1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/block.hpp"
  37 #include "opto/c2compiler.hpp"
  38 #include "opto/callGenerator.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/chaitin.hpp"
  42 #include "opto/compile.hpp"
  43 #include "opto/connode.hpp"
  44 #include "opto/divnode.hpp"
  45 #include "opto/escape.hpp"
  46 #include "opto/idealGraphPrinter.hpp"
  47 #include "opto/loopnode.hpp"
  48 #include "opto/machnode.hpp"
  49 #include "opto/macro.hpp"
  50 #include "opto/matcher.hpp"
  51 #include "opto/mathexactnode.hpp"
  52 #include "opto/memnode.hpp"
  53 #include "opto/mulnode.hpp"
  54 #include "opto/node.hpp"
  55 #include "opto/opcodes.hpp"
  56 #include "opto/output.hpp"
  57 #include "opto/parse.hpp"
  58 #include "opto/phaseX.hpp"
  59 #include "opto/rootnode.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/stringopts.hpp"
  62 #include "opto/type.hpp"
  63 #include "opto/vectornode.hpp"
  64 #include "runtime/arguments.hpp"
  65 #include "runtime/signature.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/timer.hpp"
  68 #include "trace/tracing.hpp"
  69 #include "utilities/copy.hpp"
  70 #if defined AD_MD_HPP
  71 # include AD_MD_HPP
  72 #elif defined TARGET_ARCH_MODEL_x86_32
  73 # include "adfiles/ad_x86_32.hpp"
  74 #elif defined TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #elif defined TARGET_ARCH_MODEL_sparc
  77 # include "adfiles/ad_sparc.hpp"
  78 #elif defined TARGET_ARCH_MODEL_zero
  79 # include "adfiles/ad_zero.hpp"
  80 #elif defined TARGET_ARCH_MODEL_ppc_64
  81 # include "adfiles/ad_ppc_64.hpp"
  82 #endif
  83 
  84 
  85 // -------------------- Compile::mach_constant_base_node -----------------------
  86 // Constant table base node singleton.
  87 MachConstantBaseNode* Compile::mach_constant_base_node() {
  88   if (_mach_constant_base_node == NULL) {
  89     _mach_constant_base_node = new (C) MachConstantBaseNode();
  90     _mach_constant_base_node->add_req(C->root());
  91   }
  92   return _mach_constant_base_node;
  93 }
  94 
  95 
  96 /// Support for intrinsics.
  97 
  98 // Return the index at which m must be inserted (or already exists).
  99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 100 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 101 #ifdef ASSERT
 102   for (int i = 1; i < _intrinsics->length(); i++) {
 103     CallGenerator* cg1 = _intrinsics->at(i-1);
 104     CallGenerator* cg2 = _intrinsics->at(i);
 105     assert(cg1->method() != cg2->method()
 106            ? cg1->method()     < cg2->method()
 107            : cg1->is_virtual() < cg2->is_virtual(),
 108            "compiler intrinsics list must stay sorted");
 109   }
 110 #endif
 111   // Binary search sorted list, in decreasing intervals [lo, hi].
 112   int lo = 0, hi = _intrinsics->length()-1;
 113   while (lo <= hi) {
 114     int mid = (uint)(hi + lo) / 2;
 115     ciMethod* mid_m = _intrinsics->at(mid)->method();
 116     if (m < mid_m) {
 117       hi = mid-1;
 118     } else if (m > mid_m) {
 119       lo = mid+1;
 120     } else {
 121       // look at minor sort key
 122       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 123       if (is_virtual < mid_virt) {
 124         hi = mid-1;
 125       } else if (is_virtual > mid_virt) {
 126         lo = mid+1;
 127       } else {
 128         return mid;  // exact match
 129       }
 130     }
 131   }
 132   return lo;  // inexact match
 133 }
 134 
 135 void Compile::register_intrinsic(CallGenerator* cg) {
 136   if (_intrinsics == NULL) {
 137     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 138   }
 139   // This code is stolen from ciObjectFactory::insert.
 140   // Really, GrowableArray should have methods for
 141   // insert_at, remove_at, and binary_search.
 142   int len = _intrinsics->length();
 143   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 144   if (index == len) {
 145     _intrinsics->append(cg);
 146   } else {
 147 #ifdef ASSERT
 148     CallGenerator* oldcg = _intrinsics->at(index);
 149     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 150 #endif
 151     _intrinsics->append(_intrinsics->at(len-1));
 152     int pos;
 153     for (pos = len-2; pos >= index; pos--) {
 154       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 155     }
 156     _intrinsics->at_put(index, cg);
 157   }
 158   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 159 }
 160 
 161 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 162   assert(m->is_loaded(), "don't try this on unloaded methods");
 163   if (_intrinsics != NULL) {
 164     int index = intrinsic_insertion_index(m, is_virtual);
 165     if (index < _intrinsics->length()
 166         && _intrinsics->at(index)->method() == m
 167         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 168       return _intrinsics->at(index);
 169     }
 170   }
 171   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 172   if (m->intrinsic_id() != vmIntrinsics::_none &&
 173       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 174     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 175     if (cg != NULL) {
 176       // Save it for next time:
 177       register_intrinsic(cg);
 178       return cg;
 179     } else {
 180       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 181     }
 182   }
 183   return NULL;
 184 }
 185 
 186 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 187 // in library_call.cpp.
 188 
 189 
 190 #ifndef PRODUCT
 191 // statistics gathering...
 192 
 193 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 194 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 195 
 196 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 197   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 198   int oflags = _intrinsic_hist_flags[id];
 199   assert(flags != 0, "what happened?");
 200   if (is_virtual) {
 201     flags |= _intrinsic_virtual;
 202   }
 203   bool changed = (flags != oflags);
 204   if ((flags & _intrinsic_worked) != 0) {
 205     juint count = (_intrinsic_hist_count[id] += 1);
 206     if (count == 1) {
 207       changed = true;           // first time
 208     }
 209     // increment the overall count also:
 210     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 211   }
 212   if (changed) {
 213     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 214       // Something changed about the intrinsic's virtuality.
 215       if ((flags & _intrinsic_virtual) != 0) {
 216         // This is the first use of this intrinsic as a virtual call.
 217         if (oflags != 0) {
 218           // We already saw it as a non-virtual, so note both cases.
 219           flags |= _intrinsic_both;
 220         }
 221       } else if ((oflags & _intrinsic_both) == 0) {
 222         // This is the first use of this intrinsic as a non-virtual
 223         flags |= _intrinsic_both;
 224       }
 225     }
 226     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 227   }
 228   // update the overall flags also:
 229   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 230   return changed;
 231 }
 232 
 233 static char* format_flags(int flags, char* buf) {
 234   buf[0] = 0;
 235   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 236   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 237   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 238   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 239   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 240   if (buf[0] == 0)  strcat(buf, ",");
 241   assert(buf[0] == ',', "must be");
 242   return &buf[1];
 243 }
 244 
 245 void Compile::print_intrinsic_statistics() {
 246   char flagsbuf[100];
 247   ttyLocker ttyl;
 248   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 249   tty->print_cr("Compiler intrinsic usage:");
 250   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 251   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 252   #define PRINT_STAT_LINE(name, c, f) \
 253     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 254   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 255     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 256     int   flags = _intrinsic_hist_flags[id];
 257     juint count = _intrinsic_hist_count[id];
 258     if ((flags | count) != 0) {
 259       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 260     }
 261   }
 262   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 263   if (xtty != NULL)  xtty->tail("statistics");
 264 }
 265 
 266 void Compile::print_statistics() {
 267   { ttyLocker ttyl;
 268     if (xtty != NULL)  xtty->head("statistics type='opto'");
 269     Parse::print_statistics();
 270     PhaseCCP::print_statistics();
 271     PhaseRegAlloc::print_statistics();
 272     Scheduling::print_statistics();
 273     PhasePeephole::print_statistics();
 274     PhaseIdealLoop::print_statistics();
 275     if (xtty != NULL)  xtty->tail("statistics");
 276   }
 277   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 278     // put this under its own <statistics> element.
 279     print_intrinsic_statistics();
 280   }
 281 }
 282 #endif //PRODUCT
 283 
 284 // Support for bundling info
 285 Bundle* Compile::node_bundling(const Node *n) {
 286   assert(valid_bundle_info(n), "oob");
 287   return &_node_bundling_base[n->_idx];
 288 }
 289 
 290 bool Compile::valid_bundle_info(const Node *n) {
 291   return (_node_bundling_limit > n->_idx);
 292 }
 293 
 294 
 295 void Compile::gvn_replace_by(Node* n, Node* nn) {
 296   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 297     Node* use = n->last_out(i);
 298     bool is_in_table = initial_gvn()->hash_delete(use);
 299     uint uses_found = 0;
 300     for (uint j = 0; j < use->len(); j++) {
 301       if (use->in(j) == n) {
 302         if (j < use->req())
 303           use->set_req(j, nn);
 304         else
 305           use->set_prec(j, nn);
 306         uses_found++;
 307       }
 308     }
 309     if (is_in_table) {
 310       // reinsert into table
 311       initial_gvn()->hash_find_insert(use);
 312     }
 313     record_for_igvn(use);
 314     i -= uses_found;    // we deleted 1 or more copies of this edge
 315   }
 316 }
 317 
 318 
 319 static inline bool not_a_node(const Node* n) {
 320   if (n == NULL)                   return true;
 321   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 322   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 323   return false;
 324 }
 325 
 326 // Identify all nodes that are reachable from below, useful.
 327 // Use breadth-first pass that records state in a Unique_Node_List,
 328 // recursive traversal is slower.
 329 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 330   int estimated_worklist_size = live_nodes();
 331   useful.map( estimated_worklist_size, NULL );  // preallocate space
 332 
 333   // Initialize worklist
 334   if (root() != NULL)     { useful.push(root()); }
 335   // If 'top' is cached, declare it useful to preserve cached node
 336   if( cached_top_node() ) { useful.push(cached_top_node()); }
 337 
 338   // Push all useful nodes onto the list, breadthfirst
 339   for( uint next = 0; next < useful.size(); ++next ) {
 340     assert( next < unique(), "Unique useful nodes < total nodes");
 341     Node *n  = useful.at(next);
 342     uint max = n->len();
 343     for( uint i = 0; i < max; ++i ) {
 344       Node *m = n->in(i);
 345       if (not_a_node(m))  continue;
 346       useful.push(m);
 347     }
 348   }
 349 }
 350 
 351 // Update dead_node_list with any missing dead nodes using useful
 352 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 353 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 354   uint max_idx = unique();
 355   VectorSet& useful_node_set = useful.member_set();
 356 
 357   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 358     // If node with index node_idx is not in useful set,
 359     // mark it as dead in dead node list.
 360     if (! useful_node_set.test(node_idx) ) {
 361       record_dead_node(node_idx);
 362     }
 363   }
 364 }
 365 
 366 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 367   int shift = 0;
 368   for (int i = 0; i < inlines->length(); i++) {
 369     CallGenerator* cg = inlines->at(i);
 370     CallNode* call = cg->call_node();
 371     if (shift > 0) {
 372       inlines->at_put(i-shift, cg);
 373     }
 374     if (!useful.member(call)) {
 375       shift++;
 376     }
 377   }
 378   inlines->trunc_to(inlines->length()-shift);
 379 }
 380 
 381 // Disconnect all useless nodes by disconnecting those at the boundary.
 382 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 383   uint next = 0;
 384   while (next < useful.size()) {
 385     Node *n = useful.at(next++);
 386     if (n->is_SafePoint()) {
 387       // We're done with a parsing phase. Replaced nodes are not valid
 388       // beyond that point.
 389       n->as_SafePoint()->delete_replaced_nodes();
 390     }
 391     // Use raw traversal of out edges since this code removes out edges
 392     int max = n->outcnt();
 393     for (int j = 0; j < max; ++j) {
 394       Node* child = n->raw_out(j);
 395       if (! useful.member(child)) {
 396         assert(!child->is_top() || child != top(),
 397                "If top is cached in Compile object it is in useful list");
 398         // Only need to remove this out-edge to the useless node
 399         n->raw_del_out(j);
 400         --j;
 401         --max;
 402       }
 403     }
 404     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 405       record_for_igvn(n->unique_out());
 406     }
 407   }
 408   // Remove useless macro and predicate opaq nodes
 409   for (int i = C->macro_count()-1; i >= 0; i--) {
 410     Node* n = C->macro_node(i);
 411     if (!useful.member(n)) {
 412       remove_macro_node(n);
 413     }
 414   }
 415   // Remove useless CastII nodes with range check dependency
 416   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 417     Node* cast = range_check_cast_node(i);
 418     if (!useful.member(cast)) {
 419       remove_range_check_cast(cast);
 420     }
 421   }
 422   // Remove useless expensive node
 423   for (int i = C->expensive_count()-1; i >= 0; i--) {
 424     Node* n = C->expensive_node(i);
 425     if (!useful.member(n)) {
 426       remove_expensive_node(n);
 427     }
 428   }
 429   // clean up the late inline lists
 430   remove_useless_late_inlines(&_string_late_inlines, useful);
 431   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 432   remove_useless_late_inlines(&_late_inlines, useful);
 433   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 434 }
 435 
 436 //------------------------------frame_size_in_words-----------------------------
 437 // frame_slots in units of words
 438 int Compile::frame_size_in_words() const {
 439   // shift is 0 in LP32 and 1 in LP64
 440   const int shift = (LogBytesPerWord - LogBytesPerInt);
 441   int words = _frame_slots >> shift;
 442   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 443   return words;
 444 }
 445 
 446 // To bang the stack of this compiled method we use the stack size
 447 // that the interpreter would need in case of a deoptimization. This
 448 // removes the need to bang the stack in the deoptimization blob which
 449 // in turn simplifies stack overflow handling.
 450 int Compile::bang_size_in_bytes() const {
 451   return MAX2(_interpreter_frame_size, frame_size_in_bytes());
 452 }
 453 
 454 // ============================================================================
 455 //------------------------------CompileWrapper---------------------------------
 456 class CompileWrapper : public StackObj {
 457   Compile *const _compile;
 458  public:
 459   CompileWrapper(Compile* compile);
 460 
 461   ~CompileWrapper();
 462 };
 463 
 464 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 465   // the Compile* pointer is stored in the current ciEnv:
 466   ciEnv* env = compile->env();
 467   assert(env == ciEnv::current(), "must already be a ciEnv active");
 468   assert(env->compiler_data() == NULL, "compile already active?");
 469   env->set_compiler_data(compile);
 470   assert(compile == Compile::current(), "sanity");
 471 
 472   compile->set_type_dict(NULL);
 473   compile->set_type_hwm(NULL);
 474   compile->set_type_last_size(0);
 475   compile->set_last_tf(NULL, NULL);
 476   compile->set_indexSet_arena(NULL);
 477   compile->set_indexSet_free_block_list(NULL);
 478   compile->init_type_arena();
 479   Type::Initialize(compile);
 480   _compile->set_scratch_buffer_blob(NULL);
 481   _compile->begin_method();
 482 }
 483 CompileWrapper::~CompileWrapper() {
 484   _compile->end_method();
 485   if (_compile->scratch_buffer_blob() != NULL)
 486     BufferBlob::free(_compile->scratch_buffer_blob());
 487   _compile->env()->set_compiler_data(NULL);
 488 }
 489 
 490 
 491 //----------------------------print_compile_messages---------------------------
 492 void Compile::print_compile_messages() {
 493 #ifndef PRODUCT
 494   // Check if recompiling
 495   if (_subsume_loads == false && PrintOpto) {
 496     // Recompiling without allowing machine instructions to subsume loads
 497     tty->print_cr("*********************************************************");
 498     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 499     tty->print_cr("*********************************************************");
 500   }
 501   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 502     // Recompiling without escape analysis
 503     tty->print_cr("*********************************************************");
 504     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 505     tty->print_cr("*********************************************************");
 506   }
 507   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 508     // Recompiling without boxing elimination
 509     tty->print_cr("*********************************************************");
 510     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 511     tty->print_cr("*********************************************************");
 512   }
 513   if (env()->break_at_compile()) {
 514     // Open the debugger when compiling this method.
 515     tty->print("### Breaking when compiling: ");
 516     method()->print_short_name();
 517     tty->cr();
 518     BREAKPOINT;
 519   }
 520 
 521   if( PrintOpto ) {
 522     if (is_osr_compilation()) {
 523       tty->print("[OSR]%3d", _compile_id);
 524     } else {
 525       tty->print("%3d", _compile_id);
 526     }
 527   }
 528 #endif
 529 }
 530 
 531 
 532 //-----------------------init_scratch_buffer_blob------------------------------
 533 // Construct a temporary BufferBlob and cache it for this compile.
 534 void Compile::init_scratch_buffer_blob(int const_size) {
 535   // If there is already a scratch buffer blob allocated and the
 536   // constant section is big enough, use it.  Otherwise free the
 537   // current and allocate a new one.
 538   BufferBlob* blob = scratch_buffer_blob();
 539   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 540     // Use the current blob.
