1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_linux.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "mutex_linux.inline.hpp"
  36 #include "os_share_linux.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/extendedPC.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/javaCalls.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/osThread.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "runtime/timer.hpp"
  52 #include "utilities/events.hpp"
  53 #include "utilities/vmError.hpp"
  54 
  55 // put OS-includes here
  56 # include <sys/types.h>
  57 # include <sys/mman.h>
  58 # include <pthread.h>
  59 # include <signal.h>
  60 # include <errno.h>
  61 # include <dlfcn.h>
  62 # include <stdlib.h>
  63 # include <stdio.h>
  64 # include <unistd.h>
  65 # include <sys/resource.h>
  66 # include <pthread.h>
  67 # include <sys/stat.h>
  68 # include <sys/time.h>
  69 # include <sys/utsname.h>
  70 # include <sys/socket.h>
  71 # include <sys/wait.h>
  72 # include <pwd.h>
  73 # include <poll.h>
  74 # include <ucontext.h>
  75 # include <fpu_control.h>
  76 
  77 #ifdef AMD64
  78 #define REG_SP REG_RSP
  79 #define REG_PC REG_RIP
  80 #define REG_FP REG_RBP
  81 #define SPELL_REG_SP "rsp"
  82 #define SPELL_REG_FP "rbp"
  83 #else
  84 #define REG_SP REG_UESP
  85 #define REG_PC REG_EIP
  86 #define REG_FP REG_EBP
  87 #define SPELL_REG_SP "esp"
  88 #define SPELL_REG_FP "ebp"
  89 #endif // AMD64
  90 
  91 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  92 
  93 address os::current_stack_pointer() {
  94 #ifdef SPARC_WORKS
  95   register void *esp;
  96   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
  97   return (address) ((char*)esp + sizeof(long)*2);
  98 #elif defined(__clang__)
  99   intptr_t* esp;
 100   __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
 101   return (address) esp;
 102 #else
 103   register void *esp __asm__ (SPELL_REG_SP);
 104   return (address) esp;
 105 #endif
 106 }
 107 
 108 char* os::non_memory_address_word() {
 109   // Must never look like an address returned by reserve_memory,
 110   // even in its subfields (as defined by the CPU immediate fields,
 111   // if the CPU splits constants across multiple instructions).
 112 
 113   return (char*) -1;
 114 }
 115 
 116 void os::initialize_thread(Thread* thr) {
 117 // Nothing to do.
 118 }
 119 
 120 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
 121   return (address)uc->uc_mcontext.gregs[REG_PC];
 122 }
 123 
 124 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
 125   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 126 }
 127 
 128 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
 129   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 130 }
 131 
 132 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 133 // is currently interrupted by SIGPROF.
 134 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 135 // frames. Currently we don't do that on Linux, so it's the same as
 136 // os::fetch_frame_from_context().
 137 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
 138   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 139 
 140   assert(thread != NULL, "just checking");
 141   assert(ret_sp != NULL, "just checking");
 142   assert(ret_fp != NULL, "just checking");
 143 
 144   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 145 }
 146 
 147 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 148                     intptr_t** ret_sp, intptr_t** ret_fp) {
 149 
 150   ExtendedPC  epc;
 151   ucontext_t* uc = (ucontext_t*)ucVoid;
 152 
 153   if (uc != NULL) {
 154     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 155     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 156     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 157   } else {
 158     // construct empty ExtendedPC for return value checking
 159     epc = ExtendedPC(NULL);
 160     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 161     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 162   }
 163 
 164   return epc;
 165 }
 166 
 167 frame os::fetch_frame_from_context(void* ucVoid) {
 168   intptr_t* sp;
 169   intptr_t* fp;
 170   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 171   return frame(sp, fp, epc.pc());
 172 }
 173 
 174 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 175 // turned off by -fomit-frame-pointer,
 176 frame os::get_sender_for_C_frame(frame* fr) {
 177   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 178 }
 179 
 180 intptr_t* _get_previous_fp() {
 181 #ifdef SPARC_WORKS
 182   register intptr_t **ebp;
 183   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
 184 #elif defined(__clang__)
 185   intptr_t **ebp;
 186   __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
 187 #else
 188   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 189 #endif
 190   return (intptr_t*) *ebp;   // we want what it points to.
