1 /*
  2  * Copyright (c) 2002, 2019, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "aot/aotLoader.hpp"
 27 #include "classfile/classLoaderDataGraph.hpp"
 28 #include "classfile/stringTable.hpp"
 29 #include "code/codeCache.hpp"
 30 #include "gc/parallel/gcTaskManager.hpp"
 31 #include "gc/parallel/parallelScavengeHeap.hpp"
 32 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
 33 #include "gc/parallel/psClosure.inline.hpp"
 34 #include "gc/parallel/psCompactionManager.hpp"
 35 #include "gc/parallel/psMarkSweepProxy.hpp"
 36 #include "gc/parallel/psParallelCompact.inline.hpp"
 37 #include "gc/parallel/psPromotionManager.inline.hpp"
 38 #include "gc/parallel/psRootType.inline.hpp"
 39 #include "gc/parallel/psScavenge.inline.hpp"
 40 #include "gc/shared/gcCause.hpp"
 41 #include "gc/shared/gcHeapSummary.hpp"
 42 #include "gc/shared/gcId.hpp"
 43 #include "gc/shared/gcLocker.hpp"
 44 #include "gc/shared/gcTimer.hpp"
 45 #include "gc/shared/gcTrace.hpp"
 46 #include "gc/shared/gcTraceTime.inline.hpp"
 47 #include "gc/shared/isGCActiveMark.hpp"
 48 #include "gc/shared/referencePolicy.hpp"
 49 #include "gc/shared/referenceProcessor.hpp"
 50 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
 51 #include "gc/shared/scavengableNMethods.hpp"
 52 #include "gc/shared/spaceDecorator.hpp"
 53 #include "gc/shared/weakProcessor.hpp"
 54 #include "gc/shared/workerPolicy.hpp"
 55 #include "gc/shared/workgroup.hpp"
 56 #if INCLUDE_JVMCI
 57 #include "jvmci/jvmci.hpp"
 58 #endif
 59 #include "memory/resourceArea.hpp"
 60 #include "memory/universe.hpp"
 61 #include "logging/log.hpp"
 62 #include "oops/access.inline.hpp"
 63 #include "oops/compressedOops.inline.hpp"
 64 #include "oops/oop.inline.hpp"
 65 #include "runtime/biasedLocking.hpp"
 66 #include "runtime/handles.inline.hpp"
 67 #include "runtime/threadCritical.hpp"
 68 #include "runtime/vmThread.hpp"
 69 #include "runtime/vmOperations.hpp"
 70 #include "services/management.hpp"
 71 #include "services/memoryService.hpp"
 72 #include "utilities/stack.inline.hpp"
 73 
 74 
 75 HeapWord*                     PSScavenge::_to_space_top_before_gc = NULL;
 76 int                           PSScavenge::_consecutive_skipped_scavenges = 0;
 77 SpanSubjectToDiscoveryClosure PSScavenge::_span_based_discoverer;
 78 ReferenceProcessor*           PSScavenge::_ref_processor = NULL;
 79 PSCardTable*                  PSScavenge::_card_table = NULL;
 80 bool                          PSScavenge::_survivor_overflow = false;
 81 uint                          PSScavenge::_tenuring_threshold = 0;
 82 HeapWord*                     PSScavenge::_young_generation_boundary = NULL;
 83 uintptr_t                     PSScavenge::_young_generation_boundary_compressed = 0;
 84 elapsedTimer                  PSScavenge::_accumulated_time;
 85 STWGCTimer                    PSScavenge::_gc_timer;
 86 ParallelScavengeTracer        PSScavenge::_gc_tracer;
 87 CollectorCounters*            PSScavenge::_counters = NULL;
 88 
 89 void scavenge_roots_task(Parallel::RootType::Value root_type, uint which) {
 90   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
 91 
 92   PSPromotionManager* pm = PSPromotionManager::gc_thread_promotion_manager(which);
 93   PSScavengeRootsClosure roots_closure(pm);
 94   PSPromoteRootsClosure  roots_to_old_closure(pm);
 95 
 96   switch (root_type) {
 97     case Parallel::RootType::universe:
 98       Universe::oops_do(&roots_closure);
 99       break;
100 
101     case Parallel::RootType::jni_handles:
102       JNIHandles::oops_do(&roots_closure);
103       break;
104 
105     case Parallel::RootType::object_synchronizer:
106       ObjectSynchronizer::oops_do(&roots_closure);
107       break;
108 
109     case Parallel::RootType::system_dictionary:
110       SystemDictionary::oops_do(&roots_closure);
111       break;
112 
113     case Parallel::RootType::class_loader_data:
114       {
115         PSScavengeCLDClosure cld_closure(pm);
116         ClassLoaderDataGraph::cld_do(&cld_closure);
117       }
118       break;
119 
120     case Parallel::RootType::management:
121       Management::oops_do(&roots_closure);
122       break;
123 
124     case Parallel::RootType::jvmti:
125       JvmtiExport::oops_do(&roots_closure);
126       break;
127 
128     case Parallel::RootType::code_cache:
129       {
130         MarkingCodeBlobClosure code_closure(&roots_to_old_closure, CodeBlobToOopClosure::FixRelocations);
131         ScavengableNMethods::nmethods_do(&code_closure);
132         AOTLoader::oops_do(&roots_closure);
133       }
134       break;
