/* * Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1IHOPControl.hpp" #include "gc/g1/g1Predictions.hpp" #include "gc/g1/g1Trace.hpp" #include "logging/log.hpp" G1IHOPControl::G1IHOPControl(double initial_ihop_percent) : _initial_ihop_percent(initial_ihop_percent), _target_occupancy(0), _last_allocation_time_s(0.0), _last_allocated_bytes(0) { assert(_initial_ihop_percent >= 0.0 && _initial_ihop_percent <= 100.0, "Initial IHOP value must be between 0 and 100 but is %.3f", initial_ihop_percent); } void G1IHOPControl::update_target_occupancy(size_t new_target_occupancy) { log_debug(gc, ihop)("Target occupancy update: old: " SIZE_FORMAT "B, new: " SIZE_FORMAT "B", _target_occupancy, new_target_occupancy); _target_occupancy = new_target_occupancy; } void G1IHOPControl::update_allocation_info(double allocation_time_s, size_t allocated_bytes, size_t additional_buffer_size) { assert(allocation_time_s >= 0.0, "Allocation time must be positive but is %.3f", allocation_time_s); _last_allocation_time_s = allocation_time_s; _last_allocated_bytes = allocated_bytes; } void G1IHOPControl::print() { assert(_target_occupancy > 0, "Target occupancy still not updated yet."); size_t cur_conc_mark_start_threshold = get_conc_mark_start_threshold(); log_debug(gc, ihop)("Basic information (value update), threshold: " SIZE_FORMAT "B (%1.2f), target occupancy: " SIZE_FORMAT "B, current occupancy: " SIZE_FORMAT "B, " "recent allocation size: " SIZE_FORMAT "B, recent allocation duration: %1.2fms, recent old gen allocation rate: %1.2fB/s, recent marking phase length: %1.2fms", cur_conc_mark_start_threshold, percent_of(cur_conc_mark_start_threshold, _target_occupancy), _target_occupancy, G1CollectedHeap::heap()->used(), _last_allocated_bytes, _last_allocation_time_s * 1000.0, _last_allocation_time_s > 0.0 ? _last_allocated_bytes / _last_allocation_time_s : 0.0, last_marking_length_s() * 1000.0); } void G1IHOPControl::send_trace_event(G1NewTracer* tracer) { assert(_target_occupancy > 0, "Target occupancy still not updated yet."); tracer->report_basic_ihop_statistics(get_conc_mark_start_threshold(), _target_occupancy, G1CollectedHeap::heap()->used(), _last_allocated_bytes, _last_allocation_time_s, last_marking_length_s()); } G1StaticIHOPControl::G1StaticIHOPControl(double ihop_percent) : G1IHOPControl(ihop_percent), _last_marking_length_s(0.0) { } G1AdaptiveIHOPControl::G1AdaptiveIHOPControl(double ihop_percent, G1Predictions const* predictor, size_t heap_reserve_percent, size_t heap_waste_percent) : G1IHOPControl(ihop_percent), _heap_reserve_percent(heap_reserve_percent), _heap_waste_percent(heap_waste_percent), _predictor(predictor), _marking_times_s(10, 0.95), _allocation_rate_s(10, 0.95), _last_unrestrained_young_size(0) { } size_t G1AdaptiveIHOPControl::actual_target_threshold() const { guarantee(_target_occupancy > 0, "Target occupancy still not updated yet."); // The actual target threshold takes the heap reserve and the expected waste in // free space into account. // _heap_reserve is that part of the total heap capacity that is reserved for // eventual promotion failure. // _heap_waste is the amount of space will never be reclaimed in any // heap, so can not be used for allocation during marking and must always be // considered. double safe_total_heap_percentage = MIN2((double)(_heap_reserve_percent + _heap_waste_percent), 100.0); return (size_t)MIN2( G1CollectedHeap::heap()->soft_max_capacity() * (100.0 - safe_total_heap_percentage) / 100.0, _target_occupancy * (100.0 - _heap_waste_percent) / 100.0 ); } double G1AdaptiveIHOPControl::predict(TruncatedSeq const* seq) const { return _predictor->predict_zero_bounded(seq); } bool G1AdaptiveIHOPControl::have_enough_data_for_prediction() const { return ((size_t)_marking_times_s.num() >= G1AdaptiveIHOPNumInitialSamples) && ((size_t)_allocation_rate_s.num() >= G1AdaptiveIHOPNumInitialSamples); } size_t G1AdaptiveIHOPControl::get_conc_mark_start_threshold() { if (have_enough_data_for_prediction()) { double pred_marking_time = predict(&_marking_times_s); double pred_promotion_rate = predict(&_allocation_rate_s); size_t pred_promotion_size = (size_t)(pred_marking_time * pred_promotion_rate); size_t predicted_needed_bytes_during_marking = pred_promotion_size + // In reality we would need the maximum size of the young gen during // marking. This is a conservative estimate. _last_unrestrained_young_size; size_t internal_threshold = actual_target_threshold(); size_t predicted_initiating_threshold = predicted_needed_bytes_during_marking < internal_threshold ? internal_threshold - predicted_needed_bytes_during_marking : 0; return predicted_initiating_threshold; } else { // Use the initial value. return (size_t)(_initial_ihop_percent * _target_occupancy / 100.0); } } void G1AdaptiveIHOPControl::update_allocation_info(double allocation_time_s, size_t allocated_bytes, size_t additional_buffer_size) { G1IHOPControl::update_allocation_info(allocation_time_s, allocated_bytes, additional_buffer_size); double allocation_rate = (double) allocated_bytes / allocation_time_s; _allocation_rate_s.add(allocation_rate); _last_unrestrained_young_size = additional_buffer_size; } void G1AdaptiveIHOPControl::update_marking_length(double marking_length_s) { assert(marking_length_s >= 0.0, "Marking length must be larger than zero but is %.3f", marking_length_s); _marking_times_s.add(marking_length_s); } void G1AdaptiveIHOPControl::print() { G1IHOPControl::print(); size_t actual_target = actual_target_threshold(); log_debug(gc, ihop)("Adaptive IHOP information (value update), threshold: " SIZE_FORMAT "B (%1.2f), internal target occupancy: " SIZE_FORMAT "B, " "occupancy: " SIZE_FORMAT "B, additional buffer size: " SIZE_FORMAT "B, predicted old gen allocation rate: %1.2fB/s, " "predicted marking phase length: %1.2fms, prediction active: %s", get_conc_mark_start_threshold(), percent_of(get_conc_mark_start_threshold(), actual_target), actual_target, G1CollectedHeap::heap()->used(), _last_unrestrained_young_size, predict(&_allocation_rate_s), predict(&_marking_times_s) * 1000.0, have_enough_data_for_prediction() ? "true" : "false"); } void G1AdaptiveIHOPControl::send_trace_event(G1NewTracer* tracer) { G1IHOPControl::send_trace_event(tracer); tracer->report_adaptive_ihop_statistics(get_conc_mark_start_threshold(), actual_target_threshold(), G1CollectedHeap::heap()->used(), _last_unrestrained_young_size, predict(&_allocation_rate_s), predict(&_marking_times_s), have_enough_data_for_prediction()); } size_t G1AdaptiveIHOPControl::predict_unrestrained_buffer_size() const { // Besides the young size, the promotion bytes of Prepare Mixed and 1st Mixed GC will be counted return _last_unrestrained_young_size + _last_allocated_bytes * 2; }