 541   } else {
 542     if (blob != NULL) {
 543       BufferBlob::free(blob);
 544     }
 545 
 546     ResourceMark rm;
 547     _scratch_const_size = const_size;
 548     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 549     blob = BufferBlob::create("Compile::scratch_buffer", size);
 550     // Record the buffer blob for next time.
 551     set_scratch_buffer_blob(blob);
 552     // Have we run out of code space?
 553     if (scratch_buffer_blob() == NULL) {
 554       // Let CompilerBroker disable further compilations.
 555       record_failure("Not enough space for scratch buffer in CodeCache");
 556       return;
 557     }
 558   }
 559 
 560   // Initialize the relocation buffers
 561   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 562   set_scratch_locs_memory(locs_buf);
 563 }
 564 
 565 
 566 //-----------------------scratch_emit_size-------------------------------------
 567 // Helper function that computes size by emitting code
 568 uint Compile::scratch_emit_size(const Node* n) {
 569   // Start scratch_emit_size section.
 570   set_in_scratch_emit_size(true);
 571 
 572   // Emit into a trash buffer and count bytes emitted.
 573   // This is a pretty expensive way to compute a size,
 574   // but it works well enough if seldom used.
 575   // All common fixed-size instructions are given a size
 576   // method by the AD file.
 577   // Note that the scratch buffer blob and locs memory are
 578   // allocated at the beginning of the compile task, and
 579   // may be shared by several calls to scratch_emit_size.
 580   // The allocation of the scratch buffer blob is particularly
 581   // expensive, since it has to grab the code cache lock.
 582   BufferBlob* blob = this->scratch_buffer_blob();
 583   assert(blob != NULL, "Initialize BufferBlob at start");
 584   assert(blob->size() > MAX_inst_size, "sanity");
 585   relocInfo* locs_buf = scratch_locs_memory();
 586   address blob_begin = blob->content_begin();
 587   address blob_end   = (address)locs_buf;
 588   assert(blob->content_contains(blob_end), "sanity");
 589   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 590   buf.initialize_consts_size(_scratch_const_size);
 591   buf.initialize_stubs_size(MAX_stubs_size);
 592   assert(locs_buf != NULL, "sanity");
 593   int lsize = MAX_locs_size / 3;
 594   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 595   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 596   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 597 
 598   // Do the emission.
 599 
 600   Label fakeL; // Fake label for branch instructions.
 601   Label*   saveL = NULL;
 602   uint save_bnum = 0;
 603   bool is_branch = n->is_MachBranch();
 604   if (is_branch) {
 605     MacroAssembler masm(&buf);
 606     masm.bind(fakeL);
 607     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 608     n->as_MachBranch()->label_set(&fakeL, 0);
 609   }
 610   n->emit(buf, this->regalloc());
 611 
 612   // Emitting into the scratch buffer should not fail
 613   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
 614 
 615   if (is_branch) // Restore label.
 616     n->as_MachBranch()->label_set(saveL, save_bnum);
 617 
 618   // End scratch_emit_size section.
 619   set_in_scratch_emit_size(false);
 620 
 621   return buf.insts_size();
 622 }
 623 
 624 
 625 // ============================================================================
 626 //------------------------------Compile standard-------------------------------
 627 debug_only( int Compile::_debug_idx = 100000; )
 628 
 629 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 630 // the continuation bci for on stack replacement.
 631 
 632 
 633 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 634                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 635                 : Phase(Compiler),
 636                   _env(ci_env),
 637                   _log(ci_env->log()),
 638                   _compile_id(ci_env->compile_id()),
 639                   _save_argument_registers(false),
 640                   _stub_name(NULL),
 641                   _stub_function(NULL),
 642                   _stub_entry_point(NULL),
 643                   _method(target),
 644                   _entry_bci(osr_bci),
 645                   _initial_gvn(NULL),
 646                   _for_igvn(NULL),
 647                   _warm_calls(NULL),
 648                   _subsume_loads(subsume_loads),
 649                   _do_escape_analysis(do_escape_analysis),
 650                   _eliminate_boxing(eliminate_boxing),
 651                   _failure_reason(NULL),
 652                   _code_buffer("Compile::Fill_buffer"),
 653                   _orig_pc_slot(0),
 654                   _orig_pc_slot_offset_in_bytes(0),
 655                   _has_method_handle_invokes(false),
 656                   _mach_constant_base_node(NULL),
 657                   _node_bundling_limit(0),
 658                   _node_bundling_base(NULL),
 659                   _java_calls(0),
 660                   _inner_loops(0),
 661                   _scratch_const_size(-1),
 662                   _in_scratch_emit_size(false),
 663                   _dead_node_list(comp_arena()),
 664                   _dead_node_count(0),
 665 #ifndef PRODUCT
 666                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 667                   _in_dump_cnt(0),
 668                   _printer(IdealGraphPrinter::printer()),
 669 #endif
 670                   _congraph(NULL),
 671                   _comp_arena(mtCompiler),
 672                   _node_arena(mtCompiler),
 673                   _old_arena(mtCompiler),
 674                   _Compile_types(mtCompiler),
 675                   _replay_inline_data(NULL),
 676                   _late_inlines(comp_arena(), 2, 0, NULL),
 677                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 678                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 679                   _late_inlines_pos(0),
 680                   _number_of_mh_late_inlines(0),
 681                   _inlining_progress(false),
 682                   _inlining_incrementally(false),
 683                   _print_inlining_list(NULL),
 684                   _print_inlining_idx(0),
 685                   _interpreter_frame_size(0),
 686                   _max_node_limit(MaxNodeLimit) {
 687   C = this;
 688 
 689   CompileWrapper cw(this);
 690 #ifndef PRODUCT
 691   if (TimeCompiler2) {
 692     tty->print(" ");
 693     target->holder()->name()->print();
 694     tty->print(".");
 695     target->print_short_name();
 696     tty->print("  ");
 697   }
 698   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 699   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 700   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 701   if (!print_opto_assembly) {
 702     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 703     if (print_assembly && !Disassembler::can_decode()) {
 704       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 705       print_opto_assembly = true;
 706     }
 707   }
 708   set_print_assembly(print_opto_assembly);
 709   set_parsed_irreducible_loop(false);
 710 
 711   if (method()->has_option("ReplayInline")) {
 712     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 713   }
 714 #endif
 715   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 716   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 717   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 718 
 719   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 720     // Make sure the method being compiled gets its own MDO,
 721     // so we can at least track the decompile_count().
 722     // Need MDO to record RTM code generation state.
 723     method()->ensure_method_data();
 724   }
 725 
 726   Init(::AliasLevel);
 727 
 728 
 729   print_compile_messages();
 730 
 731   _ilt = InlineTree::build_inline_tree_root();
 732 
 733   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 734   assert(num_alias_types() >= AliasIdxRaw, "");
 735 
 736 #define MINIMUM_NODE_HASH  1023
 737   // Node list that Iterative GVN will start with
 738   Unique_Node_List for_igvn(comp_arena());
 739   set_for_igvn(&for_igvn);
 740 
 741   // GVN that will be run immediately on new nodes
 742   uint estimated_size = method()->code_size()*4+64;
 743   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 744   PhaseGVN gvn(node_arena(), estimated_size);
 745   set_initial_gvn(&gvn);
 746 
 747   if (print_inlining() || print_intrinsics()) {
 748     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 749   }
 750   { // Scope for timing the parser
 751     TracePhase t3("parse", &_t_parser, true);
 752 
 753     // Put top into the hash table ASAP.
 754     initial_gvn()->transform_no_reclaim(top());
 755 
 756     // Set up tf(), start(), and find a CallGenerator.
 757     CallGenerator* cg = NULL;
 758     if (is_osr_compilation()) {
 759       const TypeTuple *domain = StartOSRNode::osr_domain();
 760       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 761       init_tf(TypeFunc::make(domain, range));
 762       StartNode* s = new (this) StartOSRNode(root(), domain);
 763       initial_gvn()->set_type_bottom(s);
 764       init_start(s);
 765       cg = CallGenerator::for_osr(method(), entry_bci());
 766     } else {
 767       // Normal case.
 768       init_tf(TypeFunc::make(method()));
 769       StartNode* s = new (this) StartNode(root(), tf()->domain());
 770       initial_gvn()->set_type_bottom(s);
 771       init_start(s);
 772       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 773         // With java.lang.ref.reference.get() we must go through the
 774         // intrinsic when G1 is enabled - even when get() is the root
 775         // method of the compile - so that, if necessary, the value in
 776         // the referent field of the reference object gets recorded by
 777         // the pre-barrier code.
 778         // Specifically, if G1 is enabled, the value in the referent
 779         // field is recorded by the G1 SATB pre barrier. This will
 780         // result in the referent being marked live and the reference
 781         // object removed from the list of discovered references during
 782         // reference processing.
 783         cg = find_intrinsic(method(), false);
 784       }
 785       if (cg == NULL) {
 786         float past_uses = method()->interpreter_invocation_count();
 787         float expected_uses = past_uses;
 788         cg = CallGenerator::for_inline(method(), expected_uses);
 789       }
 790     }
 791     if (failing())  return;
 792     if (cg == NULL) {
 793       record_method_not_compilable_all_tiers("cannot parse method");
 794       return;
 795     }
 796     JVMState* jvms = build_start_state(start(), tf());
 797     if ((jvms = cg->generate(jvms)) == NULL) {
 798       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 799         record_method_not_compilable("method parse failed");
 800       }
 801       return;
 802     }
 803     GraphKit kit(jvms);
 804 
 805     if (!kit.stopped()) {
 806       // Accept return values, and transfer control we know not where.
 807       // This is done by a special, unique ReturnNode bound to root.
 808       return_values(kit.jvms());
 809     }
 810 
 811     if (kit.has_exceptions()) {
 812       // Any exceptions that escape from this call must be rethrown
 813       // to whatever caller is dynamically above us on the stack.
 814       // This is done by a special, unique RethrowNode bound to root.
 815       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 816     }
 817 
 818     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 819 
 820     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 821       inline_string_calls(true);
 822     }
 823 
 824     if (failing())  return;
 825 
 826     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 827 
 828     // Remove clutter produced by parsing.
 829     if (!failing()) {
 830       ResourceMark rm;
 831       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 832     }
 833   }
 834 
 835   // Note:  Large methods are capped off in do_one_bytecode().
 836   if (failing())  return;
 837 
 838   // After parsing, node notes are no longer automagic.
 839   // They must be propagated by register_new_node_with_optimizer(),
 840   // clone(), or the like.
 841   set_default_node_notes(NULL);
 842 
 843   for (;;) {
 844     int successes = Inline_Warm();
 845     if (failing())  return;
 846     if (successes == 0)  break;
 847   }
 848 
 849   // Drain the list.
 850   Finish_Warm();
 851 #ifndef PRODUCT
 852   if (_printer) {
 853     _printer->print_inlining(this);
 854   }
 855 #endif
 856 
 857   if (failing())  return;
 858   NOT_PRODUCT( verify_graph_edges(); )
 859 
 860   // Now optimize
 861   Optimize();
 862   if (failing())  return;
 863   NOT_PRODUCT( verify_graph_edges(); )
 864 
 865 #ifndef PRODUCT
 866   if (PrintIdeal) {
 867     ttyLocker ttyl;  // keep the following output all in one block
 868     // This output goes directly to the tty, not the compiler log.
 869     // To enable tools to match it up with the compilation activity,
 870     // be sure to tag this tty output with the compile ID.
 871     if (xtty != NULL) {
 872       xtty->head("ideal compile_id='%d'%s", compile_id(),
 873                  is_osr_compilation()    ? " compile_kind='osr'" :
 874                  "");
 875     }
 876     root()->dump(9999);
 877     if (xtty != NULL) {
 878       xtty->tail("ideal");
 879     }
 880   }
 881 #endif
 882 
 883   NOT_PRODUCT( verify_barriers(); )
 884 
 885   // Dump compilation data to replay it.
 886   if (method()->has_option("DumpReplay")) {
 887     env()->dump_replay_data(_compile_id);
 888   }
 889   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 890     env()->dump_inline_data(_compile_id);
 891   }
 892 
 893   // Now that we know the size of all the monitors we can add a fixed slot
 894   // for the original deopt pc.
 895 
 896   _orig_pc_slot =  fixed_slots();
 897   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 898   set_fixed_slots(next_slot);
 899 
 900   // Compute when to use implicit null checks. Used by matching trap based
 901   // nodes and NullCheck optimization.
 902   set_allowed_deopt_reasons();
 903 
 904   // Now generate code
 905   Code_Gen();
 906   if (failing())  return;
 907 
 908   // Check if we want to skip execution of all compiled code.
 909   {
 910 #ifndef PRODUCT
 911     if (OptoNoExecute) {
 912       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 913       return;
 914     }
 915     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 916 #endif
 917 
 918     if (is_osr_compilation()) {
 919       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 920       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 921     } else {
 922       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 923       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 924     }
 925 
 926     env()->register_method(_method, _entry_bci,
 927                            &_code_offsets,
 928                            _orig_pc_slot_offset_in_bytes,
 929                            code_buffer(),
 930                            frame_size_in_words(), _oop_map_set,
 931                            &_handler_table, &_inc_table,
 932                            compiler,
 933                            env()->comp_level(),
 934                            has_unsafe_access(),
 935                            SharedRuntime::is_wide_vector(max_vector_size()),
 936                            rtm_state()
 937                            );
 938 
 939     if (log() != NULL) // Print code cache state into compiler log
 940       log()->code_cache_state();
 941   }
 942 }
 943 
 944 //------------------------------Compile----------------------------------------
 945 // Compile a runtime stub
 946 Compile::Compile( ciEnv* ci_env,
 947                   TypeFunc_generator generator,
 948                   address stub_function,
 949                   const char *stub_name,
 950                   int is_fancy_jump,
 951                   bool pass_tls,
 952                   bool save_arg_registers,
 953                   bool return_pc )
 954   : Phase(Compiler),
 955     _env(ci_env),
 956     _log(ci_env->log()),
 957     _compile_id(0),
 958     _save_argument_registers(save_arg_registers),
 959     _method(NULL),
 960     _stub_name(stub_name),
 961     _stub_function(stub_function),
 962     _stub_entry_point(NULL),
 963     _entry_bci(InvocationEntryBci),
 964     _initial_gvn(NULL),
 965     _for_igvn(NULL),
 966     _warm_calls(NULL),
 967     _orig_pc_slot(0),
 968     _orig_pc_slot_offset_in_bytes(0),
 969     _subsume_loads(true),
 970     _do_escape_analysis(false),
 971     _eliminate_boxing(false),
 972     _failure_reason(NULL),
 973     _code_buffer("Compile::Fill_buffer"),
 974     _has_method_handle_invokes(false),
 975     _mach_constant_base_node(NULL),
 976     _node_bundling_limit(0),
 977     _node_bundling_base(NULL),
 978     _java_calls(0),
 979     _inner_loops(0),
 980 #ifndef PRODUCT
 981     _trace_opto_output(TraceOptoOutput),
 982     _in_dump_cnt(0),
 983     _printer(NULL),
 984 #endif
 985     _comp_arena(mtCompiler),
 986     _node_arena(mtCompiler),
 987     _old_arena(mtCompiler),
 988     _Compile_types(mtCompiler),
 989     _dead_node_list(comp_arena()),
 990     _dead_node_count(0),
 991     _congraph(NULL),
 992     _replay_inline_data(NULL),
 993     _number_of_mh_late_inlines(0),
 994     _inlining_progress(false),
 995     _inlining_incrementally(false),
 996     _print_inlining_list(NULL),
 997     _print_inlining_idx(0),
 998     _allowed_reasons(0),
 999     _interpreter_frame_size(0),
1000     _max_node_limit(MaxNodeLimit) {
1001   C = this;
1002 
1003 #ifndef PRODUCT
1004   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
1005   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
1006   set_print_assembly(PrintFrameConverterAssembly);
1007   set_parsed_irreducible_loop(false);
1008 #endif
1009   set_has_irreducible_loop(false); // no loops
1010 
1011   CompileWrapper cw(this);
1012   Init(/*AliasLevel=*/ 0);
1013   init_tf((*generator)());
1014 
1015   {
1016     // The following is a dummy for the sake of GraphKit::gen_stub
1017     Unique_Node_List for_igvn(comp_arena());
1018     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1019     PhaseGVN gvn(Thread::current()->resource_area(),255);
1020     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1021     gvn.transform_no_reclaim(top());
1022 
1023     GraphKit kit;
1024     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1025   }
1026 
1027   NOT_PRODUCT( verify_graph_edges(); )
1028   Code_Gen();
1029   if (failing())  return;
1030 
1031 
1032   // Entry point will be accessed using compile->stub_entry_point();
1033   if (code_buffer() == NULL) {
1034     Matcher::soft_match_failure();
1035   } else {
1036     if (PrintAssembly && (WizardMode || Verbose))
1037       tty->print_cr("### Stub::%s", stub_name);
1038 
1039     if (!failing()) {
1040       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1041 
1042       // Make the NMethod
1043       // For now we mark the frame as never safe for profile stackwalking
1044       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1045                                                       code_buffer(),
1046                                                       CodeOffsets::frame_never_safe,
1047                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1048                                                       frame_size_in_words(),
1049                                                       _oop_map_set,
1050                                                       save_arg_registers);
1051       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1052 
1053       _stub_entry_point = rs->entry_point();
1054     }
1055   }
1056 }
1057 
1058 //------------------------------Init-------------------------------------------
1059 // Prepare for a single compilation
1060 void Compile::Init(int aliaslevel) {
1061   _unique  = 0;
1062   _regalloc = NULL;
1063 
1064   _tf      = NULL;  // filled in later
1065   _top     = NULL;  // cached later
1066   _matcher = NULL;  // filled in later
1067   _cfg     = NULL;  // filled in later
1068 
1069   set_24_bit_selection_and_mode(Use24BitFP, false);
1070 
1071   _node_note_array = NULL;
1072   _default_node_notes = NULL;
1073 
1074   _immutable_memory = NULL; // filled in at first inquiry
1075 
1076   // Globally visible Nodes
1077   // First set TOP to NULL to give safe behavior during creation of RootNode
1078   set_cached_top_node(NULL);
1079   set_root(new (this) RootNode());
1080   // Now that you have a Root to point to, create the real TOP
1081   set_cached_top_node( new (this) ConNode(Type::TOP) );
1082   set_recent_alloc(NULL, NULL);
1083 
1084   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1085   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1086   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1087   env()->set_dependencies(new Dependencies(env()));
1088 
1089   _fixed_slots = 0;
1090   set_has_split_ifs(false);
1091   set_has_loops(has_method() && method()->has_loops()); // first approximation
1092   set_has_stringbuilder(false);
1093   set_has_boxed_value(false);
1094   _trap_can_recompile = false;  // no traps emitted yet
1095   _major_progress = true; // start out assuming good things will happen
1096   set_has_unsafe_access(false);
1097   set_max_vector_size(0);
1098   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1099   set_decompile_count(0);
1100 
1101   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1102   set_num_loop_opts(LoopOptsCount);
1103   set_do_inlining(Inline);
1104   set_max_inline_size(MaxInlineSize);
1105   set_freq_inline_size(FreqInlineSize);
1106   set_do_scheduling(OptoScheduling);
1107   set_do_count_invocations(false);
1108   set_do_method_data_update(false);
1109   set_rtm_state(NoRTM); // No RTM lock eliding by default
1110   method_has_option_value("MaxNodeLimit", _max_node_limit);
1111 #if INCLUDE_RTM_OPT
1112   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1113     int rtm_state = method()->method_data()->rtm_state();
1114     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1115       // Don't generate RTM lock eliding code.
