1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "compiler/compilerDirectives.hpp"
  30 #include "opto/block.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/chaitin.hpp"
  33 #include "opto/loopnode.hpp"
  34 #include "opto/machnode.hpp"
  35 #include "opto/matcher.hpp"
  36 #include "opto/opcodes.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "utilities/copy.hpp"
  39 
  40 void Block_Array::grow( uint i ) {
  41   assert(i >= Max(), "must be an overflow");
  42   debug_only(_limit = i+1);
  43   if( i < _size )  return;
  44   if( !_size ) {
  45     _size = 1;
  46     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
  47     _blocks[0] = NULL;
  48   }
  49   uint old = _size;
  50   while( i >= _size ) _size <<= 1;      // Double to fit
  51   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
  52   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
  53 }
  54 
  55 void Block_List::remove(uint i) {
  56   assert(i < _cnt, "index out of bounds");
  57   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
  58   pop(); // shrink list by one block
  59 }
  60 
  61 void Block_List::insert(uint i, Block *b) {
  62   push(b); // grow list by one block
  63   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
  64   _blocks[i] = b;
  65 }
  66 
  67 #ifndef PRODUCT
  68 void Block_List::print() {
  69   for (uint i=0; i < size(); i++) {
  70     tty->print("B%d ", _blocks[i]->_pre_order);
  71   }
  72   tty->print("size = %d\n", size());
  73 }
  74 #endif
  75 
  76 uint Block::code_alignment() const {
  77   // Check for Root block
  78   if (_pre_order == 0) return CodeEntryAlignment;
  79   // Check for Start block
  80   if (_pre_order == 1) return InteriorEntryAlignment;
  81   // Check for loop alignment
  82   if (has_loop_alignment()) return loop_alignment();
  83 
  84   return relocInfo::addr_unit(); // no particular alignment
  85 }
  86 
  87 uint Block::compute_loop_alignment() {
  88   Node *h = head();
  89   int unit_sz = relocInfo::addr_unit();
  90   if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
  91     // Pre- and post-loops have low trip count so do not bother with
  92     // NOPs for align loop head.  The constants are hidden from tuning
  93     // but only because my "divide by 4" heuristic surely gets nearly
  94     // all possible gain (a "do not align at all" heuristic has a
  95     // chance of getting a really tiny gain).
  96     if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
  97                                 h->as_CountedLoop()->is_post_loop())) {
  98       return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
  99     }
 100     // Loops with low backedge frequency should not be aligned.
 101     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
 102     if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
 103       return unit_sz; // Loop does not loop, more often than not!
 104     }
 105     return OptoLoopAlignment; // Otherwise align loop head
 106   }
 107 
 108   return unit_sz; // no particular alignment
 109 }
 110 
 111 // Compute the size of first 'inst_cnt' instructions in this block.
 112 // Return the number of instructions left to compute if the block has
 113 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
 114 // exceeds OptoLoopAlignment.
 115 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
 116                                     PhaseRegAlloc* ra) {
 117   uint last_inst = number_of_nodes();
 118   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
 119     uint inst_size = get_node(j)->size(ra);
 120     if( inst_size > 0 ) {
 121       inst_cnt--;
 122       uint sz = sum_size + inst_size;
 123       if( sz <= (uint)OptoLoopAlignment ) {
 124         // Compute size of instructions which fit into fetch buffer only
 125         // since all inst_cnt instructions will not fit even if we align them.
 126         sum_size = sz;
 127       } else {
 128         return 0;
 129       }
 130     }
 131   }
 132   return inst_cnt;
 133 }
 134 
 135 uint Block::find_node( const Node *n ) const {
 136   for( uint i = 0; i < number_of_nodes(); i++ ) {
 137     if( get_node(i) == n )
 138       return i;
 139   }
 140   ShouldNotReachHere();
 141   return 0;
 142 }
 143 
 144 // Find and remove n from block list
 145 void Block::find_remove( const Node *n ) {
 146   remove_node(find_node(n));
 147 }
 148 
 149 bool Block::contains(const Node *n) const {
 150   return _nodes.contains(n);
 151 }
 152 
 153 // Return empty status of a block.  Empty blocks contain only the head, other
 154 // ideal nodes, and an optional trailing goto.
 155 int Block::is_Empty() const {
 156 
 157   // Root or start block is not considered empty
 158   if (head()->is_Root() || head()->is_Start()) {
 159     return not_empty;
 160   }
 161 
 162   int success_result = completely_empty;
 163   int end_idx = number_of_nodes() - 1;
 164 
 165   // Check for ending goto
 166   if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
 167     success_result = empty_with_goto;
 168     end_idx--;
 169   }
 170 
 171   // Unreachable blocks are considered empty
 172   if (num_preds() <= 1) {
 173     return success_result;
 174   }
 175 
 176   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
 177   // turn directly into code, because only MachNodes have non-trivial
 178   // emit() functions.
 179   while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
 180     end_idx--;
 181   }
 182 
 183   // No room for any interesting instructions?
 184   if (end_idx == 0) {
 185     return success_result;
 186   }
 187 
 188   return not_empty;
 189 }
 190 
 191 // Return true if the block's code implies that it is likely to be
 192 // executed infrequently.  Check to see if the block ends in a Halt or
 193 // a low probability call.
 194 bool Block::has_uncommon_code() const {
 195   Node* en = end();
 196 
 197   if (en->is_MachGoto())
 198     en = en->in(0);
 199   if (en->is_Catch())
 200     en = en->in(0);
 201   if (en->is_MachProj() && en->in(0)->is_MachCall()) {
 202     MachCallNode* call = en->in(0)->as_MachCall();
 203     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
 204       // This is true for slow-path stubs like new_{instance,array},
 205       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
 206       // The magic number corresponds to the probability of an uncommon_trap,
 207       // even though it is a count not a probability.
 208       return true;
 209     }
 210   }
 211 
 212   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
 213   return op == Op_Halt;
 214 }
 215 
 216 // True if block is low enough frequency or guarded by a test which
 217 // mostly does not go here.
 218 bool PhaseCFG::is_uncommon(const Block* block) {
 219   // Initial blocks must never be moved, so are never uncommon.
 220   if (block->head()->is_Root() || block->head()->is_Start())  return false;
 221 
 222   // Check for way-low freq
 223   if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
 224 
 225   // Look for code shape indicating uncommon_trap or slow path
 226   if (block->has_uncommon_code()) return true;
 227 
 228   const float epsilon = 0.05f;
 229   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
 230   uint uncommon_preds = 0;
 231   uint freq_preds = 0;
 232   uint uncommon_for_freq_preds = 0;
 233 
 234   for( uint i=1; i< block->num_preds(); i++ ) {
 235     Block* guard = get_block_for_node(block->pred(i));
 236     // Check to see if this block follows its guard 1 time out of 10000
 237     // or less.
 238     //
 239     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
 240     // we intend to be "uncommon", such as slow-path TLE allocation,
 241     // predicted call failure, and uncommon trap triggers.
 242     //
 243     // Use an epsilon value of 5% to allow for variability in frequency
 244     // predictions and floating point calculations. The net effect is
 245     // that guard_factor is set to 9500.
 246     //
 247     // Ignore low-frequency blocks.
 248     // The next check is (guard->_freq < 1.e-5 * 9500.).
 249     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
 250       uncommon_preds++;
 251     } else {
 252       freq_preds++;
 253       if(block->_freq < guard->_freq * guard_factor ) {
 254         uncommon_for_freq_preds++;
 255       }
 256     }
 257   }
 258   if( block->num_preds() > 1 &&
 259       // The block is uncommon if all preds are uncommon or
 260       (uncommon_preds == (block->num_preds()-1) ||
 261       // it is uncommon for all frequent preds.
 262        uncommon_for_freq_preds == freq_preds) ) {
 263     return true;
 264   }
 265   return false;
 266 }
 267 
 268 #ifndef PRODUCT
 269 void Block::dump_bidx(const Block* orig, outputStream* st) const {
 270   if (_pre_order) st->print("B%d", _pre_order);
 271   else st->print("N%d", head()->_idx);
 272 
 273   if (Verbose && orig != this) {
 274     // Dump the original block's idx
 275     st->print(" (");
 276     orig->dump_bidx(orig, st);
 277     st->print(")");
 278   }
 279 }
 280 
 281 void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
 282   if (is_connector()) {
 283     for (uint i=1; i<num_preds(); i++) {
 284       Block *p = cfg->get_block_for_node(pred(i));
 285       p->dump_pred(cfg, orig, st);
 286     }
 287   } else {
 288     dump_bidx(orig, st);
 289     st->print(" ");
 290   }
 291 }
 292 
 293 void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
 294   // Print the basic block.
 295   dump_bidx(this, st);
 296   st->print(": ");
 297 
 298   // Print the outgoing CFG edges.
 299   st->print("#\tout( ");
 300   for( uint i=0; i<_num_succs; i++ ) {
 301     non_connector_successor(i)->dump_bidx(_succs[i], st);
 302     st->print(" ");
 303   }
 304 
 305   // Print the incoming CFG edges.
 306   st->print(") <- ");
 307   if( head()->is_block_start() ) {
 308     st->print("in( ");
 309     for (uint i=1; i<num_preds(); i++) {
 310       Node *s = pred(i);
 311       if (cfg != NULL) {
 312         Block *p = cfg->get_block_for_node(s);
 313         p->dump_pred(cfg, p, st);
 314       } else {
 315         while (!s->is_block_start()) {
 316           s = s->in(0);
 317         }
 318         st->print("N%d ", s->_idx );
 319       }
 320     }
 321     st->print(") ");
 322   } else {
 323     st->print("BLOCK HEAD IS JUNK ");
 324   }
 325 
 326   // Print loop, if any
 327   const Block *bhead = this;    // Head of self-loop
 328   Node *bh = bhead->head();
 329 
 330   if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
 331     LoopNode *loop = bh->as_Loop();
 332     const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
 333     while (bx->is_connector()) {
 334       bx = cfg->get_block_for_node(bx->pred(1));
 335     }
 336     st->print("Loop( B%d-B%d ", bhead->_pre_order, bx->_pre_order);
 337     // Dump any loop-specific bits, especially for CountedLoops.
 338     loop->dump_spec(st);
 339     st->print(")");
 340   } else if (has_loop_alignment()) {
 341     st->print("top-of-loop");
 342   }
 343 
 344   // Print frequency and other optimization-relevant information
 345   st->print(" Freq: %g",_freq);
 346   if( Verbose || WizardMode ) {
 347     st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
 348     st->print(" RegPressure: %d",_reg_pressure);
 349     st->print(" IHRP Index: %d",_ihrp_index);
 350     st->print(" FRegPressure: %d",_freg_pressure);
 351     st->print(" FHRP Index: %d",_fhrp_index);
 352   }
 353   st->cr();
 354 }
 355 
 356 void Block::dump() const {
 357   dump(NULL);
 358 }
 359 
 360 void Block::dump(const PhaseCFG* cfg) const {
 361   dump_head(cfg);
 362   for (uint i=0; i< number_of_nodes(); i++) {
 363     get_node(i)->dump();
 364   }
 365   tty->print("\n");
 366 }
 367 #endif
 368 
 369 PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
 370 : Phase(CFG)
 371 , _root(root)
 372 , _block_arena(arena)
 373 , _regalloc(NULL)
 374 , _scheduling_for_pressure(false)
 375 , _matcher(matcher)
 376 , _node_to_block_mapping(arena)
 377 , _node_latency(NULL)
 378 #ifndef PRODUCT
 379 , _trace_opto_pipelining(C->directive()->TraceOptoPipeliningOption)
 380 #endif
 381 #ifdef ASSERT
 382 , _raw_oops(arena)
 383 #endif
 384 {
 385   ResourceMark rm;
 386   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
 387   // then Match it into a machine-specific Node.  Then clone the machine
 388   // Node on demand.
 389   Node *x = new GotoNode(NULL);
 390   x->init_req(0, x);
 391   _goto = matcher.match_tree(x);
 392   assert(_goto != NULL, "");
 393   _goto->set_req(0,_goto);
 394 
 395   // Build the CFG in Reverse Post Order
 396   _number_of_blocks = build_cfg();
 397   _root_block = get_block_for_node(_root);
 398 }
 399 
 400 // Build a proper looking CFG.  Make every block begin with either a StartNode
 401 // or a RegionNode.  Make every block end with either a Goto, If or Return.
 402 // The RootNode both starts and ends it's own block.  Do this with a recursive
 403 // backwards walk over the control edges.
 404 uint PhaseCFG::build_cfg() {
 405   Arena *a = Thread::current()->resource_area();
 406   VectorSet visited(a);
 407 
 408   // Allocate stack with enough space to avoid frequent realloc
 409   Node_Stack nstack(a, C->live_nodes() >> 1);
 410   nstack.push(_root, 0);
 411   uint sum = 0;                 // Counter for blocks
 412 
 413   while (nstack.is_nonempty()) {
 414     // node and in's index from stack's top
 415     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
 416     // only nodes which point to the start of basic block (see below).
 417     Node *np = nstack.node();
 418     // idx > 0, except for the first node (_root) pushed on stack
 419     // at the beginning when idx == 0.
 420     // We will use the condition (idx == 0) later to end the build.
 421     uint idx = nstack.index();
 422     Node *proj = np->in(idx);
 423     const Node *x = proj->is_block_proj();
 424     // Does the block end with a proper block-ending Node?  One of Return,
 425     // If or Goto? (This check should be done for visited nodes also).
 426     if (x == NULL) {                    // Does not end right...
 427       Node *g = _goto->clone(); // Force it to end in a Goto
 428       g->set_req(0, proj);
 429       np->set_req(idx, g);
 430       x = proj = g;
 431     }
 432     if (!visited.test_set(x->_idx)) { // Visit this block once
 433       // Skip any control-pinned middle'in stuff
 434       Node *p = proj;
 435       do {
 436         proj = p;                   // Update pointer to last Control
 437         p = p->in(0);               // Move control forward
 438       } while( !p->is_block_proj() &&
 439                !p->is_block_start() );
 440       // Make the block begin with one of Region or StartNode.
 441       if( !p->is_block_start() ) {
 442         RegionNode *r = new RegionNode( 2 );
 443         r->init_req(1, p);         // Insert RegionNode in the way
 444         proj->set_req(0, r);        // Insert RegionNode in the way
 445         p = r;
 446       }
 447       // 'p' now points to the start of this basic block
 448 
 449       // Put self in array of basic blocks
 450       Block *bb = new (_block_arena) Block(_block_arena, p);
 451       map_node_to_block(p, bb);
 452       map_node_to_block(x, bb);
 453       if( x != p ) {                // Only for root is x == p
 454         bb->push_node((Node*)x);
 455       }
 456       // Now handle predecessors
 457       ++sum;                        // Count 1 for self block
 458       uint cnt = bb->num_preds();
 459       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
 460         Node *prevproj = p->in(i);  // Get prior input
 461         assert( !prevproj->is_Con(), "dead input not removed" );
 462         // Check to see if p->in(i) is a "control-dependent" CFG edge -
 463         // i.e., it splits at the source (via an IF or SWITCH) and merges
 464         // at the destination (via a many-input Region).
 465         // This breaks critical edges.  The RegionNode to start the block
 466         // will be added when <p,i> is pulled off the node stack
 467         if ( cnt > 2 ) {             // Merging many things?
 468           assert( prevproj== bb->pred(i),"");
 469           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
 470             // Force a block on the control-dependent edge
 471             Node *g = _goto->clone();       // Force it to end in a Goto
 472             g->set_req(0,prevproj);
 473             p->set_req(i,g);
 474           }
 475         }
 476         nstack.push(p, i);  // 'p' is RegionNode or StartNode
 477       }
 478     } else { // Post-processing visited nodes
 479       nstack.pop();                 // remove node from stack
 480       // Check if it the fist node pushed on stack at the beginning.
 481       if (idx == 0) break;          // end of the build
 482       // Find predecessor basic block
 483       Block *pb = get_block_for_node(x);
 484       // Insert into nodes array, if not already there
 485       if (!has_block(proj)) {
 486         assert( x != proj, "" );
 487         // Map basic block of projection
 488         map_node_to_block(proj, pb);
 489         pb->push_node(proj);
 490       }
 491       // Insert self as a child of my predecessor block
 492       pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
 493       assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
 494               "too many control users, not a CFG?" );
 495     }
 496   }
 497   // Return number of basic blocks for all children and self
 498   return sum;
 499 }
 500 
 501 // Inserts a goto & corresponding basic block between
 502 // block[block_no] and its succ_no'th successor block
 503 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
 504   // get block with block_no
 505   assert(block_no < number_of_blocks(), "illegal block number");
 506   Block* in  = get_block(block_no);
 507   // get successor block succ_no
 508   assert(succ_no < in->_num_succs, "illegal successor number");
 509   Block* out = in->_succs[succ_no];
 510   // Compute frequency of the new block. Do this before inserting
 511   // new block in case succ_prob() needs to infer the probability from
 512   // surrounding blocks.
 513   float freq = in->_freq * in->succ_prob(succ_no);
 514   // get ProjNode corresponding to the succ_no'th successor of the in block
 515   ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
 516   // create region for basic block
 517   RegionNode* region = new RegionNode(2);
 518   region->init_req(1, proj);
 519   // setup corresponding basic block
 520   Block* block = new (_block_arena) Block(_block_arena, region);
 521   map_node_to_block(region, block);
 522   C->regalloc()->set_bad(region->_idx);
 523   // add a goto node
 524   Node* gto = _goto->clone(); // get a new goto node
 525   gto->set_req(0, region);
 526   // add it to the basic block
 527   block->push_node(gto);
 528   map_node_to_block(gto, block);
 529   C->regalloc()->set_bad(gto->_idx);
 530   // hook up successor block
 531   block->_succs.map(block->_num_succs++, out);
 532   // remap successor's predecessors if necessary
 533   for (uint i = 1; i < out->num_preds(); i++) {
 534     if (out->pred(i) == proj) out->head()->set_req(i, gto);
 535   }
 536   // remap predecessor's successor to new block
 537   in->_succs.map(succ_no, block);
 538   // Set the frequency of the new block
 539   block->_freq = freq;
 540   // add new basic block to basic block list
 541   add_block_at(block_no + 1, block);
 542 }
 543 
 544 // Does this block end in a multiway branch that cannot have the default case
 545 // flipped for another case?
 546 static bool no_flip_branch(Block *b) {
 547   int branch_idx = b->number_of_nodes() - b->_num_succs-1;
 548   if (branch_idx < 1) {
 549     return false;
 550   }
 551   Node *branch = b->get_node(branch_idx);
 552   if (branch->is_Catch()) {
 553     return true;
 554   }
 555   if (branch->is_Mach()) {
 556     if (branch->is_MachNullCheck()) {
 557       return true;
 558     }
 559     int iop = branch->as_Mach()->ideal_Opcode();
 560     if (iop == Op_FastLock || iop == Op_FastUnlock) {
 561       return true;
 562     }
 563     // Don't flip if branch has an implicit check.
 564     if (branch->as_Mach()->is_TrapBasedCheckNode()) {
 565       return true;
 566     }
 567   }
 568   return false;
 569 }
 570 
 571 // Check for NeverBranch at block end.  This needs to become a GOTO to the
 572 // true target.  NeverBranch are treated as a conditional branch that always
 573 // goes the same direction for most of the optimizer and are used to give a
 574 // fake exit path to infinite loops.  At this late stage they need to turn
 575 // into Goto's so that when you enter the infinite loop you indeed hang.
 576 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
 577   // Find true target
 578   int end_idx = b->end_idx();
 579   int idx = b->get_node(end_idx+1)->as_Proj()->_con;
 580   Block *succ = b->_succs[idx];
 581   Node* gto = _goto->clone(); // get a new goto node
 582   gto->set_req(0, b->head());
 583   Node *bp = b->get_node(end_idx);
 584   b->map_node(gto, end_idx); // Slam over NeverBranch
 585   map_node_to_block(gto, b);
 586   C->regalloc()->set_bad(gto->_idx);
 587   b->pop_node();              // Yank projections
 588   b->pop_node();              // Yank projections
 589   b->_succs.map(0,succ);        // Map only successor
 590   b->_num_succs = 1;
 591   // remap successor's predecessors if necessary
 592   uint j;
 593   for( j = 1; j < succ->num_preds(); j++)
 594     if( succ->pred(j)->in(0) == bp )
 595       succ->head()->set_req(j, gto);
 596   // Kill alternate exit path
 597   Block *dead = b->_succs[1-idx];
 598   for( j = 1; j < dead->num_preds(); j++)
 599     if( dead->pred(j)->in(0) == bp )
 600       break;
 601   // Scan through block, yanking dead path from
 602   // all regions and phis.
 603   dead->head()->del_req(j);
 604   for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
 605     dead->get_node(k)->del_req(j);
 606 }
 607 
 608 // Helper function to move block bx to the slot following b_index. Return
 609 // true if the move is successful, otherwise false
 610 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
 611   if (bx == NULL) return false;
 612 
 613   // Return false if bx is already scheduled.
 614   uint bx_index = bx->_pre_order;
 615   if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
 616     return false;
 617   }
 618 
 619   // Find the current index of block bx on the block list
 620   bx_index = b_index + 1;
 621   while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
 622     bx_index++;
 623   }
 624   assert(get_block(bx_index) == bx, "block not found");
 625 
 626   // If the previous block conditionally falls into bx, return false,
 627   // because moving bx will create an extra jump.
 628   for(uint k = 1; k < bx->num_preds(); k++ ) {
 629     Block* pred = get_block_for_node(bx->pred(k));
 630     if (pred == get_block(bx_index - 1)) {
 631       if (pred->_num_succs != 1) {
 632         return false;
 633       }
 634     }
 635   }
 636 
 637   // Reinsert bx just past block 'b'
 638   _blocks.remove(bx_index);
 639   _blocks.insert(b_index + 1, bx);
 640   return true;
 641 }
 642 
 643 // Move empty and uncommon blocks to the end.
 644 void PhaseCFG::move_to_end(Block *b, uint i) {
 645   int e = b->is_Empty();
 646   if (e != Block::not_empty) {
 647     if (e == Block::empty_with_goto) {
 648       // Remove the goto, but leave the block.
 649       b->pop_node();
 650     }
 651     // Mark this block as a connector block, which will cause it to be
 652     // ignored in certain functions such as non_connector_successor().
 653     b->set_connector();
 654   }
 655   // Move the empty block to the end, and don't recheck.
 656   _blocks.remove(i);
 657   _blocks.push(b);
 658 }
 659 
 660 // Set loop alignment for every block
 661 void PhaseCFG::set_loop_alignment() {
 662   uint last = number_of_blocks();
 663   assert(get_block(0) == get_root_block(), "");
 664 
 665   for (uint i = 1; i < last; i++) {
 666     Block* block = get_block(i);
 667     if (block->head()->is_Loop()) {
 668       block->set_loop_alignment(block);
 669     }
 670   }
 671 }
 672 
 673 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
 674 // to the end.
 675 void PhaseCFG::remove_empty_blocks() {
 676   // Move uncommon blocks to the end
 677   uint last = number_of_blocks();
 678   assert(get_block(0) == get_root_block(), "");
 679 
 680   for (uint i = 1; i < last; i++) {
 681     Block* block = get_block(i);
 682     if (block->is_connector()) {
 683       break;
 684     }
 685 
 686     // Check for NeverBranch at block end.  This needs to become a GOTO to the
 687     // true target.  NeverBranch are treated as a conditional branch that
 688     // always goes the same direction for most of the optimizer and are used
 689     // to give a fake exit path to infinite loops.  At this late stage they
 690     // need to turn into Goto's so that when you enter the infinite loop you
 691     // indeed hang.
 692     if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
 693       convert_NeverBranch_to_Goto(block);
 694     }
 695 
 696     // Look for uncommon blocks and move to end.
 697     if (!C->do_freq_based_layout()) {
 698       if (is_uncommon(block)) {
 699         move_to_end(block, i);
 700         last--;                   // No longer check for being uncommon!
 701         if (no_flip_branch(block)) { // Fall-thru case must follow?
 702           // Find the fall-thru block
 703           block = get_block(i);
 704           move_to_end(block, i);
 705           last--;
 706         }
 707         // backup block counter post-increment
 708         i--;
 709       }
 710     }
 711   }
 712 
 713   // Move empty blocks to the end
 714   last = number_of_blocks();
 715   for (uint i = 1; i < last; i++) {
 716     Block* block = get_block(i);
 717     if (block->is_Empty() != Block::not_empty) {
 718       move_to_end(block, i);
 719       last--;
 720       i--;
 721     }
 722   } // End of for all blocks
 723 }
 724 
 725 Block *PhaseCFG::fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext) {
 726   // Trap based checks must fall through to the successor with
 727   // PROB_ALWAYS.
 728   // They should be an If with 2 successors.
 729   assert(branch->is_MachIf(),   "must be If");
 730   assert(block->_num_succs == 2, "must have 2 successors");
 731 
 732   // Get the If node and the projection for the first successor.
 733   MachIfNode *iff   = block->get_node(block->number_of_nodes()-3)->as_MachIf();
 734   ProjNode   *proj0 = block->get_node(block->number_of_nodes()-2)->as_Proj();
 735   ProjNode   *proj1 = block->get_node(block->number_of_nodes()-1)->as_Proj();
 736   ProjNode   *projt = (proj0->Opcode() == Op_IfTrue)  ? proj0 : proj1;
 737   ProjNode   *projf = (proj0->Opcode() == Op_IfFalse) ? proj0 : proj1;
 738 
 739   // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
 740   assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
 741   assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
 742 
 743   ProjNode *proj_always;
 744   ProjNode *proj_never;
 745   // We must negate the branch if the implicit check doesn't follow
 746   // the branch's TRUE path. Then, the new TRUE branch target will
 747   // be the old FALSE branch target.
 748   if (iff->_prob <= 2*PROB_NEVER) {   // There are small rounding errors.
 749     proj_never  = projt;
 750     proj_always = projf;
 751   } else {
 752     // We must negate the branch if the trap doesn't follow the
 753     // branch's TRUE path. Then, the new TRUE branch target will
 754     // be the old FALSE branch target.
 755     proj_never  = projf;
 756     proj_always = projt;
 757     iff->negate();
 758   }
 759   assert(iff->_prob <= 2*PROB_NEVER, "Trap based checks are expected to trap never!");
 760   // Map the successors properly
 761   block->_succs.map(0, get_block_for_node(proj_never ->raw_out(0)));   // The target of the trap.
 762   block->_succs.map(1, get_block_for_node(proj_always->raw_out(0)));   // The fall through target.
 763 
 764   if (block->get_node(block->number_of_nodes() - block->_num_succs + 1) != proj_always) {
 765     block->map_node(proj_never,  block->number_of_nodes() - block->_num_succs + 0);
 766     block->map_node(proj_always, block->number_of_nodes() - block->_num_succs + 1);
 767   }
 768 
 769   // Place the fall through block after this block.
 770   Block *bs1 = block->non_connector_successor(1);
 771   if (bs1 != bnext && move_to_next(bs1, block_pos)) {
 772     bnext = bs1;
 773   }
 774   // If the fall through block still is not the next block, insert a goto.
 775   if (bs1 != bnext) {
 776     insert_goto_at(block_pos, 1);
 777   }
 778   return bnext;
 779 }
 780 
 781 // Fix up the final control flow for basic blocks.
 782 void PhaseCFG::fixup_flow() {
 783   // Fixup final control flow for the blocks.  Remove jump-to-next
 784   // block. If neither arm of an IF follows the conditional branch, we
 785   // have to add a second jump after the conditional.  We place the
 786   // TRUE branch target in succs[0] for both GOTOs and IFs.
 787   for (uint i = 0; i < number_of_blocks(); i++) {
 788     Block* block = get_block(i);
 789     block->_pre_order = i;          // turn pre-order into block-index
 790 
 791     // Connector blocks need no further processing.
 792     if (block->is_connector()) {
 793       assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
 794       continue;
 795     }
 796     assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
 797 
 798     Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
 799     Block* bs0 = block->non_connector_successor(0);
 800 
 801     // Check for multi-way branches where I cannot negate the test to
 802     // exchange the true and false targets.
 803     if (no_flip_branch(block)) {
 804       // Find fall through case - if must fall into its target.
 805       // Get the index of the branch's first successor.
 806       int branch_idx = block->number_of_nodes() - block->_num_succs;
 807 
 808       // The branch is 1 before the branch's first successor.
 809       Node *branch = block->get_node(branch_idx-1);
 810 
 811       // Handle no-flip branches which have implicit checks and which require
 812       // special block ordering and individual semantics of the 'fall through
 813       // case'.
 814       if ((TrapBasedNullChecks || TrapBasedRangeChecks) &&
 815           branch->is_Mach() && branch->as_Mach()->is_TrapBasedCheckNode()) {
 816         bnext = fixup_trap_based_check(branch, block, i, bnext);
 817       } else {
 818         // Else, default handling for no-flip branches
 819         for (uint j2 = 0; j2 < block->_num_succs; j2++) {
 820           const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
 821           if (p->_con == 0) {
 822             // successor j2 is fall through case
 823             if (block->non_connector_successor(j2) != bnext) {
 824               // but it is not the next block => insert a goto
 825               insert_goto_at(i, j2);
 826             }
 827             // Put taken branch in slot 0
 828             if (j2 == 0 && block->_num_succs == 2) {
 829               // Flip targets in succs map
 830               Block *tbs0 = block->_succs[0];
 831               Block *tbs1 = block->_succs[1];
 832               block->_succs.map(0, tbs1);
 833               block->_succs.map(1, tbs0);
 834             }
 835             break;
 836           }
 837         }
 838       }
 839 
 840       // Remove all CatchProjs
 841       for (uint j = 0; j < block->_num_succs; j++) {
 842         block->pop_node();
 843       }
 844 
 845     } else if (block->_num_succs == 1) {
 846       // Block ends in a Goto?
 847       if (bnext == bs0) {
 848         // We fall into next block; remove the Goto
 849         block->pop_node();
 850       }
 851 
 852     } else if(block->_num_succs == 2) { // Block ends in a If?
 853       // Get opcode of 1st projection (matches _succs[0])
 854       // Note: Since this basic block has 2 exits, the last 2 nodes must
 855       //       be projections (in any order), the 3rd last node must be
 856       //       the IfNode (we have excluded other 2-way exits such as
 857       //       CatchNodes already).
 858       MachNode* iff   = block->get_node(block->number_of_nodes() - 3)->as_Mach();
 859       ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
 860       ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
 861 
 862       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
 863       assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
 864       assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
 865 
 866       Block* bs1 = block->non_connector_successor(1);
 867 
 868       // Check for neither successor block following the current
 869       // block ending in a conditional. If so, move one of the
 870       // successors after the current one, provided that the
 871       // successor was previously unscheduled, but moveable
 872       // (i.e., all paths to it involve a branch).
 873       if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
 874         // Choose the more common successor based on the probability
 875         // of the conditional branch.
 876         Block* bx = bs0;
 877         Block* by = bs1;
 878 
 879         // _prob is the probability of taking the true path. Make
 880         // p the probability of taking successor #1.
 881         float p = iff->as_MachIf()->_prob;
 882         if (proj0->Opcode() == Op_IfTrue) {
 883           p = 1.0 - p;
 884         }
 885 
 886         // Prefer successor #1 if p > 0.5
 887         if (p > PROB_FAIR) {
 888           bx = bs1;
 889           by = bs0;
 890         }
 891 
 892         // Attempt the more common successor first
 893         if (move_to_next(bx, i)) {
 894           bnext = bx;
 895         } else if (move_to_next(by, i)) {
 896           bnext = by;
 897         }
 898       }
 899 
 900       // Check for conditional branching the wrong way.  Negate
 901       // conditional, if needed, so it falls into the following block
 902       // and branches to the not-following block.
 903 
 904       // Check for the next block being in succs[0].  We are going to branch
 905       // to succs[0], so we want the fall-thru case as the next block in
 906       // succs[1].
 907       if (bnext == bs0) {
 908         // Fall-thru case in succs[0], so flip targets in succs map
 909         Block* tbs0 = block->_succs[0];
 910         Block* tbs1 = block->_succs[1];
 911         block->_succs.map(0, tbs1);
 912         block->_succs.map(1, tbs0);
 913         // Flip projection for each target
 914         ProjNode* tmp = proj0;
 915         proj0 = proj1;
 916         proj1 = tmp;
 917 
 918       } else if(bnext != bs1) {
 919         // Need a double-branch
 920         // The existing conditional branch need not change.
 921         // Add a unconditional branch to the false target.
 922         // Alas, it must appear in its own block and adding a
 923         // block this late in the game is complicated.  Sigh.
 924         insert_goto_at(i, 1);
 925       }
 926 
 927       // Make sure we TRUE branch to the target
 928       if (proj0->Opcode() == Op_IfFalse) {
 929         iff->as_MachIf()->negate();
 930       }
 931 
 932       block->pop_node();          // Remove IfFalse & IfTrue projections
 933       block->pop_node();
 934 
 935     } else {
 936       // Multi-exit block, e.g. a switch statement
 937       // But we don't need to do anything here
 938     }
 939   } // End of for all blocks
 940 }
 941 
 942 
 943 // postalloc_expand: Expand nodes after register allocation.
 944 //
 945 // postalloc_expand has to be called after register allocation, just
 946 // before output (i.e. scheduling). It only gets called if
 947 // Matcher::require_postalloc_expand is true.
 948 //
 949 // Background:
 950 //
 951 // Nodes that are expandend (one compound node requiring several
 952 // assembler instructions to be implemented split into two or more
 953 // non-compound nodes) after register allocation are not as nice as
 954 // the ones expanded before register allocation - they don't
 955 // participate in optimizations as global code motion. But after
 956 // register allocation we can expand nodes that use registers which
 957 // are not spillable or registers that are not allocated, because the
 958 // old compound node is simply replaced (in its location in the basic
 959 // block) by a new subgraph which does not contain compound nodes any
 960 // more. The scheduler called during output can later on process these
 961 // non-compound nodes.
 962 //
 963 // Implementation:
 964 //
 965 // Nodes requiring postalloc expand are specified in the ad file by using
 966 // a postalloc_expand statement instead of ins_encode. A postalloc_expand
 967 // contains a single call to an encoding, as does an ins_encode
 968 // statement. Instead of an emit() function a postalloc_expand() function
 969 // is generated that doesn't emit assembler but creates a new
 970 // subgraph. The code below calls this postalloc_expand function for each
 971 // node with the appropriate attribute. This function returns the new
 972 // nodes generated in an array passed in the call. The old node,
 973 // potential MachTemps before and potential Projs after it then get
 974 // disconnected and replaced by the new nodes. The instruction
 975 // generating the result has to be the last one in the array. In
 976 // general it is assumed that Projs after the node expanded are
 977 // kills. These kills are not required any more after expanding as
 978 // there are now explicitly visible def-use chains and the Projs are
 979 // removed. This does not hold for calls: They do not only have
 980 // kill-Projs but also Projs defining values. Therefore Projs after
 981 // the node expanded are removed for all but for calls. If a node is
 982 // to be reused, it must be added to the nodes list returned, and it
 983 // will be added again.
 984 //
 985 // Implementing the postalloc_expand function for a node in an enc_class
 986 // is rather tedious. It requires knowledge about many node details, as
 987 // the nodes and the subgraph must be hand crafted. To simplify this,
 988 // adlc generates some utility variables into the postalloc_expand function,
 989 // e.g., holding the operands as specified by the postalloc_expand encoding
 990 // specification, e.g.:
 991 //  * unsigned idx_<par_name>  holding the index of the node in the ins
 992 //  * Node *n_<par_name>       holding the node loaded from the ins
 993 //  * MachOpnd *op_<par_name>  holding the corresponding operand
 994 //
 995 // The ordering of operands can not be determined by looking at a
 996 // rule. Especially if a match rule matches several different trees,
 997 // several nodes are generated from one instruct specification with
 998 // different operand orderings. In this case the adlc generated
 999 // variables are the only way to access the ins and operands
1000 // deterministically.
1001 //
1002 // If assigning a register to a node that contains an oop, don't
1003 // forget to call ra_->set_oop() for the node.
1004 void PhaseCFG::postalloc_expand(PhaseRegAlloc* _ra) {
1005   GrowableArray <Node *> new_nodes(32); // Array with new nodes filled by postalloc_expand function of node.
1006   GrowableArray <Node *> remove(32);
1007   GrowableArray <Node *> succs(32);
1008   unsigned int max_idx = C->unique();   // Remember to distinguish new from old nodes.
1009   DEBUG_ONLY(bool foundNode = false);
1010 
1011   // for all blocks
1012   for (uint i = 0; i < number_of_blocks(); i++) {
1013     Block *b = _blocks[i];
1014     // For all instructions in the current block.
1015     for (uint j = 0; j < b->number_of_nodes(); j++) {
1016       Node *n = b->get_node(j);
1017       if (n->is_Mach() && n->as_Mach()->requires_postalloc_expand()) {
1018 #ifdef ASSERT
1019         if (TracePostallocExpand) {
1020           if (!foundNode) {
1021             foundNode = true;
1022             tty->print("POSTALLOC EXPANDING %d %s\n", C->compile_id(),
1023                        C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1024           }
1025           tty->print("  postalloc expanding "); n->dump();
1026           if (Verbose) {
1027             tty->print("    with ins:\n");
1028             for (uint k = 0; k < n->len(); ++k) {
1029               if (n->in(k)) { tty->print("        "); n->in(k)->dump(); }
1030             }
1031           }
1032         }
1033 #endif
1034         new_nodes.clear();
1035         // Collect nodes that have to be removed from the block later on.
1036         uint req = n->req();
1037         remove.clear();
1038         for (uint k = 0; k < req; ++k) {
1039           if (n->in(k) && n->in(k)->is_MachTemp()) {
1040             remove.push(n->in(k)); // MachTemps which are inputs to the old node have to be removed.
1041             n->in(k)->del_req(0);
1042             j--;
1043           }
1044         }
1045 
1046         // Check whether we can allocate enough nodes. We set a fix limit for
1047         // the size of postalloc expands with this.
1048         uint unique_limit = C->unique() + 40;
1049         if (unique_limit >= _ra->node_regs_max_index()) {
1050           Compile::current()->record_failure("out of nodes in postalloc expand");
1051           return;
1052         }
1053 
1054         // Emit (i.e. generate new nodes).
1055         n->as_Mach()->postalloc_expand(&new_nodes, _ra);
1056 
1057         assert(C->unique() < unique_limit, "You allocated too many nodes in your postalloc expand.");
1058 
1059         // Disconnect the inputs of the old node.
1060         //
1061         // We reuse MachSpillCopy nodes. If we need to expand them, there
1062         // are many, so reusing pays off. If reused, the node already
1063         // has the new ins. n must be the last node on new_nodes list.
1064         if (!n->is_MachSpillCopy()) {
1065           for (int k = req - 1; k >= 0; --k) {
1066             n->del_req(k);
1067           }
1068         }
1069 
1070 #ifdef ASSERT
1071         // Check that all nodes have proper operands.
1072         for (int k = 0; k < new_nodes.length(); ++k) {
1073           if (new_nodes.at(k)->_idx < max_idx || !new_nodes.at(k)->is_Mach()) continue; // old node, Proj ...
1074           MachNode *m = new_nodes.at(k)->as_Mach();
1075           for (unsigned int l = 0; l < m->num_opnds(); ++l) {
1076             if (MachOper::notAnOper(m->_opnds[l])) {
1077               outputStream *os = tty;
1078               os->print("Node %s ", m->Name());
1079               os->print("has invalid opnd %d: %p\n", l, m->_opnds[l]);
1080               assert(0, "Invalid operands, see inline trace in hs_err_pid file.");
1081             }
1082           }
1083         }
1084 #endif
1085 
1086         // Collect succs of old node in remove (for projections) and in succs (for
1087         // all other nodes) do _not_ collect projections in remove (but in succs)
1088         // in case the node is a call. We need the projections for calls as they are
1089         // associated with registes (i.e. they are defs).
1090         succs.clear();
1091         for (DUIterator k = n->outs(); n->has_out(k); k++) {
1092           if (n->out(k)->is_Proj() && !n->is_MachCall() && !n->is_MachBranch()) {
1093             remove.push(n->out(k));
1094           } else {
1095             succs.push(n->out(k));
1096           }
1097         }
1098         // Replace old node n as input of its succs by last of the new nodes.
1099         for (int k = 0; k < succs.length(); ++k) {
1100           Node *succ = succs.at(k);
1101           for (uint l = 0; l < succ->req(); ++l) {
1102             if (succ->in(l) == n) {
1103               succ->set_req(l, new_nodes.at(new_nodes.length() - 1));
1104             }
1105           }
1106           for (uint l = succ->req(); l < succ->len(); ++l) {
1107             if (succ->in(l) == n) {
1108               succ->set_prec(l, new_nodes.at(new_nodes.length() - 1));
1109             }
1110           }
1111         }
1112 
1113         // Index of old node in block.
1114         uint index = b->find_node(n);
1115         // Insert new nodes into block and map them in nodes->blocks array
1116         // and remember last node in n2.
1117         Node *n2 = NULL;
1118         for (int k = 0; k < new_nodes.length(); ++k) {
1119           n2 = new_nodes.at(k);
1120           b->insert_node(n2, ++index);
1121           map_node_to_block(n2, b);
1122         }
1123 
1124         // Add old node n to remove and remove them all from block.
1125         remove.push(n);
1126         j--;
1127 #ifdef ASSERT
1128         if (TracePostallocExpand && Verbose) {
1129           tty->print("    removing:\n");
1130           for (int k = 0; k < remove.length(); ++k) {
1131             tty->print("        "); remove.at(k)->dump();
1132           }
1133           tty->print("    inserting:\n");
1134           for (int k = 0; k < new_nodes.length(); ++k) {
1135             tty->print("        "); new_nodes.at(k)->dump();
1136           }
1137         }
1138 #endif
1139         for (int k = 0; k < remove.length(); ++k) {
1140           if (b->contains(remove.at(k))) {
1141             b->find_remove(remove.at(k));
1142           } else {
1143             assert(remove.at(k)->is_Proj() && (remove.at(k)->in(0)->is_MachBranch()), "");
1144           }
1145         }
1146         // If anything has been inserted (n2 != NULL), continue after last node inserted.
1147         // This does not always work. Some postalloc expands don't insert any nodes, if they
1148         // do optimizations (e.g., max(x,x)). In this case we decrement j accordingly.
1149         j = n2 ? b->find_node(n2) : j;
1150       }
1151     }
1152   }
1153 
1154 #ifdef ASSERT
1155   if (foundNode) {
1156     tty->print("FINISHED %d %s\n", C->compile_id(),
1157                C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1158     tty->flush();
1159   }
1160 #endif
1161 }
1162 
1163 
1164 //------------------------------dump-------------------------------------------
1165 #ifndef PRODUCT
1166 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
1167   const Node *x = end->is_block_proj();
1168   assert( x, "not a CFG" );
1169 
1170   // Do not visit this block again
1171   if( visited.test_set(x->_idx) ) return;
1172 
1173   // Skip through this block
1174   const Node *p = x;
1175   do {
1176     p = p->in(0);               // Move control forward
1177     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
1178   } while( !p->is_block_start() );
1179 
1180   // Recursively visit
1181   for (uint i = 1; i < p->req(); i++) {
1182     _dump_cfg(p->in(i), visited);
1183   }
1184 
1185   // Dump the block
1186   get_block_for_node(p)->dump(this);
1187 }
1188 
1189 void PhaseCFG::dump( ) const {
1190   tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
1191   if (_blocks.size()) {        // Did we do basic-block layout?
1192     for (uint i = 0; i < number_of_blocks(); i++) {
1193       const Block* block = get_block(i);
1194       block->dump(this);
1195     }
1196   } else {                      // Else do it with a DFS
1197     VectorSet visited(_block_arena);
1198     _dump_cfg(_root,visited);
1199   }
1200 }
1201 
1202 void PhaseCFG::dump_headers() {
1203   for (uint i = 0; i < number_of_blocks(); i++) {
1204     Block* block = get_block(i);
1205     if (block != NULL) {
1206       block->dump_head(this);
1207     }
1208   }
1209 }
1210 
1211 void PhaseCFG::verify() const {
1212 #ifdef ASSERT
1213   // Verify sane CFG
1214   for (uint i = 0; i < number_of_blocks(); i++) {
1215     Block* block = get_block(i);
1216     uint cnt = block->number_of_nodes();
1217     uint j;
1218     for (j = 0; j < cnt; j++)  {
1219       Node *n = block->get_node(j);
1220       assert(get_block_for_node(n) == block, "");
1221       if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1222         assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
1223       }
1224       if (n->needs_anti_dependence_check()) {
1225         verify_anti_dependences(block, n);
1226       }
1227       for (uint k = 0; k < n->req(); k++) {
1228         Node *def = n->in(k);
1229         if (def && def != n) {
1230           assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
1231           // Verify that instructions in the block is in correct order.
1232           // Uses must follow their definition if they are at the same block.
1233           // Mostly done to check that MachSpillCopy nodes are placed correctly
1234           // when CreateEx node is moved in build_ifg_physical().
1235           if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
1236               // See (+++) comment in reg_split.cpp
1237               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
1238             bool is_loop = false;
1239             if (n->is_Phi()) {
1240               for (uint l = 1; l < def->req(); l++) {
1241                 if (n == def->in(l)) {
1242                   is_loop = true;
1243                   break; // Some kind of loop
1244                 }
1245               }
1246             }
1247             assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
1248           }
1249         }
1250       }
1251     }
1252 
1253     j = block->end_idx();
1254     Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
1255     assert(bp, "last instruction must be a block proj");
1256     assert(bp == block->get_node(j), "wrong number of successors for this block");
1257     if (bp->is_Catch()) {
1258       while (block->get_node(--j)->is_MachProj()) {
1259         ;
1260       }
1261       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1262     } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
1263       assert(block->_num_succs == 2, "Conditional branch must have two targets");
1264     }
1265   }
1266 #endif
1267 }
1268 #endif
1269 
1270 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
1271   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
1272 }
1273 
1274 void UnionFind::extend( uint from_idx, uint to_idx ) {
1275   _nesting.check();
1276   if( from_idx >= _max ) {
1277     uint size = 16;
1278     while( size <= from_idx ) size <<=1;
1279     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
1280     _max = size;
1281   }
1282   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
1283   _indices[from_idx] = to_idx;
1284 }
1285 
1286 void UnionFind::reset( uint max ) {
1287   // Force the Union-Find mapping to be at least this large
1288   extend(max,0);
1289   // Initialize to be the ID mapping.
1290   for( uint i=0; i<max; i++ ) map(i,i);
1291 }
1292 
1293 // Straight out of Tarjan's union-find algorithm
1294 uint UnionFind::Find_compress( uint idx ) {
1295   uint cur  = idx;
1296   uint next = lookup(cur);
1297   while( next != cur ) {        // Scan chain of equivalences
1298     assert( next < cur, "always union smaller" );
1299     cur = next;                 // until find a fixed-point
1300     next = lookup(cur);
1301   }
1302   // Core of union-find algorithm: update chain of
1303   // equivalences to be equal to the root.
1304   while( idx != next ) {
1305     uint tmp = lookup(idx);
1306     map(idx, next);
1307     idx = tmp;
1308   }
1309   return idx;
1310 }
1311 
1312 // Like Find above, but no path compress, so bad asymptotic behavior
1313 uint UnionFind::Find_const( uint idx ) const {
1314   if( idx == 0 ) return idx;    // Ignore the zero idx
1315   // Off the end?  This can happen during debugging dumps
1316   // when data structures have not finished being updated.
1317   if( idx >= _max ) return idx;
1318   uint next = lookup(idx);
1319   while( next != idx ) {        // Scan chain of equivalences
1320     idx = next;                 // until find a fixed-point
1321     next = lookup(idx);
1322   }
1323   return next;
1324 }
1325 
1326 // union 2 sets together.
1327 void UnionFind::Union( uint idx1, uint idx2 ) {
1328   uint src = Find(idx1);
1329   uint dst = Find(idx2);
1330   assert( src, "" );
1331   assert( dst, "" );
1332   assert( src < _max, "oob" );
1333   assert( dst < _max, "oob" );
1334   assert( src < dst, "always union smaller" );
1335   map(dst,src);
1336 }
1337 
1338 #ifndef PRODUCT
1339 void Trace::dump( ) const {
1340   tty->print_cr("Trace (freq %f)", first_block()->_freq);
1341   for (Block *b = first_block(); b != NULL; b = next(b)) {
1342     tty->print("  B%d", b->_pre_order);
1343     if (b->head()->is_Loop()) {
1344       tty->print(" (L%d)", b->compute_loop_alignment());
1345     }
1346     if (b->has_loop_alignment()) {
1347       tty->print(" (T%d)", b->code_alignment());
1348     }
1349   }
1350   tty->cr();
1351 }
1352 
1353 void CFGEdge::dump( ) const {
1354   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
1355              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1356   switch(state()) {
1357   case connected:
1358     tty->print("connected");
1359     break;
1360   case open:
1361     tty->print("open");
1362     break;
1363   case interior:
1364     tty->print("interior");
1365     break;
1366   }
1367   if (infrequent()) {
1368     tty->print("  infrequent");
1369   }
1370   tty->cr();
1371 }
1372 #endif
1373 
1374 // Comparison function for edges
1375 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1376   float freq0 = (*e0)->freq();
1377   float freq1 = (*e1)->freq();
1378   if (freq0 != freq1) {
1379     return freq0 > freq1 ? -1 : 1;
1380   }
1381 
1382   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1383   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1384 
1385   return dist1 - dist0;
1386 }
1387 
1388 // Comparison function for edges
1389 extern "C" int trace_frequency_order(const void *p0, const void *p1) {
1390   Trace *tr0 = *(Trace **) p0;
1391   Trace *tr1 = *(Trace **) p1;
1392   Block *b0 = tr0->first_block();
1393   Block *b1 = tr1->first_block();
1394 
1395   // The trace of connector blocks goes at the end;
1396   // we only expect one such trace
1397   if (b0->is_connector() != b1->is_connector()) {
1398     return b1->is_connector() ? -1 : 1;
1399   }
1400 
1401   // Pull more frequently executed blocks to the beginning
1402   float freq0 = b0->_freq;
1403   float freq1 = b1->_freq;
1404   if (freq0 != freq1) {
1405     return freq0 > freq1 ? -1 : 1;
1406   }
1407 
1408   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1409 
1410   return diff;
1411 }
1412 
1413 // Find edges of interest, i.e, those which can fall through. Presumes that
1414 // edges which don't fall through are of low frequency and can be generally
1415 // ignored.  Initialize the list of traces.
1416 void PhaseBlockLayout::find_edges() {
1417   // Walk the blocks, creating edges and Traces
1418   uint i;
1419   Trace *tr = NULL;
1420   for (i = 0; i < _cfg.number_of_blocks(); i++) {
1421     Block* b = _cfg.get_block(i);
1422     tr = new Trace(b, next, prev);
1423     traces[tr->id()] = tr;
1424 
1425     // All connector blocks should be at the end of the list
1426     if (b->is_connector()) break;
1427 
1428     // If this block and the next one have a one-to-one successor
1429     // predecessor relationship, simply append the next block
1430     int nfallthru = b->num_fall_throughs();
1431     while (nfallthru == 1 &&
1432            b->succ_fall_through(0)) {
1433       Block *n = b->_succs[0];
1434 
1435       // Skip over single-entry connector blocks, we don't want to
1436       // add them to the trace.
1437       while (n->is_connector() && n->num_preds() == 1) {
1438         n = n->_succs[0];
1439       }
1440 
1441       // We see a merge point, so stop search for the next block
1442       if (n->num_preds() != 1) break;
1443 
1444       i++;
1445       assert(n == _cfg.get_block(i), "expecting next block");
1446       tr->append(n);
1447       uf->map(n->_pre_order, tr->id());
1448       traces[n->_pre_order] = NULL;
1449       nfallthru = b->num_fall_throughs();
1450       b = n;
1451     }
1452 
1453     if (nfallthru > 0) {
1454       // Create a CFGEdge for each outgoing
1455       // edge that could be a fall-through.
1456       for (uint j = 0; j < b->_num_succs; j++ ) {
1457         if (b->succ_fall_through(j)) {
1458           Block *target = b->non_connector_successor(j);
1459           float freq = b->_freq * b->succ_prob(j);
1460           int from_pct = (int) ((100 * freq) / b->_freq);
1461           int to_pct = (int) ((100 * freq) / target->_freq);
1462           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1463         }
1464       }
1465     }
1466   }
1467 
1468   // Group connector blocks into one trace
1469   for (i++; i < _cfg.number_of_blocks(); i++) {
1470     Block *b = _cfg.get_block(i);
1471     assert(b->is_connector(), "connector blocks at the end");
1472     tr->append(b);
1473     uf->map(b->_pre_order, tr->id());
1474     traces[b->_pre_order] = NULL;
1475   }
1476 }
1477 
1478 // Union two traces together in uf, and null out the trace in the list
1479 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
1480   uint old_id = old_trace->id();
1481   uint updated_id = updated_trace->id();
1482 
1483   uint lo_id = updated_id;
1484   uint hi_id = old_id;
1485 
1486   // If from is greater than to, swap values to meet
1487   // UnionFind guarantee.
1488   if (updated_id > old_id) {
1489     lo_id = old_id;
1490     hi_id = updated_id;
1491 
1492     // Fix up the trace ids
1493     traces[lo_id] = traces[updated_id];
1494     updated_trace->set_id(lo_id);
1495   }
1496 
1497   // Union the lower with the higher and remove the pointer
1498   // to the higher.
1499   uf->Union(lo_id, hi_id);
1500   traces[hi_id] = NULL;
1501 }
1502 
1503 // Append traces together via the most frequently executed edges
1504 void PhaseBlockLayout::grow_traces() {
1505   // Order the edges, and drive the growth of Traces via the most
1506   // frequently executed edges.
1507   edges->sort(edge_order);
1508   for (int i = 0; i < edges->length(); i++) {
1509     CFGEdge *e = edges->at(i);
1510 
1511     if (e->state() != CFGEdge::open) continue;
1512 
1513     Block *src_block = e->from();
1514     Block *targ_block = e->to();
1515 
1516     // Don't grow traces along backedges?
1517     if (!BlockLayoutRotateLoops) {
1518       if (targ_block->_rpo <= src_block->_rpo) {
1519         targ_block->set_loop_alignment(targ_block);
1520         continue;
1521       }
1522     }
1523 
1524     Trace *src_trace = trace(src_block);
1525     Trace *targ_trace = trace(targ_block);
1526 
1527     // If the edge in question can join two traces at their ends,
1528     // append one trace to the other.
1529    if (src_trace->last_block() == src_block) {
1530       if (src_trace == targ_trace) {
1531         e->set_state(CFGEdge::interior);
1532         if (targ_trace->backedge(e)) {
1533           // Reset i to catch any newly eligible edge
1534           // (Or we could remember the first "open" edge, and reset there)
1535           i = 0;
1536         }
1537       } else if (targ_trace->first_block() == targ_block) {
1538         e->set_state(CFGEdge::connected);
1539         src_trace->append(targ_trace);
1540         union_traces(src_trace, targ_trace);
1541       }
1542     }
1543   }
1544 }
1545 
1546 // Embed one trace into another, if the fork or join points are sufficiently
1547 // balanced.
1548 void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
1549   // Walk the edge list a another time, looking at unprocessed edges.
1550   // Fold in diamonds
1551   for (int i = 0; i < edges->length(); i++) {
1552     CFGEdge *e = edges->at(i);
1553 
1554     if (e->state() != CFGEdge::open) continue;
1555     if (fall_thru_only) {
1556       if (e->infrequent()) continue;
1557     }
1558 
1559     Block *src_block = e->from();
1560     Trace *src_trace = trace(src_block);
1561     bool src_at_tail = src_trace->last_block() == src_block;
1562 
1563     Block *targ_block  = e->to();
1564     Trace *targ_trace  = trace(targ_block);
1565     bool targ_at_start = targ_trace->first_block() == targ_block;
1566 
1567     if (src_trace == targ_trace) {
1568       // This may be a loop, but we can't do much about it.
1569       e->set_state(CFGEdge::interior);
1570       continue;
1571     }
1572 
1573     if (fall_thru_only) {
1574       // If the edge links the middle of two traces, we can't do anything.
1575       // Mark the edge and continue.
1576       if (!src_at_tail & !targ_at_start) {
1577         continue;
1578       }
1579 
1580       // Don't grow traces along backedges?
1581       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1582           continue;
1583       }
1584 
1585       // If both ends of the edge are available, why didn't we handle it earlier?
1586       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1587 
1588       if (targ_at_start) {
1589         // Insert the "targ" trace in the "src" trace if the insertion point
1590         // is a two way branch.
1591         // Better profitability check possible, but may not be worth it.
1592         // Someday, see if the this "fork" has an associated "join";
1593         // then make a policy on merging this trace at the fork or join.
1594         // For example, other things being equal, it may be better to place this
1595         // trace at the join point if the "src" trace ends in a two-way, but
1596         // the insertion point is one-way.
1597         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1598         e->set_state(CFGEdge::connected);
1599         src_trace->insert_after(src_block, targ_trace);
1600         union_traces(src_trace, targ_trace);
1601       } else if (src_at_tail) {
1602         if (src_trace != trace(_cfg.get_root_block())) {
1603           e->set_state(CFGEdge::connected);
1604           targ_trace->insert_before(targ_block, src_trace);
1605           union_traces(targ_trace, src_trace);
1606         }
1607       }
1608     } else if (e->state() == CFGEdge::open) {
1609       // Append traces, even without a fall-thru connection.
1610       // But leave root entry at the beginning of the block list.
1611       if (targ_trace != trace(_cfg.get_root_block())) {
1612         e->set_state(CFGEdge::connected);
1613         src_trace->append(targ_trace);
1614         union_traces(src_trace, targ_trace);
1615       }
1616     }
1617   }
1618 }
1619 
1620 // Order the sequence of the traces in some desirable way, and fixup the
1621 // jumps at the end of each block.
1622 void PhaseBlockLayout::reorder_traces(int count) {
1623   ResourceArea *area = Thread::current()->resource_area();
1624   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1625   Block_List worklist;
1626   int new_count = 0;
1627 
1628   // Compact the traces.
1629   for (int i = 0; i < count; i++) {
1630     Trace *tr = traces[i];
1631     if (tr != NULL) {
1632       new_traces[new_count++] = tr;
1633     }
1634   }
1635 
1636   // The entry block should be first on the new trace list.
1637   Trace *tr = trace(_cfg.get_root_block());
1638   assert(tr == new_traces[0], "entry trace misplaced");
1639 
1640   // Sort the new trace list by frequency
1641   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1642 
1643   // Patch up the successor blocks
1644   _cfg.clear_blocks();
1645   for (int i = 0; i < new_count; i++) {
1646     Trace *tr = new_traces[i];
1647     if (tr != NULL) {
1648       tr->fixup_blocks(_cfg);
1649     }
1650   }
1651 }
1652 
1653 // Order basic blocks based on frequency
1654 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
1655 : Phase(BlockLayout)
1656 , _cfg(cfg) {
1657   ResourceMark rm;
1658   ResourceArea *area = Thread::current()->resource_area();
1659 
1660   // List of traces
1661   int size = _cfg.number_of_blocks() + 1;
1662   traces = NEW_ARENA_ARRAY(area, Trace *, size);
1663   memset(traces, 0, size*sizeof(Trace*));
1664   next = NEW_ARENA_ARRAY(area, Block *, size);
1665   memset(next,   0, size*sizeof(Block *));
1666   prev = NEW_ARENA_ARRAY(area, Block *, size);
1667   memset(prev  , 0, size*sizeof(Block *));
1668 
1669   // List of edges
1670   edges = new GrowableArray<CFGEdge*>;
1671 
1672   // Mapping block index --> block_trace
1673   uf = new UnionFind(size);
1674   uf->reset(size);
1675 
1676   // Find edges and create traces.
1677   find_edges();
1678 
1679   // Grow traces at their ends via most frequent edges.
1680   grow_traces();
1681 
1682   // Merge one trace into another, but only at fall-through points.
1683   // This may make diamonds and other related shapes in a trace.
1684   merge_traces(true);
1685 
1686   // Run merge again, allowing two traces to be catenated, even if
1687   // one does not fall through into the other. This appends loosely
1688   // related traces to be near each other.
1689   merge_traces(false);
1690 
1691   // Re-order all the remaining traces by frequency
1692   reorder_traces(size);
1693 
1694   assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
1695 }
1696 
1697 
1698 // Edge e completes a loop in a trace. If the target block is head of the
1699 // loop, rotate the loop block so that the loop ends in a conditional branch.
1700 bool Trace::backedge(CFGEdge *e) {
1701   bool loop_rotated = false;
1702   Block *src_block  = e->from();
1703   Block *targ_block    = e->to();
1704 
1705   assert(last_block() == src_block, "loop discovery at back branch");
1706   if (first_block() == targ_block) {
1707     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1708       // Find the last block in the trace that has a conditional
1709       // branch.
1710       Block *b;
1711       for (b = last_block(); b != NULL; b = prev(b)) {
1712         if (b->num_fall_throughs() == 2) {
1713           break;
1714         }
1715       }
1716 
1717       if (b != last_block() && b != NULL) {
1718         loop_rotated = true;
1719 
1720         // Rotate the loop by doing two-part linked-list surgery.
1721         append(first_block());
1722         break_loop_after(b);
1723       }
1724     }
1725 
1726     // Backbranch to the top of a trace
1727     // Scroll forward through the trace from the targ_block. If we find
1728     // a loop head before another loop top, use the the loop head alignment.
1729     for (Block *b = targ_block; b != NULL; b = next(b)) {
1730       if (b->has_loop_alignment()) {
1731         break;
1732       }
1733       if (b->head()->is_Loop()) {
1734         targ_block = b;
1735         break;
1736       }
1737     }
1738 
1739     first_block()->set_loop_alignment(targ_block);
1740 
1741   } else {
1742     // That loop may already have a loop top (we're reaching it again
1743     // through the backedge of an outer loop)
1744     Block* b = prev(targ_block);
1745     bool has_top = targ_block->head()->is_Loop() && b->has_loop_alignment() && !b->head()->is_Loop();
1746     if (!has_top) {
1747       // Backbranch into the middle of a trace
1748       targ_block->set_loop_alignment(targ_block);
1749     }
1750   }
1751 
1752   return loop_rotated;
1753 }
1754 
1755 // push blocks onto the CFG list
1756 // ensure that blocks have the correct two-way branch sense
1757 void Trace::fixup_blocks(PhaseCFG &cfg) {
1758   Block *last = last_block();
1759   for (Block *b = first_block(); b != NULL; b = next(b)) {
1760     cfg.add_block(b);
1761     if (!b->is_connector()) {
1762       int nfallthru = b->num_fall_throughs();
1763       if (b != last) {
1764         if (nfallthru == 2) {
1765           // Ensure that the sense of the branch is correct
1766           Block *bnext = next(b);
1767           Block *bs0 = b->non_connector_successor(0);
1768 
1769           MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
1770           ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
1771           ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
1772 
1773           if (bnext == bs0) {
1774             // Fall-thru case in succs[0], should be in succs[1]
1775 
1776             // Flip targets in _succs map
1777             Block *tbs0 = b->_succs[0];
1778             Block *tbs1 = b->_succs[1];
1779             b->_succs.map( 0, tbs1 );
1780             b->_succs.map( 1, tbs0 );
1781 
1782             // Flip projections to match targets
1783             b->map_node(proj1, b->number_of_nodes() - 2);
1784             b->map_node(proj0, b->number_of_nodes() - 1);
1785           }
1786         }
1787       }
1788     }
1789   }
1790 }