 191 }
 192 
 193 
 194 frame os::current_frame() {
 195   intptr_t* fp = _get_previous_fp();
 196   frame myframe((intptr_t*)os::current_stack_pointer(),
 197                 (intptr_t*)fp,
 198                 CAST_FROM_FN_PTR(address, os::current_frame));
 199   if (os::is_first_C_frame(&myframe)) {
 200     // stack is not walkable
 201     return frame();
 202   } else {
 203     return os::get_sender_for_C_frame(&myframe);
 204   }
 205 }
 206 
 207 // Utility functions
 208 
 209 // From IA32 System Programming Guide
 210 enum {
 211   trap_page_fault = 0xE
 212 };
 213 
 214 extern "C" JNIEXPORT int
 215 JVM_handle_linux_signal(int sig,
 216                         siginfo_t* info,
 217                         void* ucVoid,
 218                         int abort_if_unrecognized) {
 219   ucontext_t* uc = (ucontext_t*) ucVoid;
 220 
 221   Thread* t = ThreadLocalStorage::get_thread_slow();
 222 
 223   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 224   // (no destructors can be run)
 225   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 226 
 227   os::ThreadCrashProtection::check_crash_protection(sig, t);
 228 
 229   SignalHandlerMark shm(t);
 230 
 231   // Note: it's not uncommon that JNI code uses signal/sigset to install
 232   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 233   // or have a SIGILL handler when detecting CPU type). When that happens,
 234   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 235   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 236   // that do not require siginfo/ucontext first.
 237 
 238   if (sig == SIGPIPE || sig == SIGXFSZ) {
 239     // allow chained handler to go first
 240     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 241       return true;
 242     } else {
 243       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 244         char buf[64];
 245         warning("Ignoring %s - see bugs 4229104 or 646499219",
 246                 os::exception_name(sig, buf, sizeof(buf)));
 247       }
 248       return true;
 249     }
 250   }
 251 
 252   JavaThread* thread = NULL;
 253   VMThread* vmthread = NULL;
 254   if (os::Linux::signal_handlers_are_installed) {
 255     if (t != NULL ){
 256       if(t->is_Java_thread()) {
 257         thread = (JavaThread*)t;
 258       }
 259       else if(t->is_VM_thread()){
 260         vmthread = (VMThread *)t;
 261       }
 262     }
 263   }
 264 /*
 265   NOTE: does not seem to work on linux.
 266   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 267     // can't decode this kind of signal
 268     info = NULL;
 269   } else {
 270     assert(sig == info->si_signo, "bad siginfo");
 271   }
 272 */
 273   // decide if this trap can be handled by a stub
 274   address stub = NULL;
 275 
 276   address pc          = NULL;
 277 
 278   //%note os_trap_1
 279   if (info != NULL && uc != NULL && thread != NULL) {
 280     pc = (address) os::Linux::ucontext_get_pc(uc);
 281 
 282     if (StubRoutines::is_safefetch_fault(pc)) {
 283       uc->uc_mcontext.gregs[REG_PC] = intptr_t(StubRoutines::continuation_for_safefetch_fault(pc));
 284       return 1;
 285     }
 286 
 287 #ifndef AMD64
 288     // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
 289     // This can happen in any running code (currently more frequently in
 290     // interpreter code but has been seen in compiled code)
 291     if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
 292       fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
 293             "to unstable signal handling in this distribution.");
 294     }
 295 #endif // AMD64
 296 
 297     // Handle ALL stack overflow variations here
 298     if (sig == SIGSEGV) {
 299       address addr = (address) info->si_addr;
 300 
 301       // check if fault address is within thread stack
 302       if (addr < thread->stack_base() &&
 303           addr >= thread->stack_base() - thread->stack_size()) {
 304         // stack overflow
 305         if (thread->in_stack_yellow_zone(addr)) {
 306           thread->disable_stack_yellow_zone();
 307           if (thread->thread_state() == _thread_in_Java) {
 308             // Throw a stack overflow exception.  Guard pages will be reenabled
 309             // while unwinding the stack.