1116       set_rtm_state(NoRTM);
1117     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1118       // Generate RTM lock eliding code without abort ratio calculation code.
1119       set_rtm_state(UseRTM);
1120     } else if (UseRTMDeopt) {
1121       // Generate RTM lock eliding code and include abort ratio calculation
1122       // code if UseRTMDeopt is on.
1123       set_rtm_state(ProfileRTM);
1124     }
1125   }
1126 #endif
1127   if (debug_info()->recording_non_safepoints()) {
1128     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1129                         (comp_arena(), 8, 0, NULL));
1130     set_default_node_notes(Node_Notes::make(this));
1131   }
1132 
1133   // // -- Initialize types before each compile --
1134   // // Update cached type information
1135   // if( _method && _method->constants() )
1136   //   Type::update_loaded_types(_method, _method->constants());
1137 
1138   // Init alias_type map.
1139   if (!_do_escape_analysis && aliaslevel == 3)
1140     aliaslevel = 2;  // No unique types without escape analysis
1141   _AliasLevel = aliaslevel;
1142   const int grow_ats = 16;
1143   _max_alias_types = grow_ats;
1144   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1145   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1146   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1147   {
1148     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1149   }
1150   // Initialize the first few types.
1151   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1152   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1153   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1154   _num_alias_types = AliasIdxRaw+1;
1155   // Zero out the alias type cache.
1156   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1157   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1158   probe_alias_cache(NULL)->_index = AliasIdxTop;
1159 
1160   _intrinsics = NULL;
1161   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1162   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1163   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1164   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1165   register_library_intrinsics();
1166 }
1167 
1168 //---------------------------init_start----------------------------------------
1169 // Install the StartNode on this compile object.
1170 void Compile::init_start(StartNode* s) {
1171   if (failing())
1172     return; // already failing
1173   assert(s == start(), "");
1174 }
1175 
1176 StartNode* Compile::start() const {
1177   assert(!failing(), "");
1178   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1179     Node* start = root()->fast_out(i);
1180     if( start->is_Start() )
1181       return start->as_Start();
1182   }
1183   fatal("Did not find Start node!");
1184   return NULL;
1185 }
1186 
1187 //-------------------------------immutable_memory-------------------------------------
1188 // Access immutable memory
1189 Node* Compile::immutable_memory() {
1190   if (_immutable_memory != NULL) {
1191     return _immutable_memory;
1192   }
1193   StartNode* s = start();
1194   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1195     Node *p = s->fast_out(i);
1196     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1197       _immutable_memory = p;
1198       return _immutable_memory;
1199     }
1200   }
1201   ShouldNotReachHere();
1202   return NULL;
1203 }
1204 
1205 //----------------------set_cached_top_node------------------------------------
1206 // Install the cached top node, and make sure Node::is_top works correctly.
1207 void Compile::set_cached_top_node(Node* tn) {
1208   if (tn != NULL)  verify_top(tn);
1209   Node* old_top = _top;
1210   _top = tn;
1211   // Calling Node::setup_is_top allows the nodes the chance to adjust
1212   // their _out arrays.
1213   if (_top != NULL)     _top->setup_is_top();
1214   if (old_top != NULL)  old_top->setup_is_top();
1215   assert(_top == NULL || top()->is_top(), "");
1216 }
1217 
1218 #ifdef ASSERT
1219 uint Compile::count_live_nodes_by_graph_walk() {
1220   Unique_Node_List useful(comp_arena());
1221   // Get useful node list by walking the graph.
1222   identify_useful_nodes(useful);
1223   return useful.size();
1224 }
1225 
1226 void Compile::print_missing_nodes() {
1227 
1228   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1229   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1230     return;
1231   }
1232 
1233   // This is an expensive function. It is executed only when the user
1234   // specifies VerifyIdealNodeCount option or otherwise knows the
1235   // additional work that needs to be done to identify reachable nodes
1236   // by walking the flow graph and find the missing ones using
1237   // _dead_node_list.
1238 
1239   Unique_Node_List useful(comp_arena());
1240   // Get useful node list by walking the graph.
1241   identify_useful_nodes(useful);
1242 
1243   uint l_nodes = C->live_nodes();
1244   uint l_nodes_by_walk = useful.size();
1245 
1246   if (l_nodes != l_nodes_by_walk) {
1247     if (_log != NULL) {
1248       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1249       _log->stamp();
1250       _log->end_head();
1251     }
1252     VectorSet& useful_member_set = useful.member_set();
1253     int last_idx = l_nodes_by_walk;
1254     for (int i = 0; i < last_idx; i++) {
1255       if (useful_member_set.test(i)) {
1256         if (_dead_node_list.test(i)) {
1257           if (_log != NULL) {
1258             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1259           }
1260           if (PrintIdealNodeCount) {
1261             // Print the log message to tty
1262               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1263               useful.at(i)->dump();
1264           }
1265         }
1266       }
1267       else if (! _dead_node_list.test(i)) {
1268         if (_log != NULL) {
1269           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1270         }
1271         if (PrintIdealNodeCount) {
1272           // Print the log message to tty
1273           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1274         }
1275       }
1276     }
1277     if (_log != NULL) {
1278       _log->tail("mismatched_nodes");
1279     }
1280   }
1281 }
1282 #endif
1283 
1284 #ifndef PRODUCT
1285 void Compile::verify_top(Node* tn) const {
1286   if (tn != NULL) {
1287     assert(tn->is_Con(), "top node must be a constant");
1288     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1289     assert(tn->in(0) != NULL, "must have live top node");
1290   }
1291 }
1292 #endif
1293 
1294 
1295 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1296 
1297 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1298   guarantee(arr != NULL, "");
1299   int num_blocks = arr->length();
1300   if (grow_by < num_blocks)  grow_by = num_blocks;
1301   int num_notes = grow_by * _node_notes_block_size;
1302   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1303   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1304   while (num_notes > 0) {
1305     arr->append(notes);
1306     notes     += _node_notes_block_size;
1307     num_notes -= _node_notes_block_size;
1308   }
1309   assert(num_notes == 0, "exact multiple, please");
1310 }
1311 
1312 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1313   if (source == NULL || dest == NULL)  return false;
1314 
1315   if (dest->is_Con())
1316     return false;               // Do not push debug info onto constants.
1317 
1318 #ifdef ASSERT
1319   // Leave a bread crumb trail pointing to the original node:
1320   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1321     dest->set_debug_orig(source);
1322   }
1323 #endif
1324 
1325   if (node_note_array() == NULL)
1326     return false;               // Not collecting any notes now.
1327 
1328   // This is a copy onto a pre-existing node, which may already have notes.
1329   // If both nodes have notes, do not overwrite any pre-existing notes.
1330   Node_Notes* source_notes = node_notes_at(source->_idx);
1331   if (source_notes == NULL || source_notes->is_clear())  return false;
1332   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1333   if (dest_notes == NULL || dest_notes->is_clear()) {
1334     return set_node_notes_at(dest->_idx, source_notes);
1335   }
1336 
1337   Node_Notes merged_notes = (*source_notes);
1338   // The order of operations here ensures that dest notes will win...
1339   merged_notes.update_from(dest_notes);
1340   return set_node_notes_at(dest->_idx, &merged_notes);
1341 }
1342 
1343 
1344 //--------------------------allow_range_check_smearing-------------------------
1345 // Gating condition for coalescing similar range checks.
1346 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1347 // single covering check that is at least as strong as any of them.
1348 // If the optimization succeeds, the simplified (strengthened) range check
1349 // will always succeed.  If it fails, we will deopt, and then give up
1350 // on the optimization.
1351 bool Compile::allow_range_check_smearing() const {
1352   // If this method has already thrown a range-check,
1353   // assume it was because we already tried range smearing
1354   // and it failed.
1355   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1356   return !already_trapped;
1357 }
1358 
1359 
1360 //------------------------------flatten_alias_type-----------------------------
1361 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1362   int offset = tj->offset();
1363   TypePtr::PTR ptr = tj->ptr();
1364 
1365   // Known instance (scalarizable allocation) alias only with itself.
1366   bool is_known_inst = tj->isa_oopptr() != NULL &&
1367                        tj->is_oopptr()->is_known_instance();
1368 
1369   // Process weird unsafe references.
1370   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1371     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1372     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1373     tj = TypeOopPtr::BOTTOM;
1374     ptr = tj->ptr();
1375     offset = tj->offset();
1376   }
1377 
1378   // Array pointers need some flattening
1379   const TypeAryPtr *ta = tj->isa_aryptr();
1380   if (ta && ta->is_stable()) {
1381     // Erase stability property for alias analysis.
1382     tj = ta = ta->cast_to_stable(false);
1383   }
1384   if( ta && is_known_inst ) {
1385     if ( offset != Type::OffsetBot &&
1386          offset > arrayOopDesc::length_offset_in_bytes() ) {
1387       offset = Type::OffsetBot; // Flatten constant access into array body only
1388       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1389     }
1390   } else if( ta && _AliasLevel >= 2 ) {
1391     // For arrays indexed by constant indices, we flatten the alias
1392     // space to include all of the array body.  Only the header, klass
1393     // and array length can be accessed un-aliased.
1394     if( offset != Type::OffsetBot ) {
1395       if( ta->const_oop() ) { // MethodData* or Method*
1396         offset = Type::OffsetBot;   // Flatten constant access into array body
1397         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1398       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1399         // range is OK as-is.
1400         tj = ta = TypeAryPtr::RANGE;
1401       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1402         tj = TypeInstPtr::KLASS; // all klass loads look alike
1403         ta = TypeAryPtr::RANGE; // generic ignored junk
1404         ptr = TypePtr::BotPTR;
1405       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1406         tj = TypeInstPtr::MARK;
1407         ta = TypeAryPtr::RANGE; // generic ignored junk
1408         ptr = TypePtr::BotPTR;
1409       } else {                  // Random constant offset into array body
1410         offset = Type::OffsetBot;   // Flatten constant access into array body
1411         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1412       }
1413     }
1414     // Arrays of fixed size alias with arrays of unknown size.
1415     if (ta->size() != TypeInt::POS) {
1416       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1417       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1418     }
1419     // Arrays of known objects become arrays of unknown objects.
1420     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1421       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1422       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1423     }
1424     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1425       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1426       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1427     }
1428     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1429     // cannot be distinguished by bytecode alone.
1430     if (ta->elem() == TypeInt::BOOL) {
1431       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1432       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1433       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1434     }
1435     // During the 2nd round of IterGVN, NotNull castings are removed.
1436     // Make sure the Bottom and NotNull variants alias the same.
1437     // Also, make sure exact and non-exact variants alias the same.
1438     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1439       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1440     }
1441   }
1442 
1443   // Oop pointers need some flattening
1444   const TypeInstPtr *to = tj->isa_instptr();
1445   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1446     ciInstanceKlass *k = to->klass()->as_instance_klass();
1447     if( ptr == TypePtr::Constant ) {
1448       if (to->klass() != ciEnv::current()->Class_klass() ||
1449           offset < k->size_helper() * wordSize) {
1450         // No constant oop pointers (such as Strings); they alias with
1451         // unknown strings.
1452         assert(!is_known_inst, "not scalarizable allocation");
1453         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1454       }
1455     } else if( is_known_inst ) {
1456       tj = to; // Keep NotNull and klass_is_exact for instance type
1457     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1458       // During the 2nd round of IterGVN, NotNull castings are removed.
1459       // Make sure the Bottom and NotNull variants alias the same.
1460       // Also, make sure exact and non-exact variants alias the same.
1461       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1462     }
1463     if (to->speculative() != NULL) {
1464       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1465     }
1466     // Canonicalize the holder of this field
1467     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1468       // First handle header references such as a LoadKlassNode, even if the
1469       // object's klass is unloaded at compile time (4965979).
1470       if (!is_known_inst) { // Do it only for non-instance types
1471         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1472       }
1473     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1474       // Static fields are in the space above the normal instance
1475       // fields in the java.lang.Class instance.
1476       if (to->klass() != ciEnv::current()->Class_klass()) {
1477         to = NULL;
1478         tj = TypeOopPtr::BOTTOM;
1479         offset = tj->offset();
1480       }
1481     } else {
1482       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1483       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1484         if( is_known_inst ) {
1485           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1486         } else {
1487           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1488         }
1489       }
1490     }
1491   }
1492 
1493   // Klass pointers to object array klasses need some flattening
1494   const TypeKlassPtr *tk = tj->isa_klassptr();
1495   if( tk ) {
1496     // If we are referencing a field within a Klass, we need
1497     // to assume the worst case of an Object.  Both exact and
1498     // inexact types must flatten to the same alias class so
1499     // use NotNull as the PTR.
1500     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1501 
1502       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1503                                    TypeKlassPtr::OBJECT->klass(),
1504                                    offset);
1505     }
1506 
1507     ciKlass* klass = tk->klass();
1508     if( klass->is_obj_array_klass() ) {
1509       ciKlass* k = TypeAryPtr::OOPS->klass();
1510       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1511         k = TypeInstPtr::BOTTOM->klass();
1512       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1513     }
1514 
1515     // Check for precise loads from the primary supertype array and force them
1516     // to the supertype cache alias index.  Check for generic array loads from
1517     // the primary supertype array and also force them to the supertype cache
1518     // alias index.  Since the same load can reach both, we need to merge
1519     // these 2 disparate memories into the same alias class.  Since the
1520     // primary supertype array is read-only, there's no chance of confusion
1521     // where we bypass an array load and an array store.
1522     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1523     if (offset == Type::OffsetBot ||
1524         (offset >= primary_supers_offset &&
1525          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1526         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1527       offset = in_bytes(Klass::secondary_super_cache_offset());
1528       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1529     }
1530   }
1531 
1532   // Flatten all Raw pointers together.
