1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
  27 
  28 #include "gc_implementation/g1/g1AllocationContext.hpp"
  29 #include "gc_implementation/g1/g1BlockOffsetTable.hpp"
  30 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
  31 #include "gc_implementation/g1/heapRegionType.hpp"
  32 #include "gc_implementation/g1/survRateGroup.hpp"
  33 #include "gc_implementation/shared/ageTable.hpp"
  34 #include "gc_implementation/shared/spaceDecorator.hpp"
  35 #include "memory/space.inline.hpp"
  36 #include "memory/watermark.hpp"
  37 #include "utilities/macros.hpp"
  38 
  39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  40 // can be collected independently.
  41 
  42 // NOTE: Although a HeapRegion is a Space, its
  43 // Space::initDirtyCardClosure method must not be called.
  44 // The problem is that the existence of this method breaks
  45 // the independence of barrier sets from remembered sets.
  46 // The solution is to remove this method from the definition
  47 // of a Space.
  48 
  49 class HeapRegionRemSet;
  50 class HeapRegionRemSetIterator;
  51 class HeapRegion;
  52 class HeapRegionSetBase;
  53 class nmethod;
  54 
  55 #define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]"
  56 #define HR_FORMAT_PARAMS(_hr_) \
  57                 (_hr_)->hrm_index(), \
  58                 (_hr_)->get_short_type_str(), \
  59                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
  60 
  61 // sentinel value for hrm_index
  62 #define G1_NO_HRM_INDEX ((uint) -1)
  63 
  64 // A dirty card to oop closure for heap regions. It
  65 // knows how to get the G1 heap and how to use the bitmap
  66 // in the concurrent marker used by G1 to filter remembered
  67 // sets.
  68 
  69 class HeapRegionDCTOC : public DirtyCardToOopClosure {
  70 private:
  71   HeapRegion* _hr;
  72   G1ParPushHeapRSClosure* _rs_scan;
  73   G1CollectedHeap* _g1;
  74 
  75   // Walk the given memory region from bottom to (actual) top
  76   // looking for objects and applying the oop closure (_cl) to
  77   // them. The base implementation of this treats the area as
  78   // blocks, where a block may or may not be an object. Sub-
  79   // classes should override this to provide more accurate
  80   // or possibly more efficient walking.
  81   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
  82 
  83 public:
  84   HeapRegionDCTOC(G1CollectedHeap* g1,
  85                   HeapRegion* hr,
  86                   G1ParPushHeapRSClosure* cl,
  87                   CardTableModRefBS::PrecisionStyle precision);
  88 };
  89 
  90 // The complicating factor is that BlockOffsetTable diverged
  91 // significantly, and we need functionality that is only in the G1 version.
  92 // So I copied that code, which led to an alternate G1 version of
  93 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
  94 // be reconciled, then G1OffsetTableContigSpace could go away.
  95 
  96 // The idea behind time stamps is the following. We want to keep track of
  97 // the highest address where it's safe to scan objects for each region.
  98 // This is only relevant for current GC alloc regions so we keep a time stamp
  99 // per region to determine if the region has been allocated during the current
 100 // GC or not. If the time stamp is current we report a scan_top value which
 101 // was saved at the end of the previous GC for retained alloc regions and which is
 102 // equal to the bottom for all other regions.
 103 // There is a race between card scanners and allocating gc workers where we must ensure
 104 // that card scanners do not read the memory allocated by the gc workers.
 105 // In order to enforce that, we must not return a value of _top which is more recent than the
 106 // time stamp. This is due to the fact that a region may become a gc alloc region at
 107 // some point after we've read the timestamp value as being < the current time stamp.
 108 // The time stamps are re-initialized to zero at cleanup and at Full GCs.
 109 // The current scheme that uses sequential unsigned ints will fail only if we have 4b
 110 // evacuation pauses between two cleanups, which is _highly_ unlikely.
 111 class G1OffsetTableContigSpace: public CompactibleSpace {
 112   friend class VMStructs;
 113   HeapWord* _top;
 114   HeapWord* volatile _scan_top;
 115  protected:
 116   G1BlockOffsetArrayContigSpace _offsets;
 117   Mutex _par_alloc_lock;
 118   volatile unsigned _gc_time_stamp;
 119   // When we need to retire an allocation region, while other threads
 120   // are also concurrently trying to allocate into it, we typically
 121   // allocate a dummy object at the end of the region to ensure that
 122   // no more allocations can take place in it. However, sometimes we
 123   // want to know where the end of the last "real" object we allocated
 124   // into the region was and this is what this keeps track.
