1 /*
  2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "code/codeCache.hpp"
 27 #include "gc/parallel/adjoiningGenerations.hpp"
 28 #include "gc/parallel/adjoiningGenerationsForHeteroHeap.hpp"
 29 #include "gc/parallel/adjoiningVirtualSpaces.hpp"
 30 #include "gc/parallel/parallelArguments.hpp"
 31 #include "gc/parallel/gcTaskManager.hpp"
 32 #include "gc/parallel/objectStartArray.inline.hpp"
 33 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
 34 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
 35 #include "gc/parallel/psMarkSweepProxy.hpp"
 36 #include "gc/parallel/psMemoryPool.hpp"
 37 #include "gc/parallel/psParallelCompact.inline.hpp"
 38 #include "gc/parallel/psPromotionManager.hpp"
 39 #include "gc/parallel/psScavenge.hpp"
 40 #include "gc/parallel/psVMOperations.hpp"
 41 #include "gc/shared/gcHeapSummary.hpp"
 42 #include "gc/shared/gcLocker.hpp"
 43 #include "gc/shared/gcWhen.hpp"
 44 #include "gc/shared/genArguments.hpp"
 45 #include "gc/shared/scavengableNMethods.hpp"
 46 #include "logging/log.hpp"
 47 #include "memory/metaspaceCounters.hpp"
 48 #include "memory/universe.hpp"
 49 #include "oops/oop.inline.hpp"
 50 #include "runtime/handles.inline.hpp"
 51 #include "runtime/java.hpp"
 52 #include "runtime/vmThread.hpp"
 53 #include "services/memoryManager.hpp"
 54 #include "services/memTracker.hpp"
 55 #include "utilities/macros.hpp"
 56 #include "utilities/vmError.hpp"
 57 
 58 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
 59 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
 60 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
 61 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
 62 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
 63 
 64 jint ParallelScavengeHeap::initialize() {
 65   const size_t reserved_heap_size = ParallelArguments::heap_reserved_size_bytes();
 66 
 67   ReservedSpace heap_rs = Universe::reserve_heap(reserved_heap_size, HeapAlignment);
 68 
 69   os::trace_page_sizes("Heap",
 70                        MinHeapSize,
 71                        reserved_heap_size,
 72                        GenAlignment,
 73                        heap_rs.base(),
 74                        heap_rs.size());
 75 
 76   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 77 
 78   PSCardTable* card_table = new PSCardTable(reserved_region());
 79   card_table->initialize();
 80   CardTableBarrierSet* const barrier_set = new CardTableBarrierSet(card_table);
 81   barrier_set->initialize();
 82   BarrierSet::set_barrier_set(barrier_set);
 83 
 84   // Make up the generations
 85   // Calculate the maximum size that a generation can grow.  This
 86   // includes growth into the other generation.  Note that the
 87   // parameter _max_gen_size is kept as the maximum
 88   // size of the generation as the boundaries currently stand.
 89   // _max_gen_size is still used as that value.