1533   if (tj->base() == Type::RawPtr)
1534     tj = TypeRawPtr::BOTTOM;
1535 
1536   if (tj->base() == Type::AnyPtr)
1537     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1538 
1539   // Flatten all to bottom for now
1540   switch( _AliasLevel ) {
1541   case 0:
1542     tj = TypePtr::BOTTOM;
1543     break;
1544   case 1:                       // Flatten to: oop, static, field or array
1545     switch (tj->base()) {
1546     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1547     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1548     case Type::AryPtr:   // do not distinguish arrays at all
1549     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1550     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1551     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1552     default: ShouldNotReachHere();
1553     }
1554     break;
1555   case 2:                       // No collapsing at level 2; keep all splits
1556   case 3:                       // No collapsing at level 3; keep all splits
1557     break;
1558   default:
1559     Unimplemented();
1560   }
1561 
1562   offset = tj->offset();
1563   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1564 
1565   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1566           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1567           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1568           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1569           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1570           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1571           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1572           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1573   assert( tj->ptr() != TypePtr::TopPTR &&
1574           tj->ptr() != TypePtr::AnyNull &&
1575           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1576 //    assert( tj->ptr() != TypePtr::Constant ||
1577 //            tj->base() == Type::RawPtr ||
1578 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1579 
1580   return tj;
1581 }
1582 
1583 void Compile::AliasType::Init(int i, const TypePtr* at) {
1584   _index = i;
1585   _adr_type = at;
1586   _field = NULL;
1587   _element = NULL;
1588   _is_rewritable = true; // default
1589   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1590   if (atoop != NULL && atoop->is_known_instance()) {
1591     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1592     _general_index = Compile::current()->get_alias_index(gt);
1593   } else {
1594     _general_index = 0;
1595   }
1596 }
1597 
1598 BasicType Compile::AliasType::basic_type() const {
1599   if (element() != NULL) {
1600     const Type* element = adr_type()->is_aryptr()->elem();
1601     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1602   } if (field() != NULL) {
1603     return field()->layout_type();
1604   } else {
1605     return T_ILLEGAL; // unknown
1606   }
1607 }
1608 
1609 //---------------------------------print_on------------------------------------
1610 #ifndef PRODUCT
1611 void Compile::AliasType::print_on(outputStream* st) {
1612   if (index() < 10)
1613         st->print("@ <%d> ", index());
1614   else  st->print("@ <%d>",  index());
1615   st->print(is_rewritable() ? "   " : " RO");
1616   int offset = adr_type()->offset();
1617   if (offset == Type::OffsetBot)
1618         st->print(" +any");
1619   else  st->print(" +%-3d", offset);
1620   st->print(" in ");
1621   adr_type()->dump_on(st);
1622   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1623   if (field() != NULL && tjp) {
1624     if (tjp->klass()  != field()->holder() ||
1625         tjp->offset() != field()->offset_in_bytes()) {
1626       st->print(" != ");
1627       field()->print();
1628       st->print(" ***");
1629     }
1630   }
1631 }
1632 
1633 void print_alias_types() {
1634   Compile* C = Compile::current();
1635   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1636   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1637     C->alias_type(idx)->print_on(tty);
1638     tty->cr();
1639   }
1640 }
1641 #endif
1642 
1643 
1644 //----------------------------probe_alias_cache--------------------------------
1645 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1646   intptr_t key = (intptr_t) adr_type;
1647   key ^= key >> logAliasCacheSize;
1648   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1649 }
1650 
1651 
1652 //-----------------------------grow_alias_types--------------------------------
1653 void Compile::grow_alias_types() {
1654   const int old_ats  = _max_alias_types; // how many before?
1655   const int new_ats  = old_ats;          // how many more?
1656   const int grow_ats = old_ats+new_ats;  // how many now?
1657   _max_alias_types = grow_ats;
1658   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1659   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1660   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1661   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1662 }
1663 
1664 
1665 //--------------------------------find_alias_type------------------------------
1666 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1667   if (_AliasLevel == 0)
1668     return alias_type(AliasIdxBot);
1669 
1670   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1671   if (ace->_adr_type == adr_type) {
1672     return alias_type(ace->_index);
1673   }
1674 
1675   // Handle special cases.
1676   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1677   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1678 
1679   // Do it the slow way.
1680   const TypePtr* flat = flatten_alias_type(adr_type);
1681 
1682 #ifdef ASSERT
1683   assert(flat == flatten_alias_type(flat), "idempotent");
1684   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1685   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1686     const TypeOopPtr* foop = flat->is_oopptr();
1687     // Scalarizable allocations have exact klass always.
1688     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1689     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1690     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1691   }
1692   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1693 #endif
1694 
1695   int idx = AliasIdxTop;
1696   for (int i = 0; i < num_alias_types(); i++) {
1697     if (alias_type(i)->adr_type() == flat) {
1698       idx = i;
1699       break;
1700     }
1701   }
1702 
1703   if (idx == AliasIdxTop) {
1704     if (no_create)  return NULL;
1705     // Grow the array if necessary.
1706     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1707     // Add a new alias type.
1708     idx = _num_alias_types++;
1709     _alias_types[idx]->Init(idx, flat);
1710     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1711     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1712     if (flat->isa_instptr()) {
1713       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1714           && flat->is_instptr()->klass() == env()->Class_klass())
1715         alias_type(idx)->set_rewritable(false);
1716     }
1717     if (flat->isa_aryptr()) {
1718 #ifdef ASSERT
1719       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1720       // (T_BYTE has the weakest alignment and size restrictions...)
1721       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1722 #endif
1723       if (flat->offset() == TypePtr::OffsetBot) {
1724         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1725       }
1726     }
1727     if (flat->isa_klassptr()) {
1728       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1729         alias_type(idx)->set_rewritable(false);
1730       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1731         alias_type(idx)->set_rewritable(false);
1732       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1733         alias_type(idx)->set_rewritable(false);
1734       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1735         alias_type(idx)->set_rewritable(false);
1736     }
1737     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1738     // but the base pointer type is not distinctive enough to identify
1739     // references into JavaThread.)
1740 
1741     // Check for final fields.
1742     const TypeInstPtr* tinst = flat->isa_instptr();
1743     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1744       ciField* field;
1745       if (tinst->const_oop() != NULL &&
1746           tinst->klass() == ciEnv::current()->Class_klass() &&
1747           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1748         // static field
1749         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1750         field = k->get_field_by_offset(tinst->offset(), true);
1751       } else {
1752         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1753         field = k->get_field_by_offset(tinst->offset(), false);
1754       }
1755       assert(field == NULL ||
1756              original_field == NULL ||
1757              (field->holder() == original_field->holder() &&
1758               field->offset() == original_field->offset() &&
1759               field->is_static() == original_field->is_static()), "wrong field?");
1760       // Set field() and is_rewritable() attributes.
1761       if (field != NULL)  alias_type(idx)->set_field(field);
1762     }
1763   }
1764 
1765   // Fill the cache for next time.
1766   ace->_adr_type = adr_type;
1767   ace->_index    = idx;
1768   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1769 
1770   // Might as well try to fill the cache for the flattened version, too.
1771   AliasCacheEntry* face = probe_alias_cache(flat);
1772   if (face->_adr_type == NULL) {
1773     face->_adr_type = flat;
1774     face->_index    = idx;
1775     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1776   }
1777 
1778   return alias_type(idx);
1779 }
1780 
1781 
1782 Compile::AliasType* Compile::alias_type(ciField* field) {
1783   const TypeOopPtr* t;
1784   if (field->is_static())
1785     t = TypeInstPtr::make(field->holder()->java_mirror());
1786   else
1787     t = TypeOopPtr::make_from_klass_raw(field->holder());
1788   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1789   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1790   return atp;
1791 }
1792 
1793 
1794 //------------------------------have_alias_type--------------------------------
1795 bool Compile::have_alias_type(const TypePtr* adr_type) {
1796   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1797   if (ace->_adr_type == adr_type) {
1798     return true;
1799   }
1800 
1801   // Handle special cases.
1802   if (adr_type == NULL)             return true;
1803   if (adr_type == TypePtr::BOTTOM)  return true;
1804 
1805   return find_alias_type(adr_type, true, NULL) != NULL;
1806 }
1807 
1808 //-----------------------------must_alias--------------------------------------
1809 // True if all values of the given address type are in the given alias category.
1810 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1811   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1812   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1813   if (alias_idx == AliasIdxTop)         return false; // the empty category
1814   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1815 
1816   // the only remaining possible overlap is identity
1817   int adr_idx = get_alias_index(adr_type);
1818   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1819   assert(adr_idx == alias_idx ||
1820          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1821           && adr_type                       != TypeOopPtr::BOTTOM),
1822          "should not be testing for overlap with an unsafe pointer");
1823   return adr_idx == alias_idx;
1824 }
1825 
1826 //------------------------------can_alias--------------------------------------
1827 // True if any values of the given address type are in the given alias category.
1828 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1829   if (alias_idx == AliasIdxTop)         return false; // the empty category
1830   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1831   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1832   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1833 
1834   // the only remaining possible overlap is identity
1835   int adr_idx = get_alias_index(adr_type);
1836   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1837   return adr_idx == alias_idx;
1838 }
1839 
1840 
1841 
1842 //---------------------------pop_warm_call-------------------------------------
1843 WarmCallInfo* Compile::pop_warm_call() {
1844   WarmCallInfo* wci = _warm_calls;
1845   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1846   return wci;
1847 }
1848 
1849 //----------------------------Inline_Warm--------------------------------------
1850 int Compile::Inline_Warm() {
1851   // If there is room, try to inline some more warm call sites.
1852   // %%% Do a graph index compaction pass when we think we're out of space?
1853   if (!InlineWarmCalls)  return 0;
1854 
1855   int calls_made_hot = 0;
1856   int room_to_grow   = NodeCountInliningCutoff - unique();
1857   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1858   int amount_grown   = 0;
1859   WarmCallInfo* call;
1860   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1861     int est_size = (int)call->size();
1862     if (est_size > (room_to_grow - amount_grown)) {
1863       // This one won't fit anyway.  Get rid of it.
1864       call->make_cold();
1865       continue;
1866     }
1867     call->make_hot();
1868     calls_made_hot++;
1869     amount_grown   += est_size;
1870     amount_to_grow -= est_size;
1871   }
1872 
1873   if (calls_made_hot > 0)  set_major_progress();
1874   return calls_made_hot;
1875 }
1876 
1877 
1878 //----------------------------Finish_Warm--------------------------------------
1879 void Compile::Finish_Warm() {
1880   if (!InlineWarmCalls)  return;
1881   if (failing())  return;
1882   if (warm_calls() == NULL)  return;
1883 
1884   // Clean up loose ends, if we are out of space for inlining.
1885   WarmCallInfo* call;
1886   while ((call = pop_warm_call()) != NULL) {
1887     call->make_cold();
1888   }
1889 }
1890 
1891 //---------------------cleanup_loop_predicates-----------------------
1892 // Remove the opaque nodes that protect the predicates so that all unused
1893 // checks and uncommon_traps will be eliminated from the ideal graph
1894 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1895   if (predicate_count()==0) return;
1896   for (int i = predicate_count(); i > 0; i--) {
1897     Node * n = predicate_opaque1_node(i-1);
1898     assert(n->Opcode() == Op_Opaque1, "must be");
1899     igvn.replace_node(n, n->in(1));
1900   }
1901   assert(predicate_count()==0, "should be clean!");
1902 }
1903 
1904 void Compile::add_range_check_cast(Node* n) {
1905   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1906   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1907   _range_check_casts->append(n);
1908 }
1909 
1910 // Remove all range check dependent CastIINodes.
1911 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1912   for (int i = range_check_cast_count(); i > 0; i--) {
1913     Node* cast = range_check_cast_node(i-1);
1914     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1915     igvn.replace_node(cast, cast->in(1));
1916   }
1917   assert(range_check_cast_count() == 0, "should be empty");
1918 }
1919 
1920 // StringOpts and late inlining of string methods
1921 void Compile::inline_string_calls(bool parse_time) {
1922   {
1923     // remove useless nodes to make the usage analysis simpler
1924     ResourceMark rm;
1925     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1926   }
1927 
1928   {
1929     ResourceMark rm;
1930     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1931     PhaseStringOpts pso(initial_gvn(), for_igvn());
1932     print_method(PHASE_AFTER_STRINGOPTS, 3);
1933   }
1934 
1935   // now inline anything that we skipped the first time around
1936   if (!parse_time) {
1937     _late_inlines_pos = _late_inlines.length();
1938   }
1939 
1940   while (_string_late_inlines.length() > 0) {
1941     CallGenerator* cg = _string_late_inlines.pop();
1942     cg->do_late_inline();
1943     if (failing())  return;
1944   }
1945   _string_late_inlines.trunc_to(0);
1946 }
1947 
1948 // Late inlining of boxing methods
1949 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1950   if (_boxing_late_inlines.length() > 0) {
1951     assert(has_boxed_value(), "inconsistent");
1952 
1953     PhaseGVN* gvn = initial_gvn();
1954     set_inlining_incrementally(true);
1955 
1956     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1957     for_igvn()->clear();
1958     gvn->replace_with(&igvn);
1959 
1960     _late_inlines_pos = _late_inlines.length();
1961 
1962     while (_boxing_late_inlines.length() > 0) {
1963       CallGenerator* cg = _boxing_late_inlines.pop();
1964       cg->do_late_inline();
1965       if (failing())  return;
1966     }
1967     _boxing_late_inlines.trunc_to(0);
1968 
1969     {
1970       ResourceMark rm;
1971       PhaseRemoveUseless pru(gvn, for_igvn());
1972     }
1973 
1974     igvn = PhaseIterGVN(gvn);
1975     igvn.optimize();
1976 
1977     set_inlining_progress(false);
1978     set_inlining_incrementally(false);
1979   }
1980 }
1981 
1982 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1983   assert(IncrementalInline, "incremental inlining should be on");
1984   PhaseGVN* gvn = initial_gvn();
1985 
1986   set_inlining_progress(false);
1987   for_igvn()->clear();
1988   gvn->replace_with(&igvn);
1989 
1990   int i = 0;
1991 
1992   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1993     CallGenerator* cg = _late_inlines.at(i);
1994     _late_inlines_pos = i+1;
1995     cg->do_late_inline();
1996     if (failing())  return;
1997   }
1998   int j = 0;
1999   for (; i < _late_inlines.length(); i++, j++) {
2000     _late_inlines.at_put(j, _late_inlines.at(i));
2001   }
2002   _late_inlines.trunc_to(j);
2003 
2004   {
2005     ResourceMark rm;
2006     PhaseRemoveUseless pru(gvn, for_igvn());
2007   }
2008 
2009   igvn = PhaseIterGVN(gvn);
2010 }
2011 
2012 // Perform incremental inlining until bound on number of live nodes is reached
2013 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2014   PhaseGVN* gvn = initial_gvn();
2015 
2016   set_inlining_incrementally(true);
2017   set_inlining_progress(true);
2018   uint low_live_nodes = 0;
2019 
2020   while(inlining_progress() && _late_inlines.length() > 0) {
2021 
2022     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2023       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2024         // PhaseIdealLoop is expensive so we only try it once we are
2025         // out of live nodes and we only try it again if the previous
2026         // helped got the number of nodes down significantly
2027         PhaseIdealLoop ideal_loop( igvn, false, true );
2028         if (failing())  return;
2029         low_live_nodes = live_nodes();
2030         _major_progress = true;
2031       }
2032 
2033       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2034         break;
2035       }
2036     }
2037 
2038     inline_incrementally_one(igvn);
2039 
2040     if (failing())  return;
2041 
2042     igvn.optimize();
2043 
2044     if (failing())  return;
2045   }
2046 
2047   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2048 
2049   if (_string_late_inlines.length() > 0) {
2050     assert(has_stringbuilder(), "inconsistent");
2051     for_igvn()->clear();
2052     initial_gvn()->replace_with(&igvn);
2053 
2054     inline_string_calls(false);
2055 
2056     if (failing())  return;
2057 
2058     {
2059       ResourceMark rm;
2060       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2061     }
2062 
2063     igvn = PhaseIterGVN(gvn);
2064 
2065     igvn.optimize();
2066   }
2067 
2068   set_inlining_incrementally(false);
2069 }
2070 
2071 
2072 //------------------------------Optimize---------------------------------------
2073 // Given a graph, optimize it.
2074 void Compile::Optimize() {
2075   TracePhase t1("optimizer", &_t_optimizer, true);
2076 
2077 #ifndef PRODUCT
2078   if (env()->break_at_compile()) {
2079     BREAKPOINT;
2080   }
2081 
2082 #endif
2083 
2084   ResourceMark rm;
2085   int          loop_opts_cnt;
2086 
2087   NOT_PRODUCT( verify_graph_edges(); )
2088 
2089   print_method(PHASE_AFTER_PARSING);
2090 
2091  {
2092   // Iterative Global Value Numbering, including ideal transforms
2093   // Initialize IterGVN with types and values from parse-time GVN
2094   PhaseIterGVN igvn(initial_gvn());
2095   {
2096     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2097     igvn.optimize();
2098   }
2099 
2100   print_method(PHASE_ITER_GVN1, 2);
2101 
2102   if (failing())  return;
2103 
2104   {
2105     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2106     inline_incrementally(igvn);
2107   }
2108 
2109   print_method(PHASE_INCREMENTAL_INLINE, 2);
2110 
2111   if (failing())  return;
2112 
2113   if (eliminate_boxing()) {
2114     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2115     // Inline valueOf() methods now.
