1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP
  26 #define SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP
  27 
  28 #include "gc/parallel/mutableSpace.hpp"
  29 #include "gc/parallel/objectStartArray.hpp"
  30 #include "gc/parallel/parMarkBitMap.hpp"
  31 #include "gc/parallel/parallelScavengeHeap.hpp"
  32 #include "gc/shared/collectedHeap.hpp"
  33 #include "gc/shared/collectorCounters.hpp"
  34 #include "gc/shared/taskqueue.hpp"
  35 #include "oops/oop.hpp"
  36 
  37 class ParallelScavengeHeap;
  38 class PSAdaptiveSizePolicy;
  39 class PSYoungGen;
  40 class PSOldGen;
  41 class ParCompactionManager;
  42 class ParallelTaskTerminator;
  43 class PSParallelCompact;
  44 class PreGCValues;
  45 class MoveAndUpdateClosure;
  46 class RefProcTaskExecutor;
  47 class ParallelOldTracer;
  48 class STWGCTimer;
  49 
  50 // The SplitInfo class holds the information needed to 'split' a source region
  51 // so that the live data can be copied to two destination *spaces*.  Normally,
  52 // all the live data in a region is copied to a single destination space (e.g.,
  53 // everything live in a region in eden is copied entirely into the old gen).
  54 // However, when the heap is nearly full, all the live data in eden may not fit
  55 // into the old gen.  Copying only some of the regions from eden to old gen
  56 // requires finding a region that does not contain a partial object (i.e., no
  57 // live object crosses the region boundary) somewhere near the last object that
  58 // does fit into the old gen.  Since it's not always possible to find such a
  59 // region, splitting is necessary for predictable behavior.
  60 //
  61 // A region is always split at the end of the partial object.  This avoids
  62 // additional tests when calculating the new location of a pointer, which is a
  63 // very hot code path.  The partial object and everything to its left will be
  64 // copied to another space (call it dest_space_1).  The live data to the right
  65 // of the partial object will be copied either within the space itself, or to a
  66 // different destination space (distinct from dest_space_1).
  67 //
  68 // Split points are identified during the summary phase, when region
  69 // destinations are computed:  data about the split, including the
  70 // partial_object_size, is recorded in a SplitInfo record and the
  71 // partial_object_size field in the summary data is set to zero.  The zeroing is
  72 // possible (and necessary) since the partial object will move to a different
  73 // destination space than anything to its right, thus the partial object should
  74 // not affect the locations of any objects to its right.
  75 //
  76 // The recorded data is used during the compaction phase, but only rarely:  when
  77 // the partial object on the split region will be copied across a destination
  78 // region boundary.  This test is made once each time a region is filled, and is
  79 // a simple address comparison, so the overhead is negligible (see
  80 // PSParallelCompact::first_src_addr()).
  81 //
  82 // Notes:
  83 //
  84 // Only regions with partial objects are split; a region without a partial
  85 // object does not need any extra bookkeeping.
  86 //
  87 // At most one region is split per space, so the amount of data required is
  88 // constant.
  89 //
  90 // A region is split only when the destination space would overflow.  Once that
  91 // happens, the destination space is abandoned and no other data (even from
  92 // other source spaces) is targeted to that destination space.  Abandoning the
  93 // destination space may leave a somewhat large unused area at the end, if a
  94 // large object caused the overflow.
  95 //
  96 // Future work:
  97 //
  98 // More bookkeeping would be required to continue to use the destination space.
  99 // The most general solution would allow data from regions in two different
 100 // source spaces to be "joined" in a single destination region.  At the very
 101 // least, additional code would be required in next_src_region() to detect the
 102 // join and skip to an out-of-order source region.  If the join region was also
 103 // the last destination region to which a split region was copied (the most
 104 // likely case), then additional work would be needed to get fill_region() to
 105 // stop iteration and switch to a new source region at the right point.  Basic
 106 // idea would be to use a fake value for the top of the source space.  It is
 107 // doable, if a bit tricky.
 108 //
 109 // A simpler (but less general) solution would fill the remainder of the
 110 // destination region with a dummy object and continue filling the next
 111 // destination region.
 112 
 113 class SplitInfo
 114 {
 115 public:
 116   // Return true if this split info is valid (i.e., if a split has been
 117   // recorded).  The very first region cannot have a partial object and thus is
 118   // never split, so 0 is the 'invalid' value.
 119   bool is_valid() const { return _src_region_idx > 0; }
 120 
 121   // Return true if this split holds data for the specified source region.
 122   inline bool is_split(size_t source_region) const;
 123 
 124   // The index of the split region, the size of the partial object on that
 125   // region and the destination of the partial object.
 126   size_t    src_region_idx() const   { return _src_region_idx; }
 127   size_t    partial_obj_size() const { return _partial_obj_size; }
 128   HeapWord* destination() const      { return _destination; }
 129 
 130   // The destination count of the partial object referenced by this split
 131   // (either 1 or 2).  This must be added to the destination count of the
 132   // remainder of the source region.
 133   unsigned int destination_count() const { return _destination_count; }
 134 
 135   // If a word within the partial object will be written to the first word of a
 136   // destination region, this is the address of the destination region;
 137   // otherwise this is NULL.
 138   HeapWord* dest_region_addr() const     { return _dest_region_addr; }
 139 
 140   // If a word within the partial object will be written to the first word of a
 141   // destination region, this is the address of that word within the partial
 142   // object; otherwise this is NULL.
 143   HeapWord* first_src_addr() const       { return _first_src_addr; }
 144 
 145   // Record the data necessary to split the region src_region_idx.
 146   void record(size_t src_region_idx, size_t partial_obj_size,
 147               HeapWord* destination);
 148 
 149   void clear();
 150 
 151   DEBUG_ONLY(void verify_clear();)
 152 
 153 private:
 154   size_t       _src_region_idx;
 155   size_t       _partial_obj_size;
 156   HeapWord*    _destination;
 157   unsigned int _destination_count;
 158   HeapWord*    _dest_region_addr;
 159   HeapWord*    _first_src_addr;
 160 };
 161 
 162 inline bool SplitInfo::is_split(size_t region_idx) const
 163 {
 164   return _src_region_idx == region_idx && is_valid();
 165 }
 166 
 167 class SpaceInfo
 168 {
 169  public:
 170   MutableSpace* space() const { return _space; }
 171 
 172   // Where the free space will start after the collection.  Valid only after the
 173   // summary phase completes.