 125   HeapWord* _pre_dummy_top;
 126 
 127  public:
 128   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 129                            MemRegion mr);
 130 
 131   void set_top(HeapWord* value) { _top = value; }
 132   HeapWord* top() const { return _top; }
 133 
 134  protected:
 135   // Reset the G1OffsetTableContigSpace.
 136   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 137 
 138   HeapWord** top_addr() { return &_top; }
 139   // Allocation helpers (return NULL if full).
 140   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
 141   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
 142 
 143  public:
 144   void reset_after_compaction() { set_top(compaction_top()); }
 145 
 146   size_t used() const { return byte_size(bottom(), top()); }
 147   size_t free() const { return byte_size(top(), end()); }
 148   bool is_free_block(const HeapWord* p) const { return p >= top(); }
 149 
 150   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 151 
 152   void object_iterate(ObjectClosure* blk);
 153   void safe_object_iterate(ObjectClosure* blk);
 154 
 155   void set_bottom(HeapWord* value);
 156   void set_end(HeapWord* value);
 157 
 158   HeapWord* scan_top() const;
 159   void record_timestamp();
 160   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
 161   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
 162   void record_retained_region();
 163 
 164   // See the comment above in the declaration of _pre_dummy_top for an
 165   // explanation of what it is.
 166   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
 167     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
 168     _pre_dummy_top = pre_dummy_top;
 169   }
 170   HeapWord* pre_dummy_top() {
 171     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
 172   }
 173   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
 174 
 175   virtual void clear(bool mangle_space);
 176 
 177   HeapWord* block_start(const void* p);
 178   HeapWord* block_start_const(const void* p) const;
 179 
 180   void prepare_for_compaction(CompactPoint* cp);
 181 
 182   // Add offset table update.
 183   virtual HeapWord* allocate(size_t word_size);
 184   HeapWord* par_allocate(size_t word_size);
 185 
 186   HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; }
 187 
 188   // MarkSweep support phase3
 189   virtual HeapWord* initialize_threshold();
 190   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 191 
 192   virtual void print() const;
 193 
 194   void reset_bot() {
 195     _offsets.reset_bot();
 196   }
 197 
 198   void print_bot_on(outputStream* out) {
 199     _offsets.print_on(out);
 200   }
 201 };
 202 
 203 class HeapRegion: public G1OffsetTableContigSpace {
 204   friend class VMStructs;
 205  private:
 206 
 207   // The remembered set for this region.
 208   // (Might want to make this "inline" later, to avoid some alloc failure
 209   // issues.)
 210   HeapRegionRemSet* _rem_set;
 211 
 212   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
 213 
 214  protected:
 215   // The index of this region in the heap region sequence.
 216   uint  _hrm_index;
 217 
 218   AllocationContext_t _allocation_context;
 219 
 220   HeapRegionType _type;
 221 
 222   // For a humongous region, region in which it starts.
 223   HeapRegion* _humongous_start_region;
 224   // For the start region of a humongous sequence, it's original end().
 225   HeapWord* _orig_end;
 226 
 227   // True iff the region is in current collection_set.
 228   bool _in_collection_set;
 229 
 230   // True iff an attempt to evacuate an object in the region failed.
 231   bool _evacuation_failed;
 232 
 233   // A heap region may be a member one of a number of special subsets, each
 234   // represented as linked lists through the field below.  Currently, there
 235   // is only one set:
 236   //   The collection set.
 237   HeapRegion* _next_in_special_set;
 238 
 239   // next region in the young "generation" region set
 240   HeapRegion* _next_young_region;
 241 
 242   // Next region whose cards need cleaning
 243   HeapRegion* _next_dirty_cards_region;
 244 
 245   // Fields used by the HeapRegionSetBase class and subclasses.
 246   HeapRegion* _next;
 247   HeapRegion* _prev;
 248 #ifdef ASSERT
 249   HeapRegionSetBase* _containing_set;
 250 #endif // ASSERT
 251 
 252   // For parallel heapRegion traversal.