 310             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 311           } else {
 312             // Thread was in the vm or native code.  Return and try to finish.
 313             return 1;
 314           }
 315         } else if (thread->in_stack_red_zone(addr)) {
 316           // Fatal red zone violation.  Disable the guard pages and fall through
 317           // to handle_unexpected_exception way down below.
 318           thread->disable_stack_red_zone();
 319           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 320 
 321           // This is a likely cause, but hard to verify. Let's just print
 322           // it as a hint.
 323           tty->print_raw_cr("Please check if any of your loaded .so files has "
 324                             "enabled executable stack (see man page execstack(8))");
 325         } else {
 326           // Accessing stack address below sp may cause SEGV if current
 327           // thread has MAP_GROWSDOWN stack. This should only happen when
 328           // current thread was created by user code with MAP_GROWSDOWN flag
 329           // and then attached to VM. See notes in os_linux.cpp.
 330           if (thread->osthread()->expanding_stack() == 0) {
 331              thread->osthread()->set_expanding_stack();
 332              if (os::Linux::manually_expand_stack(thread, addr)) {
 333                thread->osthread()->clear_expanding_stack();
 334                return 1;
 335              }
 336              thread->osthread()->clear_expanding_stack();
 337           } else {
 338              fatal("recursive segv. expanding stack.");
 339           }
 340         }
 341       }
 342     }
 343 
 344     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 345       // Verify that OS save/restore AVX registers.
 346       stub = VM_Version::cpuinfo_cont_addr();
 347     }
 348 
 349     if (thread->thread_state() == _thread_in_Java) {
 350       // Java thread running in Java code => find exception handler if any
 351       // a fault inside compiled code, the interpreter, or a stub
 352 
 353       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 354         stub = SharedRuntime::get_poll_stub(pc);
 355       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 356         // BugId 4454115: A read from a MappedByteBuffer can fault
 357         // here if the underlying file has been truncated.
 358         // Do not crash the VM in such a case.
 359         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 360         nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
 361         if (nm != NULL && nm->has_unsafe_access()) {
 362           stub = StubRoutines::handler_for_unsafe_access();
 363         }
 364       }
 365       else
 366 
 367 #ifdef AMD64
 368       if (sig == SIGFPE  &&
 369           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 370         stub =
 371           SharedRuntime::
 372           continuation_for_implicit_exception(thread,
 373                                               pc,
 374                                               SharedRuntime::
 375                                               IMPLICIT_DIVIDE_BY_ZERO);
 376 #else
 377       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 378         // HACK: si_code does not work on linux 2.2.12-20!!!
 379         int op = pc[0];
 380         if (op == 0xDB) {
 381           // FIST
 382           // TODO: The encoding of D2I in i486.ad can cause an exception
 383           // prior to the fist instruction if there was an invalid operation
 384           // pending. We want to dismiss that exception. From the win_32
 385           // side it also seems that if it really was the fist causing
 386           // the exception that we do the d2i by hand with different
 387           // rounding. Seems kind of weird.
 388           // NOTE: that we take the exception at the NEXT floating point instruction.
 389           assert(pc[0] == 0xDB, "not a FIST opcode");
 390           assert(pc[1] == 0x14, "not a FIST opcode");
 391           assert(pc[2] == 0x24, "not a FIST opcode");
 392           return true;
 393         } else if (op == 0xF7) {
 394           // IDIV
 395           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 396         } else {
 397           // TODO: handle more cases if we are using other x86 instructions
 398           //   that can generate SIGFPE signal on linux.