 90   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 91   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
 92 
 93   _gens = AdjoiningGenerations::create_adjoining_generations(heap_rs);
 94 
 95   _old_gen = _gens->old_gen();
 96   _young_gen = _gens->young_gen();
 97 
 98   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
 99   const size_t old_capacity = _old_gen->capacity_in_bytes();
100   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
101   _size_policy =
102     new PSAdaptiveSizePolicy(eden_capacity,
103                              initial_promo_size,
104                              young_gen()->to_space()->capacity_in_bytes(),
105                              GenAlignment,
106                              max_gc_pause_sec,
107                              max_gc_minor_pause_sec,
108                              GCTimeRatio
109                              );
110 
111   assert(ParallelArguments::is_heterogeneous_heap() || !UseAdaptiveGCBoundary ||
112     (old_gen()->virtual_space()->high_boundary() ==
113      young_gen()->virtual_space()->low_boundary()),
114     "Boundaries must meet");
115   // initialize the policy counters - 2 collectors, 2 generations
116   _gc_policy_counters =
117     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy);
118 
119   // Set up the GCTaskManager
120   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
121 
122   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
123     return JNI_ENOMEM;
124   }
125 
126   // Set up WorkGang
127   _workers.initialize_workers();
128 
129   return JNI_OK;
130 }
131 
132 void ParallelScavengeHeap::initialize_serviceability() {
133 
134   _eden_pool = new EdenMutableSpacePool(_young_gen,
135                                         _young_gen->eden_space(),
136                                         "PS Eden Space",
137                                         false /* support_usage_threshold */);
138 
139   _survivor_pool = new SurvivorMutableSpacePool(_young_gen,
140                                                 "PS Survivor Space",
141                                                 false /* support_usage_threshold */);
142 
143   _old_pool = new PSGenerationPool(_old_gen,
144                                    "PS Old Gen",
145                                    true /* support_usage_threshold */);
146 
147   _young_manager = new GCMemoryManager("PS Scavenge", "end of minor GC");
148   _old_manager = new GCMemoryManager("PS MarkSweep", "end of major GC");
149 
150   _old_manager->add_pool(_eden_pool);
151   _old_manager->add_pool(_survivor_pool);
152   _old_manager->add_pool(_old_pool);
153 
154   _young_manager->add_pool(_eden_pool);
155   _young_manager->add_pool(_survivor_pool);
156 
157 }
158 
159 class PSIsScavengable : public BoolObjectClosure {
160   bool do_object_b(oop obj) {
161     return ParallelScavengeHeap::heap()->is_in_young(obj);
162   }
163 };
164 
165 static PSIsScavengable _is_scavengable;
166 
167 void ParallelScavengeHeap::post_initialize() {
168   CollectedHeap::post_initialize();
169   // Need to init the tenuring threshold
170   PSScavenge::initialize();
171   if (UseParallelOldGC) {
172     PSParallelCompact::post_initialize();
173   } else {
174     PSMarkSweepProxy::initialize();
175   }
176   PSPromotionManager::initialize();
177 
178   ScavengableNMethods::initialize(&_is_scavengable);
179 }
180 
181 void ParallelScavengeHeap::update_counters() {
182   young_gen()->update_counters();
183   old_gen()->update_counters();
184   MetaspaceCounters::update_performance_counters();
185   CompressedClassSpaceCounters::update_performance_counters();
186 }
187 
188 size_t ParallelScavengeHeap::capacity() const {
189   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
190   return value;
191 }
192 
193 size_t ParallelScavengeHeap::used() const {
194   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
195   return value;
196 }
197 
198 bool ParallelScavengeHeap::is_maximal_no_gc() const {
199   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
200 }
201 
202 
203 size_t ParallelScavengeHeap::max_capacity() const {
204   size_t estimated = reserved_region().byte_size();
205   if (UseAdaptiveSizePolicy) {
206     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
207   } else {
208     estimated -= young_gen()->to_space()->capacity_in_bytes();
209   }
210   return MAX2(estimated, capacity());
211 }
212 
213 bool ParallelScavengeHeap::is_in(const void* p) const {
214   return young_gen()->is_in(p) || old_gen()->is_in(p);
215 }
216 
217 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
218   return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p);
219 }
220 
221 // There are two levels of allocation policy here.
222 //
223 // When an allocation request fails, the requesting thread must invoke a VM
224 // operation, transfer control to the VM thread, and await the results of a
225 // garbage collection. That is quite expensive, and we should avoid doing it
226 // multiple times if possible.
227 //
228 // To accomplish this, we have a basic allocation policy, and also a
229 // failed allocation policy.
230 //
231 // The basic allocation policy controls how you allocate memory without
232 // attempting garbage collection. It is okay to grab locks and
233 // expand the heap, if that can be done without coming to a safepoint.
234 // It is likely that the basic allocation policy will not be very
235 // aggressive.
236 //
237 // The failed allocation policy is invoked from the VM thread after
238 // the basic allocation policy is unable to satisfy a mem_allocate
239 // request. This policy needs to cover the entire range of collection,
240 // heap expansion, and out-of-memory conditions. It should make every
241 // attempt to allocate the requested memory.
242 
243 // Basic allocation policy. Should never be called at a safepoint, or
244 // from the VM thread.
245 //
246 // This method must handle cases where many mem_allocate requests fail
247 // simultaneously. When that happens, only one VM operation will succeed,
248 // and the rest will not be executed. For that reason, this method loops
249 // during failed allocation attempts. If the java heap becomes exhausted,
250 // we rely on the size_policy object to force a bail out.
251 HeapWord* ParallelScavengeHeap::mem_allocate(
252                                      size_t size,
253                                      bool* gc_overhead_limit_was_exceeded) {
254   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
255   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
256   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
257 
258   // In general gc_overhead_limit_was_exceeded should be false so
259   // set it so here and reset it to true only if the gc time
260   // limit is being exceeded as checked below.
261   *gc_overhead_limit_was_exceeded = false;
262 
263   HeapWord* result = young_gen()->allocate(size);
264 
265   uint loop_count = 0;
266   uint gc_count = 0;
267   uint gclocker_stalled_count = 0;
268 
269   while (result == NULL) {
270     // We don't want to have multiple collections for a single filled generation.
271     // To prevent this, each thread tracks the total_collections() value, and if
272     // the count has changed, does not do a new collection.
273     //
274     // The collection count must be read only while holding the heap lock. VM
275     // operations also hold the heap lock during collections. There is a lock
276     // contention case where thread A blocks waiting on the Heap_lock, while
277     // thread B is holding it doing a collection. When thread A gets the lock,
278     // the collection count has already changed. To prevent duplicate collections,
279     // The policy MUST attempt allocations during the same period it reads the
280     // total_collections() value!
281     {
282       MutexLocker ml(Heap_lock);
283       gc_count = total_collections();
284 
285       result = young_gen()->allocate(size);
286       if (result != NULL) {
287         return result;
288       }
289 
290       // If certain conditions hold, try allocating from the old gen.
291       result = mem_allocate_old_gen(size);
292       if (result != NULL) {
293         return result;
294       }
295 
296       if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
297         return NULL;
298       }
299 
300       // Failed to allocate without a gc.
301       if (GCLocker::is_active_and_needs_gc()) {
302         // If this thread is not in a jni critical section, we stall
303         // the requestor until the critical section has cleared and
304         // GC allowed. When the critical section clears, a GC is
305         // initiated by the last thread exiting the critical section; so
306         // we retry the allocation sequence from the beginning of the loop,
307         // rather than causing more, now probably unnecessary, GC attempts.
308         JavaThread* jthr = JavaThread::current();
309         if (!jthr->in_critical()) {
310           MutexUnlocker mul(Heap_lock);
311           GCLocker::stall_until_clear();
312           gclocker_stalled_count += 1;
313           continue;
314         } else {
315           if (CheckJNICalls) {
316             fatal("Possible deadlock due to allocating while"
317                   " in jni critical section");
318           }
319           return NULL;
320         }
321       }
322     }
323 
324     if (result == NULL) {
325       // Generate a VM operation
326       VM_ParallelGCFailedAllocation op(size, gc_count);
327       VMThread::execute(&op);
328 
329       // Did the VM operation execute? If so, return the result directly.
330       // This prevents us from looping until time out on requests that can
331       // not be satisfied.
332       if (op.prologue_succeeded()) {
333         assert(is_in_or_null(op.result()), "result not in heap");
334 
335         // If GC was locked out during VM operation then retry allocation
336         // and/or stall as necessary.
337         if (op.gc_locked()) {
338           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
339           continue;  // retry and/or stall as necessary
340         }
341 
342         // Exit the loop if the gc time limit has been exceeded.
343         // The allocation must have failed above ("result" guarding
344         // this path is NULL) and the most recent collection has exceeded the
345         // gc overhead limit (although enough may have been collected to
346         // satisfy the allocation).  Exit the loop so that an out-of-memory
347         // will be thrown (return a NULL ignoring the contents of
348         // op.result()),
349         // but clear gc_overhead_limit_exceeded so that the next collection
350         // starts with a clean slate (i.e., forgets about previous overhead
351         // excesses).  Fill op.result() with a filler object so that the
352         // heap remains parsable.
353         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
354         const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
355 
356         if (limit_exceeded && softrefs_clear) {
357           *gc_overhead_limit_was_exceeded = true;
358           size_policy()->set_gc_overhead_limit_exceeded(false);
359           log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set");
360           if (op.result() != NULL) {
361             CollectedHeap::fill_with_object(op.result(), size);
362           }
363           return NULL;
364         }
365 
366         return op.result();
367       }
368     }
369 
370     // The policy object will prevent us from looping forever. If the
371     // time spent in gc crosses a threshold, we will bail out.
372     loop_count++;
373     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
374         (loop_count % QueuedAllocationWarningCount == 0)) {
375       log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times", loop_count);
376       log_warning(gc)("\tsize=" SIZE_FORMAT, size);
377     }
378   }
379 
380   return result;
381 }
382 
383 // A "death march" is a series of ultra-slow allocations in which a full gc is
384 // done before each allocation, and after the full gc the allocation still
385 // cannot be satisfied from the young gen.  This routine detects that condition;
386 // it should be called after a full gc has been done and the allocation
387 // attempted from the young gen. The parameter 'addr' should be the result of
388 // that young gen allocation attempt.
389 void
390 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
391   if (addr != NULL) {
392     _death_march_count = 0;  // death march has ended
393   } else if (_death_march_count == 0) {
394     if (should_alloc_in_eden(size)) {
395       _death_march_count = 1;    // death march has started
396     }
397   }
398 }
399 
400 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
401   if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) {
402     // Size is too big for eden, or gc is locked out.
403     return old_gen()->allocate(size);
404   }
405 
406   // If a "death march" is in progress, allocate from the old gen a limited
407   // number of times before doing a GC.
408   if (_death_march_count > 0) {
409     if (_death_march_count < 64) {
410       ++_death_march_count;
411       return old_gen()->allocate(size);
412     } else {
413       _death_march_count = 0;
414     }
415   }
416   return NULL;
417 }
418 
419 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
420   if (UseParallelOldGC) {
421     // The do_full_collection() parameter clear_all_soft_refs
422     // is interpreted here as maximum_compaction which will
423     // cause SoftRefs to be cleared.
424     bool maximum_compaction = clear_all_soft_refs;
425     PSParallelCompact::invoke(maximum_compaction);
426   } else {
427     PSMarkSweepProxy::invoke(clear_all_soft_refs);
428   }
429 }
430 
431 // Failed allocation policy. Must be called from the VM thread, and
432 // only at a safepoint! Note that this method has policy for allocation
433 // flow, and NOT collection policy. So we do not check for gc collection
434 // time over limit here, that is the responsibility of the heap specific
435 // collection methods. This method decides where to attempt allocations,
436 // and when to attempt collections, but no collection specific policy.
437 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
438   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
439   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
440   assert(!is_gc_active(), "not reentrant");
441   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
442 
443   // We assume that allocation in eden will fail unless we collect.
444 
445   // First level allocation failure, scavenge and allocate in young gen.
446   GCCauseSetter gccs(this, GCCause::_allocation_failure);
447   const bool invoked_full_gc = PSScavenge::invoke();
448   HeapWord* result = young_gen()->allocate(size);
449 
450   // Second level allocation failure.
451   //   Mark sweep and allocate in young generation.
452   if (result == NULL && !invoked_full_gc) {
453     do_full_collection(false);
454     result = young_gen()->allocate(size);
455   }
456 
457   death_march_check(result, size);
458 
459   // Third level allocation failure.
460   //   After mark sweep and young generation allocation failure,
461   //   allocate in old generation.
462   if (result == NULL) {
463     result = old_gen()->allocate(size);
464   }
465 
466   // Fourth level allocation failure. We're running out of memory.
467   //   More complete mark sweep and allocate in young generation.
468   if (result == NULL) {
469     do_full_collection(true);
470     result = young_gen()->allocate(size);
471   }
472 
473   // Fifth level allocation failure.
474   //   After more complete mark sweep, allocate in old generation.
475   if (result == NULL) {
476     result = old_gen()->allocate(size);
477   }
478 
479   return result;
480 }
481 
482 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
483   CollectedHeap::ensure_parsability(retire_tlabs);
484   young_gen()->eden_space()->ensure_parsability();
485 }
486 
487 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
488   return young_gen()->eden_space()->tlab_capacity(thr);
489 }
490 
491 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
492   return young_gen()->eden_space()->tlab_used(thr);
493 }
494 
495 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
496   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
497 }
498 
499 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size) {
500   HeapWord* result = young_gen()->allocate(requested_size);
501   if (result != NULL) {
502     *actual_size = requested_size;
503   }
504 
505   return result;
506 }
507 
508 void ParallelScavengeHeap::resize_all_tlabs() {
509   CollectedHeap::resize_all_tlabs();
510 }
511 
512 // This method is used by System.gc() and JVMTI.
513 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
514   assert(!Heap_lock->owned_by_self(),
515     "this thread should not own the Heap_lock");
516 
517   uint gc_count      = 0;
518   uint full_gc_count = 0;
519   {
520     MutexLocker ml(Heap_lock);
521     // This value is guarded by the Heap_lock
522     gc_count      = total_collections();
523     full_gc_count = total_full_collections();
524   }
525 
526   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
527   VMThread::execute(&op);
528 }
529 
530 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
531   young_gen()->object_iterate(cl);
532   old_gen()->object_iterate(cl);
533 }
534 
535 
536 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
537   if (young_gen()->is_in_reserved(addr)) {
538     assert(young_gen()->is_in(addr),
539            "addr should be in allocated part of young gen");
540     // called from os::print_location by find or VMError
541     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
542     Unimplemented();
543   } else if (old_gen()->is_in_reserved(addr)) {
544     assert(old_gen()->is_in(addr),
545            "addr should be in allocated part of old gen");
546     return old_gen()->start_array()->object_start((HeapWord*)addr);
547   }
548   return 0;
549 }
550 
551 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
552   return block_start(addr) == addr;
553 }
554 
555 jlong ParallelScavengeHeap::millis_since_last_gc() {
556   return UseParallelOldGC ?
557     PSParallelCompact::millis_since_last_gc() :
558     PSMarkSweepProxy::millis_since_last_gc();
559 }
560 
561 void ParallelScavengeHeap::prepare_for_verify() {
562   ensure_parsability(false);  // no need to retire TLABs for verification
563 }
564 
565 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
566   PSOldGen* old = old_gen();
567   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
568   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
569   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
570 
571   PSYoungGen* young = young_gen();
572   VirtualSpaceSummary young_summary(young->reserved().start(),
573     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
574 
575   MutableSpace* eden = young_gen()->eden_space();
576   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
577 
578   MutableSpace* from = young_gen()->from_space();
579   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
580 
581   MutableSpace* to = young_gen()->to_space();
582   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
583 
584   VirtualSpaceSummary heap_summary = create_heap_space_summary();
585   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
586 }
587 
588 void ParallelScavengeHeap::print_on(outputStream* st) const {
589   young_gen()->print_on(st);
590   old_gen()->print_on(st);
591   MetaspaceUtils::print_on(st);
592 }
593 
594 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
595   this->CollectedHeap::print_on_error(st);
596 
597   if (UseParallelOldGC) {
598     st->cr();
599     PSParallelCompact::print_on_error(st);
600   }
601 }
602 
603 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
604   PSScavenge::gc_task_manager()->threads_do(tc);
605 }
606 
607 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
608   PSScavenge::gc_task_manager()->print_threads_on(st);
609 }
610 
611 void ParallelScavengeHeap::print_tracing_info() const {
612   AdaptiveSizePolicyOutput::print();
613   log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
614   log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs",
615       UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweepProxy::accumulated_time()->seconds());
616 }
617 
618 
619 void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) {
620   // Why do we need the total_collections()-filter below?