 253   jint _claimed;
 254 
 255   // We use concurrent marking to determine the amount of live data
 256   // in each heap region.
 257   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
 258   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
 259 
 260   // The calculated GC efficiency of the region.
 261   double _gc_efficiency;
 262 
 263   int  _young_index_in_cset;
 264   SurvRateGroup* _surv_rate_group;
 265   int  _age_index;
 266 
 267   // The start of the unmarked area. The unmarked area extends from this
 268   // word until the top and/or end of the region, and is the part
 269   // of the region for which no marking was done, i.e. objects may
 270   // have been allocated in this part since the last mark phase.
 271   // "prev" is the top at the start of the last completed marking.
 272   // "next" is the top at the start of the in-progress marking (if any.)
 273   HeapWord* _prev_top_at_mark_start;
 274   HeapWord* _next_top_at_mark_start;
 275   // If a collection pause is in progress, this is the top at the start
 276   // of that pause.
 277 
 278   void init_top_at_mark_start() {
 279     assert(_prev_marked_bytes == 0 &&
 280            _next_marked_bytes == 0,
 281            "Must be called after zero_marked_bytes.");
 282     HeapWord* bot = bottom();
 283     _prev_top_at_mark_start = bot;
 284     _next_top_at_mark_start = bot;
 285   }
 286 
 287   // Cached attributes used in the collection set policy information
 288 
 289   // The RSet length that was added to the total value
 290   // for the collection set.
 291   size_t _recorded_rs_length;
 292 
 293   // The predicted elapsed time that was added to total value
 294   // for the collection set.
 295   double _predicted_elapsed_time_ms;
 296 
 297   // The predicted number of bytes to copy that was added to
 298   // the total value for the collection set.
 299   size_t _predicted_bytes_to_copy;
 300 
 301  public:
 302   HeapRegion(uint hrm_index,
 303              G1BlockOffsetSharedArray* sharedOffsetArray,
 304              MemRegion mr);
 305 
 306   // Initializing the HeapRegion not only resets the data structure, but also
 307   // resets the BOT for that heap region.
 308   // The default values for clear_space means that we will do the clearing if
 309   // there's clearing to be done ourselves. We also always mangle the space.
 310   virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
 311 
 312   static int    LogOfHRGrainBytes;
 313   static int    LogOfHRGrainWords;
 314 
 315   static size_t GrainBytes;
 316   static size_t GrainWords;
 317   static size_t CardsPerRegion;
 318 
 319   static size_t align_up_to_region_byte_size(size_t sz) {
 320     return (sz + (size_t) GrainBytes - 1) &
 321                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
 322   }
 323 
 324   static size_t max_region_size();
 325 
 326   // It sets up the heap region size (GrainBytes / GrainWords), as
 327   // well as other related fields that are based on the heap region
 328   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
 329   // CardsPerRegion). All those fields are considered constant
 330   // throughout the JVM's execution, therefore they should only be set
 331   // up once during initialization time.
 332   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
 333 
 334   enum ClaimValues {
 335     InitialClaimValue          = 0,
 336     FinalCountClaimValue       = 1,
 337     NoteEndClaimValue          = 2,
 338     ScrubRemSetClaimValue      = 3,
 339     ParVerifyClaimValue        = 4,
 340     RebuildRSClaimValue        = 5,
 341     ParEvacFailureClaimValue   = 6,
 342     AggregateCountClaimValue   = 7,
 343     VerifyCountClaimValue      = 8,
 344     ParMarkRootClaimValue      = 9
 345   };
 346 
 347   // All allocated blocks are occupied by objects in a HeapRegion
 348   bool block_is_obj(const HeapWord* p) const;
 349 
 350   // Returns the object size for all valid block starts
 351   // and the amount of unallocated words if called on top()
 352   size_t block_size(const HeapWord* p) const;
 353 
 354   inline HeapWord* par_allocate_no_bot_updates(size_t word_size);
 355   inline HeapWord* allocate_no_bot_updates(size_t word_size);
 356 
 357   // If this region is a member of a HeapRegionManager, the index in that
 358   // sequence, otherwise -1.
 359   uint hrm_index() const { return _hrm_index; }
 360 
 361   // The number of bytes marked live in the region in the last marking phase.