 174   HeapWord* new_top() const { return _new_top; }
 175 
 176   // Allows new_top to be set.
 177   HeapWord** new_top_addr() { return &_new_top; }
 178 
 179   // Where the smallest allowable dense prefix ends (used only for perm gen).
 180   HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
 181 
 182   // Where the dense prefix ends, or the compacted region begins.
 183   HeapWord* dense_prefix() const { return _dense_prefix; }
 184 
 185   // The start array for the (generation containing the) space, or NULL if there
 186   // is no start array.
 187   ObjectStartArray* start_array() const { return _start_array; }
 188 
 189   SplitInfo& split_info() { return _split_info; }
 190 
 191   void set_space(MutableSpace* s)           { _space = s; }
 192   void set_new_top(HeapWord* addr)          { _new_top = addr; }
 193   void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
 194   void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
 195   void set_start_array(ObjectStartArray* s) { _start_array = s; }
 196 
 197   void publish_new_top() const              { _space->set_top(_new_top); }
 198 
 199  private:
 200   MutableSpace*     _space;
 201   HeapWord*         _new_top;
 202   HeapWord*         _min_dense_prefix;
 203   HeapWord*         _dense_prefix;
 204   ObjectStartArray* _start_array;
 205   SplitInfo         _split_info;
 206 };
 207 
 208 class ParallelCompactData
 209 {
 210 public:
 211   // Sizes are in HeapWords, unless indicated otherwise.
 212   static const size_t Log2RegionSize;
 213   static const size_t RegionSize;
 214   static const size_t RegionSizeBytes;
 215 
 216   // Mask for the bits in a size_t to get an offset within a region.
 217   static const size_t RegionSizeOffsetMask;
 218   // Mask for the bits in a pointer to get an offset within a region.
 219   static const size_t RegionAddrOffsetMask;
 220   // Mask for the bits in a pointer to get the address of the start of a region.
 221   static const size_t RegionAddrMask;
 222 
 223   static const size_t Log2BlockSize;
 224   static const size_t BlockSize;
 225   static const size_t BlockSizeBytes;
 226 
 227   static const size_t BlockSizeOffsetMask;
 228   static const size_t BlockAddrOffsetMask;
 229   static const size_t BlockAddrMask;
 230 
 231   static const size_t BlocksPerRegion;
 232   static const size_t Log2BlocksPerRegion;
 233 
 234   class RegionData
 235   {
 236   public:
 237     // Destination address of the region.
 238     HeapWord* destination() const { return _destination; }
 239 
 240     // The first region containing data destined for this region.
 241     size_t source_region() const { return _source_region; }
 242 
 243     // The object (if any) starting in this region and ending in a different
 244     // region that could not be updated during the main (parallel) compaction
 245     // phase.  This is different from _partial_obj_addr, which is an object that
 246     // extends onto a source region.  However, the two uses do not overlap in
 247     // time, so the same field is used to save space.
 248     HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
 249 
 250     // The starting address of the partial object extending onto the region.
 251     HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
 252 
 253     // Size of the partial object extending onto the region (words).
 254     size_t partial_obj_size() const { return _partial_obj_size; }
 255 
 256     // Size of live data that lies within this region due to objects that start
 257     // in this region (words).  This does not include the partial object
 258     // extending onto the region (if any), or the part of an object that extends
 259     // onto the next region (if any).
 260     size_t live_obj_size() const { return _dc_and_los & los_mask; }
 261 
 262     // Total live data that lies within the region (words).
 263     size_t data_size() const { return partial_obj_size() + live_obj_size(); }
 264 
 265     // The destination_count is the number of other regions to which data from
 266     // this region will be copied.  At the end of the summary phase, the valid
 267     // values of destination_count are
 268     //
 269     // 0 - data from the region will be compacted completely into itself, or the
 270     //     region is empty.  The region can be claimed and then filled.
 271     // 1 - data from the region will be compacted into 1 other region; some
 272     //     data from the region may also be compacted into the region itself.
 273     // 2 - data from the region will be copied to 2 other regions.
 274     //
 275     // During compaction as regions are emptied, the destination_count is
 276     // decremented (atomically) and when it reaches 0, it can be claimed and
 277     // then filled.
 278     //
 279     // A region is claimed for processing by atomically changing the
 280     // destination_count to the claimed value (dc_claimed).  After a region has
 281     // been filled, the destination_count should be set to the completed value
 282     // (dc_completed).
 283     inline uint destination_count() const;
 284     inline uint destination_count_raw() const;
 285 
 286     // Whether the block table for this region has been filled.
 287     inline bool blocks_filled() const;
 288 
 289     // Number of times the block table was filled.
 290     DEBUG_ONLY(inline size_t blocks_filled_count() const;)
 291 
 292     // The location of the java heap data that corresponds to this region.
 293     inline HeapWord* data_location() const;
 294 
 295     // The highest address referenced by objects in this region.
 296     inline HeapWord* highest_ref() const;
 297 
 298     // Whether this region is available to be claimed, has been claimed, or has
 299     // been completed.
 300     //
 301     // Minor subtlety:  claimed() returns true if the region is marked
 302     // completed(), which is desirable since a region must be claimed before it
 303     // can be completed.
 304     bool available() const { return _dc_and_los < dc_one; }
 305     bool claimed()   const { return _dc_and_los >= dc_claimed; }
 306     bool completed() const { return _dc_and_los >= dc_completed; }
 307 
 308     // These are not atomic.
 309     void set_destination(HeapWord* addr)       { _destination = addr; }
 310     void set_source_region(size_t region)      { _source_region = region; }
 311     void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
 312     void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
 313     void set_partial_obj_size(size_t words)    {
 314       _partial_obj_size = (region_sz_t) words;
 315     }
 316     inline void set_blocks_filled();
 317 
 318     inline void set_destination_count(uint count);
 319     inline void set_live_obj_size(size_t words);
 320     inline void set_data_location(HeapWord* addr);
 321     inline void set_completed();
 322     inline bool claim_unsafe();
 323 
 324     // These are atomic.
 325     inline void add_live_obj(size_t words);
 326     inline void set_highest_ref(HeapWord* addr);
 327     inline void decrement_destination_count();
 328     inline bool claim();
 329 
 330   private:
 331     // The type used to represent object sizes within a region.
 332     typedef uint region_sz_t;
 333 
 334     // Constants for manipulating the _dc_and_los field, which holds both the
 335     // destination count and live obj size.  The live obj size lives at the
 336     // least significant end so no masking is necessary when adding.
 337     static const region_sz_t dc_shift;           // Shift amount.
 338     static const region_sz_t dc_mask;            // Mask for destination count.
 339     static const region_sz_t dc_one;             // 1, shifted appropriately.
 340     static const region_sz_t dc_claimed;         // Region has been claimed.
 341     static const region_sz_t dc_completed;       // Region has been completed.
 342     static const region_sz_t los_mask;           // Mask for live obj size.
 343 
 344     HeapWord*            _destination;
 345     size_t               _source_region;
 346     HeapWord*            _partial_obj_addr;
 347     region_sz_t          _partial_obj_size;
 348     region_sz_t volatile _dc_and_los;
 349     bool        volatile _blocks_filled;
 350 
 351 #ifdef ASSERT
 352     size_t               _blocks_filled_count;   // Number of block table fills.
 353 
 354     // These enable optimizations that are only partially implemented.  Use
 355     // debug builds to prevent the code fragments from breaking.
 356     HeapWord*            _data_location;
 357     HeapWord*            _highest_ref;
 358 #endif  // #ifdef ASSERT
 359 
 360 #ifdef ASSERT
 361    public:
 362     uint                 _pushed;   // 0 until region is pushed onto a stack
 363    private:
 364 #endif
 365   };
 366 
 367   // "Blocks" allow shorter sections of the bitmap to be searched.  Each Block
 368   // holds an offset, which is the amount of live data in the Region to the left
 369   // of the first live object that starts in the Block.
 370   class BlockData
 371   {
 372   public:
 373     typedef unsigned short int blk_ofs_t;
 374 
 375     blk_ofs_t offset() const    { return _offset; }
 376     void set_offset(size_t val) { _offset = (blk_ofs_t)val; }
 377 
 378   private:
 379     blk_ofs_t _offset;
 380   };
 381 
 382 public:
 383   ParallelCompactData();
 384   bool initialize(MemRegion covered_region);
 385 
 386   size_t region_count() const { return _region_count; }
 387   size_t reserved_byte_size() const { return _reserved_byte_size; }
 388 
 389   // Convert region indices to/from RegionData pointers.
 390   inline RegionData* region(size_t region_idx) const;
 391   inline size_t     region(const RegionData* const region_ptr) const;
 392 
 393   size_t block_count() const { return _block_count; }
 394   inline BlockData* block(size_t block_idx) const;
 395   inline size_t     block(const BlockData* block_ptr) const;
 396 
 397   void add_obj(HeapWord* addr, size_t len);
 398   void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
 399 
 400   // Fill in the regions covering [beg, end) so that no data moves; i.e., the
 401   // destination of region n is simply the start of region n.  The argument beg
 402   // must be region-aligned; end need not be.
 403   void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
 404 
 405   HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
 406                                   HeapWord* destination, HeapWord* target_end,
 407                                   HeapWord** target_next);
 408   bool summarize(SplitInfo& split_info,
 409                  HeapWord* source_beg, HeapWord* source_end,
 410                  HeapWord** source_next,
 411                  HeapWord* target_beg, HeapWord* target_end,
 412                  HeapWord** target_next);
 413 
 414   void clear();
 415   void clear_range(size_t beg_region, size_t end_region);
 416   void clear_range(HeapWord* beg, HeapWord* end) {
 417     clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
 418   }
 419 
 420   // Return the number of words between addr and the start of the region
 421   // containing addr.
 422   inline size_t     region_offset(const HeapWord* addr) const;
 423 
 424   // Convert addresses to/from a region index or region pointer.
 425   inline size_t     addr_to_region_idx(const HeapWord* addr) const;
 426   inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
 427   inline HeapWord*  region_to_addr(size_t region) const;
 428   inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
 429   inline HeapWord*  region_to_addr(const RegionData* region) const;
 430 
 431   inline HeapWord*  region_align_down(HeapWord* addr) const;
 432   inline HeapWord*  region_align_up(HeapWord* addr) const;
 433   inline bool       is_region_aligned(HeapWord* addr) const;
 434 
 435   // Analogous to region_offset() for blocks.
 436   size_t     block_offset(const HeapWord* addr) const;
 437   size_t     addr_to_block_idx(const HeapWord* addr) const;
 438   size_t     addr_to_block_idx(const oop obj) const {
 439     return addr_to_block_idx((HeapWord*) obj);
 440   }
 441   inline BlockData* addr_to_block_ptr(const HeapWord* addr) const;
 442   inline HeapWord*  block_to_addr(size_t block) const;
 443   inline size_t     region_to_block_idx(size_t region) const;
 444 
 445   inline HeapWord*  block_align_down(HeapWord* addr) const;
 446   inline HeapWord*  block_align_up(HeapWord* addr) const;
 447   inline bool       is_block_aligned(HeapWord* addr) const;
 448 
 449   // Return the address one past the end of the partial object.
 450   HeapWord* partial_obj_end(size_t region_idx) const;
 451 
 452   // Return the location of the object after compaction.
