1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP
  26 #define SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP
  27 
  28 #include "gc/parallel/mutableSpace.hpp"
  29 #include "gc/parallel/objectStartArray.hpp"
  30 #include "gc/parallel/parMarkBitMap.hpp"
  31 #include "gc/parallel/parallelScavengeHeap.hpp"
  32 #include "gc/shared/collectedHeap.hpp"
  33 #include "gc/shared/collectorCounters.hpp"
  34 #include "gc/shared/taskqueue.hpp"
  35 #include "oops/oop.hpp"
  36 
  37 class ParallelScavengeHeap;
  38 class PSAdaptiveSizePolicy;
  39 class PSYoungGen;
  40 class PSOldGen;
  41 class ParCompactionManager;
  42 class ParallelTaskTerminator;
  43 class PSParallelCompact;
  44 class GCTaskManager;
  45 class GCTaskQueue;
  46 class PreGCValues;
  47 class MoveAndUpdateClosure;
  48 class RefProcTaskExecutor;
  49 class ParallelOldTracer;
  50 class STWGCTimer;
  51 
  52 // The SplitInfo class holds the information needed to 'split' a source region
  53 // so that the live data can be copied to two destination *spaces*.  Normally,
  54 // all the live data in a region is copied to a single destination space (e.g.,
  55 // everything live in a region in eden is copied entirely into the old gen).
  56 // However, when the heap is nearly full, all the live data in eden may not fit
  57 // into the old gen.  Copying only some of the regions from eden to old gen
  58 // requires finding a region that does not contain a partial object (i.e., no
  59 // live object crosses the region boundary) somewhere near the last object that
  60 // does fit into the old gen.  Since it's not always possible to find such a
  61 // region, splitting is necessary for predictable behavior.
  62 //
  63 // A region is always split at the end of the partial object.  This avoids
  64 // additional tests when calculating the new location of a pointer, which is a
  65 // very hot code path.  The partial object and everything to its left will be
  66 // copied to another space (call it dest_space_1).  The live data to the right
  67 // of the partial object will be copied either within the space itself, or to a
  68 // different destination space (distinct from dest_space_1).
  69 //
  70 // Split points are identified during the summary phase, when region
  71 // destinations are computed:  data about the split, including the
  72 // partial_object_size, is recorded in a SplitInfo record and the
  73 // partial_object_size field in the summary data is set to zero.  The zeroing is
  74 // possible (and necessary) since the partial object will move to a different
  75 // destination space than anything to its right, thus the partial object should
  76 // not affect the locations of any objects to its right.
  77 //
  78 // The recorded data is used during the compaction phase, but only rarely:  when
  79 // the partial object on the split region will be copied across a destination
  80 // region boundary.  This test is made once each time a region is filled, and is
  81 // a simple address comparison, so the overhead is negligible (see
  82 // PSParallelCompact::first_src_addr()).
  83 //
  84 // Notes:
  85 //
  86 // Only regions with partial objects are split; a region without a partial
  87 // object does not need any extra bookkeeping.
  88 //
  89 // At most one region is split per space, so the amount of data required is
  90 // constant.
  91 //
  92 // A region is split only when the destination space would overflow.  Once that
  93 // happens, the destination space is abandoned and no other data (even from
  94 // other source spaces) is targeted to that destination space.  Abandoning the
  95 // destination space may leave a somewhat large unused area at the end, if a
  96 // large object caused the overflow.
  97 //
  98 // Future work:
  99 //
 100 // More bookkeeping would be required to continue to use the destination space.
 101 // The most general solution would allow data from regions in two different
 102 // source spaces to be "joined" in a single destination region.  At the very
 103 // least, additional code would be required in next_src_region() to detect the
 104 // join and skip to an out-of-order source region.  If the join region was also
 105 // the last destination region to which a split region was copied (the most
 106 // likely case), then additional work would be needed to get fill_region() to
 107 // stop iteration and switch to a new source region at the right point.  Basic
 108 // idea would be to use a fake value for the top of the source space.  It is
 109 // doable, if a bit tricky.
 110 //
 111 // A simpler (but less general) solution would fill the remainder of the
 112 // destination region with a dummy object and continue filling the next
 113 // destination region.
 114 
 115 class SplitInfo
 116 {
 117 public:
 118   // Return true if this split info is valid (i.e., if a split has been
 119   // recorded).  The very first region cannot have a partial object and thus is
 120   // never split, so 0 is the 'invalid' value.
 121   bool is_valid() const { return _src_region_idx > 0; }
 122 
 123   // Return true if this split holds data for the specified source region.
 124   inline bool is_split(size_t source_region) const;
 125 
 126   // The index of the split region, the size of the partial object on that
 127   // region and the destination of the partial object.
 128   size_t    src_region_idx() const   { return _src_region_idx; }
 129   size_t    partial_obj_size() const { return _partial_obj_size; }
 130   HeapWord* destination() const      { return _destination; }
 131 
 132   // The destination count of the partial object referenced by this split
 133   // (either 1 or 2).  This must be added to the destination count of the
 134   // remainder of the source region.
 135   unsigned int destination_count() const { return _destination_count; }
 136 
 137   // If a word within the partial object will be written to the first word of a
 138   // destination region, this is the address of the destination region;
 139   // otherwise this is NULL.
 140   HeapWord* dest_region_addr() const     { return _dest_region_addr; }
 141 
 142   // If a word within the partial object will be written to the first word of a
 143   // destination region, this is the address of that word within the partial
 144   // object; otherwise this is NULL.
 145   HeapWord* first_src_addr() const       { return _first_src_addr; }
 146 
 147   // Record the data necessary to split the region src_region_idx.
 148   void record(size_t src_region_idx, size_t partial_obj_size,
 149               HeapWord* destination);
 150 
 151   void clear();
 152 
 153   DEBUG_ONLY(void verify_clear();)
 154 
 155 private:
 156   size_t       _src_region_idx;
 157   size_t       _partial_obj_size;
 158   HeapWord*    _destination;
 159   unsigned int _destination_count;
 160   HeapWord*    _dest_region_addr;
 161   HeapWord*    _first_src_addr;
 162 };
 163 
 164 inline bool SplitInfo::is_split(size_t region_idx) const
 165 {
 166   return _src_region_idx == region_idx && is_valid();
 167 }
 168 
 169 class SpaceInfo
 170 {
 171  public:
 172   MutableSpace* space() const { return _space; }
 173 
 174   // Where the free space will start after the collection.  Valid only after the
 175   // summary phase completes.