 362   size_t marked_bytes()    { return _prev_marked_bytes; }
 363   size_t live_bytes() {
 364     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
 365   }
 366 
 367   // The number of bytes counted in the next marking.
 368   size_t next_marked_bytes() { return _next_marked_bytes; }
 369   // The number of bytes live wrt the next marking.
 370   size_t next_live_bytes() {
 371     return
 372       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
 373   }
 374 
 375   // A lower bound on the amount of garbage bytes in the region.
 376   size_t garbage_bytes() {
 377     size_t used_at_mark_start_bytes =
 378       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
 379     assert(used_at_mark_start_bytes >= marked_bytes(),
 380            "Can't mark more than we have.");
 381     return used_at_mark_start_bytes - marked_bytes();
 382   }
 383 
 384   // Return the amount of bytes we'll reclaim if we collect this
 385   // region. This includes not only the known garbage bytes in the
 386   // region but also any unallocated space in it, i.e., [top, end),
 387   // since it will also be reclaimed if we collect the region.
 388   size_t reclaimable_bytes() {
 389     size_t known_live_bytes = live_bytes();
 390     assert(known_live_bytes <= capacity(), "sanity");
 391     return capacity() - known_live_bytes;
 392   }
 393 
 394   // An upper bound on the number of live bytes in the region.
 395   size_t max_live_bytes() { return used() - garbage_bytes(); }
 396 
 397   void add_to_marked_bytes(size_t incr_bytes) {
 398     _next_marked_bytes = _next_marked_bytes + incr_bytes;
 399     assert(_next_marked_bytes <= used(), "invariant" );
 400   }
 401 
 402   void zero_marked_bytes()      {
 403     _prev_marked_bytes = _next_marked_bytes = 0;
 404   }
 405 
 406   const char* get_type_str() const { return _type.get_str(); }
 407   const char* get_short_type_str() const { return _type.get_short_str(); }
 408 
 409   bool is_free() const { return _type.is_free(); }
 410 
 411   bool is_young()    const { return _type.is_young();    }
 412   bool is_eden()     const { return _type.is_eden();     }
 413   bool is_survivor() const { return _type.is_survivor(); }
 414 
 415   bool isHumongous() const { return _type.is_humongous(); }
 416   bool startsHumongous() const { return _type.is_starts_humongous(); }
 417   bool continuesHumongous() const { return _type.is_continues_humongous();   }
 418 
 419   bool is_old() const { return _type.is_old(); }
 420 
 421   // For a humongous region, region in which it starts.
 422   HeapRegion* humongous_start_region() const {
 423     return _humongous_start_region;
 424   }
 425 
 426   // Return the number of distinct regions that are covered by this region:
 427   // 1 if the region is not humongous, >= 1 if the region is humongous.
 428   uint region_num() const {
 429     if (!isHumongous()) {
 430       return 1U;
 431     } else {
 432       assert(startsHumongous(), "doesn't make sense on HC regions");
 433       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
 434       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
 435     }
 436   }
 437 
 438   // Return the index + 1 of the last HC regions that's associated
 439   // with this HS region.
 440   uint last_hc_index() const {
 441     assert(startsHumongous(), "don't call this otherwise");
 442     return hrm_index() + region_num();
 443   }
 444 
 445   // Same as Space::is_in_reserved, but will use the original size of the region.
 446   // The original size is different only for start humongous regions. They get
 447   // their _end set up to be the end of the last continues region of the
 448   // corresponding humongous object.
 449   bool is_in_reserved_raw(const void* p) const {
 450     return _bottom <= p && p < _orig_end;
 451   }
 452 
 453   // Makes the current region be a "starts humongous" region, i.e.,
 454   // the first region in a series of one or more contiguous regions
 455   // that will contain a single "humongous" object. The two parameters
 456   // are as follows:
 457   //
 458   // new_top : The new value of the top field of this region which
 459   // points to the end of the humongous object that's being
 460   // allocated. If there is more than one region in the series, top
 461   // will lie beyond this region's original end field and on the last
 462   // region in the series.
 463   //
 464   // new_end : The new value of the end field of this region which
 465   // points to the end of the last region in the series. If there is
 466   // one region in the series (namely: this one) end will be the same
 467   // as the original end of this region.