2116     inline_boxing_calls(igvn);
2117 
2118     if (AlwaysIncrementalInline) {
2119       inline_incrementally(igvn);
2120     }
2121 
2122     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2123 
2124     if (failing())  return;
2125   }
2126 
2127   // Remove the speculative part of types and clean up the graph from
2128   // the extra CastPP nodes whose only purpose is to carry them. Do
2129   // that early so that optimizations are not disrupted by the extra
2130   // CastPP nodes.
2131   remove_speculative_types(igvn);
2132 
2133   // No more new expensive nodes will be added to the list from here
2134   // so keep only the actual candidates for optimizations.
2135   cleanup_expensive_nodes(igvn);
2136 
2137   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2138     NOT_PRODUCT(Compile::TracePhase t2("", &_t_renumberLive, TimeCompiler);)
2139     initial_gvn()->replace_with(&igvn);
2140     for_igvn()->clear();
2141     Unique_Node_List new_worklist(C->comp_arena());
2142     {
2143       ResourceMark rm;
2144       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2145     }
2146     set_for_igvn(&new_worklist);
2147     igvn = PhaseIterGVN(initial_gvn());
2148     igvn.optimize();
2149   }
2150 
2151   // Perform escape analysis
2152   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2153     if (has_loops()) {
2154       // Cleanup graph (remove dead nodes).
2155       TracePhase t2("idealLoop", &_t_idealLoop, true);
2156       PhaseIdealLoop ideal_loop( igvn, false, true );
2157       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2158       if (failing())  return;
2159     }
2160     ConnectionGraph::do_analysis(this, &igvn);
2161 
2162     if (failing())  return;
2163 
2164     // Optimize out fields loads from scalar replaceable allocations.
2165     igvn.optimize();
2166     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2167 
2168     if (failing())  return;
2169 
2170     if (congraph() != NULL && macro_count() > 0) {
2171       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2172       PhaseMacroExpand mexp(igvn);
2173       mexp.eliminate_macro_nodes();
2174       igvn.set_delay_transform(false);
2175 
2176       igvn.optimize();
2177       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2178 
2179       if (failing())  return;
2180     }
2181   }
2182 
2183   // Loop transforms on the ideal graph.  Range Check Elimination,
2184   // peeling, unrolling, etc.
2185 
2186   // Set loop opts counter
2187   loop_opts_cnt = num_loop_opts();
2188   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2189     {
2190       TracePhase t2("idealLoop", &_t_idealLoop, true);
2191       PhaseIdealLoop ideal_loop( igvn, true );
2192       loop_opts_cnt--;
2193       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2194       if (failing())  return;
2195     }
2196     // Loop opts pass if partial peeling occurred in previous pass
2197     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2198       TracePhase t3("idealLoop", &_t_idealLoop, true);
2199       PhaseIdealLoop ideal_loop( igvn, false );
2200       loop_opts_cnt--;
2201       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2202       if (failing())  return;
2203     }
2204     // Loop opts pass for loop-unrolling before CCP
2205     if(major_progress() && (loop_opts_cnt > 0)) {
2206       TracePhase t4("idealLoop", &_t_idealLoop, true);
2207       PhaseIdealLoop ideal_loop( igvn, false );
2208       loop_opts_cnt--;
2209       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2210     }
2211     if (!failing()) {
2212       // Verify that last round of loop opts produced a valid graph
2213       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2214       PhaseIdealLoop::verify(igvn);
2215     }
2216   }
2217   if (failing())  return;
2218 
2219   // Conditional Constant Propagation;
2220   PhaseCCP ccp( &igvn );
2221   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2222   {
2223     TracePhase t2("ccp", &_t_ccp, true);
2224     ccp.do_transform();
2225   }
2226   print_method(PHASE_CPP1, 2);
2227 
2228   assert( true, "Break here to ccp.dump_old2new_map()");
2229 
2230   // Iterative Global Value Numbering, including ideal transforms
2231   {
2232     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2233     igvn = ccp;
2234     igvn.optimize();
2235   }
2236 
2237   print_method(PHASE_ITER_GVN2, 2);
2238 
2239   if (failing())  return;
2240 
2241   // Loop transforms on the ideal graph.  Range Check Elimination,
2242   // peeling, unrolling, etc.
2243   if(loop_opts_cnt > 0) {
2244     debug_only( int cnt = 0; );
2245     while(major_progress() && (loop_opts_cnt > 0)) {
2246       TracePhase t2("idealLoop", &_t_idealLoop, true);
2247       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2248       PhaseIdealLoop ideal_loop( igvn, true);
2249       loop_opts_cnt--;
2250       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2251       if (failing())  return;
2252     }
2253   }
2254 
2255   {
2256     // Verify that all previous optimizations produced a valid graph
2257     // at least to this point, even if no loop optimizations were done.
2258     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2259     PhaseIdealLoop::verify(igvn);
2260   }
2261 
2262   if (range_check_cast_count() > 0) {
2263     // No more loop optimizations. Remove all range check dependent CastIINodes.
2264     C->remove_range_check_casts(igvn);
2265     igvn.optimize();
2266   }
2267 
2268   {
2269     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2270     PhaseMacroExpand  mex(igvn);
2271     if (mex.expand_macro_nodes()) {
2272       assert(failing(), "must bail out w/ explicit message");
2273       return;
2274     }
2275   }
2276 
2277  } // (End scope of igvn; run destructor if necessary for asserts.)
2278 
2279   dump_inlining();
2280   // A method with only infinite loops has no edges entering loops from root
2281   {
2282     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2283     if (final_graph_reshaping()) {
2284       assert(failing(), "must bail out w/ explicit message");
2285       return;
2286     }
2287   }
2288 
2289   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2290 }
2291 
2292 
2293 //------------------------------Code_Gen---------------------------------------
2294 // Given a graph, generate code for it
2295 void Compile::Code_Gen() {
2296   if (failing()) {
2297     return;
2298   }
2299 
2300   // Perform instruction selection.  You might think we could reclaim Matcher
2301   // memory PDQ, but actually the Matcher is used in generating spill code.
2302   // Internals of the Matcher (including some VectorSets) must remain live
2303   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2304   // set a bit in reclaimed memory.
2305 
2306   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2307   // nodes.  Mapping is only valid at the root of each matched subtree.
2308   NOT_PRODUCT( verify_graph_edges(); )
2309 
2310   Matcher matcher;
2311   _matcher = &matcher;
2312   {
2313     TracePhase t2("matcher", &_t_matcher, true);
2314     matcher.match();
2315   }
2316   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2317   // nodes.  Mapping is only valid at the root of each matched subtree.
2318   NOT_PRODUCT( verify_graph_edges(); )
2319 
2320   // If you have too many nodes, or if matching has failed, bail out
2321   check_node_count(0, "out of nodes matching instructions");
2322   if (failing()) {
2323     return;
2324   }
2325 
2326   // Build a proper-looking CFG
2327   PhaseCFG cfg(node_arena(), root(), matcher);
2328   _cfg = &cfg;
2329   {
2330     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2331     bool success = cfg.do_global_code_motion();
2332     if (!success) {
2333       return;
2334     }
2335 
2336     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2337     NOT_PRODUCT( verify_graph_edges(); )
2338     debug_only( cfg.verify(); )
2339   }
2340 
2341   PhaseChaitin regalloc(unique(), cfg, matcher);
2342   _regalloc = &regalloc;
2343   {
2344     TracePhase t2("regalloc", &_t_registerAllocation, true);
2345     // Perform register allocation.  After Chaitin, use-def chains are
2346     // no longer accurate (at spill code) and so must be ignored.
2347     // Node->LRG->reg mappings are still accurate.
2348     _regalloc->Register_Allocate();
2349 
2350     // Bail out if the allocator builds too many nodes
2351     if (failing()) {
2352       return;
2353     }
2354   }
2355 
2356   // Prior to register allocation we kept empty basic blocks in case the
2357   // the allocator needed a place to spill.  After register allocation we
2358   // are not adding any new instructions.  If any basic block is empty, we
2359   // can now safely remove it.
2360   {
2361     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2362     cfg.remove_empty_blocks();
2363     if (do_freq_based_layout()) {
2364       PhaseBlockLayout layout(cfg);
2365     } else {
2366       cfg.set_loop_alignment();
2367     }
2368     cfg.fixup_flow();
2369   }
2370 
2371   // Apply peephole optimizations
2372   if( OptoPeephole ) {
2373     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2374     PhasePeephole peep( _regalloc, cfg);
2375     peep.do_transform();
2376   }
2377 
2378   // Do late expand if CPU requires this.
2379   if (Matcher::require_postalloc_expand) {
2380     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2381     cfg.postalloc_expand(_regalloc);
2382   }
2383 
2384   // Convert Nodes to instruction bits in a buffer
2385   {
2386     // %%%% workspace merge brought two timers together for one job
2387     TracePhase t2a("output", &_t_output, true);
2388     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2389     Output();
2390   }
2391 
2392   print_method(PHASE_FINAL_CODE);
2393 
2394   // He's dead, Jim.
2395   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2396   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2397 }
2398 
2399 
2400 //------------------------------dump_asm---------------------------------------
2401 // Dump formatted assembly
2402 #ifndef PRODUCT
2403 void Compile::dump_asm(int *pcs, uint pc_limit) {
2404   bool cut_short = false;
2405   tty->print_cr("#");
2406   tty->print("#  ");  _tf->dump();  tty->cr();
2407   tty->print_cr("#");
2408 
2409   // For all blocks
2410   int pc = 0x0;                 // Program counter
2411   char starts_bundle = ' ';
2412   _regalloc->dump_frame();
2413 
2414   Node *n = NULL;
2415   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2416     if (VMThread::should_terminate()) {
2417       cut_short = true;
2418       break;
2419     }
2420     Block* block = _cfg->get_block(i);
2421     if (block->is_connector() && !Verbose) {
2422       continue;
2423     }
2424     n = block->head();
2425     if (pcs && n->_idx < pc_limit) {
2426       tty->print("%3.3x   ", pcs[n->_idx]);
2427     } else {
2428       tty->print("      ");
2429     }
2430     block->dump_head(_cfg);
2431     if (block->is_connector()) {
2432       tty->print_cr("        # Empty connector block");
2433     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2434       tty->print_cr("        # Block is sole successor of call");
2435     }
2436 
2437     // For all instructions
2438     Node *delay = NULL;
2439     for (uint j = 0; j < block->number_of_nodes(); j++) {
2440       if (VMThread::should_terminate()) {
2441         cut_short = true;
2442         break;
2443       }
2444       n = block->get_node(j);
2445       if (valid_bundle_info(n)) {
2446         Bundle* bundle = node_bundling(n);
2447         if (bundle->used_in_unconditional_delay()) {
2448           delay = n;
2449           continue;
2450         }
2451         if (bundle->starts_bundle()) {
2452           starts_bundle = '+';
2453         }
2454       }
2455 
2456       if (WizardMode) {
2457         n->dump();
2458       }
2459 
2460       if( !n->is_Region() &&    // Dont print in the Assembly
2461           !n->is_Phi() &&       // a few noisely useless nodes
2462           !n->is_Proj() &&
2463           !n->is_MachTemp() &&
2464           !n->is_SafePointScalarObject() &&
2465           !n->is_Catch() &&     // Would be nice to print exception table targets
2466           !n->is_MergeMem() &&  // Not very interesting
2467           !n->is_top() &&       // Debug info table constants
2468           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2469           ) {
2470         if (pcs && n->_idx < pc_limit)
2471           tty->print("%3.3x", pcs[n->_idx]);
2472         else
2473           tty->print("   ");
2474         tty->print(" %c ", starts_bundle);
2475         starts_bundle = ' ';
2476         tty->print("\t");
2477         n->format(_regalloc, tty);
2478         tty->cr();
2479       }
2480 
2481       // If we have an instruction with a delay slot, and have seen a delay,
2482       // then back up and print it
2483       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2484         assert(delay != NULL, "no unconditional delay instruction");
2485         if (WizardMode) delay->dump();
2486 
2487         if (node_bundling(delay)->starts_bundle())
2488           starts_bundle = '+';
2489         if (pcs && n->_idx < pc_limit)
2490           tty->print("%3.3x", pcs[n->_idx]);
2491         else
2492           tty->print("   ");
2493         tty->print(" %c ", starts_bundle);
2494         starts_bundle = ' ';
2495         tty->print("\t");
2496         delay->format(_regalloc, tty);
2497         tty->cr();
2498         delay = NULL;
2499       }
2500 
2501       // Dump the exception table as well
2502       if( n->is_Catch() && (Verbose || WizardMode) ) {
2503         // Print the exception table for this offset
2504         _handler_table.print_subtable_for(pc);
2505       }
2506     }
2507 
2508     if (pcs && n->_idx < pc_limit)
2509       tty->print_cr("%3.3x", pcs[n->_idx]);
2510     else
2511       tty->cr();
2512 
2513     assert(cut_short || delay == NULL, "no unconditional delay branch");
2514 
2515   } // End of per-block dump
2516   tty->cr();
2517 
2518   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2519 }
2520 #endif
2521 
2522 //------------------------------Final_Reshape_Counts---------------------------
2523 // This class defines counters to help identify when a method
2524 // may/must be executed using hardware with only 24-bit precision.
2525 struct Final_Reshape_Counts : public StackObj {
2526   int  _call_count;             // count non-inlined 'common' calls
2527   int  _float_count;            // count float ops requiring 24-bit precision
2528   int  _double_count;           // count double ops requiring more precision
2529   int  _java_call_count;        // count non-inlined 'java' calls
2530   int  _inner_loop_count;       // count loops which need alignment
2531   VectorSet _visited;           // Visitation flags
2532   Node_List _tests;             // Set of IfNodes & PCTableNodes
2533 
2534   Final_Reshape_Counts() :
2535     _call_count(0), _float_count(0), _double_count(0),
2536     _java_call_count(0), _inner_loop_count(0),
2537     _visited( Thread::current()->resource_area() ) { }
2538 
2539   void inc_call_count  () { _call_count  ++; }
2540   void inc_float_count () { _float_count ++; }
2541   void inc_double_count() { _double_count++; }
2542   void inc_java_call_count() { _java_call_count++; }
2543   void inc_inner_loop_count() { _inner_loop_count++; }
2544 
2545   int  get_call_count  () const { return _call_count  ; }
2546   int  get_float_count () const { return _float_count ; }
2547   int  get_double_count() const { return _double_count; }
2548   int  get_java_call_count() const { return _java_call_count; }
2549   int  get_inner_loop_count() const { return _inner_loop_count; }
2550 };
2551 
2552 #ifdef ASSERT
2553 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2554   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2555   // Make sure the offset goes inside the instance layout.
2556   return k->contains_field_offset(tp->offset());
2557   // Note that OffsetBot and OffsetTop are very negative.
2558 }
2559 #endif
2560 
2561 // Eliminate trivially redundant StoreCMs and accumulate their
2562 // precedence edges.
2563 void Compile::eliminate_redundant_card_marks(Node* n) {
2564   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2565   if (n->in(MemNode::Address)->outcnt() > 1) {
2566     // There are multiple users of the same address so it might be
2567     // possible to eliminate some of the StoreCMs
2568     Node* mem = n->in(MemNode::Memory);
2569     Node* adr = n->in(MemNode::Address);
2570     Node* val = n->in(MemNode::ValueIn);
2571     Node* prev = n;
2572     bool done = false;
2573     // Walk the chain of StoreCMs eliminating ones that match.  As
2574     // long as it's a chain of single users then the optimization is
2575     // safe.  Eliminating partially redundant StoreCMs would require
2576     // cloning copies down the other paths.
2577     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2578       if (adr == mem->in(MemNode::Address) &&
2579           val == mem->in(MemNode::ValueIn)) {
2580         // redundant StoreCM
2581         if (mem->req() > MemNode::OopStore) {
2582           // Hasn't been processed by this code yet.
2583           n->add_prec(mem->in(MemNode::OopStore));
2584         } else {
2585           // Already converted to precedence edge
2586           for (uint i = mem->req(); i < mem->len(); i++) {
2587             // Accumulate any precedence edges
2588             if (mem->in(i) != NULL) {
2589               n->add_prec(mem->in(i));
2590             }
2591           }
2592           // Everything above this point has been processed.
2593           done = true;
2594         }
2595         // Eliminate the previous StoreCM
2596         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2597         assert(mem->outcnt() == 0, "should be dead");
2598         mem->disconnect_inputs(NULL, this);
2599       } else {
2600         prev = mem;
2601       }
2602       mem = prev->in(MemNode::Memory);
2603     }
2604   }
2605 }
2606 
2607 //------------------------------final_graph_reshaping_impl----------------------
2608 // Implement items 1-5 from final_graph_reshaping below.
2609 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2610 
2611   if ( n->outcnt() == 0 ) return; // dead node
2612   uint nop = n->Opcode();
2613 
2614   // Check for 2-input instruction with "last use" on right input.
2615   // Swap to left input.  Implements item (2).
2616   if( n->req() == 3 &&          // two-input instruction
2617       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2618       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2619       n->in(2)->outcnt() == 1 &&// right use IS a last use
2620       !n->in(2)->is_Con() ) {   // right use is not a constant
2621     // Check for commutative opcode
2622     switch( nop ) {
2623     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2624     case Op_MaxI:  case Op_MinI:
2625     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2626     case Op_AndL:  case Op_XorL:  case Op_OrL:
2627     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2628       // Move "last use" input to left by swapping inputs
2629       n->swap_edges(1, 2);
2630       break;
2631     }
2632     default:
2633       break;
2634     }
2635   }
2636 
2637 #ifdef ASSERT
2638   if( n->is_Mem() ) {
2639     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2640     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2641             // oop will be recorded in oop map if load crosses safepoint
2642             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2643                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2644             "raw memory operations should have control edge");
2645   }
2646 #endif
2647   // Count FPU ops and common calls, implements item (3)
2648   switch( nop ) {
2649   // Count all float operations that may use FPU
2650   case Op_AddF:
2651   case Op_SubF:
2652   case Op_MulF:
2653   case Op_DivF:
2654   case Op_NegF:
2655   case Op_ModF:
2656   case Op_ConvI2F:
2657   case Op_ConF:
2658   case Op_CmpF:
2659   case Op_CmpF3:
2660   // case Op_ConvL2F: // longs are split into 32-bit halves
2661     frc.inc_float_count();
2662     break;
2663 
2664   case Op_ConvF2D:
2665   case Op_ConvD2F:
2666     frc.inc_float_count();
2667     frc.inc_double_count();
2668     break;
2669 
2670   // Count all double operations that may use FPU
2671   case Op_AddD:
2672   case Op_SubD:
2673   case Op_MulD:
2674   case Op_DivD:
2675   case Op_NegD:
2676   case Op_ModD:
2677   case Op_ConvI2D:
2678   case Op_ConvD2I:
2679   // case Op_ConvL2D: // handled by leaf call
2680   // case Op_ConvD2L: // handled by leaf call
2681   case Op_ConD:
2682   case Op_CmpD:
2683   case Op_CmpD3:
2684     frc.inc_double_count();
2685     break;
2686   case Op_Opaque1:              // Remove Opaque Nodes before matching
2687   case Op_Opaque2:              // Remove Opaque Nodes before matching
2688   case Op_Opaque3:
2689     n->subsume_by(n->in(1), this);
2690     break;
2691   case Op_CallStaticJava:
2692   case Op_CallJava:
2693   case Op_CallDynamicJava:
2694     frc.inc_java_call_count(); // Count java call site;
2695   case Op_CallRuntime:
2696   case Op_CallLeaf:
2697   case Op_CallLeafNoFP: {
2698     assert( n->is_Call(), "" );
2699     CallNode *call = n->as_Call();
2700     // Count call sites where the FP mode bit would have to be flipped.
2701     // Do not count uncommon runtime calls:
2702     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2703     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2704     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2705       frc.inc_call_count();   // Count the call site
2706     } else {                  // See if uncommon argument is shared
2707       Node *n = call->in(TypeFunc::Parms);
2708       int nop = n->Opcode();
2709       // Clone shared simple arguments to uncommon calls, item (1).
2710       if( n->outcnt() > 1 &&
2711           !n->is_Proj() &&
2712           nop != Op_CreateEx &&
2713           nop != Op_CheckCastPP &&
2714           nop != Op_DecodeN &&
2715           nop != Op_DecodeNKlass &&
2716           !n->is_Mem() ) {
2717         Node *x = n->clone();
2718         call->set_req( TypeFunc::Parms, x );
2719       }
2720     }
2721     break;
2722   }
2723 
2724   case Op_StoreD:
2725   case Op_LoadD:
2726   case Op_LoadD_unaligned:
2727     frc.inc_double_count();
2728     goto handle_mem;
2729   case Op_StoreF:
2730   case Op_LoadF:
2731     frc.inc_float_count();
2732     goto handle_mem;
2733 
2734   case Op_StoreCM:
2735     {
2736       // Convert OopStore dependence into precedence edge
2737       Node* prec = n->in(MemNode::OopStore);
2738       n->del_req(MemNode::OopStore);
2739       n->add_prec(prec);
2740       eliminate_redundant_card_marks(n);
2741     }
2742 
2743     // fall through
2744 
2745   case Op_StoreB:
2746   case Op_StoreC:
2747   case Op_StorePConditional:
2748   case Op_StoreI:
2749   case Op_StoreL:
2750   case Op_StoreIConditional:
2751   case Op_StoreLConditional:
2752   case Op_CompareAndSwapI:
2753   case Op_CompareAndSwapL:
2754   case Op_CompareAndSwapP:
2755   case Op_CompareAndSwapN:
2756   case Op_GetAndAddI:
2757   case Op_GetAndAddL:
2758   case Op_GetAndSetI:
2759   case Op_GetAndSetL:
2760   case Op_GetAndSetP:
2761   case Op_GetAndSetN:
2762   case Op_StoreP:
2763   case Op_StoreN:
2764   case Op_StoreNKlass:
2765   case Op_LoadB:
2766   case Op_LoadUB:
2767   case Op_LoadUS:
2768   case Op_LoadI:
2769   case Op_LoadKlass:
2770   case Op_LoadNKlass:
2771   case Op_LoadL:
2772   case Op_LoadL_unaligned:
2773   case Op_LoadPLocked:
2774   case Op_LoadP:
2775   case Op_LoadN:
2776   case Op_LoadRange:
2777   case Op_LoadS: {
2778   handle_mem:
2779 #ifdef ASSERT
2780     if( VerifyOptoOopOffsets ) {
2781       assert( n->is_Mem(), "" );
2782       MemNode *mem  = (MemNode*)n;
2783       // Check to see if address types have grounded out somehow.
2784       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2785       assert( !tp || oop_offset_is_sane(tp), "" );
2786     }
2787 #endif
2788     break;
2789   }
2790 
2791   case Op_AddP: {               // Assert sane base pointers
2792     Node *addp = n->in(AddPNode::Address);
2793     assert( !addp->is_AddP() ||
2794             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2795             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2796             "Base pointers must match" );
2797 #ifdef _LP64
2798     if ((UseCompressedOops || UseCompressedClassPointers) &&
2799         addp->Opcode() == Op_ConP &&
2800         addp == n->in(AddPNode::Base) &&
2801         n->in(AddPNode::Offset)->is_Con()) {
2802       // Use addressing with narrow klass to load with offset on x86.
2803       // On sparc loading 32-bits constant and decoding it have less
2804       // instructions (4) then load 64-bits constant (7).
2805       // Do this transformation here since IGVN will convert ConN back to ConP.
2806       const Type* t = addp->bottom_type();
2807       if (t->isa_oopptr() || t->isa_klassptr()) {
2808         Node* nn = NULL;
2809 
2810         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2811 
2812         // Look for existing ConN node of the same exact type.
2813         Node* r  = root();
2814         uint cnt = r->outcnt();
2815         for (uint i = 0; i < cnt; i++) {
2816           Node* m = r->raw_out(i);
2817           if (m!= NULL && m->Opcode() == op &&
2818               m->bottom_type()->make_ptr() == t) {
2819             nn = m;
2820             break;
2821           }
2822         }
2823         if (nn != NULL) {
2824           // Decode a narrow oop to match address
2825           // [R12 + narrow_oop_reg<<3 + offset]
2826           if (t->isa_oopptr()) {
2827             nn = new (this) DecodeNNode(nn, t);
2828           } else {
2829             nn = new (this) DecodeNKlassNode(nn, t);
2830           }
2831           n->set_req(AddPNode::Base, nn);
2832           n->set_req(AddPNode::Address, nn);
2833           if (addp->outcnt() == 0) {
2834             addp->disconnect_inputs(NULL, this);
2835           }
2836         }
2837       }
2838     }
2839 #endif
2840     break;
2841   }
2842 
2843 #ifdef _LP64
2844   case Op_CastPP:
2845     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2846       Node* in1 = n->in(1);
2847       const Type* t = n->bottom_type();
2848       Node* new_in1 = in1->clone();
2849       new_in1->as_DecodeN()->set_type(t);
2850 
2851       if (!Matcher::narrow_oop_use_complex_address()) {
2852         //
2853         // x86, ARM and friends can handle 2 adds in addressing mode
2854         // and Matcher can fold a DecodeN node into address by using
2855         // a narrow oop directly and do implicit NULL check in address:
2856         //
2857         // [R12 + narrow_oop_reg<<3 + offset]
2858         // NullCheck narrow_oop_reg
2859         //
2860         // On other platforms (Sparc) we have to keep new DecodeN node and
2861         // use it to do implicit NULL check in address:
2862         //
2863         // decode_not_null narrow_oop_reg, base_reg
2864         // [base_reg + offset]
2865         // NullCheck base_reg
2866         //
2867         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2868         // to keep the information to which NULL check the new DecodeN node
2869         // corresponds to use it as value in implicit_null_check().
2870         //
2871         new_in1->set_req(0, n->in(0));
2872       }
2873 
2874       n->subsume_by(new_in1, this);
2875       if (in1->outcnt() == 0) {
2876         in1->disconnect_inputs(NULL, this);
2877       }
2878     }
2879     break;
2880 
2881   case Op_CmpP:
2882     // Do this transformation here to preserve CmpPNode::sub() and
2883     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2884     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2885       Node* in1 = n->in(1);
2886       Node* in2 = n->in(2);
2887       if (!in1->is_DecodeNarrowPtr()) {
2888         in2 = in1;
2889         in1 = n->in(2);
2890       }
2891       assert(in1->is_DecodeNarrowPtr(), "sanity");
2892 
2893       Node* new_in2 = NULL;
2894       if (in2->is_DecodeNarrowPtr()) {
2895         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2896         new_in2 = in2->in(1);
2897       } else if (in2->Opcode() == Op_ConP) {
2898         const Type* t = in2->bottom_type();
2899         if (t == TypePtr::NULL_PTR) {
2900           assert(in1->is_DecodeN(), "compare klass to null?");
2901           // Don't convert CmpP null check into CmpN if compressed
2902           // oops implicit null check is not generated.
2903           // This will allow to generate normal oop implicit null check.
2904           if (Matcher::gen_narrow_oop_implicit_null_checks())
2905             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2906           //
2907           // This transformation together with CastPP transformation above
2908           // will generated code for implicit NULL checks for compressed oops.
2909           //
2910           // The original code after Optimize()
2911           //
2912           //    LoadN memory, narrow_oop_reg
2913           //    decode narrow_oop_reg, base_reg
2914           //    CmpP base_reg, NULL
2915           //    CastPP base_reg // NotNull
2916           //    Load [base_reg + offset], val_reg
2917           //
2918           // after these transformations will be
2919           //
2920           //    LoadN memory, narrow_oop_reg
2921           //    CmpN narrow_oop_reg, NULL
2922           //    decode_not_null narrow_oop_reg, base_reg
2923           //    Load [base_reg + offset], val_reg
2924           //
2925           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2926           // since narrow oops can be used in debug info now (see the code in
2927           // final_graph_reshaping_walk()).
2928           //
2929           // At the end the code will be matched to
2930           // on x86:
2931           //
2932           //    Load_narrow_oop memory, narrow_oop_reg
2933           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2934           //    NullCheck narrow_oop_reg
2935           //
2936           // and on sparc:
2937           //
2938           //    Load_narrow_oop memory, narrow_oop_reg
2939           //    decode_not_null narrow_oop_reg, base_reg
2940           //    Load [base_reg + offset], val_reg
2941           //    NullCheck base_reg
2942           //
2943         } else if (t->isa_oopptr()) {
2944           new_in2 = ConNode::make(this, t->make_narrowoop());
2945         } else if (t->isa_klassptr()) {
2946           new_in2 = ConNode::make(this, t->make_narrowklass());
2947         }
2948       }
2949       if (new_in2 != NULL) {
2950         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2951         n->subsume_by(cmpN, this);
2952         if (in1->outcnt() == 0) {
2953           in1->disconnect_inputs(NULL, this);
2954         }
2955         if (in2->outcnt() == 0) {
2956           in2->disconnect_inputs(NULL, this);
2957         }
2958       }
2959     }
2960     break;
2961 
2962   case Op_DecodeN:
2963   case Op_DecodeNKlass:
2964     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2965     // DecodeN could be pinned when it can't be fold into
2966     // an address expression, see the code for Op_CastPP above.
2967     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2968     break;
2969 
2970   case Op_EncodeP:
2971   case Op_EncodePKlass: {
2972     Node* in1 = n->in(1);
2973     if (in1->is_DecodeNarrowPtr()) {
2974       n->subsume_by(in1->in(1), this);
2975     } else if (in1->Opcode() == Op_ConP) {
2976       const Type* t = in1->bottom_type();
2977       if (t == TypePtr::NULL_PTR) {
2978         assert(t->isa_oopptr(), "null klass?");
2979         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2980       } else if (t->isa_oopptr()) {
2981         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2982       } else if (t->isa_klassptr()) {
2983         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2984       }
2985     }
2986     if (in1->outcnt() == 0) {
2987       in1->disconnect_inputs(NULL, this);
2988     }
2989     break;
2990   }
2991 
2992   case Op_Proj: {
2993     if (OptimizeStringConcat) {
2994       ProjNode* p = n->as_Proj();
2995       if (p->_is_io_use) {
2996         // Separate projections were used for the exception path which
2997         // are normally removed by a late inline.  If it wasn't inlined
2998         // then they will hang around and should just be replaced with
2999         // the original one.
3000         Node* proj = NULL;
3001         // Replace with just one
3002         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3003           Node *use = i.get();
3004           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3005             proj = use;
3006             break;
3007           }
3008         }
3009         assert(proj != NULL, "must be found");
3010         p->subsume_by(proj, this);
3011       }
3012     }
3013     break;
3014   }
3015 
3016   case Op_Phi:
3017     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3018       // The EncodeP optimization may create Phi with the same edges
3019       // for all paths. It is not handled well by Register Allocator.
3020       Node* unique_in = n->in(1);
3021       assert(unique_in != NULL, "");
3022       uint cnt = n->req();
3023       for (uint i = 2; i < cnt; i++) {
3024         Node* m = n->in(i);
3025         assert(m != NULL, "");
3026         if (unique_in != m)
3027           unique_in = NULL;
3028       }
3029       if (unique_in != NULL) {
3030         n->subsume_by(unique_in, this);
3031       }
3032     }
3033     break;
3034 
3035 #endif
3036 
3037 #ifdef ASSERT
3038   case Op_CastII:
3039     // Verify that all range check dependent CastII nodes were removed.
3040     if (n->isa_CastII()->has_range_check()) {
3041       n->dump(3);
3042       assert(false, "Range check dependent CastII node was not removed");
3043     }
3044     break;
3045 #endif
3046 
3047   case Op_ModI:
3048     if (UseDivMod) {
3049       // Check if a%b and a/b both exist
3050       Node* d = n->find_similar(Op_DivI);
3051       if (d) {
3052         // Replace them with a fused divmod if supported
3053         if (Matcher::has_match_rule(Op_DivModI)) {
3054           DivModINode* divmod = DivModINode::make(this, n);
3055           d->subsume_by(divmod->div_proj(), this);
3056           n->subsume_by(divmod->mod_proj(), this);
3057         } else {
3058           // replace a%b with a-((a/b)*b)
3059           Node* mult = new (this) MulINode(d, d->in(2));
3060           Node* sub  = new (this) SubINode(d->in(1), mult);
3061           n->subsume_by(sub, this);
3062         }
3063       }
3064     }
3065     break;
3066 
3067   case Op_ModL:
3068     if (UseDivMod) {
3069       // Check if a%b and a/b both exist
3070       Node* d = n->find_similar(Op_DivL);
3071       if (d) {
3072         // Replace them with a fused divmod if supported
3073         if (Matcher::has_match_rule(Op_DivModL)) {
3074           DivModLNode* divmod = DivModLNode::make(this, n);
3075           d->subsume_by(divmod->div_proj(), this);
3076           n->subsume_by(divmod->mod_proj(), this);
3077         } else {
3078           // replace a%b with a-((a/b)*b)
3079           Node* mult = new (this) MulLNode(d, d->in(2));
3080           Node* sub  = new (this) SubLNode(d->in(1), mult);
3081           n->subsume_by(sub, this);
3082         }
3083       }
3084     }
3085     break;
3086 
3087   case Op_LoadVector:
3088   case Op_StoreVector:
3089     break;
3090 
3091   case Op_PackB:
3092   case Op_PackS:
3093   case Op_PackI:
3094   case Op_PackF:
3095   case Op_PackL:
3096   case Op_PackD:
3097     if (n->req()-1 > 2) {
3098       // Replace many operand PackNodes with a binary tree for matching
3099       PackNode* p = (PackNode*) n;
3100       Node* btp = p->binary_tree_pack(this, 1, n->req());
3101       n->subsume_by(btp, this);
3102     }
3103     break;
3104   case Op_Loop:
3105   case Op_CountedLoop:
3106     if (n->as_Loop()->is_inner_loop()) {
3107       frc.inc_inner_loop_count();
3108     }
3109     break;
3110   case Op_LShiftI:
3111   case Op_RShiftI:
3112   case Op_URShiftI:
3113   case Op_LShiftL:
3114   case Op_RShiftL:
3115   case Op_URShiftL:
3116     if (Matcher::need_masked_shift_count) {
3117       // The cpu's shift instructions don't restrict the count to the
3118       // lower 5/6 bits. We need to do the masking ourselves.