 399           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 400           fatal("please update this code.");
 401         }
 402 #endif // AMD64
 403       } else if (sig == SIGSEGV &&
 404                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 405           // Determination of interpreter/vtable stub/compiled code null exception
 406           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 407       }
 408     } else if (thread->thread_state() == _thread_in_vm &&
 409                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 410                thread->doing_unsafe_access()) {
 411         stub = StubRoutines::handler_for_unsafe_access();
 412     }
 413 
 414     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 415     // and the heap gets shrunk before the field access.
 416     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 417       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 418       if (addr != (address)-1) {
 419         stub = addr;
 420       }
 421     }
 422 
 423     // Check to see if we caught the safepoint code in the
 424     // process of write protecting the memory serialization page.
 425     // It write enables the page immediately after protecting it
 426     // so we can just return to retry the write.
 427     if ((sig == SIGSEGV) &&
 428         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 429       // Block current thread until the memory serialize page permission restored.
 430       os::block_on_serialize_page_trap();
 431       return true;
 432     }
 433   }
 434 
 435 #ifndef AMD64
 436   // Execution protection violation
 437   //
 438   // This should be kept as the last step in the triage.  We don't
 439   // have a dedicated trap number for a no-execute fault, so be
 440   // conservative and allow other handlers the first shot.
 441   //
 442   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 443   // this si_code is so generic that it is almost meaningless; and
 444   // the si_code for this condition may change in the future.
 445   // Furthermore, a false-positive should be harmless.
 446   if (UnguardOnExecutionViolation > 0 &&
 447       (sig == SIGSEGV || sig == SIGBUS) &&
 448       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
 449     int page_size = os::vm_page_size();
 450     address addr = (address) info->si_addr;
 451     address pc = os::Linux::ucontext_get_pc(uc);
 452     // Make sure the pc and the faulting address are sane.
 453     //
 454     // If an instruction spans a page boundary, and the page containing
 455     // the beginning of the instruction is executable but the following
 456     // page is not, the pc and the faulting address might be slightly
 457     // different - we still want to unguard the 2nd page in this case.
 458     //
 459     // 15 bytes seems to be a (very) safe value for max instruction size.
 460     bool pc_is_near_addr =
 461       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 462     bool instr_spans_page_boundary =
 463       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 464                        (intptr_t) page_size) > 0);
 465 
 466     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 467       static volatile address last_addr =
 468         (address) os::non_memory_address_word();
 469 
 470       // In conservative mode, don't unguard unless the address is in the VM
 471       if (addr != last_addr &&
 472           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 473 
 474         // Set memory to RWX and retry
 475         address page_start =
 476           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 477         bool res = os::protect_memory((char*) page_start, page_size,
 478                                       os::MEM_PROT_RWX);
 479 
 480         if (PrintMiscellaneous && Verbose) {
 481           char buf[256];
 482           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 483                        "at " INTPTR_FORMAT
 484                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 485                        page_start, (res ? "success" : "failed"), errno);
 486           tty->print_raw_cr(buf);
 487         }
 488         stub = pc;
 489 
 490         // Set last_addr so if we fault again at the same address, we don't end
 491         // up in an endless loop.
 492         //
 493         // There are two potential complications here.  Two threads trapping at
 494         // the same address at the same time could cause one of the threads to
 495         // think it already unguarded, and abort the VM.  Likely very rare.
 496         //
 497         // The other race involves two threads alternately trapping at
 498         // different addresses and failing to unguard the page, resulting in
 499         // an endless loop.  This condition is probably even more unlikely than
 500         // the first.
 501         //
 502         // Although both cases could be avoided by using locks or thread local
 503         // last_addr, these solutions are unnecessary complication: this
 504         // handler is a best-effort safety net, not a complete solution.  It is
 505         // disabled by default and should only be used as a workaround in case
 506         // we missed any no-execute-unsafe VM code.
 507 
 508         last_addr = addr;
 509       }
 510     }
 511   }
 512 #endif // !AMD64
 513 
 514   if (stub != NULL) {
 515     // save all thread context in case we need to restore it
 516     if (thread != NULL) thread->set_saved_exception_pc(pc);
 517 
 518     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
 519     return true;
 520   }
 521 
 522   // signal-chaining
 523   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 524      return true;
 525   }
 526 
 527   if (!abort_if_unrecognized) {
 528     // caller wants another chance, so give it to him
 529     return false;
 530   }
 531 
 532   if (pc == NULL && uc != NULL) {
 533     pc = os::Linux::ucontext_get_pc(uc);
 534   }
 535 
 536   // unmask current signal
 537   sigset_t newset;
 538   sigemptyset(&newset);
 539   sigaddset(&newset, sig);
 540   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 541 
 542   VMError err(t, sig, pc, info, ucVoid);
 543   err.report_and_die();
 544 
 545   ShouldNotReachHere();
 546 }
 547 
 548 void os::Linux::init_thread_fpu_state(void) {
 549 #ifndef AMD64
 550   // set fpu to 53 bit precision
 551   set_fpu_control_word(0x27f);
 552 #endif // !AMD64
 553 }
 554 
 555 int os::Linux::get_fpu_control_word(void) {
 556 #ifdef AMD64
 557   return 0;
 558 #else
 559   int fpu_control;
 560   _FPU_GETCW(fpu_control);
 561   return fpu_control & 0xffff;
 562 #endif // AMD64
 563 }
 564 
 565 void os::Linux::set_fpu_control_word(int fpu_control) {
 566 #ifndef AMD64
 567   _FPU_SETCW(fpu_control);
 568 #endif // !AMD64
 569 }
 570 
 571 // Check that the linux kernel version is 2.4 or higher since earlier
 572 // versions do not support SSE without patches.
 573 bool os::supports_sse() {
 574 #ifdef AMD64
 575   return true;
 576 #else
 577   struct utsname uts;
 578   if( uname(&uts) != 0 ) return false; // uname fails?
 579   char *minor_string;
 580   int major = strtol(uts.release,&minor_string,10);
 581   int minor = strtol(minor_string+1,NULL,10);
 582   bool result = (major > 2 || (major==2 && minor >= 4));
 583 #ifndef PRODUCT
 584   if (PrintMiscellaneous && Verbose) {
 585     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
 586                major,minor, result ? "DOES" : "does NOT");
 587   }
 588 #endif
 589   return result;
 590 #endif // AMD64
 591 }
 592 
 593 bool os::is_allocatable(size_t bytes) {
 594 #ifdef AMD64
 595   // unused on amd64?
 596   return true;
 597 #else
 598 
 599   if (bytes < 2 * G) {
 600     return true;
 601   }
 602 
 603   char* addr = reserve_memory(bytes, NULL);
 604 
 605   if (addr != NULL) {
 606     release_memory(addr, bytes);
 607   }
 608 
 609   return addr != NULL;
 610 #endif // AMD64
 611 }
 612 
 613 ////////////////////////////////////////////////////////////////////////////////
 614 // thread stack
 615 
 616 #ifdef AMD64
 617 size_t os::Linux::min_stack_allowed  = 64 * K;
 618 
 619 // amd64: pthread on amd64 is always in floating stack mode
 620 bool os::Linux::supports_variable_stack_size() {  return true; }
 621 #else
 622 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
 623 
 624 #ifdef __GNUC__
 625 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
 626 #endif
 627 
 628 // Test if pthread library can support variable thread stack size. LinuxThreads
 629 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
 630 // in floating stack mode and NPTL support variable stack size.
 631 bool os::Linux::supports_variable_stack_size() {
 632   if (os::Linux::is_NPTL()) {
 633      // NPTL, yes
 634      return true;
 635 
 636   } else {
 637     // Note: We can't control default stack size when creating a thread.
 638     // If we use non-default stack size (pthread_attr_setstacksize), both
 639     // floating stack and non-floating stack LinuxThreads will return the
 640     // same value. This makes it impossible to implement this function by
 641     // detecting thread stack size directly.
 642     //
 643     // An alternative approach is to check %gs. Fixed-stack LinuxThreads
 644     // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
 645     // %gs (either as LDT selector or GDT selector, depending on kernel)
 646     // to access thread specific data.
 647     //
 648     // Note that %gs is a reserved glibc register since early 2001, so
 649     // applications are not allowed to change its value (Ulrich Drepper from
 650     // Redhat confirmed that all known offenders have been modified to use
 651     // either %fs or TSD). In the worst case scenario, when VM is embedded in
 652     // a native application that plays with %gs, we might see non-zero %gs
 653     // even LinuxThreads is running in fixed stack mode. As the result, we'll
 654     // return true and skip _thread_safety_check(), so we may not be able to
 655     // detect stack-heap collisions. But otherwise it's harmless.
 656     //
 657 #ifdef __GNUC__
 658     return (GET_GS() != 0);
 659 #else
 660     return false;
 661 #endif
 662   }
 663 }
 664 #endif // AMD64
 665 
 666 // return default stack size for thr_type
 667 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
 668   // default stack size (compiler thread needs larger stack)
 669 #ifdef AMD64
 670   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 671 #else
 672   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 673 #endif // AMD64
 674   return s;
 675 }
 676 
 677 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
 678   // Creating guard page is very expensive. Java thread has HotSpot
 679   // guard page, only enable glibc guard page for non-Java threads.
 680   return (thr_type == java_thread ? 0 : page_size());
 681 }
 682 
 683 // Java thread:
 684 //
 685 //   Low memory addresses
 686 //    +------------------------+
 687 //    |                        |\  JavaThread created by VM does not have glibc
 688 //    |    glibc guard page    | - guard, attached Java thread usually has
 689 //    |                        |/  1 page glibc guard.
 690 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 691 //    |                        |\
 692 //    |  HotSpot Guard Pages   | - red and yellow pages
 693 //    |                        |/
 694 //    +------------------------+ JavaThread::stack_yellow_zone_base()
 695 //    |                        |\
 696 //    |      Normal Stack      | -
 697 //    |                        |/
 698 // P2 +------------------------+ Thread::stack_base()
 699 //
 700 // Non-Java thread:
 701 //
 702 //   Low memory addresses
 703 //    +------------------------+
 704 //    |                        |\
 705 //    |  glibc guard page      | - usually 1 page
 706 //    |                        |/
 707 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 708 //    |                        |\
 709 //    |      Normal Stack      | -
 710 //    |                        |/
 711 // P2 +------------------------+ Thread::stack_base()
 712 //
 713 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
 714 //    pthread_attr_getstack()
 715 
 716 static void current_stack_region(address * bottom, size_t * size) {
 717   if (os::is_primordial_thread()) {
 718      // primordial thread needs special handling because pthread_getattr_np()
 719      // may return bogus value.
 720      *bottom = os::Linux::initial_thread_stack_bottom();
 721      *size   = os::Linux::initial_thread_stack_size();
 722   } else {
 723      pthread_attr_t attr;
 724 
 725      int rslt = pthread_getattr_np(pthread_self(), &attr);
 726 
 727      // JVM needs to know exact stack location, abort if it fails
 728      if (rslt != 0) {
 729        if (rslt == ENOMEM) {
 730          vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
 731        } else {
 732          fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
 733        }
 734      }
 735 
 736      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
 737          fatal("Can not locate current stack attributes!");
 738      }
 739 
 740      pthread_attr_destroy(&attr);
 741 
 742   }
 743   assert(os::current_stack_pointer() >= *bottom &&
 744          os::current_stack_pointer() < *bottom + *size, "just checking");
 745 }
 746 
 747 address os::current_stack_base() {
 748   address bottom;
 749   size_t size;
 750   current_stack_region(&bottom, &size);
 751   return (bottom + size);
 752 }
 753 
 754 size_t os::current_stack_size() {
 755   // stack size includes normal stack and HotSpot guard pages
 756   address bottom;
 757   size_t size;
 758   current_stack_region(&bottom, &size);
 759   return size;
 760 }
 761 
 762 /////////////////////////////////////////////////////////////////////////////
 763 // helper functions for fatal error handler
 764 
 765 void os::print_context(outputStream *st, void *context) {
 766   if (context == NULL) return;
 767 
 768   ucontext_t *uc = (ucontext_t*)context;
 769   st->print_cr("Registers:");
 770 #ifdef AMD64
 771   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 772   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 773   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 774   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 775   st->cr();
 776   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 777   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 778   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 779   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 780   st->cr();
 781   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 782   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 783   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 784   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 785   st->cr();
 786   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 787   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 788   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 789   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 790   st->cr();
 791   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 792   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 793   st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
 794   st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
 795   st->cr();
 796   st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
 797 #else
 798   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 799   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 800   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 801   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 802   st->cr();
 803   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
 804   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 805   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 806   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 807   st->cr();
 808   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
 809   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 810   st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
 811 #endif // AMD64
 812   st->cr();
 813   st->cr();
 814 
 815   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 816   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 817   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 818   st->cr();
 819 
 820   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 821   // point to garbage if entry point in an nmethod is corrupted. Leave
 822   // this at the end, and hope for the best.
 823   address pc = os::Linux::ucontext_get_pc(uc);
 824   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 825   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 826 }
 827 
 828 void os::print_register_info(outputStream *st, void *context) {
 829   if (context == NULL) return;
 830 
 831   ucontext_t *uc = (ucontext_t*)context;
 832 
 833   st->print_cr("Register to memory mapping:");
 834   st->cr();
 835 
 836   // this is horrendously verbose but the layout of the registers in the
 837   // context does not match how we defined our abstract Register set, so
 838   // we can't just iterate through the gregs area
 839 
 840   // this is only for the "general purpose" registers
 841 
 842 #ifdef AMD64
 843   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 844   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 845   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 846   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 847   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 848   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 849   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 850   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 851   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 852   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 853   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 854   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 855   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 856   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 857   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 858   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 859 #else
 860   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
 861   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
 862   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
 863   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
 864   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
 865   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
 866   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
 867   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
 868 #endif // AMD64
 869 
 870   st->cr();
 871 }
 872 
 873 void os::setup_fpu() {
 874 #ifndef AMD64
 875   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 876   __asm__ volatile (  "fldcw (%0)" :
 877                       : "r" (fpu_cntrl) : "memory");
 878 #endif // !AMD64
 879 }
 880 
 881 #ifndef PRODUCT
 882 void os::verify_stack_alignment() {
 883 #ifdef AMD64
 884   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 885 #endif
 886 }
 887 #endif
 888 
 889 
 890 /*
 891  * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
 892  * updates (JDK-8023956).
 893  */
 894 void os::workaround_expand_exec_shield_cs_limit() {
 895 #if defined(IA32)
 896   size_t page_size = os::vm_page_size();
 897   /*
 898    * Take the highest VA the OS will give us and exec
 899    *
 900    * Although using -(pagesz) as mmap hint works on newer kernel as you would
 901    * think, older variants affected by this work-around don't (search forward only).
 902    *
 903    * On the affected distributions, we understand the memory layout to be:
 904    *
 905    *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
 906    *
 907    * A few pages south main stack will do it.
 908    *
 909    * If we are embedded in an app other than launcher (initial != main stack),
 910    * we don't have much control or understanding of the address space, just let it slide.
 911    */
 912   char* hint = (char*) (Linux::initial_thread_stack_bottom() -
 913                         ((StackYellowPages + StackRedPages + 1) * page_size));
 914   char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
 915   if ( (codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true)) ) {
 916     return; // No matter, we tried, best effort.
 917   }
 918   if (PrintMiscellaneous && (Verbose || WizardMode)) {
 919      tty->print_cr("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
 920   }
 921 
 922   // Some code to exec: the 'ret' instruction
 923   codebuf[0] = 0xC3;
 924 
 925   // Call the code in the codebuf
 926   __asm__ volatile("call *%0" : : "r"(codebuf));
 927 
 928   // keep the page mapped so CS limit isn't reduced.
 929 #endif
 930 }