 453   HeapWord* calc_new_pointer(HeapWord* addr, ParCompactionManager* cm);
 454 
 455   HeapWord* calc_new_pointer(oop p, ParCompactionManager* cm) {
 456     return calc_new_pointer((HeapWord*) p, cm);
 457   }
 458 
 459 #ifdef  ASSERT
 460   void verify_clear(const PSVirtualSpace* vspace);
 461   void verify_clear();
 462 #endif  // #ifdef ASSERT
 463 
 464 private:
 465   bool initialize_block_data();
 466   bool initialize_region_data(size_t region_size);
 467   PSVirtualSpace* create_vspace(size_t count, size_t element_size);
 468 
 469 private:
 470   HeapWord*       _region_start;
 471 #ifdef  ASSERT
 472   HeapWord*       _region_end;
 473 #endif  // #ifdef ASSERT
 474 
 475   PSVirtualSpace* _region_vspace;
 476   size_t          _reserved_byte_size;
 477   RegionData*     _region_data;
 478   size_t          _region_count;
 479 
 480   PSVirtualSpace* _block_vspace;
 481   BlockData*      _block_data;
 482   size_t          _block_count;
 483 };
 484 
 485 inline uint
 486 ParallelCompactData::RegionData::destination_count_raw() const
 487 {
 488   return _dc_and_los & dc_mask;
 489 }
 490 
 491 inline uint
 492 ParallelCompactData::RegionData::destination_count() const
 493 {
 494   return destination_count_raw() >> dc_shift;
 495 }
 496 
 497 inline bool
 498 ParallelCompactData::RegionData::blocks_filled() const
 499 {
 500   bool result = _blocks_filled;
 501   OrderAccess::acquire();
 502   return result;
 503 }
 504 
 505 #ifdef ASSERT
 506 inline size_t
 507 ParallelCompactData::RegionData::blocks_filled_count() const
 508 {
 509   return _blocks_filled_count;
 510 }
 511 #endif // #ifdef ASSERT
 512 
 513 inline void
 514 ParallelCompactData::RegionData::set_blocks_filled()
 515 {
 516   OrderAccess::release();
 517   _blocks_filled = true;
 518   // Debug builds count the number of times the table was filled.
 519   DEBUG_ONLY(Atomic::inc(&_blocks_filled_count));
 520 }
 521 
 522 inline void
 523 ParallelCompactData::RegionData::set_destination_count(uint count)
 524 {
 525   assert(count <= (dc_completed >> dc_shift), "count too large");
 526   const region_sz_t live_sz = (region_sz_t) live_obj_size();
 527   _dc_and_los = (count << dc_shift) | live_sz;
 528 }
 529 
 530 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
 531 {
 532   assert(words <= los_mask, "would overflow");
 533   _dc_and_los = destination_count_raw() | (region_sz_t)words;
 534 }
 535 
 536 inline void ParallelCompactData::RegionData::decrement_destination_count()
 537 {
 538   assert(_dc_and_los < dc_claimed, "already claimed");
 539   assert(_dc_and_los >= dc_one, "count would go negative");
 540   Atomic::add(dc_mask, &_dc_and_los);
 541 }
 542 
 543 inline HeapWord* ParallelCompactData::RegionData::data_location() const
 544 {
 545   DEBUG_ONLY(return _data_location;)
 546   NOT_DEBUG(return NULL;)
 547 }
 548 
 549 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
 550 {
 551   DEBUG_ONLY(return _highest_ref;)
 552   NOT_DEBUG(return NULL;)
 553 }
 554 
 555 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
 556 {
 557   DEBUG_ONLY(_data_location = addr;)
 558 }
 559 
 560 inline void ParallelCompactData::RegionData::set_completed()
 561 {
 562   assert(claimed(), "must be claimed first");
 563   _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
 564 }
 565 
 566 // MT-unsafe claiming of a region.  Should only be used during single threaded
 567 // execution.
 568 inline bool ParallelCompactData::RegionData::claim_unsafe()
 569 {
 570   if (available()) {
 571     _dc_and_los |= dc_claimed;
 572     return true;
 573   }
 574   return false;
 575 }
 576 
 577 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
 578 {
 579   assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
 580   Atomic::add(static_cast<region_sz_t>(words), &_dc_and_los);
 581 }
 582 
 583 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
 584 {
 585 #ifdef ASSERT
 586   HeapWord* tmp = _highest_ref;
 587   while (addr > tmp) {
 588     tmp = Atomic::cmpxchg(addr, &_highest_ref, tmp);
 589   }
 590 #endif  // #ifdef ASSERT
 591 }
 592 
 593 inline bool ParallelCompactData::RegionData::claim()
 594 {
 595   const region_sz_t los = static_cast<region_sz_t>(live_obj_size());
 596   const region_sz_t old = Atomic::cmpxchg(dc_claimed | los, &_dc_and_los, los);
 597   return old == los;
 598 }
 599 
 600 inline ParallelCompactData::RegionData*
 601 ParallelCompactData::region(size_t region_idx) const
 602 {
 603   assert(region_idx <= region_count(), "bad arg");
 604   return _region_data + region_idx;
 605 }
 606 
 607 inline size_t
 608 ParallelCompactData::region(const RegionData* const region_ptr) const
 609 {
 610   assert(region_ptr >= _region_data, "bad arg");
 611   assert(region_ptr <= _region_data + region_count(), "bad arg");
 612   return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
 613 }
 614 
 615 inline ParallelCompactData::BlockData*
 616 ParallelCompactData::block(size_t n) const {
 617   assert(n < block_count(), "bad arg");
 618   return _block_data + n;
 619 }
 620 
 621 inline size_t
 622 ParallelCompactData::region_offset(const HeapWord* addr) const
 623 {
 624   assert(addr >= _region_start, "bad addr");
 625   assert(addr <= _region_end, "bad addr");
 626   return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
 627 }
 628 
 629 inline size_t
 630 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
 631 {
 632   assert(addr >= _region_start, "bad addr " PTR_FORMAT " _region_start " PTR_FORMAT, p2i(addr), p2i(_region_start));
 633   assert(addr <= _region_end, "bad addr " PTR_FORMAT " _region_end " PTR_FORMAT, p2i(addr), p2i(_region_end));
 634   return pointer_delta(addr, _region_start) >> Log2RegionSize;
 635 }
 636 
 637 inline ParallelCompactData::RegionData*
 638 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
 639 {
 640   return region(addr_to_region_idx(addr));
 641 }
 642 
 643 inline HeapWord*
 644 ParallelCompactData::region_to_addr(size_t region) const
 645 {
 646   assert(region <= _region_count, "region out of range");
 647   return _region_start + (region << Log2RegionSize);
 648 }
 649 
 650 inline HeapWord*
 651 ParallelCompactData::region_to_addr(const RegionData* region) const
 652 {
 653   return region_to_addr(pointer_delta(region, _region_data,
 654                                       sizeof(RegionData)));
 655 }
 656 
 657 inline HeapWord*
 658 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
 659 {
 660   assert(region <= _region_count, "region out of range");
 661   assert(offset < RegionSize, "offset too big");  // This may be too strict.