3119       Node* in2 = n->in(2);
3120       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3121       const TypeInt* t = in2->find_int_type();
3122       if (t != NULL && t->is_con()) {
3123         juint shift = t->get_con();
3124         if (shift > mask) { // Unsigned cmp
3125           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3126         }
3127       } else {
3128         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3129           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3130           n->set_req(2, shift);
3131         }
3132       }
3133       if (in2->outcnt() == 0) { // Remove dead node
3134         in2->disconnect_inputs(NULL, this);
3135       }
3136     }
3137     break;
3138   case Op_MemBarStoreStore:
3139   case Op_MemBarRelease:
3140     // Break the link with AllocateNode: it is no longer useful and
3141     // confuses register allocation.
3142     if (n->req() > MemBarNode::Precedent) {
3143       n->set_req(MemBarNode::Precedent, top());
3144     }
3145     break;
3146   default:
3147     assert( !n->is_Call(), "" );
3148     assert( !n->is_Mem(), "" );
3149     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3150     break;
3151   }
3152 
3153   // Collect CFG split points
3154   if (n->is_MultiBranch())
3155     frc._tests.push(n);
3156 }
3157 
3158 //------------------------------final_graph_reshaping_walk---------------------
3159 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3160 // requires that the walk visits a node's inputs before visiting the node.
3161 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3162   ResourceArea *area = Thread::current()->resource_area();
3163   Unique_Node_List sfpt(area);
3164 
3165   frc._visited.set(root->_idx); // first, mark node as visited
3166   uint cnt = root->req();
3167   Node *n = root;
3168   uint  i = 0;
3169   while (true) {
3170     if (i < cnt) {
3171       // Place all non-visited non-null inputs onto stack
3172       Node* m = n->in(i);
3173       ++i;
3174       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3175         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3176           // compute worst case interpreter size in case of a deoptimization
3177           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3178 
3179           sfpt.push(m);
3180         }
3181         cnt = m->req();
3182         nstack.push(n, i); // put on stack parent and next input's index
3183         n = m;
3184         i = 0;
3185       }
3186     } else {
3187       // Now do post-visit work
3188       final_graph_reshaping_impl( n, frc );
3189       if (nstack.is_empty())
3190         break;             // finished
3191       n = nstack.node();   // Get node from stack
3192       cnt = n->req();
3193       i = nstack.index();
3194       nstack.pop();        // Shift to the next node on stack
3195     }
3196   }
3197 
3198   // Skip next transformation if compressed oops are not used.
3199   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3200       (!UseCompressedOops && !UseCompressedClassPointers))
3201     return;
3202 
3203   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3204   // It could be done for an uncommon traps or any safepoints/calls
3205   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3206   while (sfpt.size() > 0) {
3207     n = sfpt.pop();
3208     JVMState *jvms = n->as_SafePoint()->jvms();
3209     assert(jvms != NULL, "sanity");
3210     int start = jvms->debug_start();
3211     int end   = n->req();
3212     bool is_uncommon = (n->is_CallStaticJava() &&
3213                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3214     for (int j = start; j < end; j++) {
3215       Node* in = n->in(j);
3216       if (in->is_DecodeNarrowPtr()) {
3217         bool safe_to_skip = true;
3218         if (!is_uncommon ) {
3219           // Is it safe to skip?
3220           for (uint i = 0; i < in->outcnt(); i++) {
3221             Node* u = in->raw_out(i);
3222             if (!u->is_SafePoint() ||
3223                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3224               safe_to_skip = false;
3225             }
3226           }
3227         }
3228         if (safe_to_skip) {
3229           n->set_req(j, in->in(1));
3230         }
3231         if (in->outcnt() == 0) {
3232           in->disconnect_inputs(NULL, this);
3233         }
3234       }
3235     }
3236   }
3237 }
3238 
3239 //------------------------------final_graph_reshaping--------------------------
3240 // Final Graph Reshaping.
3241 //
3242 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3243 //     and not commoned up and forced early.  Must come after regular
3244 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3245 //     inputs to Loop Phis; these will be split by the allocator anyways.
3246 //     Remove Opaque nodes.
3247 // (2) Move last-uses by commutative operations to the left input to encourage
3248 //     Intel update-in-place two-address operations and better register usage
3249 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3250 //     calls canonicalizing them back.
3251 // (3) Count the number of double-precision FP ops, single-precision FP ops
3252 //     and call sites.  On Intel, we can get correct rounding either by
3253 //     forcing singles to memory (requires extra stores and loads after each
3254 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3255 //     clearing the mode bit around call sites).  The mode bit is only used
3256 //     if the relative frequency of single FP ops to calls is low enough.
3257 //     This is a key transform for SPEC mpeg_audio.
3258 // (4) Detect infinite loops; blobs of code reachable from above but not
3259 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3260 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3261 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3262 //     Detection is by looking for IfNodes where only 1 projection is
3263 //     reachable from below or CatchNodes missing some targets.
3264 // (5) Assert for insane oop offsets in debug mode.
3265 
3266 bool Compile::final_graph_reshaping() {
3267   // an infinite loop may have been eliminated by the optimizer,
3268   // in which case the graph will be empty.
3269   if (root()->req() == 1) {
3270     record_method_not_compilable("trivial infinite loop");
3271     return true;
3272   }
3273 
3274   // Expensive nodes have their control input set to prevent the GVN
3275   // from freely commoning them. There's no GVN beyond this point so
3276   // no need to keep the control input. We want the expensive nodes to
3277   // be freely moved to the least frequent code path by gcm.
3278   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3279   for (int i = 0; i < expensive_count(); i++) {
3280     _expensive_nodes->at(i)->set_req(0, NULL);
3281   }
3282 
3283   Final_Reshape_Counts frc;
3284 
3285   // Visit everybody reachable!
3286   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3287   Node_Stack nstack(live_nodes() >> 1);
3288   final_graph_reshaping_walk(nstack, root(), frc);
3289 
3290   // Check for unreachable (from below) code (i.e., infinite loops).
3291   for( uint i = 0; i < frc._tests.size(); i++ ) {
3292     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3293     // Get number of CFG targets.
3294     // Note that PCTables include exception targets after calls.
3295     uint required_outcnt = n->required_outcnt();
3296     if (n->outcnt() != required_outcnt) {
3297       // Check for a few special cases.  Rethrow Nodes never take the
3298       // 'fall-thru' path, so expected kids is 1 less.
3299       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3300         if (n->in(0)->in(0)->is_Call()) {
3301           CallNode *call = n->in(0)->in(0)->as_Call();
3302           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3303             required_outcnt--;      // Rethrow always has 1 less kid
3304           } else if (call->req() > TypeFunc::Parms &&
3305                      call->is_CallDynamicJava()) {
3306             // Check for null receiver. In such case, the optimizer has
3307             // detected that the virtual call will always result in a null
3308             // pointer exception. The fall-through projection of this CatchNode
3309             // will not be populated.
3310             Node *arg0 = call->in(TypeFunc::Parms);
3311             if (arg0->is_Type() &&
3312                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3313               required_outcnt--;
3314             }
3315           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3316                      call->req() > TypeFunc::Parms+1 &&
3317                      call->is_CallStaticJava()) {
3318             // Check for negative array length. In such case, the optimizer has
3319             // detected that the allocation attempt will always result in an
3320             // exception. There is no fall-through projection of this CatchNode .
3321             Node *arg1 = call->in(TypeFunc::Parms+1);
3322             if (arg1->is_Type() &&
3323                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3324               required_outcnt--;
3325             }
3326           }
3327         }
3328       }
3329       // Recheck with a better notion of 'required_outcnt'
3330       if (n->outcnt() != required_outcnt) {
3331         record_method_not_compilable("malformed control flow");
3332         return true;            // Not all targets reachable!
3333       }
3334     }
3335     // Check that I actually visited all kids.  Unreached kids
3336     // must be infinite loops.
3337     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3338       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3339         record_method_not_compilable("infinite loop");
3340         return true;            // Found unvisited kid; must be unreach
3341       }
3342   }
3343 
3344   // If original bytecodes contained a mixture of floats and doubles
3345   // check if the optimizer has made it homogenous, item (3).
3346   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3347       frc.get_float_count() > 32 &&
3348       frc.get_double_count() == 0 &&
3349       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3350     set_24_bit_selection_and_mode( false,  true );
3351   }
3352 
3353   set_java_calls(frc.get_java_call_count());
3354   set_inner_loops(frc.get_inner_loop_count());
3355 
3356   // No infinite loops, no reason to bail out.
3357   return false;
3358 }
3359 
3360 //-----------------------------too_many_traps----------------------------------
3361 // Report if there are too many traps at the current method and bci.
3362 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3363 bool Compile::too_many_traps(ciMethod* method,
3364                              int bci,
3365                              Deoptimization::DeoptReason reason) {
3366   ciMethodData* md = method->method_data();
3367   if (md->is_empty()) {
3368     // Assume the trap has not occurred, or that it occurred only
3369     // because of a transient condition during start-up in the interpreter.
3370     return false;
3371   }
3372   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3373   if (md->has_trap_at(bci, m, reason) != 0) {
3374     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3375     // Also, if there are multiple reasons, or if there is no per-BCI record,
3376     // assume the worst.
3377     if (log())
3378       log()->elem("observe trap='%s' count='%d'",
3379                   Deoptimization::trap_reason_name(reason),
3380                   md->trap_count(reason));
3381     return true;
3382   } else {
3383     // Ignore method/bci and see if there have been too many globally.
3384     return too_many_traps(reason, md);
3385   }
3386 }
3387 
3388 // Less-accurate variant which does not require a method and bci.
3389 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3390                              ciMethodData* logmd) {
3391   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3392     // Too many traps globally.
3393     // Note that we use cumulative trap_count, not just md->trap_count.
3394     if (log()) {
3395       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3396       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3397                   Deoptimization::trap_reason_name(reason),
3398                   mcount, trap_count(reason));
3399     }
3400     return true;
3401   } else {
3402     // The coast is clear.
3403     return false;
3404   }
3405 }
3406 
3407 //--------------------------too_many_recompiles--------------------------------
3408 // Report if there are too many recompiles at the current method and bci.
3409 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3410 // Is not eager to return true, since this will cause the compiler to use
3411 // Action_none for a trap point, to avoid too many recompilations.
3412 bool Compile::too_many_recompiles(ciMethod* method,
3413                                   int bci,
3414                                   Deoptimization::DeoptReason reason) {
3415   ciMethodData* md = method->method_data();
3416   if (md->is_empty()) {
3417     // Assume the trap has not occurred, or that it occurred only
3418     // because of a transient condition during start-up in the interpreter.
3419     return false;
3420   }
3421   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3422   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3423   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3424   Deoptimization::DeoptReason per_bc_reason
3425     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3426   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3427   if ((per_bc_reason == Deoptimization::Reason_none
3428        || md->has_trap_at(bci, m, reason) != 0)
3429       // The trap frequency measure we care about is the recompile count:
3430       && md->trap_recompiled_at(bci, m)
3431       && md->overflow_recompile_count() >= bc_cutoff) {
3432     // Do not emit a trap here if it has already caused recompilations.
3433     // Also, if there are multiple reasons, or if there is no per-BCI record,
3434     // assume the worst.
3435     if (log())
3436       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3437                   Deoptimization::trap_reason_name(reason),
3438                   md->trap_count(reason),
3439                   md->overflow_recompile_count());
3440     return true;
3441   } else if (trap_count(reason) != 0
3442              && decompile_count() >= m_cutoff) {
3443     // Too many recompiles globally, and we have seen this sort of trap.
3444     // Use cumulative decompile_count, not just md->decompile_count.
3445     if (log())
3446       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3447                   Deoptimization::trap_reason_name(reason),
3448                   md->trap_count(reason), trap_count(reason),
3449                   md->decompile_count(), decompile_count());
3450     return true;
3451   } else {
3452     // The coast is clear.
3453     return false;
3454   }
3455 }
3456 
3457 // Compute when not to trap. Used by matching trap based nodes and
3458 // NullCheck optimization.
3459 void Compile::set_allowed_deopt_reasons() {
3460   _allowed_reasons = 0;
3461   if (is_method_compilation()) {
3462     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3463       assert(rs < BitsPerInt, "recode bit map");
3464       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3465         _allowed_reasons |= nth_bit(rs);
3466       }
3467     }
3468   }
3469 }
3470 
3471 #ifndef PRODUCT
3472 //------------------------------verify_graph_edges---------------------------
3473 // Walk the Graph and verify that there is a one-to-one correspondence
3474 // between Use-Def edges and Def-Use edges in the graph.
3475 void Compile::verify_graph_edges(bool no_dead_code) {
3476   if (VerifyGraphEdges) {
3477     ResourceArea *area = Thread::current()->resource_area();
3478     Unique_Node_List visited(area);
3479     // Call recursive graph walk to check edges
3480     _root->verify_edges(visited);
3481     if (no_dead_code) {
3482       // Now make sure that no visited node is used by an unvisited node.
3483       bool dead_nodes = false;
3484       Unique_Node_List checked(area);
3485       while (visited.size() > 0) {
3486         Node* n = visited.pop();
3487         checked.push(n);
3488         for (uint i = 0; i < n->outcnt(); i++) {
3489           Node* use = n->raw_out(i);
3490           if (checked.member(use))  continue;  // already checked
3491           if (visited.member(use))  continue;  // already in the graph
3492           if (use->is_Con())        continue;  // a dead ConNode is OK
3493           // At this point, we have found a dead node which is DU-reachable.
3494           if (!dead_nodes) {
3495             tty->print_cr("*** Dead nodes reachable via DU edges:");
3496             dead_nodes = true;
3497           }
3498           use->dump(2);
3499           tty->print_cr("---");
3500           checked.push(use);  // No repeats; pretend it is now checked.
3501         }
3502       }
3503       assert(!dead_nodes, "using nodes must be reachable from root");
3504     }
3505   }
3506 }
3507 
3508 // Verify GC barriers consistency
3509 // Currently supported:
3510 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3511 void Compile::verify_barriers() {
3512   if (UseG1GC) {
3513     // Verify G1 pre-barriers
3514     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3515 
3516     ResourceArea *area = Thread::current()->resource_area();
3517     Unique_Node_List visited(area);
3518     Node_List worklist(area);
3519     // We're going to walk control flow backwards starting from the Root
3520     worklist.push(_root);
3521     while (worklist.size() > 0) {
3522       Node* x = worklist.pop();
3523       if (x == NULL || x == top()) continue;
3524       if (visited.member(x)) {
3525         continue;
3526       } else {
3527         visited.push(x);
3528       }
3529 
3530       if (x->is_Region()) {
3531         for (uint i = 1; i < x->req(); i++) {
3532           worklist.push(x->in(i));
3533         }
3534       } else {
3535         worklist.push(x->in(0));
3536         // We are looking for the pattern:
3537         //                            /->ThreadLocal
3538         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3539         //              \->ConI(0)
3540         // We want to verify that the If and the LoadB have the same control
3541         // See GraphKit::g1_write_barrier_pre()
3542         if (x->is_If()) {
3543           IfNode *iff = x->as_If();
3544           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3545             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3546             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3547                 && cmp->in(1)->is_Load()) {
3548               LoadNode* load = cmp->in(1)->as_Load();
3549               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3550                   && load->in(2)->in(3)->is_Con()
3551                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3552 
3553                 Node* if_ctrl = iff->in(0);
3554                 Node* load_ctrl = load->in(0);
3555 
3556                 if (if_ctrl != load_ctrl) {
3557                   // Skip possible CProj->NeverBranch in infinite loops
3558                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3559                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3560                     if_ctrl = if_ctrl->in(0)->in(0);
3561                   }
3562                 }
3563                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3564               }
3565             }
3566           }
3567         }
3568       }
3569     }
3570   }
3571 }
3572 
3573 #endif
3574 
3575 // The Compile object keeps track of failure reasons separately from the ciEnv.
3576 // This is required because there is not quite a 1-1 relation between the
3577 // ciEnv and its compilation task and the Compile object.  Note that one
3578 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3579 // to backtrack and retry without subsuming loads.  Other than this backtracking
3580 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3581 // by the logic in C2Compiler.
3582 void Compile::record_failure(const char* reason) {
3583   if (log() != NULL) {
3584     log()->elem("failure reason='%s' phase='compile'", reason);
3585   }
3586   if (_failure_reason == NULL) {
3587     // Record the first failure reason.
3588     _failure_reason = reason;
3589   }
3590 
3591   EventCompilationFailure event;
3592   if (event.should_commit()) {
3593     event.set_compileId(Compile::compile_id());
3594     event.set_failureMessage(reason);
3595     event.commit();
3596   }
3597 
3598   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3599     C->print_method(PHASE_FAILURE);
3600   }
3601   _root = NULL;  // flush the graph, too
3602 }
3603 
3604 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3605   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3606     _phase_name(name), _dolog(dolog)
3607 {
3608   if (dolog) {
3609     C = Compile::current();
3610     _log = C->log();
3611   } else {
3612     C = NULL;
3613     _log = NULL;
3614   }
3615   if (_log != NULL) {
3616     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3617     _log->stamp();
3618     _log->end_head();
3619   }
3620 }
3621 
3622 Compile::TracePhase::~TracePhase() {
3623 
3624   C = Compile::current();
3625   if (_dolog) {
3626     _log = C->log();
3627   } else {
3628     _log = NULL;
3629   }
3630 
3631 #ifdef ASSERT
3632   if (PrintIdealNodeCount) {
3633     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3634                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3635   }
3636 
3637   if (VerifyIdealNodeCount) {
3638     Compile::current()->print_missing_nodes();
3639   }
3640 #endif
3641 
3642   if (_log != NULL) {
3643     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3644   }
3645 }
3646 
3647 //=============================================================================
3648 // Two Constant's are equal when the type and the value are equal.
3649 bool Compile::Constant::operator==(const Constant& other) {
3650   if (type()          != other.type()         )  return false;
3651   if (can_be_reused() != other.can_be_reused())  return false;
3652   // For floating point values we compare the bit pattern.
3653   switch (type()) {
3654   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3655   case T_LONG:
3656   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3657   case T_OBJECT:
3658   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3659   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3660   case T_METADATA: return (_v._metadata == other._v._metadata);
3661   default: ShouldNotReachHere();
3662   }
3663   return false;
3664 }
3665 
3666 static int type_to_size_in_bytes(BasicType t) {
3667   switch (t) {
3668   case T_LONG:    return sizeof(jlong  );
3669   case T_FLOAT:   return sizeof(jfloat );
3670   case T_DOUBLE:  return sizeof(jdouble);
3671   case T_METADATA: return sizeof(Metadata*);
3672     // We use T_VOID as marker for jump-table entries (labels) which
3673     // need an internal word relocation.
3674   case T_VOID:
3675   case T_ADDRESS:
3676   case T_OBJECT:  return sizeof(jobject);
3677   }
3678 
3679   ShouldNotReachHere();
3680   return -1;
3681 }
3682 
3683 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3684   // sort descending
3685   if (a->freq() > b->freq())  return -1;
3686   if (a->freq() < b->freq())  return  1;
3687   return 0;
3688 }
3689 
3690 void Compile::ConstantTable::calculate_offsets_and_size() {
3691   // First, sort the array by frequencies.
3692   _constants.sort(qsort_comparator);
3693 
3694 #ifdef ASSERT
3695   // Make sure all jump-table entries were sorted to the end of the
3696   // array (they have a negative frequency).
3697   bool found_void = false;
3698   for (int i = 0; i < _constants.length(); i++) {
3699     Constant con = _constants.at(i);
3700     if (con.type() == T_VOID)
3701       found_void = true;  // jump-tables
3702     else
3703       assert(!found_void, "wrong sorting");
3704   }
3705 #endif
3706 
3707   int offset = 0;
3708   for (int i = 0; i < _constants.length(); i++) {
3709     Constant* con = _constants.adr_at(i);
3710 
3711     // Align offset for type.
3712     int typesize = type_to_size_in_bytes(con->type());
3713     offset = align_size_up(offset, typesize);
3714     con->set_offset(offset);   // set constant's offset
3715 
3716     if (con->type() == T_VOID) {
3717       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3718       offset = offset + typesize * n->outcnt();  // expand jump-table
3719     } else {
3720       offset = offset + typesize;
3721     }
3722   }
3723 
3724   // Align size up to the next section start (which is insts; see
3725   // CodeBuffer::align_at_start).
3726   assert(_size == -1, "already set?");
3727   _size = align_size_up(offset, CodeEntryAlignment);
3728 }
3729 
3730 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3731   MacroAssembler _masm(&cb);
3732   for (int i = 0; i < _constants.length(); i++) {
3733     Constant con = _constants.at(i);
3734     address constant_addr = NULL;
3735     switch (con.type()) {
3736     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3737     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3738     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3739     case T_OBJECT: {
3740       jobject obj = con.get_jobject();
3741       int oop_index = _masm.oop_recorder()->find_index(obj);
3742       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3743       break;
3744     }
3745     case T_ADDRESS: {
3746       address addr = (address) con.get_jobject();
3747       constant_addr = _masm.address_constant(addr);
3748       break;
3749     }
3750     // We use T_VOID as marker for jump-table entries (labels) which
3751     // need an internal word relocation.
3752     case T_VOID: {
3753       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3754       // Fill the jump-table with a dummy word.  The real value is
3755       // filled in later in fill_jump_table.
3756       address dummy = (address) n;
3757       constant_addr = _masm.address_constant(dummy);
3758       // Expand jump-table
3759       for (uint i = 1; i < n->outcnt(); i++) {
3760         address temp_addr = _masm.address_constant(dummy + i);
3761         assert(temp_addr, "consts section too small");
3762       }
3763       break;
3764     }
3765     case T_METADATA: {
3766       Metadata* obj = con.get_metadata();
3767       int metadata_index = _masm.oop_recorder()->find_index(obj);
3768       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3769       break;
3770     }
3771     default: ShouldNotReachHere();
3772     }
3773     assert(constant_addr, "consts section too small");
3774     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3775             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3776   }
3777 }
3778 
3779 int Compile::ConstantTable::find_offset(Constant& con) const {
3780   int idx = _constants.find(con);
3781   assert(idx != -1, "constant must be in constant table");
3782   int offset = _constants.at(idx).offset();
3783   assert(offset != -1, "constant table not emitted yet?");
3784   return offset;
3785 }
3786 
3787 void Compile::ConstantTable::add(Constant& con) {
3788   if (con.can_be_reused()) {
3789     int idx = _constants.find(con);
3790     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3791       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3792       return;
3793     }
3794   }
3795   (void) _constants.append(con);
3796 }
3797 
3798 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3799   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3800   Constant con(type, value, b->_freq);
3801   add(con);
3802   return con;
3803 }
3804 
3805 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3806   Constant con(metadata);
3807   add(con);
3808   return con;
3809 }
3810 
3811 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3812   jvalue value;
3813   BasicType type = oper->type()->basic_type();
3814   switch (type) {
3815   case T_LONG:    value.j = oper->constantL(); break;
3816   case T_FLOAT:   value.f = oper->constantF(); break;
3817   case T_DOUBLE:  value.d = oper->constantD(); break;
3818   case T_OBJECT:
3819   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3820   case T_METADATA: return add((Metadata*)oper->constant()); break;
3821   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3822   }
3823   return add(n, type, value);
3824 }
3825 
3826 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3827   jvalue value;
3828   // We can use the node pointer here to identify the right jump-table
3829   // as this method is called from Compile::Fill_buffer right before
3830   // the MachNodes are emitted and the jump-table is filled (means the
3831   // MachNode pointers do not change anymore).
3832   value.l = (jobject) n;
3833   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3834   add(con);
3835   return con;
3836 }
3837 
3838 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3839   // If called from Compile::scratch_emit_size do nothing.
3840   if (Compile::current()->in_scratch_emit_size())  return;
3841 
3842   assert(labels.is_nonempty(), "must be");
3843   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3844 
3845   // Since MachConstantNode::constant_offset() also contains
3846   // table_base_offset() we need to subtract the table_base_offset()
3847   // to get the plain offset into the constant table.
3848   int offset = n->constant_offset() - table_base_offset();
3849 
3850   MacroAssembler _masm(&cb);
3851   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3852 
3853   for (uint i = 0; i < n->outcnt(); i++) {
3854     address* constant_addr = &jump_table_base[i];
3855     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3856     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3857     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3858   }
3859 }
3860 
3861 void Compile::dump_inlining() {
3862   if (print_inlining() || print_intrinsics()) {
3863     // Print inlining message for candidates that we couldn't inline
3864     // for lack of space or non constant receiver
3865     for (int i = 0; i < _late_inlines.length(); i++) {
3866       CallGenerator* cg = _late_inlines.at(i);
3867       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3868     }
3869     Unique_Node_List useful;
3870     useful.push(root());
3871     for (uint next = 0; next < useful.size(); ++next) {
3872       Node* n  = useful.at(next);
3873       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3874         CallNode* call = n->as_Call();
3875         CallGenerator* cg = call->generator();
3876         cg->print_inlining_late("receiver not constant");
3877       }
3878       uint max = n->len();
3879       for ( uint i = 0; i < max; ++i ) {
3880         Node *m = n->in(i);
3881         if ( m == NULL ) continue;
3882         useful.push(m);
3883       }
3884     }
3885     for (int i = 0; i < _print_inlining_list->length(); i++) {
3886       tty->print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3887     }
3888   }
3889 }
3890 
3891 // Dump inlining replay data to the stream.
3892 // Don't change thread state and acquire any locks.
3893 void Compile::dump_inline_data(outputStream* out) {
3894   InlineTree* inl_tree = ilt();
3895   if (inl_tree != NULL) {
3896     out->print(" inline %d", inl_tree->count());
3897     inl_tree->dump_replay_data(out);
3898   }
3899 }
3900 
3901 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3902   if (n1->Opcode() < n2->Opcode())      return -1;
3903   else if (n1->Opcode() > n2->Opcode()) return 1;
3904 
3905   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3906   for (uint i = 1; i < n1->req(); i++) {
3907     if (n1->in(i) < n2->in(i))      return -1;
3908     else if (n1->in(i) > n2->in(i)) return 1;
3909   }
3910 
3911   return 0;
3912 }
3913 
3914 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3915   Node* n1 = *n1p;
3916   Node* n2 = *n2p;
3917 
3918   return cmp_expensive_nodes(n1, n2);
3919 }
3920 
3921 void Compile::sort_expensive_nodes() {
3922   if (!expensive_nodes_sorted()) {
3923     _expensive_nodes->sort(cmp_expensive_nodes);
3924   }
3925 }
3926 
3927 bool Compile::expensive_nodes_sorted() const {
3928   for (int i = 1; i < _expensive_nodes->length(); i++) {
3929     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3930       return false;
3931     }
3932   }
3933   return true;
3934 }
3935 
3936 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3937   if (_expensive_nodes->length() == 0) {
3938     return false;
3939   }
3940 
3941   assert(OptimizeExpensiveOps, "optimization off?");
3942 
3943   // Take this opportunity to remove dead nodes from the list
3944   int j = 0;
3945   for (int i = 0; i < _expensive_nodes->length(); i++) {
3946     Node* n = _expensive_nodes->at(i);
3947     if (!n->is_unreachable(igvn)) {
3948       assert(n->is_expensive(), "should be expensive");
3949       _expensive_nodes->at_put(j, n);
3950       j++;
3951     }
3952   }
3953   _expensive_nodes->trunc_to(j);
3954 
3955   // Then sort the list so that similar nodes are next to each other
3956   // and check for at least two nodes of identical kind with same data
3957   // inputs.
3958   sort_expensive_nodes();
3959 
3960   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3961     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3962       return true;
3963     }
3964   }
3965 
3966   return false;
3967 }
3968 
3969 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3970   if (_expensive_nodes->length() == 0) {
3971     return;
3972   }
3973 
3974   assert(OptimizeExpensiveOps, "optimization off?");
3975 
3976   // Sort to bring similar nodes next to each other and clear the
3977   // control input of nodes for which there's only a single copy.
3978   sort_expensive_nodes();
3979 
3980   int j = 0;
3981   int identical = 0;
3982   int i = 0;
3983   for (; i < _expensive_nodes->length()-1; i++) {
3984     assert(j <= i, "can't write beyond current index");
3985     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3986       identical++;
3987       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3988       continue;
3989     }
3990     if (identical > 0) {
3991       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3992       identical = 0;
3993     } else {
3994       Node* n = _expensive_nodes->at(i);
3995       igvn.hash_delete(n);
3996       n->set_req(0, NULL);
3997       igvn.hash_insert(n);
3998     }
3999   }
4000   if (identical > 0) {
4001     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4002   } else if (_expensive_nodes->length() >= 1) {
4003     Node* n = _expensive_nodes->at(i);
4004     igvn.hash_delete(n);
4005     n->set_req(0, NULL);
4006     igvn.hash_insert(n);
4007   }
4008   _expensive_nodes->trunc_to(j);
4009 }
4010 
4011 void Compile::add_expensive_node(Node * n) {
4012   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4013   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4014   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4015   if (OptimizeExpensiveOps) {
4016     _expensive_nodes->append(n);
4017   } else {
4018     // Clear control input and let IGVN optimize expensive nodes if
4019     // OptimizeExpensiveOps is off.
4020     n->set_req(0, NULL);
4021   }
4022 }
4023 
4024 /**
4025  * Remove the speculative part of types and clean up the graph
4026  */
4027 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4028   if (UseTypeSpeculation) {
4029     Unique_Node_List worklist;
4030     worklist.push(root());
4031     int modified = 0;
4032     // Go over all type nodes that carry a speculative type, drop the
4033     // speculative part of the type and enqueue the node for an igvn
4034     // which may optimize it out.
4035     for (uint next = 0; next < worklist.size(); ++next) {
4036       Node *n  = worklist.at(next);
4037       if (n->is_Type()) {
4038         TypeNode* tn = n->as_Type();
4039         const Type* t = tn->type();
4040         const Type* t_no_spec = t->remove_speculative();
4041         if (t_no_spec != t) {
4042           bool in_hash = igvn.hash_delete(n);
4043           assert(in_hash, "node should be in igvn hash table");
4044           tn->set_type(t_no_spec);
4045           igvn.hash_insert(n);
4046           igvn._worklist.push(n); // give it a chance to go away
4047           modified++;
4048         }
4049       }
4050       uint max = n->len();
4051       for( uint i = 0; i < max; ++i ) {
4052         Node *m = n->in(i);
4053         if (not_a_node(m))  continue;
4054         worklist.push(m);
4055       }
4056     }
4057     // Drop the speculative part of all types in the igvn's type table
4058     igvn.remove_speculative_types();
4059     if (modified > 0) {
4060       igvn.optimize();
4061     }
4062 #ifdef ASSERT
4063     // Verify that after the IGVN is over no speculative type has resurfaced
4064     worklist.clear();
4065     worklist.push(root());
4066     for (uint next = 0; next < worklist.size(); ++next) {
4067       Node *n  = worklist.at(next);
4068       const Type* t = igvn.type_or_null(n);
4069       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4070       if (n->is_Type()) {
4071         t = n->as_Type()->type();
4072         assert(t == t->remove_speculative(), "no more speculative types");
4073       }
4074       uint max = n->len();
4075       for( uint i = 0; i < max; ++i ) {
4076         Node *m = n->in(i);
4077         if (not_a_node(m))  continue;
4078         worklist.push(m);
4079       }
4080     }
4081     igvn.check_no_speculative_types();
4082 #endif
4083   }
4084 }
4085 
4086 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4087 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4088   if (ctrl != NULL) {
4089     // Express control dependency by a CastII node with a narrow type.
4090     value = new (phase->C) CastIINode(value, itype, false, true /* range check dependency */);
4091     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4092     // node from floating above the range check during loop optimizations. Otherwise, the
4093     // ConvI2L node may be eliminated independently of the range check, causing the data path
4094     // to become TOP while the control path is still there (although it's unreachable).
4095     value->set_req(0, ctrl);
4096     // Save CastII node to remove it after loop optimizations.
4097     phase->C->add_range_check_cast(value);
4098     value = phase->transform(value);
4099   }
4100   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4101   return phase->transform(new (phase->C) ConvI2LNode(value, ltype));
4102 }
4103 
4104 // Auxiliary method to support randomized stressing/fuzzing.
4105 //
4106 // This method can be called the arbitrary number of times, with current count
4107 // as the argument. The logic allows selecting a single candidate from the
4108 // running list of candidates as follows:
4109 //    int count = 0;
4110 //    Cand* selected = null;
4111 //    while(cand = cand->next()) {
4112 //      if (randomized_select(++count)) {
4113 //        selected = cand;
4114 //      }
4115 //    }
4116 //
4117 // Including count equalizes the chances any candidate is "selected".
4118 // This is useful when we don't have the complete list of candidates to choose
4119 // from uniformly. In this case, we need to adjust the randomicity of the
4120 // selection, or else we will end up biasing the selection towards the latter
4121 // candidates.
4122 //
4123 // Quick back-envelope calculation shows that for the list of n candidates
4124 // the equal probability for the candidate to persist as "best" can be
4125 // achieved by replacing it with "next" k-th candidate with the probability
4126 // of 1/k. It can be easily shown that by the end of the run, the
4127 // probability for any candidate is converged to 1/n, thus giving the
4128 // uniform distribution among all the candidates.
4129 //
4130 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4131 #define RANDOMIZED_DOMAIN_POW 29
4132 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4133 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4134 bool Compile::randomized_select(int count) {
4135   assert(count > 0, "only positive");
4136   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4137 }