 176   HeapWord* new_top() const { return _new_top; }
 177 
 178   // Allows new_top to be set.
 179   HeapWord** new_top_addr() { return &_new_top; }
 180 
 181   // Where the smallest allowable dense prefix ends (used only for perm gen).
 182   HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
 183 
 184   // Where the dense prefix ends, or the compacted region begins.
 185   HeapWord* dense_prefix() const { return _dense_prefix; }
 186 
 187   // The start array for the (generation containing the) space, or NULL if there
 188   // is no start array.
 189   ObjectStartArray* start_array() const { return _start_array; }
 190 
 191   SplitInfo& split_info() { return _split_info; }
 192 
 193   void set_space(MutableSpace* s)           { _space = s; }
 194   void set_new_top(HeapWord* addr)          { _new_top = addr; }
 195   void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
 196   void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
 197   void set_start_array(ObjectStartArray* s) { _start_array = s; }
 198 
 199   void publish_new_top() const              { _space->set_top(_new_top); }
 200 
 201  private:
 202   MutableSpace*     _space;
 203   HeapWord*         _new_top;
 204   HeapWord*         _min_dense_prefix;
 205   HeapWord*         _dense_prefix;
 206   ObjectStartArray* _start_array;
 207   SplitInfo         _split_info;
 208 };
 209 
 210 class ParallelCompactData
 211 {
 212 public:
 213   // Sizes are in HeapWords, unless indicated otherwise.
 214   static const size_t Log2RegionSize;
 215   static const size_t RegionSize;
 216   static const size_t RegionSizeBytes;
 217 
 218   // Mask for the bits in a size_t to get an offset within a region.
 219   static const size_t RegionSizeOffsetMask;
 220   // Mask for the bits in a pointer to get an offset within a region.
 221   static const size_t RegionAddrOffsetMask;
 222   // Mask for the bits in a pointer to get the address of the start of a region.
 223   static const size_t RegionAddrMask;
 224 
 225   static const size_t Log2BlockSize;
 226   static const size_t BlockSize;
 227   static const size_t BlockSizeBytes;
 228 
 229   static const size_t BlockSizeOffsetMask;
 230   static const size_t BlockAddrOffsetMask;
 231   static const size_t BlockAddrMask;
 232 
 233   static const size_t BlocksPerRegion;
 234   static const size_t Log2BlocksPerRegion;
 235 
 236   class RegionData
 237   {
 238   public:
 239     // Destination address of the region.
 240     HeapWord* destination() const { return _destination; }
 241 
 242     // The first region containing data destined for this region.
 243     size_t source_region() const { return _source_region; }
 244 
 245     // The object (if any) starting in this region and ending in a different
 246     // region that could not be updated during the main (parallel) compaction
 247     // phase.  This is different from _partial_obj_addr, which is an object that
 248     // extends onto a source region.  However, the two uses do not overlap in
 249     // time, so the same field is used to save space.
 250     HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
 251 
 252     // The starting address of the partial object extending onto the region.
 253     HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
 254 
 255     // Size of the partial object extending onto the region (words).
 256     size_t partial_obj_size() const { return _partial_obj_size; }
 257 
 258     // Size of live data that lies within this region due to objects that start
 259     // in this region (words).  This does not include the partial object
 260     // extending onto the region (if any), or the part of an object that extends
 261     // onto the next region (if any).
 262     size_t live_obj_size() const { return _dc_and_los & los_mask; }
 263 
 264     // Total live data that lies within the region (words).
 265     size_t data_size() const { return partial_obj_size() + live_obj_size(); }
 266 
 267     // The destination_count is the number of other regions to which data from
 268     // this region will be copied.  At the end of the summary phase, the valid
 269     // values of destination_count are
 270     //
 271     // 0 - data from the region will be compacted completely into itself, or the
 272     //     region is empty.  The region can be claimed and then filled.
 273     // 1 - data from the region will be compacted into 1 other region; some
 274     //     data from the region may also be compacted into the region itself.
 275     // 2 - data from the region will be copied to 2 other regions.
 276     //
 277     // During compaction as regions are emptied, the destination_count is
 278     // decremented (atomically) and when it reaches 0, it can be claimed and
 279     // then filled.
 280     //
 281     // A region is claimed for processing by atomically changing the
 282     // destination_count to the claimed value (dc_claimed).  After a region has
 283     // been filled, the destination_count should be set to the completed value
 284     // (dc_completed).
 285     inline uint destination_count() const;
 286     inline uint destination_count_raw() const;
 287 
 288     // Whether the block table for this region has been filled.
 289     inline bool blocks_filled() const;
 290 
 291     // Number of times the block table was filled.
 292     DEBUG_ONLY(inline size_t blocks_filled_count() const;)
 293 
 294     // The location of the java heap data that corresponds to this region.
 295     inline HeapWord* data_location() const;
 296 
 297     // The highest address referenced by objects in this region.
 298     inline HeapWord* highest_ref() const;
 299 
 300     // Whether this region is available to be claimed, has been claimed, or has
 301     // been completed.
 302     //
 303     // Minor subtlety:  claimed() returns true if the region is marked
 304     // completed(), which is desirable since a region must be claimed before it
 305     // can be completed.
 306     bool available() const { return _dc_and_los < dc_one; }
 307     bool claimed()   const { return _dc_and_los >= dc_claimed; }
 308     bool completed() const { return _dc_and_los >= dc_completed; }
 309 
 310     // These are not atomic.
 311     void set_destination(HeapWord* addr)       { _destination = addr; }
 312     void set_source_region(size_t region)      { _source_region = region; }
 313     void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
 314     void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
 315     void set_partial_obj_size(size_t words)    {
 316       _partial_obj_size = (region_sz_t) words;
 317     }
 318     inline void set_blocks_filled();
 319 
 320     inline void set_destination_count(uint count);
 321     inline void set_live_obj_size(size_t words);
 322     inline void set_data_location(HeapWord* addr);
 323     inline void set_completed();
 324     inline bool claim_unsafe();
 325 
 326     // These are atomic.