 662   return region_to_addr(region) + offset;
 663 }
 664 
 665 inline HeapWord*
 666 ParallelCompactData::region_align_down(HeapWord* addr) const
 667 {
 668   assert(addr >= _region_start, "bad addr");
 669   assert(addr < _region_end + RegionSize, "bad addr");
 670   return (HeapWord*)(size_t(addr) & RegionAddrMask);
 671 }
 672 
 673 inline HeapWord*
 674 ParallelCompactData::region_align_up(HeapWord* addr) const
 675 {
 676   assert(addr >= _region_start, "bad addr");
 677   assert(addr <= _region_end, "bad addr");
 678   return region_align_down(addr + RegionSizeOffsetMask);
 679 }
 680 
 681 inline bool
 682 ParallelCompactData::is_region_aligned(HeapWord* addr) const
 683 {
 684   return region_offset(addr) == 0;
 685 }
 686 
 687 inline size_t
 688 ParallelCompactData::block_offset(const HeapWord* addr) const
 689 {
 690   assert(addr >= _region_start, "bad addr");
 691   assert(addr <= _region_end, "bad addr");
 692   return (size_t(addr) & BlockAddrOffsetMask) >> LogHeapWordSize;
 693 }
 694 
 695 inline size_t
 696 ParallelCompactData::addr_to_block_idx(const HeapWord* addr) const
 697 {
 698   assert(addr >= _region_start, "bad addr");
 699   assert(addr <= _region_end, "bad addr");
 700   return pointer_delta(addr, _region_start) >> Log2BlockSize;
 701 }
 702 
 703 inline ParallelCompactData::BlockData*
 704 ParallelCompactData::addr_to_block_ptr(const HeapWord* addr) const
 705 {
 706   return block(addr_to_block_idx(addr));
 707 }
 708 
 709 inline HeapWord*
 710 ParallelCompactData::block_to_addr(size_t block) const
 711 {
 712   assert(block < _block_count, "block out of range");
 713   return _region_start + (block << Log2BlockSize);
 714 }
 715 
 716 inline size_t
 717 ParallelCompactData::region_to_block_idx(size_t region) const
 718 {
 719   return region << Log2BlocksPerRegion;
 720 }
 721 
 722 inline HeapWord*
 723 ParallelCompactData::block_align_down(HeapWord* addr) const
 724 {
 725   assert(addr >= _region_start, "bad addr");
 726   assert(addr < _region_end + RegionSize, "bad addr");
 727   return (HeapWord*)(size_t(addr) & BlockAddrMask);
 728 }
 729 
 730 inline HeapWord*
 731 ParallelCompactData::block_align_up(HeapWord* addr) const
 732 {
 733   assert(addr >= _region_start, "bad addr");
 734   assert(addr <= _region_end, "bad addr");
 735   return block_align_down(addr + BlockSizeOffsetMask);
 736 }
 737 
 738 inline bool
 739 ParallelCompactData::is_block_aligned(HeapWord* addr) const
 740 {
 741   return block_offset(addr) == 0;
 742 }
 743 
 744 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
 745 // do_addr() method.
 746 //
 747 // The closure is initialized with the number of heap words to process
 748 // (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
 749 // methods in subclasses should update the total as words are processed.  Since
 750 // only one subclass actually uses this mechanism to terminate iteration, the
 751 // default initial value is > 0.  The implementation is here and not in the
 752 // single subclass that uses it to avoid making is_full() virtual, and thus
 753 // adding a virtual call per live object.
 754 
 755 class ParMarkBitMapClosure: public StackObj {
 756  public:
 757   typedef ParMarkBitMap::idx_t idx_t;
 758   typedef ParMarkBitMap::IterationStatus IterationStatus;
 759 
 760  public:
 761   inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
 762                               size_t words = max_uintx);
 763 
 764   inline ParCompactionManager* compaction_manager() const;
 765   inline ParMarkBitMap*        bitmap() const;
 766   inline size_t                words_remaining() const;
 767   inline bool                  is_full() const;
 768   inline HeapWord*             source() const;
 769 
 770   inline void                  set_source(HeapWord* addr);
 771 
 772   virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
 773 
 774  protected:
 775   inline void decrement_words_remaining(size_t words);
 776 
 777  private:
 778   ParMarkBitMap* const        _bitmap;
 779   ParCompactionManager* const _compaction_manager;
 780   DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
 781   size_t                      _words_remaining; // Words left to copy.
 782 
 783  protected:
 784   HeapWord*                   _source;          // Next addr that would be read.
 785 };
 786 
 787 inline
 788 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
 789                                            ParCompactionManager* cm,
 790                                            size_t words):
 791   _bitmap(bitmap), _compaction_manager(cm)
 792 #ifdef  ASSERT
 793   , _initial_words_remaining(words)
 794 #endif
 795 {
 796   _words_remaining = words;
 797   _source = NULL;
 798 }
 799 
 800 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
 801   return _compaction_manager;
 802 }
 803 
 804 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
 805   return _bitmap;
 806 }
 807 
 808 inline size_t ParMarkBitMapClosure::words_remaining() const {
 809   return _words_remaining;
 810 }
 811 
 812 inline bool ParMarkBitMapClosure::is_full() const {
 813   return words_remaining() == 0;
 814 }
 815 
 816 inline HeapWord* ParMarkBitMapClosure::source() const {
 817   return _source;
 818 }
 819 
 820 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
 821   _source = addr;
 822 }
 823 
 824 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
 825   assert(_words_remaining >= words, "processed too many words");
 826   _words_remaining -= words;
 827 }
 828 
 829 // The UseParallelOldGC collector is a stop-the-world garbage collector that
 830 // does parts of the collection using parallel threads.  The collection includes
 831 // the tenured generation and the young generation.  The permanent generation is
 832 // collected at the same time as the other two generations but the permanent
 833 // generation is collect by a single GC thread.  The permanent generation is
 834 // collected serially because of the requirement that during the processing of a
 835 // klass AAA, any objects reference by AAA must already have been processed.
 836 // This requirement is enforced by a left (lower address) to right (higher
 837 // address) sliding compaction.
 838 //
 839 // There are four phases of the collection.
 840 //
 841 //      - marking phase
 842 //      - summary phase
 843 //      - compacting phase
 844 //      - clean up phase
 845 //
 846 // Roughly speaking these phases correspond, respectively, to
 847 //      - mark all the live objects
 848 //      - calculate the destination of each object at the end of the collection
 849 //      - move the objects to their destination
 850 //      - update some references and reinitialize some variables
 851 //
 852 // These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
 853 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
 854 // complete marking of the heap.  The summary phase is implemented in
 855 // PSParallelCompact::summary_phase().  The move and update phase is implemented
 856 // in PSParallelCompact::compact().
 857 //
 858 // A space that is being collected is divided into regions and with each region
 859 // is associated an object of type ParallelCompactData.  Each region is of a
 860 // fixed size and typically will contain more than 1 object and may have parts
 861 // of objects at the front and back of the region.
 862 //
 863 // region            -----+---------------------+----------
 864 // objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
 865 //
 866 // The marking phase does a complete marking of all live objects in the heap.
 867 // The marking also compiles the size of the data for all live objects covered
 868 // by the region.  This size includes the part of any live object spanning onto
 869 // the region (part of AAA if it is live) from the front, all live objects
 870 // contained in the region (BBB and/or CCC if they are live), and the part of
 871 // any live objects covered by the region that extends off the region (part of
 872 // DDD if it is live).  The marking phase uses multiple GC threads and marking
 873 // is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
 874 // done atomically as is the accumulation of the size of the live objects
 875 // covered by a region.
 876 //
 877 // The summary phase calculates the total live data to the left of each region
 878 // XXX.  Based on that total and the bottom of the space, it can calculate the
 879 // starting location of the live data in XXX.  The summary phase calculates for
 880 // each region XXX quantities such as
 881 //
 882 //      - the amount of live data at the beginning of a region from an object
 883 //        entering the region.
 884 //      - the location of the first live data on the region
 885 //      - a count of the number of regions receiving live data from XXX.
 886 //
 887 // See ParallelCompactData for precise details.  The summary phase also
 888 // calculates the dense prefix for the compaction.  The dense prefix is a
 889 // portion at the beginning of the space that is not moved.  The objects in the
 890 // dense prefix do need to have their object references updated.  See method
 891 // summarize_dense_prefix().
 892 //
 893 // The summary phase is done using 1 GC thread.
 894 //
 895 // The compaction phase moves objects to their new location and updates all
 896 // references in the object.
 897 //
 898 // A current exception is that objects that cross a region boundary are moved
 899 // but do not have their references updated.  References are not updated because
 900 // it cannot easily be determined if the klass pointer KKK for the object AAA
 901 // has been updated.  KKK likely resides in a region to the left of the region
 902 // containing AAA.  These AAA's have there references updated at the end in a
 903 // clean up phase.  See the method PSParallelCompact::update_deferred_objects().
 904 // An alternate strategy is being investigated for this deferral of updating.
 905 //
 906 // Compaction is done on a region basis.  A region that is ready to be filled is
 907 // put on a ready list and GC threads take region off the list and fill them.  A
 908 // region is ready to be filled if it empty of live objects.  Such a region may
 909 // have been initially empty (only contained dead objects) or may have had all
 910 // its live objects copied out already.  A region that compacts into itself is
 911 // also ready for filling.  The ready list is initially filled with empty
 912 // regions and regions compacting into themselves.  There is always at least 1
 913 // region that can be put on the ready list.  The regions are atomically added
 914 // and removed from the ready list.
 915 
 916 class TaskQueue;
 917 
 918 class PSParallelCompact : AllStatic {
 919  public:
 920   // Convenient access to type names.
 921   typedef ParMarkBitMap::idx_t idx_t;
 922   typedef ParallelCompactData::RegionData RegionData;
 923   typedef ParallelCompactData::BlockData BlockData;
 924 
 925   typedef enum {
 926     old_space_id, eden_space_id,
 927     from_space_id, to_space_id, last_space_id
 928   } SpaceId;
 929 
 930   struct UpdateDensePrefixTask : public CHeapObj<mtGC> {
 931     SpaceId _space_id;
 932     size_t _region_index_start;
 933     size_t _region_index_end;
 934 
 935     UpdateDensePrefixTask()
 936       : _space_id(SpaceId(0)),
 937         _region_index_start(0),
 938         _region_index_end(0) {
 939     }
 940 
 941     UpdateDensePrefixTask(SpaceId space_id,
 942                           size_t region_index_start,
 943                           size_t region_index_end)
 944       : _space_id(space_id),
 945         _region_index_start(region_index_start),
 946         _region_index_end(region_index_end) {
 947     }
 948   };
 949 
 950  public:
 951   // Inline closure decls
 952   //
 953   class IsAliveClosure: public BoolObjectClosure {
 954    public:
 955     virtual bool do_object_b(oop p);
 956   };
 957 
 958   friend class RefProcTaskProxy;
 959   friend class PSParallelCompactTest;
 960 
 961  private:
 962   static STWGCTimer           _gc_timer;
 963   static ParallelOldTracer    _gc_tracer;
 964   static elapsedTimer         _accumulated_time;
 965   static unsigned int         _total_invocations;
 966   static unsigned int         _maximum_compaction_gc_num;
 967   static jlong                _time_of_last_gc;   // ms
 968   static CollectorCounters*   _counters;
 969   static ParMarkBitMap        _mark_bitmap;
 970   static ParallelCompactData  _summary_data;
 971   static IsAliveClosure       _is_alive_closure;
 972   static SpaceInfo            _space_info[last_space_id];
 973 
 974   // Reference processing (used in ...follow_contents)
 975   static SpanSubjectToDiscoveryClosure  _span_based_discoverer;
 976   static ReferenceProcessor*  _ref_processor;
 977 
 978   // Values computed at initialization and used by dead_wood_limiter().
 979   static double _dwl_mean;
 980   static double _dwl_std_dev;
 981   static double _dwl_first_term;
 982   static double _dwl_adjustment;
 983 #ifdef  ASSERT
 984   static bool   _dwl_initialized;
 985 #endif  // #ifdef ASSERT
 986 
 987  public:
 988   static ParallelOldTracer* gc_tracer() { return &_gc_tracer; }
 989 
 990  private:
 991 
 992   static void initialize_space_info();
 993 
 994   // Clear the marking bitmap and summary data that cover the specified space.
 995   static void clear_data_covering_space(SpaceId id);
 996 
 997   static void pre_compact();
 998   static void post_compact();
 999 
1000   // Mark live objects
1001   static void marking_phase(ParCompactionManager* cm,
1002                             bool maximum_heap_compaction,
1003                             ParallelOldTracer *gc_tracer);
1004 
1005   // Compute the dense prefix for the designated space.  This is an experimental
1006   // implementation currently not used in production.
1007   static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
1008                                                     bool maximum_compaction);
1009 
1010   // Methods used to compute the dense prefix.
1011 
1012   // Compute the value of the normal distribution at x = density.  The mean and
1013   // standard deviation are values saved by initialize_dead_wood_limiter().
1014   static inline double normal_distribution(double density);
1015 
1016   // Initialize the static vars used by dead_wood_limiter().
1017   static void initialize_dead_wood_limiter();
1018 
1019   // Return the percentage of space that can be treated as "dead wood" (i.e.,
1020   // not reclaimed).
1021   static double dead_wood_limiter(double density, size_t min_percent);
1022 
1023   // Find the first (left-most) region in the range [beg, end) that has at least
1024   // dead_words of dead space to the left.  The argument beg must be the first
1025   // region in the space that is not completely live.
1026   static RegionData* dead_wood_limit_region(const RegionData* beg,
1027                                             const RegionData* end,
1028                                             size_t dead_words);
1029 
1030   // Return a pointer to the first region in the range [beg, end) that is not
1031   // completely full.
1032   static RegionData* first_dead_space_region(const RegionData* beg,
1033                                              const RegionData* end);
1034 
1035   // Return a value indicating the benefit or 'yield' if the compacted region
1036   // were to start (or equivalently if the dense prefix were to end) at the
1037   // candidate region.  Higher values are better.
1038   //
1039   // The value is based on the amount of space reclaimed vs. the costs of (a)
1040   // updating references in the dense prefix plus (b) copying objects and
1041   // updating references in the compacted region.
1042   static inline double reclaimed_ratio(const RegionData* const candidate,
1043                                        HeapWord* const bottom,
1044                                        HeapWord* const top,
1045                                        HeapWord* const new_top);
1046 
1047   // Compute the dense prefix for the designated space.
1048   static HeapWord* compute_dense_prefix(const SpaceId id,
1049                                         bool maximum_compaction);
1050 
1051   // Return true if dead space crosses onto the specified Region; bit must be
1052   // the bit index corresponding to the first word of the Region.
1053   static inline bool dead_space_crosses_boundary(const RegionData* region,
1054                                                  idx_t bit);
1055 
1056   // Summary phase utility routine to fill dead space (if any) at the dense
1057   // prefix boundary.  Should only be called if the the dense prefix is
1058   // non-empty.
1059   static void fill_dense_prefix_end(SpaceId id);
1060 
1061   static void summarize_spaces_quick();
1062   static void summarize_space(SpaceId id, bool maximum_compaction);
1063   static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
1064 
1065   // Adjust addresses in roots.  Does not adjust addresses in heap.
1066   static void adjust_roots(ParCompactionManager* cm);
1067 
1068   DEBUG_ONLY(static void write_block_fill_histogram();)
1069 
1070   // Move objects to new locations.
1071   static void compact_perm(ParCompactionManager* cm);
1072   static void compact();
1073 
1074   // Add available regions to the stack and draining tasks to the task queue.
1075   static void prepare_region_draining_tasks(uint parallel_gc_threads);
1076 
1077   // Add dense prefix update tasks to the task queue.
1078   static void enqueue_dense_prefix_tasks(TaskQueue& task_queue,
1079                                          uint parallel_gc_threads);
1080 
1081   // If objects are left in eden after a collection, try to move the boundary
1082   // and absorb them into the old gen.  Returns true if eden was emptied.
1083   static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1084                                          PSYoungGen* young_gen,
1085                                          PSOldGen* old_gen);
1086 
1087   // Reset time since last full gc
1088   static void reset_millis_since_last_gc();
1089 
1090 #ifndef PRODUCT
1091   // Print generic summary data
1092   static void print_generic_summary_data(ParallelCompactData& summary_data,
1093                                          HeapWord* const beg_addr,
1094                                          HeapWord* const end_addr);
1095 #endif  // #ifndef PRODUCT
1096 
1097  public:
1098 
1099   PSParallelCompact();
1100 
1101   static void invoke(bool maximum_heap_compaction);
1102   static bool invoke_no_policy(bool maximum_heap_compaction);
1103 
1104   static void post_initialize();
1105   // Perform initialization for PSParallelCompact that requires
1106   // allocations.  This should be called during the VM initialization
1107   // at a pointer where it would be appropriate to return a JNI_ENOMEM
1108   // in the event of a failure.
1109   static bool initialize();
1110 
1111   // Closure accessors
1112   static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }
1113 
1114   // Public accessors
1115   static elapsedTimer* accumulated_time() { return &_accumulated_time; }
1116   static unsigned int total_invocations() { return _total_invocations; }
1117   static CollectorCounters* counters()    { return _counters; }
1118 
1119   // Marking support
1120   static inline bool mark_obj(oop obj);
1121   static inline bool is_marked(oop obj);
1122 
1123   template <class T> static inline void adjust_pointer(T* p, ParCompactionManager* cm);
1124 
1125   // Compaction support.
1126   // Return true if p is in the range [beg_addr, end_addr).
1127   static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
1128   static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
1129 
1130   // Convenience wrappers for per-space data kept in _space_info.
1131   static inline MutableSpace*     space(SpaceId space_id);
1132   static inline HeapWord*         new_top(SpaceId space_id);
1133   static inline HeapWord*         dense_prefix(SpaceId space_id);
1134   static inline ObjectStartArray* start_array(SpaceId space_id);
1135 
1136   // Move and update the live objects in the specified space.
1137   static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
1138 
1139   // Process the end of the given region range in the dense prefix.
1140   // This includes saving any object not updated.
1141   static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
1142                                             size_t region_start_index,
1143                                             size_t region_end_index,
1144                                             idx_t exiting_object_offset,
1145                                             idx_t region_offset_start,
1146                                             idx_t region_offset_end);
1147 
1148   // Update a region in the dense prefix.  For each live object
1149   // in the region, update it's interior references.  For each
1150   // dead object, fill it with deadwood. Dead space at the end
1151   // of a region range will be filled to the start of the next
1152   // live object regardless of the region_index_end.  None of the
1153   // objects in the dense prefix move and dead space is dead
1154   // (holds only dead objects that don't need any processing), so
1155   // dead space can be filled in any order.
1156   static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
1157                                                   SpaceId space_id,
1158                                                   size_t region_index_start,
1159                                                   size_t region_index_end);
1160 
1161   // Return the address of the count + 1st live word in the range [beg, end).
1162   static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
1163 
1164   // Return the address of the word to be copied to dest_addr, which must be
1165   // aligned to a region boundary.
1166   static HeapWord* first_src_addr(HeapWord* const dest_addr,
1167                                   SpaceId src_space_id,
1168                                   size_t src_region_idx);
1169 
1170   // Determine the next source region, set closure.source() to the start of the
1171   // new region return the region index.  Parameter end_addr is the address one
1172   // beyond the end of source range just processed.  If necessary, switch to a
1173   // new source space and set src_space_id (in-out parameter) and src_space_top
1174   // (out parameter) accordingly.
1175   static size_t next_src_region(MoveAndUpdateClosure& closure,
1176                                 SpaceId& src_space_id,
1177                                 HeapWord*& src_space_top,
1178                                 HeapWord* end_addr);
1179 
1180   // Decrement the destination count for each non-empty source region in the
1181   // range [beg_region, region(region_align_up(end_addr))).  If the destination
1182   // count for a region goes to 0 and it needs to be filled, enqueue it.
1183   static void decrement_destination_counts(ParCompactionManager* cm,
1184                                            SpaceId src_space_id,
1185                                            size_t beg_region,
1186                                            HeapWord* end_addr);
1187 
1188   // Fill a region, copying objects from one or more source regions.
1189   static void fill_region(ParCompactionManager* cm, size_t region_idx);
1190   static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
1191     fill_region(cm, region);
1192   }
1193 
1194   // Fill in the block table for the specified region.
1195   static void fill_blocks(size_t region_idx);
1196 
1197   // Update the deferred objects in the space.
1198   static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
1199 
1200   static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
1201   static ParallelCompactData& summary_data() { return _summary_data; }
1202 
1203   // Reference Processing
1204   static ReferenceProcessor* const ref_processor() { return _ref_processor; }
1205 
1206   static STWGCTimer* gc_timer() { return &_gc_timer; }
1207 
1208   // Return the SpaceId for the given address.
1209   static SpaceId space_id(HeapWord* addr);
1210 
1211   // Time since last full gc (in milliseconds).
1212   static jlong millis_since_last_gc();
1213 
1214   static void print_on_error(outputStream* st);
1215 
1216 #ifndef PRODUCT
1217   // Debugging support.
1218   static const char* space_names[last_space_id];
1219   static void print_region_ranges();
1220   static void print_dense_prefix_stats(const char* const algorithm,
1221                                        const SpaceId id,
1222                                        const bool maximum_compaction,
1223                                        HeapWord* const addr);
1224   static void summary_phase_msg(SpaceId dst_space_id,
1225                                 HeapWord* dst_beg, HeapWord* dst_end,
1226                                 SpaceId src_space_id,
1227                                 HeapWord* src_beg, HeapWord* src_end);
1228 #endif  // #ifndef PRODUCT
1229 
1230 #ifdef  ASSERT
1231   // Sanity check the new location of a word in the heap.
1232   static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
1233   // Verify that all the regions have been emptied.
1234   static void verify_complete(SpaceId space_id);
1235 #endif  // #ifdef ASSERT
1236 };
1237 
1238 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
1239  public:
1240   inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
1241                               ObjectStartArray* start_array,
1242                               HeapWord* destination, size_t words);
1243 
1244   // Accessors.
1245   HeapWord* destination() const         { return _destination; }
1246 
1247   // If the object will fit (size <= words_remaining()), copy it to the current
1248   // destination, update the interior oops and the start array and return either
1249   // full (if the closure is full) or incomplete.  If the object will not fit,
1250   // return would_overflow.
1251   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
1252 
1253   // Copy enough words to fill this closure, starting at source().  Interior
1254   // oops and the start array are not updated.  Return full.
1255   IterationStatus copy_until_full();
1256 
1257   // Copy enough words to fill this closure or to the end of an object,
1258   // whichever is smaller, starting at source().  Interior oops and the start
1259   // array are not updated.
1260   void copy_partial_obj();
1261 
1262  protected:
1263   // Update variables to indicate that word_count words were processed.
1264   inline void update_state(size_t word_count);
1265 
1266  protected:
1267   ObjectStartArray* const _start_array;
1268   HeapWord*               _destination;         // Next addr to be written.
1269 };
1270 
1271 inline
1272 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
1273                                            ParCompactionManager* cm,
1274                                            ObjectStartArray* start_array,
1275                                            HeapWord* destination,
1276                                            size_t words) :
1277   ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
1278 {
1279   _destination = destination;
1280 }
1281 
1282 inline void MoveAndUpdateClosure::update_state(size_t words)
1283 {
1284   decrement_words_remaining(words);
1285   _source += words;
1286   _destination += words;
1287 }
1288 
1289 class UpdateOnlyClosure: public ParMarkBitMapClosure {
1290  private:
1291   const PSParallelCompact::SpaceId _space_id;
1292   ObjectStartArray* const          _start_array;
1293 
1294  public:
1295   UpdateOnlyClosure(ParMarkBitMap* mbm,
1296                     ParCompactionManager* cm,
1297                     PSParallelCompact::SpaceId space_id);
1298 
1299   // Update the object.
1300   virtual IterationStatus do_addr(HeapWord* addr, size_t words);
1301 
1302   inline void do_addr(HeapWord* addr);
1303 };
1304 
1305 class FillClosure: public ParMarkBitMapClosure {
1306  public:
1307   FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id);
1308 
1309   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
1310 
1311  private:
1312   ObjectStartArray* const _start_array;
1313 };
1314 
1315 #endif // SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP