1 /*
  2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "gc/parallel/gcTaskManager.hpp"
 27 #include "gc/parallel/objectStartArray.inline.hpp"
 28 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
 29 #include "gc/parallel/psCardTable.hpp"
 30 #include "gc/parallel/psPromotionManager.inline.hpp"
 31 #include "gc/parallel/psScavenge.inline.hpp"
 32 #include "gc/parallel/psYoungGen.hpp"
 33 #include "memory/iterator.inline.hpp"
 34 #include "oops/access.inline.hpp"
 35 #include "oops/oop.inline.hpp"
 36 #include "runtime/prefetch.inline.hpp"
 37 #include "utilities/align.hpp"
 38 
 39 // Checks an individual oop for missing precise marks. Mark
 40 // may be either dirty or newgen.
 41 class CheckForUnmarkedOops : public BasicOopIterateClosure {
 42  private:
 43   PSYoungGen*  _young_gen;
 44   PSCardTable* _card_table;
 45   HeapWord*    _unmarked_addr;
 46 
 47  protected:
 48   template <class T> void do_oop_work(T* p) {
 49     oop obj = RawAccess<>::oop_load(p);
 50     if (_young_gen->is_in_reserved(obj) &&
 51         !_card_table->addr_is_marked_imprecise(p)) {
 52       // Don't overwrite the first missing card mark
 53       if (_unmarked_addr == NULL) {
 54         _unmarked_addr = (HeapWord*)p;
 55       }
 56     }
 57   }
 58 
 59  public:
 60   CheckForUnmarkedOops(PSYoungGen* young_gen, PSCardTable* card_table) :
 61     _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
 62 
 63   virtual void do_oop(oop* p)       { CheckForUnmarkedOops::do_oop_work(p); }
 64   virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
 65 
 66   bool has_unmarked_oop() {
 67     return _unmarked_addr != NULL;
 68   }
 69 };
 70 
 71 // Checks all objects for the existence of some type of mark,
 72 // precise or imprecise, dirty or newgen.
 73 class CheckForUnmarkedObjects : public ObjectClosure {
 74  private:
 75   PSYoungGen*  _young_gen;
 76   PSCardTable* _card_table;
 77 
 78  public:
 79   CheckForUnmarkedObjects() {
 80     ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 81     _young_gen = heap->young_gen();
 82     _card_table = heap->card_table();
 83   }
 84 
 85   // Card marks are not precise. The current system can leave us with
 86   // a mismatch of precise marks and beginning of object marks. This means
 87   // we test for missing precise marks first. If any are found, we don't
 88   // fail unless the object head is also unmarked.
 89   virtual void do_object(oop obj) {
 90     CheckForUnmarkedOops object_check(_young_gen, _card_table);
 91     obj->oop_iterate(&object_check);
 92     if (object_check.has_unmarked_oop()) {
 93       guarantee(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
 94     }
 95   }
 96 };
 97 
 98 // Checks for precise marking of oops as newgen.
 99 class CheckForPreciseMarks : public BasicOopIterateClosure {
100  private:
101   PSYoungGen*  _young_gen;
102   PSCardTable* _card_table;
103 
104  protected:
105   template <class T> void do_oop_work(T* p) {
106     oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
107     if (_young_gen->is_in_reserved(obj)) {
108       assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
109       _card_table->set_card_newgen(p);
110     }
111   }
112 
113  public:
114   CheckForPreciseMarks(PSYoungGen* young_gen, PSCardTable* card_table) :
115     _young_gen(young_gen), _card_table(card_table) { }
116 
117   virtual void do_oop(oop* p)       { CheckForPreciseMarks::do_oop_work(p); }
118   virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
119 };
120 
121 // We get passed the space_top value to prevent us from traversing into
122 // the old_gen promotion labs, which cannot be safely parsed.
123 
124 // Do not call this method if the space is empty.
125 // It is a waste to start tasks and get here only to
126 // do no work.  If this method needs to be called
127 // when the space is empty, fix the calculation of
128 // end_card to allow sp_top == sp->bottom().