 327     inline void add_live_obj(size_t words);
 328     inline void set_highest_ref(HeapWord* addr);
 329     inline void decrement_destination_count();
 330     inline bool claim();
 331 
 332   private:
 333     // The type used to represent object sizes within a region.
 334     typedef uint region_sz_t;
 335 
 336     // Constants for manipulating the _dc_and_los field, which holds both the
 337     // destination count and live obj size.  The live obj size lives at the
 338     // least significant end so no masking is necessary when adding.
 339     static const region_sz_t dc_shift;           // Shift amount.
 340     static const region_sz_t dc_mask;            // Mask for destination count.
 341     static const region_sz_t dc_one;             // 1, shifted appropriately.
 342     static const region_sz_t dc_claimed;         // Region has been claimed.
 343     static const region_sz_t dc_completed;       // Region has been completed.
 344     static const region_sz_t los_mask;           // Mask for live obj size.
 345 
 346     HeapWord*            _destination;
 347     size_t               _source_region;
 348     HeapWord*            _partial_obj_addr;
 349     region_sz_t          _partial_obj_size;
 350     region_sz_t volatile _dc_and_los;
 351     bool        volatile _blocks_filled;
 352 
 353 #ifdef ASSERT
 354     size_t               _blocks_filled_count;   // Number of block table fills.
 355 
 356     // These enable optimizations that are only partially implemented.  Use
 357     // debug builds to prevent the code fragments from breaking.
 358     HeapWord*            _data_location;
 359     HeapWord*            _highest_ref;
 360 #endif  // #ifdef ASSERT
 361 
 362 #ifdef ASSERT
 363    public:
 364     uint                 _pushed;   // 0 until region is pushed onto a stack
 365    private:
 366 #endif
 367   };
 368 
 369   // "Blocks" allow shorter sections of the bitmap to be searched.  Each Block
 370   // holds an offset, which is the amount of live data in the Region to the left
 371   // of the first live object that starts in the Block.
 372   class BlockData
 373   {
 374   public:
 375     typedef unsigned short int blk_ofs_t;
 376 
 377     blk_ofs_t offset() const    { return _offset; }
 378     void set_offset(size_t val) { _offset = (blk_ofs_t)val; }
 379 
 380   private:
 381     blk_ofs_t _offset;
 382   };
 383 
 384 public:
 385   ParallelCompactData();
 386   bool initialize(MemRegion covered_region);
 387 
 388   size_t region_count() const { return _region_count; }
 389   size_t reserved_byte_size() const { return _reserved_byte_size; }
 390 
 391   // Convert region indices to/from RegionData pointers.
 392   inline RegionData* region(size_t region_idx) const;
 393   inline size_t     region(const RegionData* const region_ptr) const;
 394 
 395   size_t block_count() const { return _block_count; }
 396   inline BlockData* block(size_t block_idx) const;
 397   inline size_t     block(const BlockData* block_ptr) const;
 398 
 399   void add_obj(HeapWord* addr, size_t len);
 400   void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
 401 
 402   // Fill in the regions covering [beg, end) so that no data moves; i.e., the
 403   // destination of region n is simply the start of region n.  The argument beg
 404   // must be region-aligned; end need not be.
 405   void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
 406 
 407   HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
 408                                   HeapWord* destination, HeapWord* target_end,
 409                                   HeapWord** target_next);
 410   bool summarize(SplitInfo& split_info,
 411                  HeapWord* source_beg, HeapWord* source_end,
 412                  HeapWord** source_next,
 413                  HeapWord* target_beg, HeapWord* target_end,
 414                  HeapWord** target_next);
 415 
 416   void clear();
 417   void clear_range(size_t beg_region, size_t end_region);
 418   void clear_range(HeapWord* beg, HeapWord* end) {
 419     clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
 420   }
 421 
 422   // Return the number of words between addr and the start of the region
 423   // containing addr.
 424   inline size_t     region_offset(const HeapWord* addr) const;
 425 
 426   // Convert addresses to/from a region index or region pointer.
 427   inline size_t     addr_to_region_idx(const HeapWord* addr) const;
 428   inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
 429   inline HeapWord*  region_to_addr(size_t region) const;
 430   inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
 431   inline HeapWord*  region_to_addr(const RegionData* region) const;
 432 
 433   inline HeapWord*  region_align_down(HeapWord* addr) const;
 434   inline HeapWord*  region_align_up(HeapWord* addr) const;
 435   inline bool       is_region_aligned(HeapWord* addr) const;
 436 
 437   // Analogous to region_offset() for blocks.
 438   size_t     block_offset(const HeapWord* addr) const;
 439   size_t     addr_to_block_idx(const HeapWord* addr) const;
 440   size_t     addr_to_block_idx(const oop obj) const {
 441     return addr_to_block_idx((HeapWord*) obj);
 442   }
 443   inline BlockData* addr_to_block_ptr(const HeapWord* addr) const;
 444   inline HeapWord*  block_to_addr(size_t block) const;
 445   inline size_t     region_to_block_idx(size_t region) const;
 446 
 447   inline HeapWord*  block_align_down(HeapWord* addr) const;
 448   inline HeapWord*  block_align_up(HeapWord* addr) const;
 449   inline bool       is_block_aligned(HeapWord* addr) const;
 450 
 451   // Return the address one past the end of the partial object.
 452   HeapWord* partial_obj_end(size_t region_idx) const;
 453 
 454   // Return the location of the object after compaction.
 455   HeapWord* calc_new_pointer(HeapWord* addr, ParCompactionManager* cm);
 456 
 457   HeapWord* calc_new_pointer(oop p, ParCompactionManager* cm) {
 458     return calc_new_pointer((HeapWord*) p, cm);
 459   }
 460 
 461 #ifdef  ASSERT
 462   void verify_clear(const PSVirtualSpace* vspace);
 463   void verify_clear();
 464 #endif  // #ifdef ASSERT
 465 
 466 private:
 467   bool initialize_block_data();
 468   bool initialize_region_data(size_t region_size);
 469   PSVirtualSpace* create_vspace(size_t count, size_t element_size);
 470 
 471 private:
 472   HeapWord*       _region_start;
 473 #ifdef  ASSERT
 474   HeapWord*       _region_end;
 475 #endif  // #ifdef ASSERT
 476 
 477   PSVirtualSpace* _region_vspace;
 478   size_t          _reserved_byte_size;
 479   RegionData*     _region_data;
 480   size_t          _region_count;
 481 
 482   PSVirtualSpace* _block_vspace;
 483   BlockData*      _block_data;
 484   size_t          _block_count;
 485 };
 486 
 487 inline uint
 488 ParallelCompactData::RegionData::destination_count_raw() const
 489 {
 490   return _dc_and_los & dc_mask;
 491 }
 492 
 493 inline uint
 494 ParallelCompactData::RegionData::destination_count() const
 495 {
 496   return destination_count_raw() >> dc_shift;
 497 }
 498 
 499 inline bool
 500 ParallelCompactData::RegionData::blocks_filled() const
 501 {
 502   bool result = _blocks_filled;
 503   OrderAccess::acquire();
 504   return result;
 505 }
 506 
 507 #ifdef ASSERT
 508 inline size_t
 509 ParallelCompactData::RegionData::blocks_filled_count() const
 510 {
 511   return _blocks_filled_count;
 512 }
 513 #endif // #ifdef ASSERT
 514 
 515 inline void
 516 ParallelCompactData::RegionData::set_blocks_filled()
 517 {
 518   OrderAccess::release();
 519   _blocks_filled = true;
 520   // Debug builds count the number of times the table was filled.
 521   DEBUG_ONLY(Atomic::inc(&_blocks_filled_count));
 522 }
 523 
 524 inline void
 525 ParallelCompactData::RegionData::set_destination_count(uint count)
 526 {
 527   assert(count <= (dc_completed >> dc_shift), "count too large");
 528   const region_sz_t live_sz = (region_sz_t) live_obj_size();
 529   _dc_and_los = (count << dc_shift) | live_sz;
 530 }
 531 
 532 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
 533 {
 534   assert(words <= los_mask, "would overflow");
 535   _dc_and_los = destination_count_raw() | (region_sz_t)words;
 536 }
 537 
 538 inline void ParallelCompactData::RegionData::decrement_destination_count()
 539 {
 540   assert(_dc_and_los < dc_claimed, "already claimed");
 541   assert(_dc_and_los >= dc_one, "count would go negative");
 542   Atomic::add(dc_mask, &_dc_and_los);
 543 }
 544 
 545 inline HeapWord* ParallelCompactData::RegionData::data_location() const
 546 {
 547   DEBUG_ONLY(return _data_location;)
 548   NOT_DEBUG(return NULL;)
 549 }
 550 
 551 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
 552 {
 553   DEBUG_ONLY(return _highest_ref;)
 554   NOT_DEBUG(return NULL;)
 555 }
 556 
 557 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
 558 {
 559   DEBUG_ONLY(_data_location = addr;)
 560 }
 561 
 562 inline void ParallelCompactData::RegionData::set_completed()
 563 {
 564   assert(claimed(), "must be claimed first");
 565   _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
 566 }
 567 
 568 // MT-unsafe claiming of a region.  Should only be used during single threaded
 569 // execution.
 570 inline bool ParallelCompactData::RegionData::claim_unsafe()
 571 {
 572   if (available()) {
 573     _dc_and_los |= dc_claimed;
 574     return true;
 575   }
 576   return false;
 577 }
 578 
 579 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
 580 {
 581   assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
 582   Atomic::add(static_cast<region_sz_t>(words), &_dc_and_los);
 583 }
 584 
 585 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
 586 {
 587 #ifdef ASSERT
 588   HeapWord* tmp = _highest_ref;
 589   while (addr > tmp) {
 590     tmp = Atomic::cmpxchg(addr, &_highest_ref, tmp);
 591   }
 592 #endif  // #ifdef ASSERT
 593 }
 594 
 595 inline bool ParallelCompactData::RegionData::claim()
 596 {
 597   const region_sz_t los = static_cast<region_sz_t>(live_obj_size());
 598   const region_sz_t old = Atomic::cmpxchg(dc_claimed | los, &_dc_and_los, los);
 599   return old == los;
 600 }
 601 
 602 inline ParallelCompactData::RegionData*
 603 ParallelCompactData::region(size_t region_idx) const
 604 {
 605   assert(region_idx <= region_count(), "bad arg");
 606   return _region_data + region_idx;
 607 }
 608 
 609 inline size_t
 610 ParallelCompactData::region(const RegionData* const region_ptr) const
 611 {
 612   assert(region_ptr >= _region_data, "bad arg");
 613   assert(region_ptr <= _region_data + region_count(), "bad arg");
 614   return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
 615 }
 616 
 617 inline ParallelCompactData::BlockData*
 618 ParallelCompactData::block(size_t n) const {
 619   assert(n < block_count(), "bad arg");
 620   return _block_data + n;
 621 }
 622 
 623 inline size_t
 624 ParallelCompactData::region_offset(const HeapWord* addr) const
 625 {
 626   assert(addr >= _region_start, "bad addr");
 627   assert(addr <= _region_end, "bad addr");
 628   return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
 629 }
 630 
 631 inline size_t
 632 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
 633 {
 634   assert(addr >= _region_start, "bad addr " PTR_FORMAT " _region_start " PTR_FORMAT, p2i(addr), p2i(_region_start));
 635   assert(addr <= _region_end, "bad addr " PTR_FORMAT " _region_end " PTR_FORMAT, p2i(addr), p2i(_region_end));
 636   return pointer_delta(addr, _region_start) >> Log2RegionSize;
 637 }
 638 
 639 inline ParallelCompactData::RegionData*
 640 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
 641 {
 642   return region(addr_to_region_idx(addr));
 643 }
 644 
 645 inline HeapWord*
 646 ParallelCompactData::region_to_addr(size_t region) const
 647 {
 648   assert(region <= _region_count, "region out of range");
 649   return _region_start + (region << Log2RegionSize);
 650 }
 651 
 652 inline HeapWord*
 653 ParallelCompactData::region_to_addr(const RegionData* region) const
 654 {
 655   return region_to_addr(pointer_delta(region, _region_data,
 656                                       sizeof(RegionData)));
 657 }
 658 
 659 inline HeapWord*
 660 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
 661 {
 662   assert(region <= _region_count, "region out of range");
 663   assert(offset < RegionSize, "offset too big");  // This may be too strict.
 664   return region_to_addr(region) + offset;
 665 }
 666 
 667 inline HeapWord*
 668 ParallelCompactData::region_align_down(HeapWord* addr) const
 669 {
 670   assert(addr >= _region_start, "bad addr");
 671   assert(addr < _region_end + RegionSize, "bad addr");
 672   return (HeapWord*)(size_t(addr) & RegionAddrMask);
 673 }
 674 
 675 inline HeapWord*
 676 ParallelCompactData::region_align_up(HeapWord* addr) const
 677 {
 678   assert(addr >= _region_start, "bad addr");
 679   assert(addr <= _region_end, "bad addr");
 680   return region_align_down(addr + RegionSizeOffsetMask);
 681 }
 682 
 683 inline bool
 684 ParallelCompactData::is_region_aligned(HeapWord* addr) const
 685 {
 686   return region_offset(addr) == 0;
 687 }
 688 
 689 inline size_t
 690 ParallelCompactData::block_offset(const HeapWord* addr) const
 691 {
 692   assert(addr >= _region_start, "bad addr");
 693   assert(addr <= _region_end, "bad addr");
 694   return (size_t(addr) & BlockAddrOffsetMask) >> LogHeapWordSize;
 695 }
 696 
 697 inline size_t
 698 ParallelCompactData::addr_to_block_idx(const HeapWord* addr) const
 699 {
 700   assert(addr >= _region_start, "bad addr");
 701   assert(addr <= _region_end, "bad addr");
 702   return pointer_delta(addr, _region_start) >> Log2BlockSize;
 703 }
 704 
 705 inline ParallelCompactData::BlockData*
 706 ParallelCompactData::addr_to_block_ptr(const HeapWord* addr) const
 707 {
 708   return block(addr_to_block_idx(addr));
 709 }
 710 
 711 inline HeapWord*
 712 ParallelCompactData::block_to_addr(size_t block) const
 713 {
 714   assert(block < _block_count, "block out of range");
 715   return _region_start + (block << Log2BlockSize);
 716 }
 717 
 718 inline size_t
 719 ParallelCompactData::region_to_block_idx(size_t region) const
 720 {
 721   return region << Log2BlocksPerRegion;
 722 }
 723 
 724 inline HeapWord*
 725 ParallelCompactData::block_align_down(HeapWord* addr) const
 726 {
 727   assert(addr >= _region_start, "bad addr");
 728   assert(addr < _region_end + RegionSize, "bad addr");
 729   return (HeapWord*)(size_t(addr) & BlockAddrMask);
 730 }
 731 
 732 inline HeapWord*
 733 ParallelCompactData::block_align_up(HeapWord* addr) const
 734 {
 735   assert(addr >= _region_start, "bad addr");
 736   assert(addr <= _region_end, "bad addr");
 737   return block_align_down(addr + BlockSizeOffsetMask);
 738 }
 739 
 740 inline bool
 741 ParallelCompactData::is_block_aligned(HeapWord* addr) const
 742 {
 743   return block_offset(addr) == 0;
 744 }
 745 
 746 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
 747 // do_addr() method.
 748 //
 749 // The closure is initialized with the number of heap words to process
 750 // (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
 751 // methods in subclasses should update the total as words are processed.  Since
 752 // only one subclass actually uses this mechanism to terminate iteration, the
 753 // default initial value is > 0.  The implementation is here and not in the
 754 // single subclass that uses it to avoid making is_full() virtual, and thus
 755 // adding a virtual call per live object.
 756 
 757 class ParMarkBitMapClosure: public StackObj {
 758  public:
 759   typedef ParMarkBitMap::idx_t idx_t;
 760   typedef ParMarkBitMap::IterationStatus IterationStatus;
 761 
 762  public:
 763   inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
 764                               size_t words = max_uintx);
 765 
 766   inline ParCompactionManager* compaction_manager() const;
 767   inline ParMarkBitMap*        bitmap() const;
 768   inline size_t                words_remaining() const;
 769   inline bool                  is_full() const;
 770   inline HeapWord*             source() const;
 771 
 772   inline void                  set_source(HeapWord* addr);
 773 
 774   virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
 775 
 776  protected:
 777   inline void decrement_words_remaining(size_t words);
 778 
 779  private:
 780   ParMarkBitMap* const        _bitmap;
 781   ParCompactionManager* const _compaction_manager;
 782   DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
 783   size_t                      _words_remaining; // Words left to copy.
 784 
 785  protected:
 786   HeapWord*                   _source;          // Next addr that would be read.
 787 };
 788 
 789 inline
 790 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
 791                                            ParCompactionManager* cm,
 792                                            size_t words):
 793   _bitmap(bitmap), _compaction_manager(cm)
 794 #ifdef  ASSERT
 795   , _initial_words_remaining(words)
 796 #endif
 797 {
 798   _words_remaining = words;
 799   _source = NULL;
 800 }
 801 
 802 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
 803   return _compaction_manager;
 804 }
 805 
 806 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
 807   return _bitmap;
 808 }
 809 
 810 inline size_t ParMarkBitMapClosure::words_remaining() const {
 811   return _words_remaining;
 812 }
 813 
 814 inline bool ParMarkBitMapClosure::is_full() const {
 815   return words_remaining() == 0;
 816 }
 817 
 818 inline HeapWord* ParMarkBitMapClosure::source() const {
 819   return _source;
 820 }
 821 
 822 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
 823   _source = addr;
 824 }
 825 
 826 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
 827   assert(_words_remaining >= words, "processed too many words");
 828   _words_remaining -= words;
 829 }
 830 
 831 // The UseParallelOldGC collector is a stop-the-world garbage collector that
 832 // does parts of the collection using parallel threads.  The collection includes
 833 // the tenured generation and the young generation.  The permanent generation is
 834 // collected at the same time as the other two generations but the permanent
 835 // generation is collect by a single GC thread.  The permanent generation is
 836 // collected serially because of the requirement that during the processing of a
 837 // klass AAA, any objects reference by AAA must already have been processed.
 838 // This requirement is enforced by a left (lower address) to right (higher
 839 // address) sliding compaction.
 840 //
 841 // There are four phases of the collection.
 842 //
 843 //      - marking phase
 844 //      - summary phase
 845 //      - compacting phase
 846 //      - clean up phase
 847 //
 848 // Roughly speaking these phases correspond, respectively, to
 849 //      - mark all the live objects
 850 //      - calculate the destination of each object at the end of the collection
 851 //      - move the objects to their destination
 852 //      - update some references and reinitialize some variables
 853 //
 854 // These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
 855 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
 856 // complete marking of the heap.  The summary phase is implemented in
 857 // PSParallelCompact::summary_phase().  The move and update phase is implemented
 858 // in PSParallelCompact::compact().
 859 //
 860 // A space that is being collected is divided into regions and with each region
 861 // is associated an object of type ParallelCompactData.  Each region is of a
 862 // fixed size and typically will contain more than 1 object and may have parts
 863 // of objects at the front and back of the region.
 864 //
 865 // region            -----+---------------------+----------
 866 // objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
 867 //
 868 // The marking phase does a complete marking of all live objects in the heap.
 869 // The marking also compiles the size of the data for all live objects covered
 870 // by the region.  This size includes the part of any live object spanning onto
 871 // the region (part of AAA if it is live) from the front, all live objects
 872 // contained in the region (BBB and/or CCC if they are live), and the part of
 873 // any live objects covered by the region that extends off the region (part of
 874 // DDD if it is live).  The marking phase uses multiple GC threads and marking
 875 // is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
 876 // done atomically as is the accumulation of the size of the live objects
 877 // covered by a region.
 878 //
 879 // The summary phase calculates the total live data to the left of each region
 880 // XXX.  Based on that total and the bottom of the space, it can calculate the
 881 // starting location of the live data in XXX.  The summary phase calculates for
 882 // each region XXX quantities such as
 883 //
 884 //      - the amount of live data at the beginning of a region from an object
 885 //        entering the region.
 886 //      - the location of the first live data on the region
 887 //      - a count of the number of regions receiving live data from XXX.
 888 //
 889 // See ParallelCompactData for precise details.  The summary phase also
 890 // calculates the dense prefix for the compaction.  The dense prefix is a
 891 // portion at the beginning of the space that is not moved.  The objects in the
 892 // dense prefix do need to have their object references updated.  See method
 893 // summarize_dense_prefix().
 894 //
 895 // The summary phase is done using 1 GC thread.
 896 //
 897 // The compaction phase moves objects to their new location and updates all
 898 // references in the object.
 899 //
 900 // A current exception is that objects that cross a region boundary are moved
 901 // but do not have their references updated.  References are not updated because
 902 // it cannot easily be determined if the klass pointer KKK for the object AAA
 903 // has been updated.  KKK likely resides in a region to the left of the region
 904 // containing AAA.  These AAA's have there references updated at the end in a
 905 // clean up phase.  See the method PSParallelCompact::update_deferred_objects().
 906 // An alternate strategy is being investigated for this deferral of updating.
 907 //
 908 // Compaction is done on a region basis.  A region that is ready to be filled is
 909 // put on a ready list and GC threads take region off the list and fill them.  A
 910 // region is ready to be filled if it empty of live objects.  Such a region may
 911 // have been initially empty (only contained dead objects) or may have had all
 912 // its live objects copied out already.  A region that compacts into itself is
 913 // also ready for filling.  The ready list is initially filled with empty
 914 // regions and regions compacting into themselves.  There is always at least 1
 915 // region that can be put on the ready list.  The regions are atomically added
 916 // and removed from the ready list.
 917 
 918 class TaskQueue;
 919 
 920 class PSParallelCompact : AllStatic {
 921  public:
 922   // Convenient access to type names.
 923   typedef ParMarkBitMap::idx_t idx_t;
 924   typedef ParallelCompactData::RegionData RegionData;
 925   typedef ParallelCompactData::BlockData BlockData;
 926 
 927   typedef enum {
 928     old_space_id, eden_space_id,
 929     from_space_id, to_space_id, last_space_id
 930   } SpaceId;
 931 
 932   struct UpdateDensePrefixTask : public CHeapObj<mtGC> {
 933     SpaceId _space_id;
 934     size_t _region_index_start;
 935     size_t _region_index_end;
 936 
 937     UpdateDensePrefixTask()
 938       : _space_id(SpaceId(0)),
 939         _region_index_start(0),
 940         _region_index_end(0) {
 941     }
 942 
 943     UpdateDensePrefixTask(SpaceId space_id,
 944                           size_t region_index_start,
 945                           size_t region_index_end)
 946       : _space_id(space_id),
 947         _region_index_start(region_index_start),
 948         _region_index_end(region_index_end) {
 949     }
 950   };
 951 
 952  public:
 953   // Inline closure decls
 954   //
 955   class IsAliveClosure: public BoolObjectClosure {
 956    public:
 957     virtual bool do_object_b(oop p);
 958   };
 959 
 960   friend class RefProcTaskProxy;
 961   friend class PSParallelCompactTest;
 962 
 963  private:
 964   static STWGCTimer           _gc_timer;
 965   static ParallelOldTracer    _gc_tracer;
 966   static elapsedTimer         _accumulated_time;
 967   static unsigned int         _total_invocations;
 968   static unsigned int         _maximum_compaction_gc_num;
 969   static jlong                _time_of_last_gc;   // ms
 970   static CollectorCounters*   _counters;
 971   static ParMarkBitMap        _mark_bitmap;
 972   static ParallelCompactData  _summary_data;
 973   static IsAliveClosure       _is_alive_closure;
 974   static SpaceInfo            _space_info[last_space_id];
 975 
 976   // Reference processing (used in ...follow_contents)
 977   static SpanSubjectToDiscoveryClosure  _span_based_discoverer;
 978   static ReferenceProcessor*  _ref_processor;
 979 
 980   // Values computed at initialization and used by dead_wood_limiter().
 981   static double _dwl_mean;
 982   static double _dwl_std_dev;
 983   static double _dwl_first_term;
 984   static double _dwl_adjustment;
 985 #ifdef  ASSERT
 986   static bool   _dwl_initialized;
 987 #endif  // #ifdef ASSERT
 988 
 989  public:
 990   static ParallelOldTracer* gc_tracer() { return &_gc_tracer; }
 991 
 992  private:
 993 
 994   static void initialize_space_info();
 995 
 996   // Clear the marking bitmap and summary data that cover the specified space.
 997   static void clear_data_covering_space(SpaceId id);
 998 
 999   static void pre_compact();
1000   static void post_compact();
1001 
1002   // Mark live objects
1003   static void marking_phase(ParCompactionManager* cm,
1004                             bool maximum_heap_compaction,
1005                             ParallelOldTracer *gc_tracer);
1006 
1007   // Compute the dense prefix for the designated space.  This is an experimental
1008   // implementation currently not used in production.
1009   static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
1010                                                     bool maximum_compaction);
1011 
1012   // Methods used to compute the dense prefix.
1013 
1014   // Compute the value of the normal distribution at x = density.  The mean and
1015   // standard deviation are values saved by initialize_dead_wood_limiter().
1016   static inline double normal_distribution(double density);
1017 
1018   // Initialize the static vars used by dead_wood_limiter().
1019   static void initialize_dead_wood_limiter();
1020 
1021   // Return the percentage of space that can be treated as "dead wood" (i.e.,
1022   // not reclaimed).
1023   static double dead_wood_limiter(double density, size_t min_percent);
1024 
1025   // Find the first (left-most) region in the range [beg, end) that has at least
1026   // dead_words of dead space to the left.  The argument beg must be the first
1027   // region in the space that is not completely live.
1028   static RegionData* dead_wood_limit_region(const RegionData* beg,
1029                                             const RegionData* end,
1030                                             size_t dead_words);
1031 
1032   // Return a pointer to the first region in the range [beg, end) that is not
1033   // completely full.
1034   static RegionData* first_dead_space_region(const RegionData* beg,
1035                                              const RegionData* end);
1036 
1037   // Return a value indicating the benefit or 'yield' if the compacted region
1038   // were to start (or equivalently if the dense prefix were to end) at the
1039   // candidate region.  Higher values are better.
1040   //
1041   // The value is based on the amount of space reclaimed vs. the costs of (a)
1042   // updating references in the dense prefix plus (b) copying objects and
1043   // updating references in the compacted region.
1044   static inline double reclaimed_ratio(const RegionData* const candidate,
1045                                        HeapWord* const bottom,
1046                                        HeapWord* const top,
1047                                        HeapWord* const new_top);
1048 
1049   // Compute the dense prefix for the designated space.
1050   static HeapWord* compute_dense_prefix(const SpaceId id,
1051                                         bool maximum_compaction);
1052 
1053   // Return true if dead space crosses onto the specified Region; bit must be
1054   // the bit index corresponding to the first word of the Region.
1055   static inline bool dead_space_crosses_boundary(const RegionData* region,
1056                                                  idx_t bit);
1057 
1058   // Summary phase utility routine to fill dead space (if any) at the dense
1059   // prefix boundary.  Should only be called if the the dense prefix is
1060   // non-empty.
1061   static void fill_dense_prefix_end(SpaceId id);
1062 
1063   static void summarize_spaces_quick();
1064   static void summarize_space(SpaceId id, bool maximum_compaction);
1065   static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
1066 
1067   // Adjust addresses in roots.  Does not adjust addresses in heap.
1068   static void adjust_roots(ParCompactionManager* cm);
1069 
1070   DEBUG_ONLY(static void write_block_fill_histogram();)
1071 
1072   // Move objects to new locations.
1073   static void compact_perm(ParCompactionManager* cm);
1074   static void compact();
1075 
1076   // Add available regions to the stack and draining tasks to the task queue.
1077   static void prepare_region_draining_tasks(uint parallel_gc_threads);
1078 
1079   // Add dense prefix update tasks to the task queue.
1080   static void enqueue_dense_prefix_tasks(TaskQueue& task_queue,
1081                                          uint parallel_gc_threads);
1082 
1083   // If objects are left in eden after a collection, try to move the boundary
1084   // and absorb them into the old gen.  Returns true if eden was emptied.
1085   static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1086                                          PSYoungGen* young_gen,
1087                                          PSOldGen* old_gen);
1088 
1089   // Reset time since last full gc
1090   static void reset_millis_since_last_gc();
1091 
1092 #ifndef PRODUCT
1093   // Print generic summary data
1094   static void print_generic_summary_data(ParallelCompactData& summary_data,
1095                                          HeapWord* const beg_addr,
1096                                          HeapWord* const end_addr);
1097 #endif  // #ifndef PRODUCT
1098 
1099  public:
1100 
1101   PSParallelCompact();
1102 
1103   static void invoke(bool maximum_heap_compaction);
1104   static bool invoke_no_policy(bool maximum_heap_compaction);
1105 
1106   static void post_initialize();
1107   // Perform initialization for PSParallelCompact that requires
1108   // allocations.  This should be called during the VM initialization
1109   // at a pointer where it would be appropriate to return a JNI_ENOMEM
1110   // in the event of a failure.
1111   static bool initialize();
1112 
1113   // Closure accessors
1114   static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }
1115 
1116   // Public accessors
1117   static elapsedTimer* accumulated_time() { return &_accumulated_time; }
1118   static unsigned int total_invocations() { return _total_invocations; }
1119   static CollectorCounters* counters()    { return _counters; }
1120 
1121   // Used to add tasks
1122   static GCTaskManager* const gc_task_manager();
1123 
1124   // Marking support
1125   static inline bool mark_obj(oop obj);
1126   static inline bool is_marked(oop obj);
1127 
1128   template <class T> static inline void adjust_pointer(T* p, ParCompactionManager* cm);
1129 
1130   // Compaction support.
1131   // Return true if p is in the range [beg_addr, end_addr).
1132   static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
1133   static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
1134 
1135   // Convenience wrappers for per-space data kept in _space_info.
1136   static inline MutableSpace*     space(SpaceId space_id);
1137   static inline HeapWord*         new_top(SpaceId space_id);
1138   static inline HeapWord*         dense_prefix(SpaceId space_id);
1139   static inline ObjectStartArray* start_array(SpaceId space_id);
1140 
1141   // Move and update the live objects in the specified space.
1142   static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
1143 
1144   // Process the end of the given region range in the dense prefix.
1145   // This includes saving any object not updated.
1146   static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
1147                                             size_t region_start_index,
1148                                             size_t region_end_index,
1149                                             idx_t exiting_object_offset,
1150                                             idx_t region_offset_start,
1151                                             idx_t region_offset_end);
1152 
1153   // Update a region in the dense prefix.  For each live object
1154   // in the region, update it's interior references.  For each
1155   // dead object, fill it with deadwood. Dead space at the end
1156   // of a region range will be filled to the start of the next
1157   // live object regardless of the region_index_end.  None of the
1158   // objects in the dense prefix move and dead space is dead
1159   // (holds only dead objects that don't need any processing), so
1160   // dead space can be filled in any order.
1161   static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
1162                                                   SpaceId space_id,
1163                                                   size_t region_index_start,
1164                                                   size_t region_index_end);
1165 
1166   // Return the address of the count + 1st live word in the range [beg, end).
1167   static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
1168 
1169   // Return the address of the word to be copied to dest_addr, which must be
1170   // aligned to a region boundary.
1171   static HeapWord* first_src_addr(HeapWord* const dest_addr,
1172                                   SpaceId src_space_id,
1173                                   size_t src_region_idx);
1174 
1175   // Determine the next source region, set closure.source() to the start of the
1176   // new region return the region index.  Parameter end_addr is the address one
1177   // beyond the end of source range just processed.  If necessary, switch to a
1178   // new source space and set src_space_id (in-out parameter) and src_space_top
1179   // (out parameter) accordingly.
1180   static size_t next_src_region(MoveAndUpdateClosure& closure,
1181                                 SpaceId& src_space_id,
1182                                 HeapWord*& src_space_top,
1183                                 HeapWord* end_addr);
1184 
1185   // Decrement the destination count for each non-empty source region in the
1186   // range [beg_region, region(region_align_up(end_addr))).  If the destination
1187   // count for a region goes to 0 and it needs to be filled, enqueue it.
1188   static void decrement_destination_counts(ParCompactionManager* cm,
1189                                            SpaceId src_space_id,
1190                                            size_t beg_region,
1191                                            HeapWord* end_addr);
1192 
1193   // Fill a region, copying objects from one or more source regions.
1194   static void fill_region(ParCompactionManager* cm, size_t region_idx);
1195   static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
1196     fill_region(cm, region);
1197   }
1198 
1199   // Fill in the block table for the specified region.
1200   static void fill_blocks(size_t region_idx);
1201 
1202   // Update the deferred objects in the space.
1203   static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
1204 
1205   static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
1206   static ParallelCompactData& summary_data() { return _summary_data; }
1207 
1208   // Reference Processing
1209   static ReferenceProcessor* const ref_processor() { return _ref_processor; }
1210 
1211   static STWGCTimer* gc_timer() { return &_gc_timer; }
1212 
1213   // Return the SpaceId for the given address.
1214   static SpaceId space_id(HeapWord* addr);
1215 
1216   // Time since last full gc (in milliseconds).
1217   static jlong millis_since_last_gc();
1218 
1219   static void print_on_error(outputStream* st);
1220 
1221 #ifndef PRODUCT
1222   // Debugging support.
1223   static const char* space_names[last_space_id];
1224   static void print_region_ranges();
1225   static void print_dense_prefix_stats(const char* const algorithm,
1226                                        const SpaceId id,
1227                                        const bool maximum_compaction,
1228                                        HeapWord* const addr);
1229   static void summary_phase_msg(SpaceId dst_space_id,
1230                                 HeapWord* dst_beg, HeapWord* dst_end,
1231                                 SpaceId src_space_id,
1232                                 HeapWord* src_beg, HeapWord* src_end);
1233 #endif  // #ifndef PRODUCT
1234 
1235 #ifdef  ASSERT
1236   // Sanity check the new location of a word in the heap.
1237   static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
1238   // Verify that all the regions have been emptied.
1239   static void verify_complete(SpaceId space_id);
1240 #endif  // #ifdef ASSERT
1241 };
1242 
1243 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
1244  public:
1245   inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
1246                               ObjectStartArray* start_array,
1247                               HeapWord* destination, size_t words);
1248 
1249   // Accessors.
1250   HeapWord* destination() const         { return _destination; }
1251 
1252   // If the object will fit (size <= words_remaining()), copy it to the current
1253   // destination, update the interior oops and the start array and return either
1254   // full (if the closure is full) or incomplete.  If the object will not fit,
1255   // return would_overflow.
1256   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
1257 
1258   // Copy enough words to fill this closure, starting at source().  Interior
1259   // oops and the start array are not updated.  Return full.
1260   IterationStatus copy_until_full();
1261 
1262   // Copy enough words to fill this closure or to the end of an object,
1263   // whichever is smaller, starting at source().  Interior oops and the start
1264   // array are not updated.
1265   void copy_partial_obj();
1266 
1267  protected:
1268   // Update variables to indicate that word_count words were processed.
1269   inline void update_state(size_t word_count);
1270 
1271  protected:
1272   ObjectStartArray* const _start_array;
1273   HeapWord*               _destination;         // Next addr to be written.
1274 };
1275 
1276 inline
1277 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
1278                                            ParCompactionManager* cm,
1279                                            ObjectStartArray* start_array,
1280                                            HeapWord* destination,
1281                                            size_t words) :
1282   ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
1283 {
1284   _destination = destination;
1285 }
1286 
1287 inline void MoveAndUpdateClosure::update_state(size_t words)
1288 {
1289   decrement_words_remaining(words);
1290   _source += words;
1291   _destination += words;
1292 }
1293 
1294 class UpdateOnlyClosure: public ParMarkBitMapClosure {
1295  private:
1296   const PSParallelCompact::SpaceId _space_id;
1297   ObjectStartArray* const          _start_array;
1298 
1299  public:
1300   UpdateOnlyClosure(ParMarkBitMap* mbm,
1301                     ParCompactionManager* cm,
1302                     PSParallelCompact::SpaceId space_id);
1303 
1304   // Update the object.
1305   virtual IterationStatus do_addr(HeapWord* addr, size_t words);
1306 
1307   inline void do_addr(HeapWord* addr);
1308 };
1309 
1310 class FillClosure: public ParMarkBitMapClosure {
1311  public:
1312   FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id);
1313 
1314   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
1315 
1316  private:
1317   ObjectStartArray* const _start_array;
1318 };
1319 
1320 #endif // SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP