimized()) {
2804 
2805       if (only_at) {
2806         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2807         // consists of comma or carriage return separated numbers so
2808         // search for the current bci in that string.
2809         address pc = fst.current()->pc();
2810         nmethod* nm =  (nmethod*) fst.current()->cb();
2811         ScopeDesc* sd = nm->scope_desc_at(pc);
2812         char buffer[8];
2813         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2814         size_t len = strlen(buffer);
2815         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2816         while (found != NULL) {
2817           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2818               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2819             // Check that the bci found is bracketed by terminators.
2820             break;
2821           }
2822           found = strstr(found + 1, buffer);
2823         }
2824         if (!found) {
2825           continue;
2826         }
2827       }
2828 
2829       if (DebugDeoptimization && !deopt) {
2830         deopt = true; // One-time only print before deopt
2831         tty->print_cr("[BEFORE Deoptimization]");
2832         trace_frames();
2833         trace_stack();
2834       }
2835       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2836     }
2837   }
2838 
2839   if (DebugDeoptimization && deopt) {
2840     tty->print_cr("[AFTER Deoptimization]");
2841     trace_frames();
2842   }
2843 }
2844 
2845 
2846 // Make zombies
2847 void JavaThread::make_zombies() {
2848   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2849     if (fst.current()->can_be_deoptimized()) {
2850       // it is a Java nmethod
2851       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2852       nm->make_not_entrant();
2853     }
2854   }
2855 }
2856 #endif // PRODUCT
2857 
2858 
2859 void JavaThread::deoptimized_wrt_marked_nmethods() {
2860   if (!has_last_Java_frame()) return;
2861   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2862   StackFrameStream fst(this, UseBiasedLocking);
2863   for (; !fst.is_done(); fst.next()) {
2864     if (fst.current()->should_be_deoptimized()) {
2865       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2866     }
2867   }
2868 }
2869 
2870 
2871 // If the caller is a NamedThread, then remember, in the current scope,
2872 // the given JavaThread in its _processed_thread field.
2873 class RememberProcessedThread: public StackObj {
2874   NamedThread* _cur_thr;
2875  public:
2876   RememberProcessedThread(JavaThread* jthr) {
2877     Thread* thread = Thread::current();
2878     if (thread->is_Named_thread()) {
2879       _cur_thr = (NamedThread *)thread;
2880       _cur_thr->set_processed_thread(jthr);
2881     } else {
2882       _cur_thr = NULL;
2883     }
2884   }
2885 
2886   ~RememberProcessedThread() {
2887     if (_cur_thr) {
2888       _cur_thr->set_processed_thread(NULL);
2889     }
2890   }
2891 };
2892 
2893 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2894   // Verify that the deferred card marks have been flushed.
2895   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2896 
2897   // Traverse the GCHandles
2898   Thread::oops_do(f, cf);
2899 
2900   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2901          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2902 
2903   if (has_last_Java_frame()) {
2904     // Record JavaThread to GC thread
2905     RememberProcessedThread rpt(this);
2906 
2907     // traverse the registered growable array
2908     if (_array_for_gc != NULL) {
2909       for (int index = 0; index < _array_for_gc->length(); index++) {
2910         f->do_oop(_array_for_gc->adr_at(index));
2911       }
2912     }
2913 
2914     // Traverse the monitor chunks
2915     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2916       chunk->oops_do(f);
2917     }
2918 
2919     // Traverse the execution stack
2920     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2921       fst.current()->oops_do(f, cf, fst.register_map());
2922     }
2923   }
2924 
2925   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2926   // If we have deferred set_locals there might be oops waiting to be
2927   // written
2928   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2929   if (list != NULL) {
2930     for (int i = 0; i < list->length(); i++) {
2931       list->at(i)->oops_do(f);
2932     }
2933   }
2934 
2935   // Traverse instance variables at the end since the GC may be moving things
2936   // around using this function
2937   f->do_oop((oop*) &_threadObj);
2938   f->do_oop((oop*) &_vm_result);
2939   f->do_oop((oop*) &_exception_oop);
2940   f->do_oop((oop*) &_pending_async_exception);
2941 
2942   if (jvmti_thread_state() != NULL) {
2943     jvmti_thread_state()->oops_do(f);
2944   }
2945 }
2946 
2947 #ifdef ASSERT
2948 void JavaThread::verify_states_for_handshake() {
2949   // This checks that the thread has a correct frame state during a handshake.
2950   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2951          (has_last_Java_frame() && java_call_counter() > 0),
2952          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2953          has_last_Java_frame(), java_call_counter());
2954 }
2955 #endif
2956 
2957 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2958   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2959          (has_last_Java_frame() && java_call_counter() > 0),
2960          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2961          has_last_Java_frame(), java_call_counter());
2962 
2963   if (has_last_Java_frame()) {
2964     // Traverse the execution stack
2965     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2966       fst.current()->nmethods_do(cf);
2967     }
2968   }
2969 }
2970 
2971 void JavaThread::metadata_do(MetadataClosure* f) {
2972   if (has_last_Java_frame()) {
2973     // Traverse the execution stack to call f() on the methods in the stack
2974     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2975       fst.current()->metadata_do(f);
2976     }
2977   } else if (is_Compiler_thread()) {
2978     // need to walk ciMetadata in current compile tasks to keep alive.
2979     CompilerThread* ct = (CompilerThread*)this;
2980     if (ct->env() != NULL) {
2981       ct->env()->metadata_do(f);
2982     }
2983     CompileTask* task = ct->task();
2984     if (task != NULL) {
2985       task->metadata_do(f);
2986     }
2987   }
2988 }
2989 
2990 // Printing
2991 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2992   switch (_thread_state) {
2993   case _thread_uninitialized:     return "_thread_uninitialized";
2994   case _thread_new:               return "_thread_new";
2995   case _thread_new_trans:         return "_thread_new_trans";
2996   case _thread_in_native:         return "_thread_in_native";
2997   case _thread_in_native_trans:   return "_thread_in_native_trans";
2998   case _thread_in_vm:             return "_thread_in_vm";
2999   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
3000   case _thread_in_Java:           return "_thread_in_Java";
3001   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3002   case _thread_blocked:           return "_thread_blocked";
3003   case _thread_blocked_trans:     return "_thread_blocked_trans";
3004   default:                        return "unknown thread state";
3005   }
3006 }
3007 
3008 #ifndef PRODUCT
3009 void JavaThread::print_thread_state_on(outputStream *st) const {
3010   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3011 };
3012 #endif // PRODUCT
3013 
3014 // Called by Threads::print() for VM_PrintThreads operation
3015 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3016   st->print_raw("\"");
3017   st->print_raw(get_thread_name());
3018   st->print_raw("\" ");
3019   oop thread_oop = threadObj();
3020   if (thread_oop != NULL) {
3021     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3022     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3023     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3024   }
3025   Thread::print_on(st, print_extended_info);
3026   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3027   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3028   if (thread_oop != NULL) {
3029     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3030   }
3031 #ifndef PRODUCT
3032   _safepoint_state->print_on(st);
3033 #endif // PRODUCT
3034   if (is_Compiler_thread()) {
3035     CompileTask *task = ((CompilerThread*)this)->task();
3036     if (task != NULL) {
3037       st->print("   Compiling: ");
3038       task->print(st, NULL, true, false);
3039     } else {
3040       st->print("   No compile task");
3041     }
3042     st->cr();
3043   }
3044 }
3045 
3046 void JavaThread::print() const { print_on(tty); }
3047 
3048 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3049   st->print("%s", get_thread_name_string(buf, buflen));
3050 }
3051 
3052 // Called by fatal error handler. The difference between this and
3053 // JavaThread::print() is that we can't grab lock or allocate memory.
3054 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3055   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3056   oop thread_obj = threadObj();
3057   if (thread_obj != NULL) {
3058     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3059   }
3060   st->print(" [");
3061   st->print("%s", _get_thread_state_name(_thread_state));
3062   if (osthread()) {
3063     st->print(", id=%d", osthread()->thread_id());
3064   }
3065   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3066             p2i(stack_end()), p2i(stack_base()));
3067   st->print("]");
3068 
3069   ThreadsSMRSupport::print_info_on(this, st);
3070   return;
3071 }
3072 
3073 // Verification
3074 
3075 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3076 
3077 void JavaThread::verify() {
3078   // Verify oops in the thread.
3079   oops_do(&VerifyOopClosure::verify_oop, NULL);
3080 
3081   // Verify the stack frames.
3082   frames_do(frame_verify);
3083 }
3084 
3085 // CR 6300358 (sub-CR 2137150)
3086 // Most callers of this method assume that it can't return NULL but a
3087 // thread may not have a name whilst it is in the process of attaching to
3088 // the VM - see CR 6412693, and there are places where a JavaThread can be
3089 // seen prior to having it's threadObj set (eg JNI attaching threads and
3090 // if vm exit occurs during initialization). These cases can all be accounted
3091 // for such that this method never returns NULL.
3092 const char* JavaThread::get_thread_name() const {
3093 #ifdef ASSERT
3094   // early safepoints can hit while current thread does not yet have TLS
3095   if (!SafepointSynchronize::is_at_safepoint()) {
3096     Thread *cur = Thread::current();
3097     if (!(cur->is_Java_thread() && cur == this)) {
3098       // Current JavaThreads are allowed to get their own name without
3099       // the Threads_lock.
3100       assert_locked_or_safepoint(Threads_lock);
3101     }
3102   }
3103 #endif // ASSERT
3104   return get_thread_name_string();
3105 }
3106 
3107 // Returns a non-NULL representation of this thread's name, or a suitable
3108 // descriptive string if there is no set name
3109 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3110   const char* name_str;
3111   oop thread_obj = threadObj();
3112   if (thread_obj != NULL) {
3113     oop name = java_lang_Thread::name(thread_obj);
3114     if (name != NULL) {
3115       if (buf == NULL) {
3116         name_str = java_lang_String::as_utf8_string(name);
3117       } else {
3118         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3119       }
3120     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3121       name_str = "<no-name - thread is attaching>";
3122     } else {
3123       name_str = Thread::name();
3124     }
3125   } else {
3126     name_str = Thread::name();
3127   }
3128   assert(name_str != NULL, "unexpected NULL thread name");
3129   return name_str;
3130 }
3131 
3132 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3133 
3134   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3135   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
3136   // Link Java Thread object <-> C++ Thread
3137 
3138   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3139   // and put it into a new Handle.  The Handle "thread_oop" can then
3140   // be used to pass the C++ thread object to other methods.
3141 
3142   // Set the Java level thread object (jthread) field of the
3143   // new thread (a JavaThread *) to C++ thread object using the
3144   // "thread_oop" handle.
3145 
3146   // Set the thread field (a JavaThread *) of the
3147   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3148 
3149   Handle thread_oop(Thread::current(),
3150                     JNIHandles::resolve_non_null(jni_thread));
3151   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3152          "must be initialized");
3153   set_threadObj(thread_oop());
3154   java_lang_Thread::set_thread(thread_oop(), this);
3155 
3156   if (prio == NoPriority) {
3157     prio = java_lang_Thread::priority(thread_oop());
3158     assert(prio != NoPriority, "A valid priority should be present");
3159   }
3160 
3161   // Push the Java priority down to the native thread; needs Threads_lock
3162   Thread::set_priority(this, prio);
3163 
3164   // Add the new thread to the Threads list and set it in motion.
3165   // We must have threads lock in order to call Threads::add.
3166   // It is crucial that we do not block before the thread is
3167   // added to the Threads list for if a GC happens, then the java_thread oop
3168   // will not be visited by GC.
3169   Threads::add(this);
3170 }
3171 
3172 oop JavaThread::current_park_blocker() {
3173   // Support for JSR-166 locks
3174   oop thread_oop = threadObj();
3175   if (thread_oop != NULL) {
3176     return java_lang_Thread::park_blocker(thread_oop);
3177   }
3178   return NULL;
3179 }
3180 
3181 
3182 void JavaThread::print_stack_on(outputStream* st) {
3183   if (!has_last_Java_frame()) return;
3184   ResourceMark rm;
3185   HandleMark   hm;
3186 
3187   RegisterMap reg_map(this);
3188   vframe* start_vf = last_java_vframe(&reg_map);
3189   int count = 0;
3190   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3191     if (f->is_java_frame()) {
3192       javaVFrame* jvf = javaVFrame::cast(f);
3193       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3194 
3195       // Print out lock information
3196       if (JavaMonitorsInStackTrace) {
3197         jvf->print_lock_info_on(st, count);
3198       }
3199     } else {
3200       // Ignore non-Java frames
3201     }
3202 
3203     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3204     count++;
3205     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3206   }
3207 }
3208 
3209 
3210 // JVMTI PopFrame support
3211 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3212   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3213   if (in_bytes(size_in_bytes) != 0) {
3214     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3215     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3216     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3217   }
3218 }
3219 
3220 void* JavaThread::popframe_preserved_args() {
3221   return _popframe_preserved_args;
3222 }
3223 
3224 ByteSize JavaThread::popframe_preserved_args_size() {
3225   return in_ByteSize(_popframe_preserved_args_size);
3226 }
3227 
3228 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3229   int sz = in_bytes(popframe_preserved_args_size());
3230   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3231   return in_WordSize(sz / wordSize);
3232 }
3233 
3234 void JavaThread::popframe_free_preserved_args() {
3235   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3236   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
3237   _popframe_preserved_args = NULL;
3238   _popframe_preserved_args_size = 0;
3239 }
3240 
3241 #ifndef PRODUCT
3242 
3243 void JavaThread::trace_frames() {
3244   tty->print_cr("[Describe stack]");
3245   int frame_no = 1;
3246   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3247     tty->print("  %d. ", frame_no++);
3248     fst.current()->print_value_on(tty, this);
3249     tty->cr();
3250   }
3251 }
3252 
3253 class PrintAndVerifyOopClosure: public OopClosure {
3254  protected:
3255   template <class T> inline void do_oop_work(T* p) {
3256     oop obj = RawAccess<>::oop_load(p);
3257     if (obj == NULL) return;
3258     tty->print(INTPTR_FORMAT ": ", p2i(p));
3259     if (oopDesc::is_oop_or_null(obj)) {
3260       if (obj->is_objArray()) {
3261         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3262       } else {
3263         obj->print();
3264       }
3265     } else {
3266       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3267     }
3268     tty->cr();
3269   }
3270  public:
3271   virtual void do_oop(oop* p) { do_oop_work(p); }
3272   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3273 };
3274 
3275 #ifdef ASSERT
3276 // Print or validate the layout of stack frames
3277 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3278   ResourceMark rm;
3279   PRESERVE_EXCEPTION_MARK;
3280   FrameValues values;
3281   int frame_no = 0;
3282   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3283     fst.current()->describe(values, ++frame_no);
3284     if (depth == frame_no) break;
3285   }
3286   if (validate_only) {
3287     values.validate();
3288   } else {
3289     tty->print_cr("[Describe stack layout]");
3290     values.print(this);
3291   }
3292 }
3293 #endif
3294 
3295 void JavaThread::trace_stack_from(vframe* start_vf) {
3296   ResourceMark rm;
3297   int vframe_no = 1;
3298   for (vframe* f = start_vf; f; f = f->sender()) {
3299     if (f->is_java_frame()) {
3300       javaVFrame::cast(f)->print_activation(vframe_no++);
3301     } else {
3302       f->print();
3303     }
3304     if (vframe_no > StackPrintLimit) {
3305       tty->print_cr("...<more frames>...");
3306       return;
3307     }
3308   }
3309 }
3310 
3311 
3312 void JavaThread::trace_stack() {
3313   if (!has_last_Java_frame()) return;
3314   ResourceMark rm;
3315   HandleMark   hm;
3316   RegisterMap reg_map(this);
3317   trace_stack_from(last_java_vframe(&reg_map));
3318 }
3319 
3320 
3321 #endif // PRODUCT
3322 
3323 
3324 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3325   assert(reg_map != NULL, "a map must be given");
3326   frame f = last_frame();
3327   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3328     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3329   }
3330   return NULL;
3331 }
3332 
3333 
3334 Klass* JavaThread::security_get_caller_class(int depth) {
3335   vframeStream vfst(this);
3336   vfst.security_get_caller_frame(depth);
3337   if (!vfst.at_end()) {
3338     return vfst.method()->method_holder();
3339   }
3340   return NULL;
3341 }
3342 
3343 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3344   assert(thread->is_Compiler_thread(), "must be compiler thread");
3345   CompileBroker::compiler_thread_loop();
3346 }
3347 
3348 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3349   NMethodSweeper::sweeper_loop();
3350 }
3351 
3352 // Create a CompilerThread
3353 CompilerThread::CompilerThread(CompileQueue* queue,
3354                                CompilerCounters* counters)
3355                                : JavaThread(&compiler_thread_entry) {
3356   _env   = NULL;
3357   _log   = NULL;
3358   _task  = NULL;
3359   _queue = queue;
3360   _counters = counters;
3361   _buffer_blob = NULL;
3362   _compiler = NULL;
3363 
3364   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3365   resource_area()->bias_to(mtCompiler);
3366 
3367 #ifndef PRODUCT
3368   _ideal_graph_printer = NULL;
3369 #endif
3370 }
3371 
3372 CompilerThread::~CompilerThread() {
3373   // Delete objects which were allocated on heap.
3374   delete _counters;
3375 }
3376 
3377 bool CompilerThread::can_call_java() const {
3378   return _compiler != NULL && _compiler->is_jvmci();
3379 }
3380 
3381 // Create sweeper thread
3382 CodeCacheSweeperThread::CodeCacheSweeperThread()
3383 : JavaThread(&sweeper_thread_entry) {
3384   _scanned_compiled_method = NULL;
3385 }
3386 
3387 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3388   JavaThread::oops_do(f, cf);
3389   if (_scanned_compiled_method != NULL && cf != NULL) {
3390     // Safepoints can occur when the sweeper is scanning an nmethod so
3391     // process it here to make sure it isn't unloaded in the middle of
3392     // a scan.
3393     cf->do_code_blob(_scanned_compiled_method);
3394   }
3395 }
3396 
3397 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3398   JavaThread::nmethods_do(cf);
3399   if (_scanned_compiled_method != NULL && cf != NULL) {
3400     // Safepoints can occur when the sweeper is scanning an nmethod so
3401     // process it here to make sure it isn't unloaded in the middle of
3402     // a scan.
3403     cf->do_code_blob(_scanned_compiled_method);
3404   }
3405 }
3406 
3407 
3408 // ======= Threads ========
3409 
3410 // The Threads class links together all active threads, and provides
3411 // operations over all threads. It is protected by the Threads_lock,
3412 // which is also used in other global contexts like safepointing.
3413 // ThreadsListHandles are used to safely perform operations on one
3414 // or more threads without the risk of the thread exiting during the
3415 // operation.
3416 //
3417 // Note: The Threads_lock is currently more widely used than we
3418 // would like. We are actively migrating Threads_lock uses to other
3419 // mechanisms in order to reduce Threads_lock contention.
3420 
3421 int         Threads::_number_of_threads = 0;
3422 int         Threads::_number_of_non_daemon_threads = 0;
3423 int         Threads::_return_code = 0;
3424 uintx       Threads::_thread_claim_token = 1; // Never zero.
3425 size_t      JavaThread::_stack_size_at_create = 0;
3426 
3427 #ifdef ASSERT
3428 bool        Threads::_vm_complete = false;
3429 #endif
3430 
3431 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3432   Prefetch::read((void*)addr, prefetch_interval);
3433   return *addr;
3434 }
3435 
3436 // Possibly the ugliest for loop the world has seen. C++ does not allow
3437 // multiple types in the declaration section of the for loop. In this case
3438 // we are only dealing with pointers and hence can cast them. It looks ugly
3439 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3440 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3441     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3442              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3443              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3444              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3445              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3446          MACRO_current_p != MACRO_end;                                                                                    \
3447          MACRO_current_p++,                                                                                               \
3448              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3449 
3450 // All JavaThreads
3451 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3452 
3453 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3454 void Threads::non_java_threads_do(ThreadClosure* tc) {
3455   NoSafepointVerifier nsv;
3456   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3457     tc->do_thread(njti.current());
3458   }
3459 }
3460 
3461 // All JavaThreads
3462 void Threads::java_threads_do(ThreadClosure* tc) {
3463   assert_locked_or_safepoint(Threads_lock);
3464   // ALL_JAVA_THREADS iterates through all JavaThreads.
3465   ALL_JAVA_THREADS(p) {
3466     tc->do_thread(p);
3467   }
3468 }
3469 
3470 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3471   assert_locked_or_safepoint(Threads_lock);
3472   java_threads_do(tc);
3473   tc->do_thread(VMThread::vm_thread());
3474 }
3475 
3476 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3477 void Threads::threads_do(ThreadClosure* tc) {
3478   assert_locked_or_safepoint(Threads_lock);
3479   java_threads_do(tc);
3480   non_java_threads_do(tc);
3481 }
3482 
3483 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3484   uintx claim_token = Threads::thread_claim_token();
3485   ALL_JAVA_THREADS(p) {
3486     if (p->claim_threads_do(is_par, claim_token)) {
3487       tc->do_thread(p);
3488     }
3489   }
3490   VMThread* vmt = VMThread::vm_thread();
3491   if (vmt->claim_threads_do(is_par, claim_token)) {
3492     tc->do_thread(vmt);
3493   }
3494 }
3495 
3496 // The system initialization in the library has three phases.
3497 //
3498 // Phase 1: java.lang.System class initialization
3499 //     java.lang.System is a primordial class loaded and initialized
3500 //     by the VM early during startup.  java.lang.System.<clinit>
3501 //     only does registerNatives and keeps the rest of the class
3502 //     initialization work later until thread initialization completes.
3503 //
3504 //     System.initPhase1 initializes the system properties, the static
3505 //     fields in, out, and err. Set up java signal handlers, OS-specific
3506 //     system settings, and thread group of the main thread.
3507 static void call_initPhase1(TRAPS) {
3508   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3509   JavaValue result(T_VOID);
3510   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3511                                          vmSymbols::void_method_signature(), CHECK);
3512 }
3513 
3514 // Phase 2. Module system initialization
3515 //     This will initialize the module system.  Only java.base classes
3516 //     can be loaded until phase 2 completes.
3517 //
3518 //     Call System.initPhase2 after the compiler initialization and jsr292
3519 //     classes get initialized because module initialization runs a lot of java
3520 //     code, that for performance reasons, should be compiled.  Also, this will
3521 //     enable the startup code to use lambda and other language features in this
3522 //     phase and onward.
3523 //
3524 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3525 static void call_initPhase2(TRAPS) {
3526   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3527 
3528   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3529 
3530   JavaValue result(T_INT);
3531   JavaCallArguments args;
3532   args.push_int(DisplayVMOutputToStderr);
3533   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3534   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3535                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3536   if (result.get_jint() != JNI_OK) {
3537     vm_exit_during_initialization(); // no message or exception
3538   }
3539 
3540   universe_post_module_init();
3541 }
3542 
3543 // Phase 3. final setup - set security manager, system class loader and TCCL
3544 //
3545 //     This will instantiate and set the security manager, set the system class
3546 //     loader as well as the thread context class loader.  The security manager
3547 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3548 //     other modules or the application's classpath.
3549 static void call_initPhase3(TRAPS) {
3550   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3551   JavaValue result(T_VOID);
3552   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3553                                          vmSymbols::void_method_signature(), CHECK);
3554 }
3555 
3556 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3557   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3558 
3559   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3560     create_vm_init_libraries();
3561   }
3562 
3563   initialize_class(vmSymbols::java_lang_String(), CHECK);
3564 
3565   // Inject CompactStrings value after the static initializers for String ran.
3566   java_lang_String::set_compact_strings(CompactStrings);
3567 
3568   // Initialize java_lang.System (needed before creating the thread)
3569   initialize_class(vmSymbols::java_lang_System(), CHECK);
3570   // The VM creates & returns objects of this class. Make sure it's initialized.
3571   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3572   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3573   Handle thread_group = create_initial_thread_group(CHECK);
3574   Universe::set_main_thread_group(thread_group());
3575   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3576   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3577   main_thread->set_threadObj(thread_object);
3578 
3579   // Set thread status to running since main thread has
3580   // been started and running.
3581   java_lang_Thread::set_thread_status(thread_object,
3582                                       java_lang_Thread::RUNNABLE);
3583 
3584   // The VM creates objects of this class.
3585   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3586 
3587 #ifdef ASSERT
3588   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3589   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3590 #endif
3591 
3592   // initialize the hardware-specific constants needed by Unsafe
3593   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3594   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3595 
3596   // The VM preresolves methods to these classes. Make sure that they get initialized
3597   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3598   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3599 
3600   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3601   call_initPhase1(CHECK);
3602 
3603   // get the Java runtime name after java.lang.System is initialized
3604   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3605   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3606 
3607   // an instance of OutOfMemory exception has been allocated earlier
3608   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3609   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3610   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3611   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3612   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3613   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3614   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3615   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3616 
3617   // Eager box cache initialization only if AOT is on and any library is loaded.
3618   AOTLoader::initialize_box_caches(CHECK);
3619 }
3620 
3621 void Threads::initialize_jsr292_core_classes(TRAPS) {
3622   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3623 
3624   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3625   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3626   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3627   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3628 }
3629 
3630 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3631   extern void JDK_Version_init();
3632 
3633   // Preinitialize version info.
3634   VM_Version::early_initialize();
3635 
3636   // Check version
3637   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3638 
3639   // Initialize library-based TLS
3640   ThreadLocalStorage::init();
3641 
3642   // Initialize the output stream module
3643   ostream_init();
3644 
3645   // Process java launcher properties.
3646   Arguments::process_sun_java_launcher_properties(args);
3647 
3648   // Initialize the os module
3649   os::init();
3650 
3651   // Record VM creation timing statistics
3652   TraceVmCreationTime create_vm_timer;
3653   create_vm_timer.start();
3654 
3655   // Initialize system properties.
3656   Arguments::init_system_properties();
3657 
3658   // So that JDK version can be used as a discriminator when parsing arguments
3659   JDK_Version_init();
3660 
3661   // Update/Initialize System properties after JDK version number is known
3662   Arguments::init_version_specific_system_properties();
3663 
3664   // Make sure to initialize log configuration *before* parsing arguments
3665   LogConfiguration::initialize(create_vm_timer.begin_time());
3666 
3667   // Parse arguments
3668   // Note: this internally calls os::init_container_support()
3669   jint parse_result = Arguments::parse(args);
3670   if (parse_result != JNI_OK) return parse_result;
3671 
3672   os::init_before_ergo();
3673 
3674   jint ergo_result = Arguments::apply_ergo();
3675   if (ergo_result != JNI_OK) return ergo_result;
3676 
3677   // Final check of all ranges after ergonomics which may change values.
3678   if (!JVMFlagRangeList::check_ranges()) {
3679     return JNI_EINVAL;
3680   }
3681 
3682   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3683   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3684   if (!constraint_result) {
3685     return JNI_EINVAL;
3686   }
3687 
3688   JVMFlagWriteableList::mark_startup();
3689 
3690   if (PauseAtStartup) {
3691     os::pause();
3692   }
3693 
3694   HOTSPOT_VM_INIT_BEGIN();
3695 
3696   // Timing (must come after argument parsing)
3697   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3698 
3699   // Initialize the os module after parsing the args
3700   jint os_init_2_result = os::init_2();
3701   if (os_init_2_result != JNI_OK) return os_init_2_result;
3702 
3703 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3704   // Initialize assert poison page mechanism.
3705   if (ShowRegistersOnAssert) {
3706     initialize_assert_poison();
3707   }
3708 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3709 
3710   SafepointMechanism::initialize();
3711 
3712   jint adjust_after_os_result = Arguments::adjust_after_os();
3713   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3714 
3715   // Initialize output stream logging
3716   ostream_init_log();
3717 
3718   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3719   // Must be before create_vm_init_agents()
3720   if (Arguments::init_libraries_at_startup()) {
3721     convert_vm_init_libraries_to_agents();
3722   }
3723 
3724   // Launch -agentlib/-agentpath and converted -Xrun agents
3725   if (Arguments::init_agents_at_startup()) {
3726     create_vm_init_agents();
3727   }
3728 
3729   // Initialize Threads state
3730   _number_of_threads = 0;
3731   _number_of_non_daemon_threads = 0;
3732 
3733   // Initialize global data structures and create system classes in heap
3734   vm_init_globals();
3735 
3736 #if INCLUDE_JVMCI
3737   if (JVMCICounterSize > 0) {
3738     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3739     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3740   } else {
3741     JavaThread::_jvmci_old_thread_counters = NULL;
3742   }
3743 #endif // INCLUDE_JVMCI
3744 
3745   // Attach the main thread to this os thread
3746   JavaThread* main_thread = new JavaThread();
3747   main_thread->set_thread_state(_thread_in_vm);
3748   main_thread->initialize_thread_current();
3749   // must do this before set_active_handles
3750   main_thread->record_stack_base_and_size();
3751   main_thread->register_thread_stack_with_NMT();
3752   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3753 
3754   if (!main_thread->set_as_starting_thread()) {
3755     vm_shutdown_during_initialization(
3756                                       "Failed necessary internal allocation. Out of swap space");
3757     main_thread->smr_delete();
3758     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3759     return JNI_ENOMEM;
3760   }
3761 
3762   // Enable guard page *after* os::create_main_thread(), otherwise it would
3763   // crash Linux VM, see notes in os_linux.cpp.
3764   main_thread->create_stack_guard_pages();
3765 
3766   // Initialize Java-Level synchronization subsystem
3767   ObjectMonitor::Initialize();
3768 
3769   // Initialize global modules
3770   jint status = init_globals();
3771   if (status != JNI_OK) {
3772     main_thread->smr_delete();
3773     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3774     return status;
3775   }
3776 
3777   JFR_ONLY(Jfr::on_vm_init();)
3778 
3779   // Should be done after the heap is fully created
3780   main_thread->cache_global_variables();
3781 
3782   HandleMark hm;
3783 
3784   { MutexLocker mu(Threads_lock);
3785     Threads::add(main_thread);
3786   }
3787 
3788   // Any JVMTI raw monitors entered in onload will transition into
3789   // real raw monitor. VM is setup enough here for raw monitor enter.
3790   JvmtiExport::transition_pending_onload_raw_monitors();
3791 
3792   // Create the VMThread
3793   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3794 
3795   VMThread::create();
3796     Thread* vmthread = VMThread::vm_thread();
3797 
3798     if (!os::create_thread(vmthread, os::vm_thread)) {
3799       vm_exit_during_initialization("Cannot create VM thread. "
3800                                     "Out of system resources.");
3801     }
3802 
3803     // Wait for the VM thread to become ready, and VMThread::run to initialize
3804     // Monitors can have spurious returns, must always check another state flag
3805     {
3806       MonitorLocker ml(Notify_lock);
3807       os::start_thread(vmthread);
3808       while (vmthread->active_handles() == NULL) {
3809         ml.wait();
3810       }
3811     }
3812   }
3813 
3814   assert(Universe::is_fully_initialized(), "not initialized");
3815   if (VerifyDuringStartup) {
3816     // Make sure we're starting with a clean slate.
3817     VM_Verify verify_op;
3818     VMThread::execute(&verify_op);
3819   }
3820 
3821   // We need this to update the java.vm.info property in case any flags used
3822   // to initially define it have been changed. This is needed for both CDS and
3823   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3824   // is initially computed. See Abstract_VM_Version::vm_info_string().
3825   // This update must happen before we initialize the java classes, but
3826   // after any initialization logic that might modify the flags.
3827   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3828 
3829   Thread* THREAD = Thread::current();
3830 
3831   // Always call even when there are not JVMTI environments yet, since environments
3832   // may be attached late and JVMTI must track phases of VM execution
3833   JvmtiExport::enter_early_start_phase();
3834 
3835   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3836   JvmtiExport::post_early_vm_start();
3837 
3838   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3839 
3840   quicken_jni_functions();
3841 
3842   // No more stub generation allowed after that point.
3843   StubCodeDesc::freeze();
3844 
3845   // Set flag that basic initialization has completed. Used by exceptions and various
3846   // debug stuff, that does not work until all basic classes have been initialized.
3847   set_init_completed();
3848 
3849   LogConfiguration::post_initialize();
3850   Metaspace::post_initialize();
3851 
3852   HOTSPOT_VM_INIT_END();
3853 
3854   // record VM initialization completion time
3855 #if INCLUDE_MANAGEMENT
3856   Management::record_vm_init_completed();
3857 #endif // INCLUDE_MANAGEMENT
3858 
3859   // Signal Dispatcher needs to be started before VMInit event is posted
3860   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3861 
3862   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3863   if (!DisableAttachMechanism) {
3864     AttachListener::vm_start();
3865     if (StartAttachListener || AttachListener::init_at_startup()) {
3866       AttachListener::init();
3867     }
3868   }
3869 
3870   // Launch -Xrun agents
3871   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3872   // back-end can launch with -Xdebug -Xrunjdwp.
3873   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3874     create_vm_init_libraries();
3875   }
3876 
3877   if (CleanChunkPoolAsync) {
3878     Chunk::start_chunk_pool_cleaner_task();
3879   }
3880 
3881 
3882   // initialize compiler(s)
3883 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3884 #if INCLUDE_JVMCI
3885   bool force_JVMCI_intialization = false;
3886   if (EnableJVMCI) {
3887     // Initialize JVMCI eagerly when it is explicitly requested.
3888     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
3889     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
3890 
3891     if (!force_JVMCI_intialization) {
3892       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3893       // compilations via JVMCI will not actually block until JVMCI is initialized.
3894       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3895     }
3896   }
3897 #endif
3898   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3899   // Postpone completion of compiler initialization to after JVMCI
3900   // is initialized to avoid timeouts of blocking compilations.
3901   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3902     CompileBroker::compilation_init_phase2();
3903   }
3904 #endif
3905 
3906   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3907   // It is done after compilers are initialized, because otherwise compilations of
3908   // signature polymorphic MH intrinsics can be missed
3909   // (see SystemDictionary::find_method_handle_intrinsic).
3910   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3911 
3912   // This will initialize the module system.  Only java.base classes can be
3913   // loaded until phase 2 completes
3914   call_initPhase2(CHECK_JNI_ERR);
3915 
3916   // Always call even when there are not JVMTI environments yet, since environments
3917   // may be attached late and JVMTI must track phases of VM execution
3918   JvmtiExport::enter_start_phase();
3919 
3920   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3921   JvmtiExport::post_vm_start();
3922 
3923   // Final system initialization including security manager and system class loader
3924   call_initPhase3(CHECK_JNI_ERR);
3925 
3926   // cache the system and platform class loaders
3927   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3928 
3929 #if INCLUDE_CDS
3930   // capture the module path info from the ModuleEntryTable
3931   ClassLoader::initialize_module_path(THREAD);
3932 #endif
3933 
3934 #if INCLUDE_JVMCI
3935   if (force_JVMCI_intialization) {
3936     JVMCI::initialize_compiler(CHECK_JNI_ERR);
3937     CompileBroker::compilation_init_phase2();
3938   }
3939 #endif
3940 
3941   // Always call even when there are not JVMTI environments yet, since environments
3942   // may be attached late and JVMTI must track phases of VM execution
3943   JvmtiExport::enter_live_phase();
3944 
3945   // Make perfmemory accessible
3946   PerfMemory::set_accessible(true);
3947 
3948   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3949   JvmtiExport::post_vm_initialized();
3950 
3951   JFR_ONLY(Jfr::on_vm_start();)
3952 
3953 #if INCLUDE_MANAGEMENT
3954   Management::initialize(THREAD);
3955 
3956   if (HAS_PENDING_EXCEPTION) {
3957     // management agent fails to start possibly due to
3958     // configuration problem and is responsible for printing
3959     // stack trace if appropriate. Simply exit VM.
3960     vm_exit(1);
3961   }
3962 #endif // INCLUDE_MANAGEMENT
3963 
3964   if (MemProfiling)                   MemProfiler::engage();
3965   StatSampler::engage();
3966   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3967 
3968   BiasedLocking::init();
3969 
3970 #if INCLUDE_RTM_OPT
3971   RTMLockingCounters::init();
3972 #endif
3973 
3974   call_postVMInitHook(THREAD);
3975   // The Java side of PostVMInitHook.run must deal with all
3976   // exceptions and provide means of diagnosis.
3977   if (HAS_PENDING_EXCEPTION) {
3978     CLEAR_PENDING_EXCEPTION;
3979   }
3980 
3981   {
3982     MutexLocker ml(PeriodicTask_lock);
3983     // Make sure the WatcherThread can be started by WatcherThread::start()
3984     // or by dynamic enrollment.
3985     WatcherThread::make_startable();
3986     // Start up the WatcherThread if there are any periodic tasks
3987     // NOTE:  All PeriodicTasks should be registered by now. If they
3988     //   aren't, late joiners might appear to start slowly (we might
3989     //   take a while to process their first tick).
3990     if (PeriodicTask::num_tasks() > 0) {
3991       WatcherThread::start();
3992     }
3993   }
3994 
3995   create_vm_timer.end();
3996 #ifdef ASSERT
3997   _vm_complete = true;
3998 #endif
3999 
4000   if (DumpSharedSpaces) {
4001     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4002     ShouldNotReachHere();
4003   }
4004 
4005   return JNI_OK;
4006 }
4007 
4008 // type for the Agent_OnLoad and JVM_OnLoad entry points
4009 extern "C" {
4010   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4011 }
4012 // Find a command line agent library and return its entry point for
4013 //         -agentlib:  -agentpath:   -Xrun
4014 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4015 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4016                                     const char *on_load_symbols[],
4017                                     size_t num_symbol_entries) {
4018   OnLoadEntry_t on_load_entry = NULL;
4019   void *library = NULL;
4020 
4021   if (!agent->valid()) {
4022     char buffer[JVM_MAXPATHLEN];
4023     char ebuf[1024] = "";
4024     const char *name = agent->name();
4025     const char *msg = "Could not find agent library ";
4026 
4027     // First check to see if agent is statically linked into executable
4028     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4029       library = agent->os_lib();
4030     } else if (agent->is_absolute_path()) {
4031       library = os::dll_load(name, ebuf, sizeof ebuf);
4032       if (library == NULL) {
4033         const char *sub_msg = " in absolute path, with error: ";
4034         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4035         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4036         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4037         // If we can't find the agent, exit.
4038         vm_exit_during_initialization(buf, NULL);
4039         FREE_C_HEAP_ARRAY(char, buf);
4040       }
4041     } else {
4042       // Try to load the agent from the standard dll directory
4043       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4044                              name)) {
4045         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4046       }
4047       if (library == NULL) { // Try the library path directory.
4048         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4049           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4050         }
4051         if (library == NULL) {
4052           const char *sub_msg = " on the library path, with error: ";
4053           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4054 
4055           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4056                        strlen(ebuf) + strlen(sub_msg2) + 1;
4057           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4058           if (!agent->is_instrument_lib()) {
4059             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4060           } else {
4061             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4062           }
4063           // If we can't find the agent, exit.
4064           vm_exit_during_initialization(buf, NULL);
4065           FREE_C_HEAP_ARRAY(char, buf);
4066         }
4067       }
4068     }
4069     agent->set_os_lib(library);
4070     agent->set_valid();
4071   }
4072 
4073   // Find the OnLoad function.
4074   on_load_entry =
4075     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4076                                                           false,
4077                                                           on_load_symbols,
4078                                                           num_symbol_entries));
4079   return on_load_entry;
4080 }
4081 
4082 // Find the JVM_OnLoad entry point
4083 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4084   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4085   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4086 }
4087 
4088 // Find the Agent_OnLoad entry point
4089 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4090   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4091   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4092 }
4093 
4094 // For backwards compatibility with -Xrun
4095 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4096 // treated like -agentpath:
4097 // Must be called before agent libraries are created
4098 void Threads::convert_vm_init_libraries_to_agents() {
4099   AgentLibrary* agent;
4100   AgentLibrary* next;
4101 
4102   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4103     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4104     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4105 
4106     // If there is an JVM_OnLoad function it will get called later,
4107     // otherwise see if there is an Agent_OnLoad
4108     if (on_load_entry == NULL) {
4109       on_load_entry = lookup_agent_on_load(agent);
4110       if (on_load_entry != NULL) {
4111         // switch it to the agent list -- so that Agent_OnLoad will be called,
4112         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4113         Arguments::convert_library_to_agent(agent);
4114       } else {
4115         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4116       }
4117     }
4118   }
4119 }
4120 
4121 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4122 // Invokes Agent_OnLoad
4123 // Called very early -- before JavaThreads exist
4124 void Threads::create_vm_init_agents() {
4125   extern struct JavaVM_ main_vm;
4126   AgentLibrary* agent;
4127 
4128   JvmtiExport::enter_onload_phase();
4129 
4130   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4131     // CDS dumping does not support native JVMTI agent.
4132     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4133     if (DumpSharedSpaces || DynamicDumpSharedSpaces) {
4134       if(!agent->is_instrument_lib()) {
4135         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4136       } else if (!AllowArchivingWithJavaAgent) {
4137         vm_exit_during_cds_dumping(
4138           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4139       }
4140     }
4141 
4142     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4143 
4144     if (on_load_entry != NULL) {
4145       // Invoke the Agent_OnLoad function
4146       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4147       if (err != JNI_OK) {
4148         vm_exit_during_initialization("agent library failed to init", agent->name());
4149       }
4150     } else {
4151       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4152     }
4153   }
4154 
4155   JvmtiExport::enter_primordial_phase();
4156 }
4157 
4158 extern "C" {
4159   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4160 }
4161 
4162 void Threads::shutdown_vm_agents() {
4163   // Send any Agent_OnUnload notifications
4164   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4165   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4166   extern struct JavaVM_ main_vm;
4167   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4168 
4169     // Find the Agent_OnUnload function.
4170     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4171                                                    os::find_agent_function(agent,
4172                                                    false,
4173                                                    on_unload_symbols,
4174                                                    num_symbol_entries));
4175 
4176     // Invoke the Agent_OnUnload function
4177     if (unload_entry != NULL) {
4178       JavaThread* thread = JavaThread::current();
4179       ThreadToNativeFromVM ttn(thread);
4180       HandleMark hm(thread);
4181       (*unload_entry)(&main_vm);
4182     }
4183   }
4184 }
4185 
4186 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4187 // Invokes JVM_OnLoad
4188 void Threads::create_vm_init_libraries() {
4189   extern struct JavaVM_ main_vm;
4190   AgentLibrary* agent;
4191 
4192   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4193     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4194 
4195     if (on_load_entry != NULL) {
4196       // Invoke the JVM_OnLoad function
4197       JavaThread* thread = JavaThread::current();
4198       ThreadToNativeFromVM ttn(thread);
4199       HandleMark hm(thread);
4200       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4201       if (err != JNI_OK) {
4202         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4203       }
4204     } else {
4205       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4206     }
4207   }
4208 }
4209 
4210 
4211 // Last thread running calls java.lang.Shutdown.shutdown()
4212 void JavaThread::invoke_shutdown_hooks() {
4213   HandleMark hm(this);
4214 
4215   // We could get here with a pending exception, if so clear it now.
4216   if (this->has_pending_exception()) {
4217     this->clear_pending_exception();
4218   }
4219 
4220   EXCEPTION_MARK;
4221   Klass* shutdown_klass =
4222     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4223                                       THREAD);
4224   if (shutdown_klass != NULL) {
4225     // SystemDictionary::resolve_or_null will return null if there was
4226     // an exception.  If we cannot load the Shutdown class, just don't
4227     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4228     // won't be run.  Note that if a shutdown hook was registered,
4229     // the Shutdown class would have already been loaded
4230     // (Runtime.addShutdownHook will load it).
4231     JavaValue result(T_VOID);
4232     JavaCalls::call_static(&result,
4233                            shutdown_klass,
4234                            vmSymbols::shutdown_name(),
4235                            vmSymbols::void_method_signature(),
4236                            THREAD);
4237   }
4238   CLEAR_PENDING_EXCEPTION;
4239 }
4240 
4241 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4242 // the program falls off the end of main(). Another VM exit path is through
4243 // vm_exit() when the program calls System.exit() to return a value or when
4244 // there is a serious error in VM. The two shutdown paths are not exactly
4245 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4246 // and VM_Exit op at VM level.
4247 //
4248 // Shutdown sequence:
4249 //   + Shutdown native memory tracking if it is on
4250 //   + Wait until we are the last non-daemon thread to execute
4251 //     <-- every thing is still working at this moment -->
4252 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4253 //        shutdown hooks
4254 //   + Call before_exit(), prepare for VM exit
4255 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4256 //        currently the only user of this mechanism is File.deleteOnExit())
4257 //      > stop StatSampler, watcher thread, CMS threads,
4258 //        post thread end and vm death events to JVMTI,
4259 //        stop signal thread
4260 //   + Call JavaThread::exit(), it will:
4261 //      > release JNI handle blocks, remove stack guard pages
4262 //      > remove this thread from Threads list
4263 //     <-- no more Java code from this thread after this point -->
4264 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4265 //     the compiler threads at safepoint
4266 //     <-- do not use anything that could get blocked by Safepoint -->
4267 //   + Disable tracing at JNI/JVM barriers
4268 //   + Set _vm_exited flag for threads that are still running native code
4269 //   + Call exit_globals()
4270 //      > deletes tty
4271 //      > deletes PerfMemory resources
4272 //   + Delete this thread
4273 //   + Return to caller
4274 
4275 bool Threads::destroy_vm() {
4276   JavaThread* thread = JavaThread::current();
4277 
4278 #ifdef ASSERT
4279   _vm_complete = false;
4280 #endif
4281   // Wait until we are the last non-daemon thread to execute
4282   { MonitorLocker nu(Threads_lock);
4283     while (Threads::number_of_non_daemon_threads() > 1)
4284       // This wait should make safepoint checks, wait without a timeout,
4285       // and wait as a suspend-equivalent condition.
4286       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4287   }
4288 
4289   EventShutdown e;
4290   if (e.should_commit()) {
4291     e.set_reason("No remaining non-daemon Java threads");
4292     e.commit();
4293   }
4294 
4295   // Hang forever on exit if we are reporting an error.
4296   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4297     os::infinite_sleep();
4298   }
4299   os::wait_for_keypress_at_exit();
4300 
4301   // run Java level shutdown hooks
4302   thread->invoke_shutdown_hooks();
4303 
4304   before_exit(thread);
4305 
4306   thread->exit(true);
4307 
4308   // Stop VM thread.
4309   {
4310     // 4945125 The vm thread comes to a safepoint during exit.
4311     // GC vm_operations can get caught at the safepoint, and the
4312     // heap is unparseable if they are caught. Grab the Heap_lock
4313     // to prevent this. The GC vm_operations will not be able to
4314     // queue until after the vm thread is dead. After this point,
4315     // we'll never emerge out of the safepoint before the VM exits.
4316 
4317     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4318 
4319     VMThread::wait_for_vm_thread_exit();
4320     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4321     VMThread::destroy();
4322   }
4323 
4324   // Now, all Java threads are gone except daemon threads. Daemon threads
4325   // running Java code or in VM are stopped by the Safepoint. However,
4326   // daemon threads executing native code are still running.  But they
4327   // will be stopped at native=>Java/VM barriers. Note that we can't
4328   // simply kill or suspend them, as it is inherently deadlock-prone.
4329 
4330   VM_Exit::set_vm_exited();
4331 
4332   // Clean up ideal graph printers after the VMThread has started
4333   // the final safepoint which will block all the Compiler threads.
4334   // Note that this Thread has already logically exited so the
4335   // clean_up() function's use of a JavaThreadIteratorWithHandle
4336   // would be a problem except set_vm_exited() has remembered the
4337   // shutdown thread which is granted a policy exception.
4338 #if defined(COMPILER2) && !defined(PRODUCT)
4339   IdealGraphPrinter::clean_up();
4340 #endif
4341 
4342   notify_vm_shutdown();
4343 
4344   // exit_globals() will delete tty
4345   exit_globals();
4346 
4347   // We are after VM_Exit::set_vm_exited() so we can't call
4348   // thread->smr_delete() or we will block on the Threads_lock.
4349   // Deleting the shutdown thread here is safe because another
4350   // JavaThread cannot have an active ThreadsListHandle for
4351   // this JavaThread.
4352   delete thread;
4353 
4354 #if INCLUDE_JVMCI
4355   if (JVMCICounterSize > 0) {
4356     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4357   }
4358 #endif
4359 
4360   LogConfiguration::finalize();
4361 
4362   return true;
4363 }
4364 
4365 
4366 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4367   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4368   return is_supported_jni_version(version);
4369 }
4370 
4371 
4372 jboolean Threads::is_supported_jni_version(jint version) {
4373   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4374   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4375   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4376   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4377   if (version == JNI_VERSION_9) return JNI_TRUE;
4378   if (version == JNI_VERSION_10) return JNI_TRUE;
4379   return JNI_FALSE;
4380 }
4381 
4382 
4383 void Threads::add(JavaThread* p, bool force_daemon) {
4384   // The threads lock must be owned at this point
4385   assert(Threads_lock->owned_by_self(), "must have threads lock");
4386 
4387   BarrierSet::barrier_set()->on_thread_attach(p);
4388 
4389   // Once a JavaThread is added to the Threads list, smr_delete() has
4390   // to be used to delete it. Otherwise we can just delete it directly.
4391   p->set_on_thread_list();
4392 
4393   _number_of_threads++;
4394   oop threadObj = p->threadObj();
4395   bool daemon = true;
4396   // Bootstrapping problem: threadObj can be null for initial
4397   // JavaThread (or for threads attached via JNI)
4398   if ((!force_daemon) && !is_daemon((threadObj))) {
4399     _number_of_non_daemon_threads++;
4400     daemon = false;
4401   }
4402 
4403   ThreadService::add_thread(p, daemon);
4404 
4405   // Maintain fast thread list
4406   ThreadsSMRSupport::add_thread(p);
4407 
4408   // Possible GC point.
4409   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4410 }
4411 
4412 void Threads::remove(JavaThread* p, bool is_daemon) {
4413 
4414   // Reclaim the ObjectMonitors from the om_in_use_list and om_free_list of the moribund thread.
4415   ObjectSynchronizer::om_flush(p);
4416 
4417   // Extra scope needed for Thread_lock, so we can check
4418   // that we do not remove thread without safepoint code notice
4419   { MonitorLocker ml(Threads_lock);
4420 
4421     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4422 
4423     // Maintain fast thread list
4424     ThreadsSMRSupport::remove_thread(p);
4425 
4426     _number_of_threads--;
4427     if (!is_daemon) {
4428       _number_of_non_daemon_threads--;
4429 
4430       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4431       // on destroy_vm will wake up.
4432       if (number_of_non_daemon_threads() == 1) {
4433         ml.notify_all();
4434       }
4435     }
4436     ThreadService::remove_thread(p, is_daemon);
4437 
4438     // Make sure that safepoint code disregard this thread. This is needed since
4439     // the thread might mess around with locks after this point. This can cause it
4440     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4441     // of this thread since it is removed from the queue.
4442     p->set_terminated_value();
4443   } // unlock Threads_lock
4444 
4445   // Since Events::log uses a lock, we grab it outside the Threads_lock
4446   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4447 }
4448 
4449 // Operations on the Threads list for GC.  These are not explicitly locked,
4450 // but the garbage collector must provide a safe context for them to run.
4451 // In particular, these things should never be called when the Threads_lock
4452 // is held by some other thread. (Note: the Safepoint abstraction also
4453 // uses the Threads_lock to guarantee this property. It also makes sure that
4454 // all threads gets blocked when exiting or starting).
4455 
4456 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4457   ALL_JAVA_THREADS(p) {
4458     p->oops_do(f, cf);
4459   }
4460   VMThread::vm_thread()->oops_do(f, cf);
4461 }
4462 
4463 void Threads::change_thread_claim_token() {
4464   if (++_thread_claim_token == 0) {
4465     // On overflow of the token counter, there is a risk of future
4466     // collisions between a new global token value and a stale token
4467     // for a thread, because not all iterations visit all threads.
4468     // (Though it's pretty much a theoretical concern for non-trivial
4469     // token counter sizes.)  To deal with the possibility, reset all
4470     // the thread tokens to zero on global token overflow.
4471     struct ResetClaims : public ThreadClosure {
4472       virtual void do_thread(Thread* t) {
4473         t->claim_threads_do(false, 0);
4474       }
4475     } reset_claims;
4476     Threads::threads_do(&reset_claims);
4477     // On overflow, update the global token to non-zero, to
4478     // avoid the special "never claimed" initial thread value.
4479     _thread_claim_token = 1;
4480   }
4481 }
4482 
4483 #ifdef ASSERT
4484 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4485   const uintx token = t->threads_do_token();
4486   assert(token == expected,
4487          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4488          UINTX_FORMAT, kind, p2i(t), token, expected);
4489 }
4490 
4491 void Threads::assert_all_threads_claimed() {
4492   ALL_JAVA_THREADS(p) {
4493     assert_thread_claimed("Thread", p, _thread_claim_token);
4494   }
4495   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4496 }
4497 #endif // ASSERT
4498 
4499 class ParallelOopsDoThreadClosure : public ThreadClosure {
4500 private:
4501   OopClosure* _f;
4502   CodeBlobClosure* _cf;
4503 public:
4504   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4505   void do_thread(Thread* t) {
4506     t->oops_do(_f, _cf);
4507   }
4508 };
4509 
4510 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4511   ParallelOopsDoThreadClosure tc(f, cf);
4512   possibly_parallel_threads_do(is_par, &tc);
4513 }
4514 
4515 void Threads::nmethods_do(CodeBlobClosure* cf) {
4516   ALL_JAVA_THREADS(p) {
4517     // This is used by the code cache sweeper to mark nmethods that are active
4518     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4519     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4520     if(!p->is_Code_cache_sweeper_thread()) {
4521       p->nmethods_do(cf);
4522     }
4523   }
4524 }
4525 
4526 void Threads::metadata_do(MetadataClosure* f) {
4527   ALL_JAVA_THREADS(p) {
4528     p->metadata_do(f);
4529   }
4530 }
4531 
4532 class ThreadHandlesClosure : public ThreadClosure {
4533   void (*_f)(Metadata*);
4534  public:
4535   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4536   virtual void do_thread(Thread* thread) {
4537     thread->metadata_handles_do(_f);
4538   }
4539 };
4540 
4541 void Threads::metadata_handles_do(void f(Metadata*)) {
4542   // Only walk the Handles in Thread.
4543   ThreadHandlesClosure handles_closure(f);
4544   threads_do(&handles_closure);
4545 }
4546 
4547 void Threads::deoptimized_wrt_marked_nmethods() {
4548   ALL_JAVA_THREADS(p) {
4549     p->deoptimized_wrt_marked_nmethods();
4550   }
4551 }
4552 
4553 
4554 // Get count Java threads that are waiting to enter the specified monitor.
4555 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4556                                                          int count,
4557                                                          address monitor) {
4558   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4559 
4560   int i = 0;
4561   DO_JAVA_THREADS(t_list, p) {
4562     if (!p->can_call_java()) continue;
4563 
4564     address pending = (address)p->current_pending_monitor();
4565     if (pending == monitor) {             // found a match
4566       if (i < count) result->append(p);   // save the first count matches
4567       i++;
4568     }
4569   }
4570 
4571   return result;
4572 }
4573 
4574 
4575 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4576                                                       address owner) {
4577   // NULL owner means not locked so we can skip the search
4578   if (owner == NULL) return NULL;
4579 
4580   DO_JAVA_THREADS(t_list, p) {
4581     // first, see if owner is the address of a Java thread
4582     if (owner == (address)p) return p;
4583   }
4584 
4585   // Cannot assert on lack of success here since this function may be
4586   // used by code that is trying to report useful problem information
4587   // like deadlock detection.
4588   if (UseHeavyMonitors) return NULL;
4589 
4590   // If we didn't find a matching Java thread and we didn't force use of
4591   // heavyweight monitors, then the owner is the stack address of the
4592   // Lock Word in the owning Java thread's stack.
4593   //
4594   JavaThread* the_owner = NULL;
4595   DO_JAVA_THREADS(t_list, q) {
4596     if (q->is_lock_owned(owner)) {
4597       the_owner = q;
4598       break;
4599     }
4600   }
4601 
4602   // cannot assert on lack of success here; see above comment
4603   return the_owner;
4604 }
4605 
4606 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4607 void Threads::print_on(outputStream* st, bool print_stacks,
4608                        bool internal_format, bool print_concurrent_locks,
4609                        bool print_extended_info) {
4610   char buf[32];
4611   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4612 
4613   st->print_cr("Full thread dump %s (%s %s):",
4614                VM_Version::vm_name(),
4615                VM_Version::vm_release(),
4616                VM_Version::vm_info_string());
4617   st->cr();
4618 
4619 #if INCLUDE_SERVICES
4620   // Dump concurrent locks
4621   ConcurrentLocksDump concurrent_locks;
4622   if (print_concurrent_locks) {
4623     concurrent_locks.dump_at_safepoint();
4624   }
4625 #endif // INCLUDE_SERVICES
4626 
4627   ThreadsSMRSupport::print_info_on(st);
4628   st->cr();
4629 
4630   ALL_JAVA_THREADS(p) {
4631     ResourceMark rm;
4632     p->print_on(st, print_extended_info);
4633     if (print_stacks) {
4634       if (internal_format) {
4635         p->trace_stack();
4636       } else {
4637         p->print_stack_on(st);
4638       }
4639     }
4640     st->cr();
4641 #if INCLUDE_SERVICES
4642     if (print_concurrent_locks) {
4643       concurrent_locks.print_locks_on(p, st);
4644     }
4645 #endif // INCLUDE_SERVICES
4646   }
4647 
4648   VMThread::vm_thread()->print_on(st);
4649   st->cr();
4650   Universe::heap()->print_gc_threads_on(st);
4651   WatcherThread* wt = WatcherThread::watcher_thread();
4652   if (wt != NULL) {
4653     wt->print_on(st);
4654     st->cr();
4655   }
4656 
4657   st->flush();
4658 }
4659 
4660 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4661                              int buflen, bool* found_current) {
4662   if (this_thread != NULL) {
4663     bool is_current = (current == this_thread);
4664     *found_current = *found_current || is_current;
4665     st->print("%s", is_current ? "=>" : "  ");
4666 
4667     st->print(PTR_FORMAT, p2i(this_thread));
4668     st->print(" ");
4669     this_thread->print_on_error(st, buf, buflen);
4670     st->cr();
4671   }
4672 }
4673 
4674 class PrintOnErrorClosure : public ThreadClosure {
4675   outputStream* _st;
4676   Thread* _current;
4677   char* _buf;
4678   int _buflen;
4679   bool* _found_current;
4680  public:
4681   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4682                       int buflen, bool* found_current) :
4683    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4684 
4685   virtual void do_thread(Thread* thread) {
4686     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4687   }
4688 };
4689 
4690 // Threads::print_on_error() is called by fatal error handler. It's possible
4691 // that VM is not at safepoint and/or current thread is inside signal handler.
4692 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4693 // memory (even in resource area), it might deadlock the error handler.
4694 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4695                              int buflen) {
4696   ThreadsSMRSupport::print_info_on(st);
4697   st->cr();
4698 
4699   bool found_current = false;
4700   st->print_cr("Java Threads: ( => current thread )");
4701   ALL_JAVA_THREADS(thread) {
4702     print_on_error(thread, st, current, buf, buflen, &found_current);
4703   }
4704   st->cr();
4705 
4706   st->print_cr("Other Threads:");
4707   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4708   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4709 
4710   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4711   Universe::heap()->gc_threads_do(&print_closure);
4712 
4713   if (!found_current) {
4714     st->cr();
4715     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4716     current->print_on_error(st, buf, buflen);
4717     st->cr();
4718   }
4719   st->cr();
4720 
4721   st->print_cr("Threads with active compile tasks:");
4722   print_threads_compiling(st, buf, buflen);
4723 }
4724 
4725 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4726   ALL_JAVA_THREADS(thread) {
4727     if (thread->is_Compiler_thread()) {
4728       CompilerThread* ct = (CompilerThread*) thread;
4729 
4730       // Keep task in local variable for NULL check.
4731       // ct->_task might be set to NULL by concurring compiler thread
4732       // because it completed the compilation. The task is never freed,
4733       // though, just returned to a free list.
4734       CompileTask* task = ct->task();
4735       if (task != NULL) {
4736         thread->print_name_on_error(st, buf, buflen);
4737         st->print("  ");
4738         task->print(st, NULL, short_form, true);
4739       }
4740     }
4741   }
4742 }
4743 
4744 
4745 // Internal SpinLock and Mutex
4746 // Based on ParkEvent
4747 
4748 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4749 //
4750 // We employ SpinLocks _only for low-contention, fixed-length
4751 // short-duration critical sections where we're concerned
4752 // about native mutex_t or HotSpot Mutex:: latency.
4753 // The mux construct provides a spin-then-block mutual exclusion
4754 // mechanism.
4755 //
4756 // Testing has shown that contention on the ListLock guarding gFreeList
4757 // is common.  If we implement ListLock as a simple SpinLock it's common
4758 // for the JVM to devolve to yielding with little progress.  This is true
4759 // despite the fact that the critical sections protected by ListLock are
4760 // extremely short.
4761 //
4762 // TODO-FIXME: ListLock should be of type SpinLock.
4763 // We should make this a 1st-class type, integrated into the lock
4764 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4765 // should have sufficient padding to avoid false-sharing and excessive
4766 // cache-coherency traffic.
4767 
4768 
4769 typedef volatile int SpinLockT;
4770 
4771 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4772   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4773     return;   // normal fast-path return
4774   }
4775 
4776   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4777   int ctr = 0;
4778   int Yields = 0;
4779   for (;;) {
4780     while (*adr != 0) {
4781       ++ctr;
4782       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4783         if (Yields > 5) {
4784           os::naked_short_sleep(1);
4785         } else {
4786           os::naked_yield();
4787           ++Yields;
4788         }
4789       } else {
4790         SpinPause();
4791       }
4792     }
4793     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4794   }
4795 }
4796 
4797 void Thread::SpinRelease(volatile int * adr) {
4798   assert(*adr != 0, "invariant");
4799   OrderAccess::fence();      // guarantee at least release consistency.
4800   // Roach-motel semantics.
4801   // It's safe if subsequent LDs and STs float "up" into the critical section,
4802   // but prior LDs and STs within the critical section can't be allowed
4803   // to reorder or float past the ST that releases the lock.
4804   // Loads and stores in the critical section - which appear in program
4805   // order before the store that releases the lock - must also appear
4806   // before the store that releases the lock in memory visibility order.
4807   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4808   // the ST of 0 into the lock-word which releases the lock, so fence
4809   // more than covers this on all platforms.
4810   *adr = 0;
4811 }
4812 
4813 // muxAcquire and muxRelease:
4814 //
4815 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4816 //    The LSB of the word is set IFF the lock is held.
4817 //    The remainder of the word points to the head of a singly-linked list
4818 //    of threads blocked on the lock.
4819 //
4820 // *  The current implementation of muxAcquire-muxRelease uses its own
4821 //    dedicated Thread._MuxEvent instance.  If we're interested in
4822 //    minimizing the peak number of extant ParkEvent instances then
4823 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4824 //    as certain invariants were satisfied.  Specifically, care would need
4825 //    to be taken with regards to consuming unpark() "permits".
4826 //    A safe rule of thumb is that a thread would never call muxAcquire()
4827 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4828 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4829 //    consume an unpark() permit intended for monitorenter, for instance.
4830 //    One way around this would be to widen the restricted-range semaphore
4831 //    implemented in park().  Another alternative would be to provide
4832 //    multiple instances of the PlatformEvent() for each thread.  One
4833 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4834 //
4835 // *  Usage:
4836 //    -- Only as leaf locks
4837 //    -- for short-term locking only as muxAcquire does not perform
4838 //       thread state transitions.
4839 //
4840 // Alternatives:
4841 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4842 //    but with parking or spin-then-park instead of pure spinning.
4843 // *  Use Taura-Oyama-Yonenzawa locks.
4844 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4845 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4846 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4847 //    acquiring threads use timers (ParkTimed) to detect and recover from
4848 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4849 //    boundaries by using placement-new.
4850 // *  Augment MCS with advisory back-link fields maintained with CAS().
4851 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4852 //    The validity of the backlinks must be ratified before we trust the value.
4853 //    If the backlinks are invalid the exiting thread must back-track through the
4854 //    the forward links, which are always trustworthy.
4855 // *  Add a successor indication.  The LockWord is currently encoded as
4856 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4857 //    to provide the usual futile-wakeup optimization.
4858 //    See RTStt for details.
4859 //
4860 
4861 
4862 const intptr_t LOCKBIT = 1;
4863 
4864 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4865   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4866   if (w == 0) return;
4867   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4868     return;
4869   }
4870 
4871   ParkEvent * const Self = Thread::current()->_MuxEvent;
4872   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4873   for (;;) {
4874     int its = (os::is_MP() ? 100 : 0) + 1;
4875 
4876     // Optional spin phase: spin-then-park strategy
4877     while (--its >= 0) {
4878       w = *Lock;
4879       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4880         return;
4881       }
4882     }
4883 
4884     Self->reset();
4885     Self->OnList = intptr_t(Lock);
4886     // The following fence() isn't _strictly necessary as the subsequent
4887     // CAS() both serializes execution and ratifies the fetched *Lock value.
4888     OrderAccess::fence();
4889     for (;;) {
4890       w = *Lock;
4891       if ((w & LOCKBIT) == 0) {
4892         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4893           Self->OnList = 0;   // hygiene - allows stronger asserts
4894           return;
4895         }
4896         continue;      // Interference -- *Lock changed -- Just retry
4897       }
4898       assert(w & LOCKBIT, "invariant");
4899       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4900       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4901     }
4902 
4903     while (Self->OnList != 0) {
4904       Self->park();
4905     }
4906   }
4907 }
4908 
4909 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4910   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4911   if (w == 0) return;
4912   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4913     return;
4914   }
4915 
4916   ParkEvent * ReleaseAfter = NULL;
4917   if (ev == NULL) {
4918     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4919   }
4920   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4921   for (;;) {
4922     guarantee(ev->OnList == 0, "invariant");
4923     int its = (os::is_MP() ? 100 : 0) + 1;
4924 
4925     // Optional spin phase: spin-then-park strategy
4926     while (--its >= 0) {
4927       w = *Lock;
4928       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4929         if (ReleaseAfter != NULL) {
4930           ParkEvent::Release(ReleaseAfter);
4931         }
4932         return;
4933       }
4934     }
4935 
4936     ev->reset();
4937     ev->OnList = intptr_t(Lock);
4938     // The following fence() isn't _strictly necessary as the subsequent
4939     // CAS() both serializes execution and ratifies the fetched *Lock value.
4940     OrderAccess::fence();
4941     for (;;) {
4942       w = *Lock;
4943       if ((w & LOCKBIT) == 0) {
4944         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4945           ev->OnList = 0;
4946           // We call ::Release while holding the outer lock, thus
4947           // artificially lengthening the critical section.
4948           // Consider deferring the ::Release() until the subsequent unlock(),
4949           // after we've dropped the outer lock.
4950           if (ReleaseAfter != NULL) {
4951             ParkEvent::Release(ReleaseAfter);
4952           }
4953           return;
4954         }
4955         continue;      // Interference -- *Lock changed -- Just retry
4956       }
4957       assert(w & LOCKBIT, "invariant");
4958       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4959       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4960     }
4961 
4962     while (ev->OnList != 0) {
4963       ev->park();
4964     }
4965   }
4966 }
4967 
4968 // Release() must extract a successor from the list and then wake that thread.
4969 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4970 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4971 // Release() would :
4972 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4973 // (B) Extract a successor from the private list "in-hand"
4974 // (C) attempt to CAS() the residual back into *Lock over null.
4975 //     If there were any newly arrived threads and the CAS() would fail.
4976 //     In that case Release() would detach the RATs, re-merge the list in-hand
4977 //     with the RATs and repeat as needed.  Alternately, Release() might
4978 //     detach and extract a successor, but then pass the residual list to the wakee.
4979 //     The wakee would be responsible for reattaching and remerging before it
4980 //     competed for the lock.
4981 //
4982 // Both "pop" and DMR are immune from ABA corruption -- there can be
4983 // multiple concurrent pushers, but only one popper or detacher.
4984 // This implementation pops from the head of the list.  This is unfair,
4985 // but tends to provide excellent throughput as hot threads remain hot.
4986 // (We wake recently run threads first).
4987 //
4988 // All paths through muxRelease() will execute a CAS.
4989 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4990 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4991 // executed within the critical section are complete and globally visible before the
4992 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4993 void Thread::muxRelease(volatile intptr_t * Lock)  {
4994   for (;;) {
4995     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
4996     assert(w & LOCKBIT, "invariant");
4997     if (w == LOCKBIT) return;
4998     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4999     assert(List != NULL, "invariant");
5000     assert(List->OnList == intptr_t(Lock), "invariant");
5001     ParkEvent * const nxt = List->ListNext;
5002     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5003 
5004     // The following CAS() releases the lock and pops the head element.
5005     // The CAS() also ratifies the previously fetched lock-word value.
5006     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5007       continue;
5008     }
5009     List->OnList = 0;
5010     OrderAccess::fence();
5011     List->unpark();
5012     return;
5013   }
5014 }
5015 
5016 
5017 void Threads::verify() {
5018   ALL_JAVA_THREADS(p) {
5019     p->verify();
5020   }
5021   VMThread* thread = VMThread::vm_thread();
5022   if (thread != NULL) thread->verify();
5023 }