129 
130 void PSCardTable::scavenge_contents_parallel(ObjectStartArray* start_array,
131                                              MutableSpace* sp,
132                                              HeapWord* space_top,
133                                              PSPromotionManager* pm,
134                                              uint stripe_number,
135                                              uint stripe_total) {
136   int ssize = 128; // Naked constant!  Work unit = 64k.
137   int dirty_card_count = 0;
138 
139   // It is a waste to get here if empty.
140   assert(sp->bottom() < sp->top(), "Should not be called if empty");
141   oop* sp_top = (oop*)space_top;
142   CardValue* start_card = byte_for(sp->bottom());
143   CardValue* end_card   = byte_for(sp_top - 1) + 1;
144   oop* last_scanned = NULL; // Prevent scanning objects more than once
145   // The width of the stripe ssize*stripe_total must be
146   // consistent with the number of stripes so that the complete slice
147   // is covered.
148   size_t slice_width = ssize * stripe_total;
149   for (CardValue* slice = start_card; slice < end_card; slice += slice_width) {
150     CardValue* worker_start_card = slice + stripe_number * ssize;
151     if (worker_start_card >= end_card)
152       return; // We're done.
153 
154     CardValue* worker_end_card = worker_start_card + ssize;
155     if (worker_end_card > end_card)
156       worker_end_card = end_card;
157 
158     // We do not want to scan objects more than once. In order to accomplish
159     // this, we assert that any object with an object head inside our 'slice'
160     // belongs to us. We may need to extend the range of scanned cards if the
161     // last object continues into the next 'slice'.
162     //
163     // Note! ending cards are exclusive!
164     HeapWord* slice_start = addr_for(worker_start_card);
165     HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
166 
167 #ifdef ASSERT
168     if (GCWorkerDelayMillis > 0) {
169       // Delay 1 worker so that it proceeds after all the work
170       // has been completed.
171       if (stripe_number < 2) {
172         os::sleep(Thread::current(), GCWorkerDelayMillis, false);
173       }
174     }
175 #endif
176 
177     // If there are not objects starting within the chunk, skip it.
178     if (!start_array->object_starts_in_range(slice_start, slice_end)) {
179       continue;
180     }
181     // Update our beginning addr
182     HeapWord* first_object = start_array->object_start(slice_start);
183     debug_only(oop* first_object_within_slice = (oop*) first_object;)
184     if (first_object < slice_start) {
185       last_scanned = (oop*)(first_object + oop(first_object)->size());
186       debug_only(first_object_within_slice = last_scanned;)
187       worker_start_card = byte_for(last_scanned);
188     }
189 
190     // Update the ending addr
191     if (slice_end < (HeapWord*)sp_top) {
192       // The subtraction is important! An object may start precisely at slice_end.
193       HeapWord* last_object = start_array->object_start(slice_end - 1);
194       slice_end = last_object + oop(last_object)->size();
195       // worker_end_card is exclusive, so bump it one past the end of last_object's
196       // covered span.
197       worker_end_card = byte_for(slice_end) + 1;
198 
199       if (worker_end_card > end_card)
200         worker_end_card = end_card;
201     }
202 
203     assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
204     assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
205     assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
206     // Note that worker_start_card >= worker_end_card is legal, and happens when
207     // an object spans an entire slice.
208     assert(worker_start_card <= end_card, "worker start card beyond end card");
209     assert(worker_end_card <= end_card, "worker end card beyond end card");
210 
211     CardValue* current_card = worker_start_card;
212     while (current_card < worker_end_card) {
213       // Find an unclean card.
214       while (current_card < worker_end_card && card_is_clean(*current_card)) {
215         current_card++;
216       }
217       CardValue* first_unclean_card = current_card;
218 
219       // Find the end of a run of contiguous unclean cards
220       while (current_card < worker_end_card && !card_is_clean(*current_card)) {
221         while (current_card < worker_end_card && !card_is_clean(*current_card)) {
222           current_card++;
223         }
224 
225         if (current_card < worker_end_card) {
226           // Some objects may be large enough to span several cards. If such
227           // an object has more than one dirty card, separated by a clean card,
228           // we will attempt to scan it twice. The test against "last_scanned"
229           // prevents the redundant object scan, but it does not prevent newly
230           // marked cards from being cleaned.
231           HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
232           size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
233           HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
234           CardValue* ending_card_of_last_object = byte_for(end_of_last_object);
235           assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
236           if (ending_card_of_last_object > current_card) {
237             // This means the object spans the next complete card.
238             // We need to bump the current_card to ending_card_of_last_object
239             current_card = ending_card_of_last_object;
240           }
241         }
242       }
243       CardValue* following_clean_card = current_card;
244 
245       if (first_unclean_card < worker_end_card) {
246         oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
247         assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
248         // "p" should always be >= "last_scanned" because newly GC dirtied
249         // cards are no longer scanned again (see comment at end
250         // of loop on the increment of "current_card").  Test that
251         // hypothesis before removing this code.
252         // If this code is removed, deal with the first time through
253         // the loop when the last_scanned is the object starting in
254         // the previous slice.
255         assert((p >= last_scanned) ||
256                (last_scanned == first_object_within_slice),
257                "Should no longer be possible");
258         if (p < last_scanned) {
259           // Avoid scanning more than once; this can happen because
260           // newgen cards set by GC may a different set than the
261           // originally dirty set
262           p = last_scanned;
263         }
264         oop* to = (oop*)addr_for(following_clean_card);
265 
266         // Test slice_end first!
267         if ((HeapWord*)to > slice_end) {
268           to = (oop*)slice_end;
269         } else if (to > sp_top) {
270           to = sp_top;
271         }
272 
273         // we know which cards to scan, now clear them
274         if (first_unclean_card <= worker_start_card+1)
275           first_unclean_card = worker_start_card+1;
276         if (following_clean_card >= worker_end_card-1)
277           following_clean_card = worker_end_card-1;
278 
279         while (first_unclean_card < following_clean_card) {
280           *first_unclean_card++ = clean_card;
281         }
282 
283         const int interval = PrefetchScanIntervalInBytes;
284         // scan all objects in the range
285         if (interval != 0) {
286           while (p < to) {
287             Prefetch::write(p, interval);
288             oop m = oop(p);
289             assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
290             pm->push_contents(m);
291             p += m->size();
292           }
293           pm->drain_stacks_cond_depth();
294         } else {
295           while (p < to) {
296             oop m = oop(p);
297             assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
298             pm->push_contents(m);
299             p += m->size();
300           }
301           pm->drain_stacks_cond_depth();
302         }
303         last_scanned = p;
304       }
305       // "current_card" is still the "following_clean_card" or
306       // the current_card is >= the worker_end_card so the
307       // loop will not execute again.
308       assert((current_card == following_clean_card) ||
309              (current_card >= worker_end_card),
310         "current_card should only be incremented if it still equals "
311         "following_clean_card");
312       // Increment current_card so that it is not processed again.
313       // It may now be dirty because a old-to-young pointer was
314       // found on it an updated.  If it is now dirty, it cannot be
315       // be safely cleaned in the next iteration.
316       current_card++;
317     }
318   }
319 }
320 
321 // This should be called before a scavenge.
322 void PSCardTable::verify_all_young_refs_imprecise() {
323   CheckForUnmarkedObjects check;
324 
325   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
326   PSOldGen* old_gen = heap->old_gen();
327 
328   old_gen->object_iterate(&check);
329 }
330 
331 // This should be called immediately after a scavenge, before mutators resume.
332 void PSCardTable::verify_all_young_refs_precise() {
333   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
334   PSOldGen* old_gen = heap->old_gen();
335 
336   CheckForPreciseMarks check(heap->young_gen(), this);
337 
338   old_gen->oop_iterate(&check);
339 
340   verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
341 }
342 
343 void PSCardTable::verify_all_young_refs_precise_helper(MemRegion mr) {
344   CardValue* bot = byte_for(mr.start());
345   CardValue* top = byte_for(mr.end());
346   while (bot <= top) {
347     assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
348     if (*bot == verify_card)
349       *bot = youngergen_card;
350     bot++;
351   }
352 }
353 
354 bool PSCardTable::addr_is_marked_imprecise(void *addr) {
355   CardValue* p = byte_for(addr);
356   CardValue val = *p;
357 
358   if (card_is_dirty(val))
359     return true;
360 
361   if (card_is_newgen(val))
362     return true;
363 
364   if (card_is_clean(val))
365     return false;
366 
367   assert(false, "Found unhandled card mark type");
368 
369   return false;
370 }
371 
372 // Also includes verify_card
373 bool PSCardTable::addr_is_marked_precise(void *addr) {
374   CardValue* p = byte_for(addr);
375   CardValue val = *p;
376 
377   if (card_is_newgen(val))
378     return true;
379 
380   if (card_is_verify(val))
381     return true;
382 
383   if (card_is_clean(val))
384     return false;
385 
386   if (card_is_dirty(val))
387     return false;
388 
389   assert(false, "Found unhandled card mark type");
390 
391   return false;
392 }
393 
394 // Assumes that only the base or the end changes.  This allows indentification
395 // of the region that is being resized.  The
396 // CardTable::resize_covered_region() is used for the normal case
397 // where the covered regions are growing or shrinking at the high end.
398 // The method resize_covered_region_by_end() is analogous to
399 // CardTable::resize_covered_region() but
400 // for regions that grow or shrink at the low end.
401 void PSCardTable::resize_covered_region(MemRegion new_region) {
402   for (int i = 0; i < _cur_covered_regions; i++) {
403     if (_covered[i].start() == new_region.start()) {
404       // Found a covered region with the same start as the
405       // new region.  The region is growing or shrinking
406       // from the start of the region.
407       resize_covered_region_by_start(new_region);
408       return;
409     }
410     if (_covered[i].start() > new_region.start()) {
411       break;
412     }
413   }
414 
415   int changed_region = -1;
416   for (int j = 0; j < _cur_covered_regions; j++) {
417     if (_covered[j].end() == new_region.end()) {
418       changed_region = j;
419       // This is a case where the covered region is growing or shrinking
420       // at the start of the region.
421       assert(changed_region != -1, "Don't expect to add a covered region");
422       assert(_covered[changed_region].byte_size() != new_region.byte_size(),
423         "The sizes should be different here");
424       resize_covered_region_by_end(changed_region, new_region);
425       return;
426     }
427   }
428   // This should only be a new covered region (where no existing
429   // covered region matches at the start or the end).
430   assert(_cur_covered_regions < _max_covered_regions,
431     "An existing region should have been found");
432   resize_covered_region_by_start(new_region);
433 }
434 
435 void PSCardTable::resize_covered_region_by_start(MemRegion new_region) {
436   CardTable::resize_covered_region(new_region);
437   debug_only(verify_guard();)
438 }
439 
440 void PSCardTable::resize_covered_region_by_end(int changed_region,
441                                                MemRegion new_region) {
442   assert(SafepointSynchronize::is_at_safepoint(),
443     "Only expect an expansion at the low end at a GC");
444   debug_only(verify_guard();)
445 #ifdef ASSERT
446   for (int k = 0; k < _cur_covered_regions; k++) {
447     if (_covered[k].end() == new_region.end()) {
448       assert(changed_region == k, "Changed region is incorrect");
449       break;
450     }
451   }
452 #endif
453 
454   // Commit new or uncommit old pages, if necessary.
455   if (resize_commit_uncommit(changed_region, new_region)) {
456     // Set the new start of the committed region
457     resize_update_committed_table(changed_region, new_region);
458   }
459 
460   // Update card table entries
461   resize_update_card_table_entries(changed_region, new_region);
462 
463   // Update the covered region
464   resize_update_covered_table(changed_region, new_region);
465 
466   int ind = changed_region;
467   log_trace(gc, barrier)("CardTable::resize_covered_region: ");
468   log_trace(gc, barrier)("    _covered[%d].start(): " INTPTR_FORMAT "  _covered[%d].last(): " INTPTR_FORMAT,
469                 ind, p2i(_covered[ind].start()), ind, p2i(_covered[ind].last()));
470   log_trace(gc, barrier)("    _committed[%d].start(): " INTPTR_FORMAT "  _committed[%d].last(): " INTPTR_FORMAT,
471                 ind, p2i(_committed[ind].start()), ind, p2i(_committed[ind].last()));
472   log_trace(gc, barrier)("    byte_for(start): " INTPTR_FORMAT "  byte_for(last): " INTPTR_FORMAT,
473                 p2i(byte_for(_covered[ind].start())),  p2i(byte_for(_covered[ind].last())));
474   log_trace(gc, barrier)("    addr_for(start): " INTPTR_FORMAT "  addr_for(last): " INTPTR_FORMAT,
475                 p2i(addr_for((CardValue*) _committed[ind].start())), p2i(addr_for((CardValue*) _committed[ind].last())));
476 
477   debug_only(verify_guard();)
478 }
479 
480 bool PSCardTable::resize_commit_uncommit(int changed_region,
481                                          MemRegion new_region) {
482   bool result = false;
483   // Commit new or uncommit old pages, if necessary.
484   MemRegion cur_committed = _committed[changed_region];
485   assert(_covered[changed_region].end() == new_region.end(),
486     "The ends of the regions are expected to match");
487   // Extend the start of this _committed region to
488   // to cover the start of any previous _committed region.
489   // This forms overlapping regions, but never interior regions.
490   HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
491   if (min_prev_start < cur_committed.start()) {
492     // Only really need to set start of "cur_committed" to
493     // the new start (min_prev_start) but assertion checking code
494     // below use cur_committed.end() so make it correct.
495     MemRegion new_committed =
496         MemRegion(min_prev_start, cur_committed.end());
497     cur_committed = new_committed;
498   }
499 #ifdef ASSERT
500   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
501   assert(cur_committed.start() == align_up(cur_committed.start(), os::vm_page_size()),
502          "Starts should have proper alignment");
503 #endif
504 
505   CardValue* new_start = byte_for(new_region.start());
506   // Round down because this is for the start address
507   HeapWord* new_start_aligned = align_down((HeapWord*)new_start, os::vm_page_size());
508   // The guard page is always committed and should not be committed over.
509   // This method is used in cases where the generation is growing toward
510   // lower addresses but the guard region is still at the end of the
511   // card table.  That still makes sense when looking for writes
512   // off the end of the card table.
513   if (new_start_aligned < cur_committed.start()) {
514     // Expand the committed region
515     //
516     // Case A
517     //                                          |+ guard +|
518     //                          |+ cur committed +++++++++|
519     //                  |+ new committed +++++++++++++++++|
520     //
521     // Case B
522     //                                          |+ guard +|
523     //                        |+ cur committed +|
524     //                  |+ new committed +++++++|
525     //
526     // These are not expected because the calculation of the
527     // cur committed region and the new committed region
528     // share the same end for the covered region.
529     // Case C
530     //                                          |+ guard +|
531     //                        |+ cur committed +|
532     //                  |+ new committed +++++++++++++++++|
533     // Case D
534     //                                          |+ guard +|
535     //                        |+ cur committed +++++++++++|
536     //                  |+ new committed +++++++|
537 
538     HeapWord* new_end_for_commit =
539       MIN2(cur_committed.end(), _guard_region.start());
540     if(new_start_aligned < new_end_for_commit) {
541       MemRegion new_committed =
542         MemRegion(new_start_aligned, new_end_for_commit);
543       os::commit_memory_or_exit((char*)new_committed.start(),
544                                 new_committed.byte_size(), !ExecMem,
545                                 "card table expansion");
546     }
547     result = true;
548   } else if (new_start_aligned > cur_committed.start()) {
549     // Shrink the committed region
550 #if 0 // uncommitting space is currently unsafe because of the interactions
551       // of growing and shrinking regions.  One region A can uncommit space
552       // that it owns but which is being used by another region B (maybe).
553       // Region B has not committed the space because it was already
554       // committed by region A.
555     MemRegion uncommit_region = committed_unique_to_self(changed_region,
556       MemRegion(cur_committed.start(), new_start_aligned));
557     if (!uncommit_region.is_empty()) {
558       if (!os::uncommit_memory((char*)uncommit_region.start(),
559                                uncommit_region.byte_size())) {
560         // If the uncommit fails, ignore it.  Let the
561         // committed table resizing go even though the committed
562         // table will over state the committed space.
563       }
564     }
565 #else
566     assert(!result, "Should be false with current workaround");
567 #endif
568   }
569   assert(_committed[changed_region].end() == cur_committed.end(),
570     "end should not change");
571   return result;
572 }
573 
574 void PSCardTable::resize_update_committed_table(int changed_region,
575                                                 MemRegion new_region) {
576 
577   CardValue* new_start = byte_for(new_region.start());
578   // Set the new start of the committed region
579   HeapWord* new_start_aligned = align_down((HeapWord*)new_start, os::vm_page_size());
580   MemRegion new_committed = MemRegion(new_start_aligned,
581                                       _committed[changed_region].end());
582   _committed[changed_region] = new_committed;
583   _committed[changed_region].set_start(new_start_aligned);
584 }
585 
586 void PSCardTable::resize_update_card_table_entries(int changed_region,
587                                                    MemRegion new_region) {
588   debug_only(verify_guard();)
589   MemRegion original_covered = _covered[changed_region];
590   // Initialize the card entries.  Only consider the
591   // region covered by the card table (_whole_heap)
592   CardValue* entry;
593   if (new_region.start() < _whole_heap.start()) {
594     entry = byte_for(_whole_heap.start());
595   } else {
596     entry = byte_for(new_region.start());
597   }
598   CardValue* end = byte_for(original_covered.start());
599   // If _whole_heap starts at the original covered regions start,
600   // this loop will not execute.
601   while (entry < end) { *entry++ = clean_card; }
602 }
603 
604 void PSCardTable::resize_update_covered_table(int changed_region,
605                                               MemRegion new_region) {
606   // Update the covered region
607   _covered[changed_region].set_start(new_region.start());
608   _covered[changed_region].set_word_size(new_region.word_size());
609 
610   // reorder regions.  There should only be at most 1 out
611   // of order.
612   for (int i = _cur_covered_regions-1 ; i > 0; i--) {
613     if (_covered[i].start() < _covered[i-1].start()) {
614         MemRegion covered_mr = _covered[i-1];
615         _covered[i-1] = _covered[i];
616         _covered[i] = covered_mr;
617         MemRegion committed_mr = _committed[i-1];
618       _committed[i-1] = _committed[i];
619       _committed[i] = committed_mr;
620       break;
621     }
622   }
623 #ifdef ASSERT
624   for (int m = 0; m < _cur_covered_regions-1; m++) {
625     assert(_covered[m].start() <= _covered[m+1].start(),
626       "Covered regions out of order");
627     assert(_committed[m].start() <= _committed[m+1].start(),
628       "Committed regions out of order");
629   }
630 #endif
631 }
632 
633 // Returns the start of any committed region that is lower than
634 // the target committed region (index ind) and that intersects the
635 // target region.  If none, return start of target region.
636 //
637 //      -------------
638 //      |           |
639 //      -------------
640 //              ------------
641 //              | target   |
642 //              ------------
643 //                               -------------
644 //                               |           |
645 //                               -------------
646 //      ^ returns this
647 //
648 //      -------------
649 //      |           |
650 //      -------------
651 //                      ------------
652 //                      | target   |
653 //                      ------------
654 //                               -------------
655 //                               |           |
656 //                               -------------
657 //                      ^ returns this
658 
659 HeapWord* PSCardTable::lowest_prev_committed_start(int ind) const {
660   assert(_cur_covered_regions >= 0, "Expecting at least on region");
661   HeapWord* min_start = _committed[ind].start();
662   for (int j = 0; j < ind; j++) {
663     HeapWord* this_start = _committed[j].start();
664     if ((this_start < min_start) &&
665         !(_committed[j].intersection(_committed[ind])).is_empty()) {
666        min_start = this_start;
667     }
668   }
669   return min_start;
670 }
671 
672 bool PSCardTable::is_in_young(oop obj) const {
673   return ParallelScavengeHeap::heap()->is_in_young(obj);
674 }