 468   //
 469   // Updating top and end as described above makes this region look as
 470   // if it spans the entire space taken up by all the regions in the
 471   // series and an single allocation moved its top to new_top. This
 472   // ensures that the space (capacity / allocated) taken up by all
 473   // humongous regions can be calculated by just looking at the
 474   // "starts humongous" regions and by ignoring the "continues
 475   // humongous" regions.
 476   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
 477 
 478   // Makes the current region be a "continues humongous'
 479   // region. first_hr is the "start humongous" region of the series
 480   // which this region will be part of.
 481   void set_continuesHumongous(HeapRegion* first_hr);
 482 
 483   // Unsets the humongous-related fields on the region.
 484   void clear_humongous();
 485 
 486   // If the region has a remembered set, return a pointer to it.
 487   HeapRegionRemSet* rem_set() const {
 488     return _rem_set;
 489   }
 490 
 491   // True iff the region is in current collection_set.
 492   bool in_collection_set() const {
 493     return _in_collection_set;
 494   }
 495   void set_in_collection_set(bool b) {
 496     _in_collection_set = b;
 497   }
 498   HeapRegion* next_in_collection_set() {
 499     assert(in_collection_set(), "should only invoke on member of CS.");
 500     assert(_next_in_special_set == NULL ||
 501            _next_in_special_set->in_collection_set(),
 502            "Malformed CS.");
 503     return _next_in_special_set;
 504   }
 505   void set_next_in_collection_set(HeapRegion* r) {
 506     assert(in_collection_set(), "should only invoke on member of CS.");
 507     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
 508     _next_in_special_set = r;
 509   }
 510 
 511   void set_allocation_context(AllocationContext_t context) {
 512     _allocation_context = context;
 513   }
 514 
 515   AllocationContext_t  allocation_context() const {
 516     return _allocation_context;
 517   }
 518 
 519   // Methods used by the HeapRegionSetBase class and subclasses.
 520 
 521   // Getter and setter for the next and prev fields used to link regions into
 522   // linked lists.
 523   HeapRegion* next()              { return _next; }
 524   HeapRegion* prev()              { return _prev; }
 525 
 526   void set_next(HeapRegion* next) { _next = next; }
 527   void set_prev(HeapRegion* prev) { _prev = prev; }
 528 
 529   // Every region added to a set is tagged with a reference to that
 530   // set. This is used for doing consistency checking to make sure that
 531   // the contents of a set are as they should be and it's only
 532   // available in non-product builds.
 533 #ifdef ASSERT
 534   void set_containing_set(HeapRegionSetBase* containing_set) {
 535     assert((containing_set == NULL && _containing_set != NULL) ||
 536            (containing_set != NULL && _containing_set == NULL),
 537            err_msg("containing_set: " PTR_FORMAT " "
 538                    "_containing_set: " PTR_FORMAT,
 539                    p2i(containing_set), p2i(_containing_set)));
 540 
 541     _containing_set = containing_set;
 542   }
 543 
 544   HeapRegionSetBase* containing_set() { return _containing_set; }
 545 #else // ASSERT
 546   void set_containing_set(HeapRegionSetBase* containing_set) { }
 547 
 548   // containing_set() is only used in asserts so there's no reason
 549   // to provide a dummy version of it.
 550 #endif // ASSERT
 551 
 552   HeapRegion* get_next_young_region() { return _next_young_region; }
 553   void set_next_young_region(HeapRegion* hr) {
 554     _next_young_region = hr;
 555   }
 556 
 557   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
 558   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
 559   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
 560   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
 561 
 562   HeapWord* orig_end() const { return _orig_end; }
 563 
 564   // Reset HR stuff to default values.
 565   void hr_clear(bool par, bool clear_space, bool locked = false);
 566   void par_clear();
 567 
 568   // Get the start of the unmarked area in this region.
 569   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
 570   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
 571 
 572   // Note the start or end of marking. This tells the heap region
 573   // that the collector is about to start or has finished (concurrently)
 574   // marking the heap.
 575 
 576   // Notify the region that concurrent marking is starting. Initialize
 577   // all fields related to the next marking info.
 578   inline void note_start_of_marking();
 579 
 580   // Notify the region that concurrent marking has finished. Copy the
 581   // (now finalized) next marking info fields into the prev marking
 582   // info fields.
 583   inline void note_end_of_marking();
 584 
 585   // Notify the region that it will be used as to-space during a GC
 586   // and we are about to start copying objects into it.