135 
136 #if INCLUDE_JVMCI
137     case Parallel::RootType::jvmci:
138       JVMCI::oops_do(&roots_closure);
139       break;
140 #endif
141 
142     case Parallel::RootType::sentinel:
143     DEBUG_ONLY(default:) // DEBUG_ONLY hack will create compile error on release builds (-Wswitch) and runtime check on debug builds
144       fatal("Bad enumeration value: %u", root_type);
145       break;
146   }
147 
148   // Do the real work
149   pm->drain_stacks(false);
150 }
151 
152 void steal_task(ParallelTaskTerminator& terminator, uint worker_id) {
153   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
154 
155   PSPromotionManager* pm =
156     PSPromotionManager::gc_thread_promotion_manager(worker_id);
157   pm->drain_stacks(true);
158   guarantee(pm->stacks_empty(),
159             "stacks should be empty at this point");
160 
161   while (true) {
162     StarTask p;
163     if (PSPromotionManager::steal_depth(worker_id, p)) {
164       TASKQUEUE_STATS_ONLY(pm->record_steal(p));
165       pm->process_popped_location_depth(p);
166       pm->drain_stacks_depth(true);
167     } else {
168       if (terminator.offer_termination()) {
169         break;
170       }
171     }
172   }
173   guarantee(pm->stacks_empty(), "stacks should be empty at this point");
174 }
175 
176 // Define before use
177 class PSIsAliveClosure: public BoolObjectClosure {
178 public:
179   bool do_object_b(oop p) {
180     return (!PSScavenge::is_obj_in_young(p)) || p->is_forwarded();
181   }
182 };
183 
184 PSIsAliveClosure PSScavenge::_is_alive_closure;
185 
186 class PSKeepAliveClosure: public OopClosure {
187 protected:
188   MutableSpace* _to_space;
189   PSPromotionManager* _promotion_manager;
190 
191 public:
192   PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) {
193     ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
194     _to_space = heap->young_gen()->to_space();
195 
196     assert(_promotion_manager != NULL, "Sanity");
197   }
198 
199   template <class T> void do_oop_work(T* p) {
200     assert (oopDesc::is_oop(RawAccess<IS_NOT_NULL>::oop_load(p)),
201             "expected an oop while scanning weak refs");
202 
203     // Weak refs may be visited more than once.
204     if (PSScavenge::should_scavenge(p, _to_space)) {
205       _promotion_manager->copy_and_push_safe_barrier<T, /*promote_immediately=*/false>(p);
206     }
207   }
208   virtual void do_oop(oop* p)       { PSKeepAliveClosure::do_oop_work(p); }
209   virtual void do_oop(narrowOop* p) { PSKeepAliveClosure::do_oop_work(p); }
210 };
211 
212 class PSEvacuateFollowersClosure: public VoidClosure {
213  private:
214   PSPromotionManager* _promotion_manager;
215  public:
216   PSEvacuateFollowersClosure(PSPromotionManager* pm) : _promotion_manager(pm) {}
217 
218   virtual void do_void() {
219     assert(_promotion_manager != NULL, "Sanity");
220     _promotion_manager->drain_stacks(true);
221     guarantee(_promotion_manager->stacks_empty(),
222               "stacks should be empty at this point");
223   }
224 };
225 
226 class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
227   virtual void execute(ProcessTask& process_task, uint ergo_workers);
228 };
229 
230 class PSRefProcTask : public AbstractGangTask {
231   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
232   TaskTerminator _terminator;
233   ProcessTask& _task;
234   uint _active_workers;
235 
236 public:
237   PSRefProcTask(ProcessTask& task, uint active_workers)
238     : AbstractGangTask("PSRefProcTask"),
239       _terminator(active_workers, PSPromotionManager::stack_array_depth()),
240       _task(task),
241       _active_workers(active_workers) {
242   }
243 
244   virtual void work(uint worker_id) {
245     PSPromotionManager* promotion_manager =
246       PSPromotionManager::gc_thread_promotion_manager(worker_id);
247     assert(promotion_manager != NULL, "sanity check");
248     PSKeepAliveClosure keep_alive(promotion_manager);
249     PSEvacuateFollowersClosure evac_followers(promotion_manager);
250     PSIsAliveClosure is_alive;
251     _task.work(worker_id, is_alive, keep_alive, evac_followers);
252 
253     if (_task.marks_oops_alive() && _active_workers > 1) {
254       steal_task(*_terminator.terminator(), worker_id);
255     }
256   }
257 };
258 
259 void PSRefProcTaskExecutor::execute(ProcessTask& process_task, uint ergo_workers) {
260   PSRefProcTask task(process_task, ergo_workers);
261   ParallelScavengeHeap::heap()->workers().run_task(&task);
262 }
263 
264 // This method contains all heap specific policy for invoking scavenge.
265 // PSScavenge::invoke_no_policy() will do nothing but attempt to
266 // scavenge. It will not clean up after failed promotions, bail out if
267 // we've exceeded policy time limits, or any other special behavior.
268 // All such policy should be placed here.
269 //
270 // Note that this method should only be called from the vm_thread while
271 // at a safepoint!
272 bool PSScavenge::invoke() {
273   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
274   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
275   assert(!ParallelScavengeHeap::heap()->is_gc_active(), "not reentrant");
276 
277   ParallelScavengeHeap* const heap = ParallelScavengeHeap::heap();
278   PSAdaptiveSizePolicy* policy = heap->size_policy();
279   IsGCActiveMark mark;
280 
281   const bool scavenge_done = PSScavenge::invoke_no_policy();
282   const bool need_full_gc = !scavenge_done ||
283     policy->should_full_GC(heap->old_gen()->free_in_bytes());
284   bool full_gc_done = false;
285 
286   if (UsePerfData) {
287     PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
288     const int ffs_val = need_full_gc ? full_follows_scavenge : not_skipped;
289     counters->update_full_follows_scavenge(ffs_val);
290   }
291 
292   if (need_full_gc) {
293     GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
294     SoftRefPolicy* srp = heap->soft_ref_policy();
295     const bool clear_all_softrefs = srp->should_clear_all_soft_refs();
296 
297     if (UseParallelOldGC) {
298       full_gc_done = PSParallelCompact::invoke_no_policy(clear_all_softrefs);
299     } else {
300       full_gc_done = PSMarkSweepProxy::invoke_no_policy(clear_all_softrefs);
301     }
302   }
303 
304   return full_gc_done;
305 }
306 
307 class PSThreadRootsTaskClosure : public ThreadClosure {
308   uint _worker_id;
309 public:
310   PSThreadRootsTaskClosure(uint worker_id) : _worker_id(worker_id) { }
311   virtual void do_thread(Thread* thread) {
312     assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
313 
314     PSPromotionManager* pm = PSPromotionManager::gc_thread_promotion_manager(_worker_id);
315     PSScavengeRootsClosure roots_closure(pm);
316     MarkingCodeBlobClosure roots_in_blobs(&roots_closure, CodeBlobToOopClosure::FixRelocations);
317 
318     thread->oops_do(&roots_closure, &roots_in_blobs);
319 
320     // Do the real work
321     pm->drain_stacks(false);
322   }
323 };
324 //
325 // OldToYoungRootsTask
326 //
327 // This task is used to scan old to young roots in parallel
328 //
329 // A GC thread executing this tasks divides the generation (old gen)
330 // into slices and takes a stripe in the slice as its part of the
331 // work.
332 //
333 //      +===============+        slice 0
334 //      |  stripe 0     |
335 //      +---------------+
336 //      |  stripe 1     |
337 //      +---------------+
338 //      |  stripe 2     |
339 //      +---------------+
340 //      |  stripe 3     |
341 //      +===============+        slice 1
342 //      |  stripe 0     |
343 //      +---------------+
344 //      |  stripe 1     |
345 //      +---------------+
346 //      |  stripe 2     |
347 //      +---------------+
348 //      |  stripe 3     |
349 //      +===============+        slice 2
350 //      ...
351 //
352 // A task is created for each stripe.  In this case there are 4 tasks
353 // created.  A GC thread first works on its stripe within slice 0
354 // and then moves to its stripe in the next slice until all stripes
355 // exceed the top of the generation.  Note that having fewer GC threads
356 // than stripes works because all the tasks are executed so all stripes
357 // will be covered.  In this example if 4 tasks have been created to cover
358 // all the stripes and there are only 3 threads, one of the threads will
359 // get the tasks with the 4th stripe.  However, there is a dependence in
360 // PSCardTable::scavenge_contents_parallel() on the number
361 // of tasks created.  In scavenge_contents_parallel the distance
362 // to the next stripe is calculated based on the number of tasks.
363 // If the stripe width is ssize, a task's next stripe is at
364 // ssize * number_of_tasks (= slice_stride).  In this case after
365 // finishing stripe 0 in slice 0, the thread finds the stripe 0 in slice1
366 // by adding slice_stride to the start of stripe 0 in slice 0 to get
367 // to the start of stride 0 in slice 1.
368 
369 class ScavengeRootsTask : public AbstractGangTask {
370   StrongRootsScope _strong_roots_scope; // needed for Threads::possibly_parallel_threads_do
371   EnumClaimer<Parallel::RootType::Value> _enum_claimer;
372   PSOldGen* _old_gen;
373   HeapWord* _gen_top;
374   uint _active_workers;
375   bool _is_empty;
376   TaskTerminator _terminator;
377 
378 public:
379   ScavengeRootsTask(
380     PSOldGen* old_gen,
381     HeapWord* gen_top,
382     uint active_workers,
383     bool is_empty)
384     : AbstractGangTask("ScavengeRootsTask"),
385       _strong_roots_scope(active_workers),
386       _enum_claimer(Parallel::RootType::sentinel),
387       _old_gen(old_gen),
388       _gen_top(gen_top),
389       _active_workers(active_workers),
390       _is_empty(is_empty),
391       _terminator(active_workers, PSPromotionManager::vm_thread_promotion_manager()->stack_array_depth()) {
392   }
393 
394   virtual void work(uint worker_id) {
395     ResourceMark rm;
396 
397     if (!_is_empty) {
398       // There are only old-to-young pointers if there are objects
399       // in the old gen.
400 
401       // There are not old-to-young pointers if the old gen is empty.
402       assert(!_old_gen->object_space()->is_empty(),
403         "Should not be called is there is no work");
404       assert(_old_gen != NULL, "Sanity");
405       assert(_old_gen->object_space()->contains(_gen_top) || _gen_top == _old_gen->object_space()->top(), "Sanity");
406       assert(worker_id < ParallelGCThreads, "Sanity");
407 
408       {
409         PSPromotionManager* pm = PSPromotionManager::gc_thread_promotion_manager(worker_id);
410         PSCardTable* card_table = ParallelScavengeHeap::heap()->card_table();
411 
412         card_table->scavenge_contents_parallel(_old_gen->start_array(),
413                                                _old_gen->object_space(),
414                                                _gen_top,
415                                                pm,
416                                                worker_id,
417                                                _active_workers);
418 
419         // Do the real work
420         pm->drain_stacks(false);
421       }
422     }
423 
424     for (Parallel::RootType::Value root_type; _enum_claimer.try_claim(root_type); /* empty */) {
425       scavenge_roots_task(root_type, worker_id);
426     }
427 
428     PSThreadRootsTaskClosure closure(worker_id);
429     Threads::possibly_parallel_threads_do(true /*parallel */, &closure);
430 
431 
432     // If active_workers can exceed 1, add a StrealTask.
433     // PSPromotionManager::drain_stacks_depth() does not fully drain its
434     // stacks and expects a StealTask to complete the draining if
435     // ParallelGCThreads is > 1.
436 
437     if (_active_workers > 1) {
438       steal_task(*_terminator.terminator() , worker_id);
439     }
440   }
441 };
442 
443 // This method contains no policy. You should probably
444 // be calling invoke() instead.
445 bool PSScavenge::invoke_no_policy() {
446   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
447   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
448 
449   _gc_timer.register_gc_start();
450 
451   TimeStamp scavenge_entry;
452   TimeStamp scavenge_midpoint;
453   TimeStamp scavenge_exit;
454 
455   scavenge_entry.update();
456 
457   if (GCLocker::check_active_before_gc()) {
458     return false;
459   }
460 
461   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
462   GCCause::Cause gc_cause = heap->gc_cause();
463 
464   // Check for potential problems.
465   if (!should_attempt_scavenge()) {
466     return false;
467   }
468 
469   GCIdMark gc_id_mark;
470   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
471 
472   bool promotion_failure_occurred = false;
473 
474   PSYoungGen* young_gen = heap->young_gen();
475   PSOldGen* old_gen = heap->old_gen();
476   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
477 
478   heap->increment_total_collections();
479 
480   if (AdaptiveSizePolicy::should_update_eden_stats(gc_cause)) {
481     // Gather the feedback data for eden occupancy.
482     young_gen->eden_space()->accumulate_statistics();
483   }
484 
485   heap->print_heap_before_gc();
486   heap->trace_heap_before_gc(&_gc_tracer);
487 
488   assert(!NeverTenure || _tenuring_threshold == markOopDesc::max_age + 1, "Sanity");
489   assert(!AlwaysTenure || _tenuring_threshold == 0, "Sanity");
490 
491   // Fill in TLABs
492   heap->ensure_parsability(true);  // retire TLABs
493 
494   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
495     HandleMark hm;  // Discard invalid handles created during verification
496     Universe::verify("Before GC");
497   }
498 
499   {
500     ResourceMark rm;
501     HandleMark hm;
502 
503     GCTraceCPUTime tcpu;
504     GCTraceTime(Info, gc) tm("Pause Young", NULL, gc_cause, true);
505     TraceCollectorStats tcs(counters());
506     TraceMemoryManagerStats tms(heap->young_gc_manager(), gc_cause);
507 
508     if (log_is_enabled(Debug, gc, heap, exit)) {
509       accumulated_time()->start();
510     }
511 
512     // Let the size policy know we're starting
513     size_policy->minor_collection_begin();
514 
515     // Verify the object start arrays.
516     if (VerifyObjectStartArray &&
517         VerifyBeforeGC) {
518       old_gen->verify_object_start_array();
519     }
520 
521     // Verify no unmarked old->young roots
522     if (VerifyRememberedSets) {
523       heap->card_table()->verify_all_young_refs_imprecise();
524     }
525 
526     assert(young_gen->to_space()->is_empty(),
527            "Attempt to scavenge with live objects in to_space");
528     young_gen->to_space()->clear(SpaceDecorator::Mangle);
529 
530     save_to_space_top_before_gc();
531 
532 #if COMPILER2_OR_JVMCI
533     DerivedPointerTable::clear();
534 #endif
535 
536     reference_processor()->enable_discovery();
537     reference_processor()->setup_policy(false);
538 
539     PreGCValues pre_gc_values(heap);
540 
541     // Reset our survivor overflow.
542     set_survivor_overflow(false);
543 
544     // We need to save the old top values before
545     // creating the promotion_manager. We pass the top
546     // values to the card_table, to prevent it from
547     // straying into the promotion labs.
548     HeapWord* old_top = old_gen->object_space()->top();
549 
550     uint active_workers = ParallelScavengeHeap::heap()->workers().update_active_workers(WorkerPolicy::calc_active_workers(
551       ParallelScavengeHeap::heap()->workers().total_workers(),
552       ParallelScavengeHeap::heap()->workers().active_workers(),
553       Threads::number_of_non_daemon_threads()));
554 
555     // Release all previously held resources
556     gc_task_manager()->release_all_resources();
557 
558     // Set the number of GC threads to be used in this collection
559     gc_task_manager()->set_active_gang();
560     gc_task_manager()->task_idle_workers();
561 
562     assert(active_workers == gc_task_manager()->active_workers(), "sanity, taskmanager and workgang ought to agree");
563 
564     PSPromotionManager::pre_scavenge();
565 
566     // We'll use the promotion manager again later.
567     PSPromotionManager* promotion_manager = PSPromotionManager::vm_thread_promotion_manager();
568     {
569       GCTraceTime(Debug, gc, phases) tm("Scavenge", &_gc_timer);
570 
571       ScavengeRootsTask task(old_gen, old_top, active_workers, old_gen->object_space()->is_empty());
572       ParallelScavengeHeap::heap()->workers().run_task(&task);
573     }
574 
575     scavenge_midpoint.update();
576 
577     // Process reference objects discovered during scavenge
578     {
579       GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
580 
581       reference_processor()->setup_policy(false); // not always_clear
582       reference_processor()->set_active_mt_degree(active_workers);
583       PSKeepAliveClosure keep_alive(promotion_manager);
584       PSEvacuateFollowersClosure evac_followers(promotion_manager);
585       ReferenceProcessorStats stats;
586       ReferenceProcessorPhaseTimes pt(&_gc_timer, reference_processor()->max_num_queues());
587       if (reference_processor()->processing_is_mt()) {
588         PSRefProcTaskExecutor task_executor;
589         stats = reference_processor()->process_discovered_references(
590           &_is_alive_closure, &keep_alive, &evac_followers, &task_executor,
591           &pt);
592       } else {
593         stats = reference_processor()->process_discovered_references(
594           &_is_alive_closure, &keep_alive, &evac_followers, NULL, &pt);
595       }
596 
597       _gc_tracer.report_gc_reference_stats(stats);
598       pt.print_all_references();
599     }
600 
601     assert(promotion_manager->stacks_empty(),"stacks should be empty at this point");
602 
603     PSScavengeRootsClosure root_closure(promotion_manager);
604 
605     {
606       GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer);
607       WeakProcessor::weak_oops_do(&_is_alive_closure, &root_closure);
608     }
609 
610     // Verify that usage of root_closure didn't copy any objects.
611     assert(promotion_manager->stacks_empty(),"stacks should be empty at this point");
612 
613     // Finally, flush the promotion_manager's labs, and deallocate its stacks.
614     promotion_failure_occurred = PSPromotionManager::post_scavenge(_gc_tracer);
615     if (promotion_failure_occurred) {
616       clean_up_failed_promotion();
617       log_info(gc, promotion)("Promotion failed");
618     }
619 
620     _gc_tracer.report_tenuring_threshold(tenuring_threshold());
621 
622     // Let the size policy know we're done.  Note that we count promotion
623     // failure cleanup time as part of the collection (otherwise, we're
624     // implicitly saying it's mutator time).
625     size_policy->minor_collection_end(gc_cause);
626 
627     if (!promotion_failure_occurred) {
628       // Swap the survivor spaces.
629       young_gen->eden_space()->clear(SpaceDecorator::Mangle);
630       young_gen->from_space()->clear(SpaceDecorator::Mangle);
631       young_gen->swap_spaces();
632 
633       size_t survived = young_gen->from_space()->used_in_bytes();
634       size_t promoted = old_gen->used_in_bytes() - pre_gc_values.old_gen_used();
635       size_policy->update_averages(_survivor_overflow, survived, promoted);
636 
637       // A successful scavenge should restart the GC time limit count which is
638       // for full GC's.
639       size_policy->reset_gc_overhead_limit_count();
640       if (UseAdaptiveSizePolicy) {
641         // Calculate the new survivor size and tenuring threshold
642 
643         log_debug(gc, ergo)("AdaptiveSizeStart:  collection: %d ", heap->total_collections());
644         log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
645                             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
646 
647         if (UsePerfData) {
648           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
649           counters->update_old_eden_size(
650             size_policy->calculated_eden_size_in_bytes());
651           counters->update_old_promo_size(
652             size_policy->calculated_promo_size_in_bytes());
653           counters->update_old_capacity(old_gen->capacity_in_bytes());
654           counters->update_young_capacity(young_gen->capacity_in_bytes());
655           counters->update_survived(survived);
656           counters->update_promoted(promoted);
657           counters->update_survivor_overflowed(_survivor_overflow);
658         }
659 
660         size_t max_young_size = young_gen->max_size();
661 
662         // Deciding a free ratio in the young generation is tricky, so if
663         // MinHeapFreeRatio or MaxHeapFreeRatio are in use (implicating
664         // that the old generation size may have been limited because of them) we
665         // should then limit our young generation size using NewRatio to have it
666         // follow the old generation size.
667         if (MinHeapFreeRatio != 0 || MaxHeapFreeRatio != 100) {
668           max_young_size = MIN2(old_gen->capacity_in_bytes() / NewRatio, young_gen->max_size());
669         }
670 
671         size_t survivor_limit =
672           size_policy->max_survivor_size(max_young_size);
673         _tenuring_threshold =
674           size_policy->compute_survivor_space_size_and_threshold(
675                                                            _survivor_overflow,
676                                                            _tenuring_threshold,
677                                                            survivor_limit);
678 
679        log_debug(gc, age)("Desired survivor size " SIZE_FORMAT " bytes, new threshold %u (max threshold " UINTX_FORMAT ")",
680                           size_policy->calculated_survivor_size_in_bytes(),
681                           _tenuring_threshold, MaxTenuringThreshold);
682 
683         if (UsePerfData) {
684           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
685           counters->update_tenuring_threshold(_tenuring_threshold);
686           counters->update_survivor_size_counters();
687         }
688 
689         // Do call at minor collections?
690         // Don't check if the size_policy is ready at this
691         // level.  Let the size_policy check that internally.
692         if (UseAdaptiveGenerationSizePolicyAtMinorCollection &&
693             (AdaptiveSizePolicy::should_update_eden_stats(gc_cause))) {
694           // Calculate optimal free space amounts
695           assert(young_gen->max_size() >
696             young_gen->from_space()->capacity_in_bytes() +
697             young_gen->to_space()->capacity_in_bytes(),
698             "Sizes of space in young gen are out-of-bounds");
699 
700           size_t young_live = young_gen->used_in_bytes();
701           size_t eden_live = young_gen->eden_space()->used_in_bytes();
702           size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
703           size_t max_old_gen_size = old_gen->max_gen_size();
704           size_t max_eden_size = max_young_size -
705             young_gen->from_space()->capacity_in_bytes() -
706             young_gen->to_space()->capacity_in_bytes();
707 
708           // Used for diagnostics
709           size_policy->clear_generation_free_space_flags();
710 
711           size_policy->compute_eden_space_size(young_live,
712                                                eden_live,
713                                                cur_eden,
714                                                max_eden_size,
715                                                false /* not full gc*/);
716 
717           size_policy->check_gc_overhead_limit(eden_live,
718                                                max_old_gen_size,
719                                                max_eden_size,
720                                                false /* not full gc*/,
721                                                gc_cause,
722                                                heap->soft_ref_policy());
723 
724           size_policy->decay_supplemental_growth(false /* not full gc*/);
725         }
726         // Resize the young generation at every collection
727         // even if new sizes have not been calculated.  This is
728         // to allow resizes that may have been inhibited by the
729         // relative location of the "to" and "from" spaces.
730 
731         // Resizing the old gen at young collections can cause increases
732         // that don't feed back to the generation sizing policy until
733         // a full collection.  Don't resize the old gen here.
734 
735         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
736                         size_policy->calculated_survivor_size_in_bytes());
737 
738         log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
739       }
740 
741       // Update the structure of the eden. With NUMA-eden CPU hotplugging or offlining can
742       // cause the change of the heap layout. Make sure eden is reshaped if that's the case.
743       // Also update() will case adaptive NUMA chunk resizing.
744       assert(young_gen->eden_space()->is_empty(), "eden space should be empty now");
745       young_gen->eden_space()->update();
746 
747       heap->gc_policy_counters()->update_counters();
748 
749       heap->resize_all_tlabs();
750 
751       assert(young_gen->to_space()->is_empty(), "to space should be empty now");
752     }
753 
754 #if COMPILER2_OR_JVMCI
755     DerivedPointerTable::update_pointers();
756 #endif
757 
758     NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
759 
760     // Re-verify object start arrays
761     if (VerifyObjectStartArray &&
762         VerifyAfterGC) {
763       old_gen->verify_object_start_array();
764     }
765 
766     // Verify all old -> young cards are now precise
767     if (VerifyRememberedSets) {
768       // Precise verification will give false positives. Until this is fixed,
769       // use imprecise verification.
770       // heap->card_table()->verify_all_young_refs_precise();
771       heap->card_table()->verify_all_young_refs_imprecise();
772     }
773 
774     if (log_is_enabled(Debug, gc, heap, exit)) {
775       accumulated_time()->stop();
776     }
777 
778     young_gen->print_used_change(pre_gc_values.young_gen_used());
779     old_gen->print_used_change(pre_gc_values.old_gen_used());
780     MetaspaceUtils::print_metaspace_change(pre_gc_values.metadata_used());
781 
782     // Track memory usage and detect low memory
783     MemoryService::track_memory_usage();
784     heap->update_counters();
785 
786     gc_task_manager()->release_idle_workers();
787   }
788 
789   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
790     HandleMark hm;  // Discard invalid handles created during verification
791     Universe::verify("After GC");
792   }
793 
794   heap->print_heap_after_gc();
795   heap->trace_heap_after_gc(&_gc_tracer);
796 
797   scavenge_exit.update();
798 
799   log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
800                             scavenge_entry.ticks(), scavenge_midpoint.ticks(),
801                             scavenge_exit.ticks());
802   gc_task_manager()->print_task_time_stamps();
803 
804 #ifdef TRACESPINNING
805   ParallelTaskTerminator::print_termination_counts();
806 #endif
807 
808   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
809 
810   _gc_timer.register_gc_end();
811 
812   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
813 
814   return !promotion_failure_occurred;
815 }
816 
817 // This method iterates over all objects in the young generation,
818 // removing all forwarding references. It then restores any preserved marks.
819 void PSScavenge::clean_up_failed_promotion() {
820   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
821   PSYoungGen* young_gen = heap->young_gen();
822 
823   RemoveForwardedPointerClosure remove_fwd_ptr_closure;
824   young_gen->object_iterate(&remove_fwd_ptr_closure);
825 
826   PSPromotionManager::restore_preserved_marks();
827 
828   // Reset the PromotionFailureALot counters.
829   NOT_PRODUCT(heap->reset_promotion_should_fail();)
830 }
831 
832 bool PSScavenge::should_attempt_scavenge() {
833   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
834   PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
835 
836   if (UsePerfData) {
837     counters->update_scavenge_skipped(not_skipped);
838   }
839 
840   PSYoungGen* young_gen = heap->young_gen();
841   PSOldGen* old_gen = heap->old_gen();
842 
843   // Do not attempt to promote unless to_space is empty
844   if (!young_gen->to_space()->is_empty()) {
845     _consecutive_skipped_scavenges++;
846     if (UsePerfData) {
847       counters->update_scavenge_skipped(to_space_not_empty);
848     }
849     return false;
850   }
851 
852   // Test to see if the scavenge will likely fail.
853   PSAdaptiveSizePolicy* policy = heap->size_policy();
854 
855   // A similar test is done in the policy's should_full_GC().  If this is
856   // changed, decide if that test should also be changed.
857   size_t avg_promoted = (size_t) policy->padded_average_promoted_in_bytes();
858   size_t promotion_estimate = MIN2(avg_promoted, young_gen->used_in_bytes());
859   bool result = promotion_estimate < old_gen->free_in_bytes();
860 
861   log_trace(ergo)("%s scavenge: average_promoted " SIZE_FORMAT " padded_average_promoted " SIZE_FORMAT " free in old gen " SIZE_FORMAT,
862                 result ? "Do" : "Skip", (size_t) policy->average_promoted_in_bytes(),
863                 (size_t) policy->padded_average_promoted_in_bytes(),
864                 old_gen->free_in_bytes());
865   if (young_gen->used_in_bytes() < (size_t) policy->padded_average_promoted_in_bytes()) {
866     log_trace(ergo)(" padded_promoted_average is greater than maximum promotion = " SIZE_FORMAT, young_gen->used_in_bytes());
867   }
868 
869   if (result) {
870     _consecutive_skipped_scavenges = 0;
871   } else {
872     _consecutive_skipped_scavenges++;
873     if (UsePerfData) {
874       counters->update_scavenge_skipped(promoted_too_large);
875     }
876   }
877   return result;
878 }
879 
880   // Used to add tasks
881 GCTaskManager* const PSScavenge::gc_task_manager() {
882   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
883    "shouldn't return NULL");
884   return ParallelScavengeHeap::gc_task_manager();
885 }
886 
887 // Adaptive size policy support.  When the young generation/old generation
888 // boundary moves, _young_generation_boundary must be reset
889 void PSScavenge::set_young_generation_boundary(HeapWord* v) {
890   _young_generation_boundary = v;
891   if (UseCompressedOops) {
892     _young_generation_boundary_compressed = (uintptr_t)CompressedOops::encode((oop)v);
893   }
894 }
895 
896 void PSScavenge::initialize() {
897   // Arguments must have been parsed
898 
899   if (AlwaysTenure || NeverTenure) {
900     assert(MaxTenuringThreshold == 0 || MaxTenuringThreshold == markOopDesc::max_age + 1,
901            "MaxTenuringThreshold should be 0 or markOopDesc::max_age + 1, but is %d", (int) MaxTenuringThreshold);
902     _tenuring_threshold = MaxTenuringThreshold;
903   } else {
904     // We want to smooth out our startup times for the AdaptiveSizePolicy
905     _tenuring_threshold = (UseAdaptiveSizePolicy) ? InitialTenuringThreshold :
906                                                     MaxTenuringThreshold;
907   }
908 
909   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
910   PSYoungGen* young_gen = heap->young_gen();
911   PSOldGen* old_gen = heap->old_gen();
912 
913   // Set boundary between young_gen and old_gen
914   assert(old_gen->reserved().end() <= young_gen->eden_space()->bottom(),
915          "old above young");
916   set_young_generation_boundary(young_gen->eden_space()->bottom());
917 
918   // Initialize ref handling object for scavenging.
919   _span_based_discoverer.set_span(young_gen->reserved());
920   _ref_processor =
921     new ReferenceProcessor(&_span_based_discoverer,
922                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
923                            ParallelGCThreads,          // mt processing degree
924                            true,                       // mt discovery
925                            ParallelGCThreads,          // mt discovery degree
926                            true,                       // atomic_discovery
927                            NULL,                       // header provides liveness info
928                            false);
929 
930   // Cache the cardtable
931   _card_table = heap->card_table();
932 
933   _counters = new CollectorCounters("Parallel young collection pauses", 0);
934 }