621   if (total_collections() > 0) {
622     log_debug(gc, verify)("Tenured");
623     old_gen()->verify();
624 
625     log_debug(gc, verify)("Eden");
626     young_gen()->verify();
627   }
628 }
629 
630 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
631   const PSHeapSummary& heap_summary = create_ps_heap_summary();
632   gc_tracer->report_gc_heap_summary(when, heap_summary);
633 
634   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
635   gc_tracer->report_metaspace_summary(when, metaspace_summary);
636 }
637 
638 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
639   CollectedHeap* heap = Universe::heap();
640   assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
641   assert(heap->kind() == CollectedHeap::Parallel, "Invalid name");
642   return (ParallelScavengeHeap*)heap;
643 }
644 
645 CardTableBarrierSet* ParallelScavengeHeap::barrier_set() {
646   return barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
647 }
648 
649 PSCardTable* ParallelScavengeHeap::card_table() {
650   return static_cast<PSCardTable*>(barrier_set()->card_table());
651 }
652 
653 // Before delegating the resize to the young generation,
654 // the reserved space for the young and old generations
655 // may be changed to accommodate the desired resize.
656 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
657     size_t survivor_size) {
658   if (UseAdaptiveGCBoundary) {
659     if (size_policy()->bytes_absorbed_from_eden() != 0) {
660       size_policy()->reset_bytes_absorbed_from_eden();
661       return;  // The generation changed size already.
662     }
663     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
664   }
665 
666   // Delegate the resize to the generation.
667   _young_gen->resize(eden_size, survivor_size);
668 }
669 
670 // Before delegating the resize to the old generation,
671 // the reserved space for the young and old generations
672 // may be changed to accommodate the desired resize.
673 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
674   if (UseAdaptiveGCBoundary) {
675     if (size_policy()->bytes_absorbed_from_eden() != 0) {
676       size_policy()->reset_bytes_absorbed_from_eden();
677       return;  // The generation changed size already.
678     }
679     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
680   }
681 
682   // Delegate the resize to the generation.
683   _old_gen->resize(desired_free_space);
684 }
685 
686 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
687   // nothing particular
688 }
689 
690 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
691   // nothing particular
692 }
693 
694 #ifndef PRODUCT
695 void ParallelScavengeHeap::record_gen_tops_before_GC() {
696   if (ZapUnusedHeapArea) {
697     young_gen()->record_spaces_top();
698     old_gen()->record_spaces_top();
699   }
700 }
701 
702 void ParallelScavengeHeap::gen_mangle_unused_area() {
703   if (ZapUnusedHeapArea) {
704     young_gen()->eden_space()->mangle_unused_area();
705     young_gen()->to_space()->mangle_unused_area();
706     young_gen()->from_space()->mangle_unused_area();
707     old_gen()->object_space()->mangle_unused_area();
708   }
709 }
710 #endif
711 
712 void ParallelScavengeHeap::register_nmethod(nmethod* nm) {
713   ScavengableNMethods::register_nmethod(nm);
714 }
715 
716 void ParallelScavengeHeap::unregister_nmethod(nmethod* nm) {
717   ScavengableNMethods::unregister_nmethod(nm);
718 }
719 
720 void ParallelScavengeHeap::verify_nmethod(nmethod* nm) {
721   ScavengableNMethods::verify_nmethod(nm);
722 }
723 
724 void ParallelScavengeHeap::flush_nmethod(nmethod* nm) {
725   // nothing particular
726 }
727 
728 void ParallelScavengeHeap::prune_scavengable_nmethods() {
729   ScavengableNMethods::prune_nmethods();
730 }
731 
732 GrowableArray<GCMemoryManager*> ParallelScavengeHeap::memory_managers() {
733   GrowableArray<GCMemoryManager*> memory_managers(2);
734   memory_managers.append(_young_manager);
735   memory_managers.append(_old_manager);
736   return memory_managers;
737 }
738 
739 GrowableArray<MemoryPool*> ParallelScavengeHeap::memory_pools() {
740   GrowableArray<MemoryPool*> memory_pools(3);
741   memory_pools.append(_eden_pool);
742   memory_pools.append(_survivor_pool);
743   memory_pools.append(_old_pool);
744   return memory_pools;
745 }