 587   inline void note_start_of_copying(bool during_initial_mark);
 588 
 589   // Notify the region that it ceases being to-space during a GC and
 590   // we will not copy objects into it any more.
 591   inline void note_end_of_copying(bool during_initial_mark);
 592 
 593   // Notify the region that we are about to start processing
 594   // self-forwarded objects during evac failure handling.
 595   void note_self_forwarding_removal_start(bool during_initial_mark,
 596                                           bool during_conc_mark);
 597 
 598   // Notify the region that we have finished processing self-forwarded
 599   // objects during evac failure handling.
 600   void note_self_forwarding_removal_end(bool during_initial_mark,
 601                                         bool during_conc_mark,
 602                                         size_t marked_bytes);
 603 
 604   // Returns "false" iff no object in the region was allocated when the
 605   // last mark phase ended.
 606   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
 607 
 608   void reset_during_compaction() {
 609     assert(isHumongous() && startsHumongous(),
 610            "should only be called for starts humongous regions");
 611 
 612     zero_marked_bytes();
 613     init_top_at_mark_start();
 614   }
 615 
 616   void calc_gc_efficiency(void);
 617   double gc_efficiency() { return _gc_efficiency;}
 618 
 619   int  young_index_in_cset() const { return _young_index_in_cset; }
 620   void set_young_index_in_cset(int index) {
 621     assert( (index == -1) || is_young(), "pre-condition" );
 622     _young_index_in_cset = index;
 623   }
 624 
 625   int age_in_surv_rate_group() {
 626     assert( _surv_rate_group != NULL, "pre-condition" );
 627     assert( _age_index > -1, "pre-condition" );
 628     return _surv_rate_group->age_in_group(_age_index);
 629   }
 630 
 631   void record_surv_words_in_group(size_t words_survived) {
 632     assert( _surv_rate_group != NULL, "pre-condition" );
 633     assert( _age_index > -1, "pre-condition" );
 634     int age_in_group = age_in_surv_rate_group();
 635     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
 636   }
 637 
 638   int age_in_surv_rate_group_cond() {
 639     if (_surv_rate_group != NULL)
 640       return age_in_surv_rate_group();
 641     else
 642       return -1;
 643   }
 644 
 645   SurvRateGroup* surv_rate_group() {
 646     return _surv_rate_group;
 647   }
 648 
 649   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
 650     assert( surv_rate_group != NULL, "pre-condition" );
 651     assert( _surv_rate_group == NULL, "pre-condition" );
 652     assert( is_young(), "pre-condition" );
 653 
 654     _surv_rate_group = surv_rate_group;
 655     _age_index = surv_rate_group->next_age_index();
 656   }
 657 
 658   void uninstall_surv_rate_group() {
 659     if (_surv_rate_group != NULL) {
 660       assert( _age_index > -1, "pre-condition" );
 661       assert( is_young(), "pre-condition" );
 662 
 663       _surv_rate_group = NULL;
 664       _age_index = -1;
 665     } else {
 666       assert( _age_index == -1, "pre-condition" );
 667     }
 668   }
 669 
 670   void set_free() { _type.set_free(); }
 671 
 672   void set_eden()        { _type.set_eden();        }
 673   void set_eden_pre_gc() { _type.set_eden_pre_gc(); }
 674   void set_survivor()    { _type.set_survivor();    }
 675 
 676   void set_old() { _type.set_old(); }
 677 
 678   // Determine if an object has been allocated since the last
 679   // mark performed by the collector. This returns true iff the object
 680   // is within the unmarked area of the region.
 681   bool obj_allocated_since_prev_marking(oop obj) const {
 682     return (HeapWord *) obj >= prev_top_at_mark_start();
 683   }
 684   bool obj_allocated_since_next_marking(oop obj) const {
 685     return (HeapWord *) obj >= next_top_at_mark_start();
 686   }
 687 
 688   // For parallel heapRegion traversal.
 689   bool claimHeapRegion(int claimValue);
 690   jint claim_value() { return _claimed; }
 691   // Use this carefully: only when you're sure no one is claiming...
 692   void set_claim_value(int claimValue) { _claimed = claimValue; }
 693 
 694   // Returns the "evacuation_failed" property of the region.
 695   bool evacuation_failed() { return _evacuation_failed; }
 696 
 697   // Sets the "evacuation_failed" property of the region.
 698   void set_evacuation_failed(bool b) {
 699     _evacuation_failed = b;
 700 
 701     if (b) {
 702       _next_marked_bytes = 0;
 703     }
 704   }
 705 
 706   // Requires that "mr" be entirely within the region.
 707   // Apply "cl->do_object" to all objects that intersect with "mr".
 708   // If the iteration encounters an unparseable portion of the region,
 709   // or if "cl->abort()" is true after a closure application,
 710   // terminate the iteration and return the address of the start of the
 711   // subregion that isn't done.  (The two can be distinguished by querying
 712   // "cl->abort()".)  Return of "NULL" indicates that the iteration
 713   // completed.
 714   HeapWord*
 715   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
 716 
 717   // filter_young: if true and the region is a young region then we
 718   // skip the iteration.
 719   // card_ptr: if not NULL, and we decide that the card is not young
 720   // and we iterate over it, we'll clean the card before we start the
 721   // iteration.
 722   HeapWord*
 723   oops_on_card_seq_iterate_careful(MemRegion mr,
 724                                    FilterOutOfRegionClosure* cl,
 725                                    bool filter_young,
 726                                    jbyte* card_ptr);
 727 
 728   size_t recorded_rs_length() const        { return _recorded_rs_length; }
 729   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
 730   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
 731 
 732   void set_recorded_rs_length(size_t rs_length) {
 733     _recorded_rs_length = rs_length;
 734   }
 735 
 736   void set_predicted_elapsed_time_ms(double ms) {
 737     _predicted_elapsed_time_ms = ms;
 738   }
 739 
 740   void set_predicted_bytes_to_copy(size_t bytes) {
 741     _predicted_bytes_to_copy = bytes;
 742   }
 743 
 744   virtual CompactibleSpace* next_compaction_space() const;
 745 
 746   virtual void reset_after_compaction();
 747 
 748   // Routines for managing a list of code roots (attached to the
 749   // this region's RSet) that point into this heap region.
 750   void add_strong_code_root(nmethod* nm);
 751   void add_strong_code_root_locked(nmethod* nm);
 752   void remove_strong_code_root(nmethod* nm);
 753 
 754   // Applies blk->do_code_blob() to each of the entries in
 755   // the strong code roots list for this region
 756   void strong_code_roots_do(CodeBlobClosure* blk) const;
 757 
 758   // Verify that the entries on the strong code root list for this
 759   // region are live and include at least one pointer into this region.
 760   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
 761 
 762   void print() const;
 763   void print_on(outputStream* st) const;
 764 
 765   // vo == UsePrevMarking  -> use "prev" marking information,
 766   // vo == UseNextMarking -> use "next" marking information
 767   // vo == UseMarkWord    -> use the mark word in the object header
 768   //
 769   // NOTE: Only the "prev" marking information is guaranteed to be
 770   // consistent most of the time, so most calls to this should use
 771   // vo == UsePrevMarking.
 772   // Currently, there is only one case where this is called with
 773   // vo == UseNextMarking, which is to verify the "next" marking
 774   // information at the end of remark.
 775   // Currently there is only one place where this is called with
 776   // vo == UseMarkWord, which is to verify the marking during a
 777   // full GC.
 778   void verify(VerifyOption vo, bool *failures) const;
 779 
 780   // Override; it uses the "prev" marking information
 781   virtual void verify() const;
 782 
 783   void verify_rem_set(VerifyOption vo, bool *failures) const;
 784   void verify_rem_set() const;
 785 };
 786 
 787 // HeapRegionClosure is used for iterating over regions.
 788 // Terminates the iteration when the "doHeapRegion" method returns "true".
 789 class HeapRegionClosure : public StackObj {
 790   friend class HeapRegionManager;
 791   friend class G1CollectedHeap;
 792 
 793   bool _complete;
 794   void incomplete() { _complete = false; }
 795 
 796  public:
 797   HeapRegionClosure(): _complete(true) {}
 798 
 799   // Typically called on each region until it returns true.
 800   virtual bool doHeapRegion(HeapRegion* r) = 0;
 801 
 802   // True after iteration if the closure was applied to all heap regions
 803   // and returned "false" in all cases.
 804   bool complete() { return _complete; }
 805 };
 806 
 807 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP