1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/compilerWarnings.hpp"
  29 #include "utilities/debug.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include COMPILER_HEADER(utilities/globalDefinitions)
  33 
  34 // Defaults for macros that might be defined per compiler.
  35 #ifndef NOINLINE
  36 #define NOINLINE
  37 #endif
  38 #ifndef ALWAYSINLINE
  39 #define ALWAYSINLINE inline
  40 #endif
  41 
  42 #ifndef ATTRIBUTE_ALIGNED
  43 #define ATTRIBUTE_ALIGNED(x)
  44 #endif
  45 
  46 // These are #defines to selectively turn on/off the Print(Opto)Assembly
  47 // capabilities. Choices should be led by a tradeoff between
  48 // code size and improved supportability.
  49 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well
  50 // to have a fallback in case hsdis is not available.
  51 #if defined(PRODUCT)
  52   #define SUPPORT_ABSTRACT_ASSEMBLY
  53   #define SUPPORT_ASSEMBLY
  54   #undef  SUPPORT_OPTO_ASSEMBLY      // Can't activate. In PRODUCT, many dump methods are missing.
  55   #undef  SUPPORT_DATA_STRUCTS       // Of limited use. In PRODUCT, many print methods are empty.
  56 #else
  57   #define SUPPORT_ABSTRACT_ASSEMBLY
  58   #define SUPPORT_ASSEMBLY
  59   #define SUPPORT_OPTO_ASSEMBLY
  60   #define SUPPORT_DATA_STRUCTS
  61 #endif
  62 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY)
  63   #define SUPPORT_ABSTRACT_ASSEMBLY
  64 #endif
  65 
  66 // This file holds all globally used constants & types, class (forward)
  67 // declarations and a few frequently used utility functions.
  68 
  69 //----------------------------------------------------------------------------------------------------
  70 // Printf-style formatters for fixed- and variable-width types as pointers and
  71 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  72 // doesn't provide appropriate definitions, they should be provided in
  73 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  74 
  75 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  76 
  77 // Format 32-bit quantities.
  78 #define INT32_FORMAT           "%" PRId32
  79 #define UINT32_FORMAT          "%" PRIu32
  80 #define INT32_FORMAT_W(width)  "%" #width PRId32
  81 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  82 
  83 #define PTR32_FORMAT           "0x%08" PRIx32
  84 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
  85 
  86 // Format 64-bit quantities.
  87 #define INT64_FORMAT           "%" PRId64
  88 #define UINT64_FORMAT          "%" PRIu64
  89 #define UINT64_FORMAT_X        "%" PRIx64
  90 #define INT64_FORMAT_W(width)  "%" #width PRId64
  91 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  92 #define UINT64_FORMAT_X_W(width) "%" #width PRIx64
  93 
  94 #define PTR64_FORMAT           "0x%016" PRIx64
  95 
  96 // Format jlong, if necessary
  97 #ifndef JLONG_FORMAT
  98 #define JLONG_FORMAT           INT64_FORMAT
  99 #endif
 100 #ifndef JULONG_FORMAT
 101 #define JULONG_FORMAT          UINT64_FORMAT
 102 #endif
 103 #ifndef JULONG_FORMAT_X
 104 #define JULONG_FORMAT_X        UINT64_FORMAT_X
 105 #endif
 106 
 107 // Format pointers which change size between 32- and 64-bit.
 108 #ifdef  _LP64
 109 #define INTPTR_FORMAT "0x%016" PRIxPTR
 110 #define PTR_FORMAT    "0x%016" PRIxPTR
 111 #else   // !_LP64
 112 #define INTPTR_FORMAT "0x%08"  PRIxPTR
 113 #define PTR_FORMAT    "0x%08"  PRIxPTR
 114 #endif  // _LP64
 115 
 116 // Format pointers without leading zeros
 117 #define INTPTRNZ_FORMAT "0x%"  PRIxPTR
 118 
 119 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
 120 
 121 #define SSIZE_FORMAT             "%"   PRIdPTR
 122 #define SIZE_FORMAT              "%"   PRIuPTR
 123 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
 124 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 125 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 126 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
 127 
 128 #define INTX_FORMAT           "%" PRIdPTR
 129 #define UINTX_FORMAT          "%" PRIuPTR
 130 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
 131 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
 132 
 133 //----------------------------------------------------------------------------------------------------
 134 // Constants
 135 
 136 const int LogBytesPerShort   = 1;
 137 const int LogBytesPerInt     = 2;
 138 #ifdef _LP64
 139 const int LogBytesPerWord    = 3;
 140 #else
 141 const int LogBytesPerWord    = 2;
 142 #endif
 143 const int LogBytesPerLong    = 3;
 144 
 145 const int BytesPerShort      = 1 << LogBytesPerShort;
 146 const int BytesPerInt        = 1 << LogBytesPerInt;
 147 const int BytesPerWord       = 1 << LogBytesPerWord;
 148 const int BytesPerLong       = 1 << LogBytesPerLong;
 149 
 150 const int LogBitsPerByte     = 3;
 151 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 152 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 153 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 154 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 155 
 156 const int BitsPerByte        = 1 << LogBitsPerByte;
 157 const int BitsPerShort       = 1 << LogBitsPerShort;
 158 const int BitsPerInt         = 1 << LogBitsPerInt;
 159 const int BitsPerWord        = 1 << LogBitsPerWord;
 160 const int BitsPerLong        = 1 << LogBitsPerLong;
 161 
 162 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 163 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 164 
 165 const int WordsPerLong       = 2;       // Number of stack entries for longs
 166 
 167 const int oopSize            = sizeof(char*); // Full-width oop
 168 extern int heapOopSize;                       // Oop within a java object
 169 const int wordSize           = sizeof(char*);
 170 const int longSize           = sizeof(jlong);
 171 const int jintSize           = sizeof(jint);
 172 const int size_tSize         = sizeof(size_t);
 173 
 174 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 175 
 176 extern int LogBytesPerHeapOop;                // Oop within a java object
 177 extern int LogBitsPerHeapOop;
 178 extern int BytesPerHeapOop;
 179 extern int BitsPerHeapOop;
 180 
 181 const int BitsPerJavaInteger = 32;
 182 const int BitsPerJavaLong    = 64;
 183 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 184 
 185 // Size of a char[] needed to represent a jint as a string in decimal.
 186 const int jintAsStringSize = 12;
 187 
 188 // An opaque type, so that HeapWord* can be a generic pointer into the heap.
 189 // We require that object sizes be measured in units of heap words (e.g.
 190 // pointer-sized values), so that given HeapWord* hw,
 191 //   hw += oop(hw)->foo();
 192 // works, where foo is a method (like size or scavenge) that returns the
 193 // object size.
 194 class HeapWordImpl;             // Opaque, never defined.
 195 typedef HeapWordImpl* HeapWord;
 196 
 197 // Analogous opaque struct for metadata allocated from metaspaces.
 198 class MetaWordImpl;             // Opaque, never defined.
 199 typedef MetaWordImpl* MetaWord;
 200 
 201 // HeapWordSize must be 2^LogHeapWordSize.
 202 const int HeapWordSize        = sizeof(HeapWord);
 203 #ifdef _LP64
 204 const int LogHeapWordSize     = 3;
 205 #else
 206 const int LogHeapWordSize     = 2;
 207 #endif
 208 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 209 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 210 
 211 // The minimum number of native machine words necessary to contain "byte_size"
 212 // bytes.
 213 inline size_t heap_word_size(size_t byte_size) {
 214   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 215 }
 216 
 217 //-------------------------------------------
 218 // Constant for jlong (standardized by C++11)
 219 
 220 // Build a 64bit integer constant
 221 #define CONST64(x)  (x ## LL)
 222 #define UCONST64(x) (x ## ULL)
 223 
 224 const jlong min_jlong = CONST64(0x8000000000000000);
 225 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 226 
 227 const size_t K                  = 1024;
 228 const size_t M                  = K*K;
 229 const size_t G                  = M*K;
 230 const size_t HWperKB            = K / sizeof(HeapWord);
 231 
 232 // Constants for converting from a base unit to milli-base units.  For
 233 // example from seconds to milliseconds and microseconds
 234 
 235 const int MILLIUNITS    = 1000;         // milli units per base unit
 236 const int MICROUNITS    = 1000000;      // micro units per base unit
 237 const int NANOUNITS     = 1000000000;   // nano units per base unit
 238 
 239 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 240 const jint  NANOSECS_PER_MILLISEC = 1000000;
 241 
 242 // Proper units routines try to maintain at least three significant digits.
 243 // In worst case, it would print five significant digits with lower prefix.
 244 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 245 // and therefore we need to be careful.
 246 
 247 inline const char* proper_unit_for_byte_size(size_t s) {
 248 #ifdef _LP64
 249   if (s >= 100*G) {
 250     return "G";
 251   }
 252 #endif
 253   if (s >= 100*M) {
 254     return "M";
 255   } else if (s >= 100*K) {
 256     return "K";
 257   } else {
 258     return "B";
 259   }
 260 }
 261 
 262 template <class T>
 263 inline T byte_size_in_proper_unit(T s) {
 264 #ifdef _LP64
 265   if (s >= 100*G) {
 266     return (T)(s/G);
 267   }
 268 #endif
 269   if (s >= 100*M) {
 270     return (T)(s/M);
 271   } else if (s >= 100*K) {
 272     return (T)(s/K);
 273   } else {
 274     return s;
 275   }
 276 }
 277 
 278 inline const char* exact_unit_for_byte_size(size_t s) {
 279 #ifdef _LP64
 280   if (s >= G && (s % G) == 0) {
 281     return "G";
 282   }
 283 #endif
 284   if (s >= M && (s % M) == 0) {
 285     return "M";
 286   }
 287   if (s >= K && (s % K) == 0) {
 288     return "K";
 289   }
 290   return "B";
 291 }
 292 
 293 inline size_t byte_size_in_exact_unit(size_t s) {
 294 #ifdef _LP64
 295   if (s >= G && (s % G) == 0) {
 296     return s / G;
 297   }
 298 #endif
 299   if (s >= M && (s % M) == 0) {
 300     return s / M;
 301   }
 302   if (s >= K && (s % K) == 0) {
 303     return s / K;
 304   }
 305   return s;
 306 }
 307 
 308 //----------------------------------------------------------------------------------------------------
 309 // VM type definitions
 310 
 311 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 312 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 313 
 314 typedef intptr_t  intx;
 315 typedef uintptr_t uintx;
 316 
 317 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 318 const intx  max_intx  = (uintx)min_intx - 1;
 319 const uintx max_uintx = (uintx)-1;
 320 
 321 // Table of values:
 322 //      sizeof intx         4               8
 323 // min_intx             0x80000000      0x8000000000000000
 324 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 325 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 326 
 327 typedef unsigned int uint;   NEEDS_CLEANUP
 328 
 329 
 330 //----------------------------------------------------------------------------------------------------
 331 // Java type definitions
 332 
 333 // All kinds of 'plain' byte addresses
 334 typedef   signed char s_char;
 335 typedef unsigned char u_char;
 336 typedef u_char*       address;
 337 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 338                                     // except for some implementations of a C++
 339                                     // linkage pointer to function. Should never
 340                                     // need one of those to be placed in this
 341                                     // type anyway.
 342 
 343 //  Utility functions to "portably" (?) bit twiddle pointers
 344 //  Where portable means keep ANSI C++ compilers quiet
 345 
 346 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 347 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 348 
 349 //  Utility functions to "portably" make cast to/from function pointers.
 350 
 351 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 352 inline address_word  castable_address(address x)              { return address_word(x) ; }
 353 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 354 
 355 // Pointer subtraction.
 356 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 357 // the range we might need to find differences from one end of the heap
 358 // to the other.
 359 // A typical use might be:
 360 //     if (pointer_delta(end(), top()) >= size) {
 361 //       // enough room for an object of size
 362 //       ...
 363 // and then additions like
 364 //       ... top() + size ...
 365 // are safe because we know that top() is at least size below end().
 366 inline size_t pointer_delta(const volatile void* left,
 367                             const volatile void* right,
 368                             size_t element_size) {
 369   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 370 }
 371 
 372 // A version specialized for HeapWord*'s.
 373 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 374   return pointer_delta(left, right, sizeof(HeapWord));
 375 }
 376 // A version specialized for MetaWord*'s.
 377 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 378   return pointer_delta(left, right, sizeof(MetaWord));
 379 }
 380 
 381 //
 382 // ANSI C++ does not allow casting from one pointer type to a function pointer
 383 // directly without at best a warning. This macro accomplishes it silently
 384 // In every case that is present at this point the value be cast is a pointer
 385 // to a C linkage function. In some case the type used for the cast reflects
 386 // that linkage and a picky compiler would not complain. In other cases because
 387 // there is no convenient place to place a typedef with extern C linkage (i.e
 388 // a platform dependent header file) it doesn't. At this point no compiler seems
 389 // picky enough to catch these instances (which are few). It is possible that
 390 // using templates could fix these for all cases. This use of templates is likely
 391 // so far from the middle of the road that it is likely to be problematic in
 392 // many C++ compilers.
 393 //
 394 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 395 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 396 
 397 // Unsigned byte types for os and stream.hpp
 398 
 399 // Unsigned one, two, four and eigth byte quantities used for describing
 400 // the .class file format. See JVM book chapter 4.
 401 
 402 typedef jubyte  u1;
 403 typedef jushort u2;
 404 typedef juint   u4;
 405 typedef julong  u8;
 406 
 407 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 408 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 409 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 410 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 411 
 412 typedef jbyte  s1;
 413 typedef jshort s2;
 414 typedef jint   s4;
 415 typedef jlong  s8;
 416 
 417 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 418 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 419 const jshort min_jshort = -(1 << 15);    // smallest jshort
 420 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 421 
 422 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 423 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 424 
 425 //----------------------------------------------------------------------------------------------------
 426 // JVM spec restrictions
 427 
 428 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 429 
 430 //----------------------------------------------------------------------------------------------------
 431 // Object alignment, in units of HeapWords.
 432 //
 433 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 434 // reference fields can be naturally aligned.
 435 
 436 extern int MinObjAlignment;
 437 extern int MinObjAlignmentInBytes;
 438 extern int MinObjAlignmentInBytesMask;
 439 
 440 extern int LogMinObjAlignment;
 441 extern int LogMinObjAlignmentInBytes;
 442 
 443 const int LogKlassAlignmentInBytes = 3;
 444 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 445 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 446 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 447 
 448 // Maximal size of heap where unscaled compression can be used. Also upper bound
 449 // for heap placement: 4GB.
 450 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 451 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 452 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 453 extern uint64_t OopEncodingHeapMax;
 454 
 455 // Maximal size of compressed class space. Above this limit compression is not possible.
 456 // Also upper bound for placement of zero based class space. (Class space is further limited
 457 // to be < 3G, see arguments.cpp.)
 458 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 459 
 460 // Machine dependent stuff
 461 
 462 // The maximum size of the code cache.  Can be overridden by targets.
 463 #define CODE_CACHE_SIZE_LIMIT (2*G)
 464 // Allow targets to reduce the default size of the code cache.
 465 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 466 
 467 #include CPU_HEADER(globalDefinitions)
 468 
 469 // To assure the IRIW property on processors that are not multiple copy
 470 // atomic, sync instructions must be issued between volatile reads to
 471 // assure their ordering, instead of after volatile stores.
 472 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 473 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 474 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 475 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 476 #else
 477 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 478 #endif
 479 
 480 // The expected size in bytes of a cache line, used to pad data structures.
 481 #ifndef DEFAULT_CACHE_LINE_SIZE
 482   #define DEFAULT_CACHE_LINE_SIZE 64
 483 #endif
 484 
 485 
 486 //----------------------------------------------------------------------------------------------------
 487 // Utility macros for compilers
 488 // used to silence compiler warnings
 489 
 490 #define Unused_Variable(var) var
 491 
 492 
 493 //----------------------------------------------------------------------------------------------------
 494 // Miscellaneous
 495 
 496 // 6302670 Eliminate Hotspot __fabsf dependency
 497 // All fabs() callers should call this function instead, which will implicitly
 498 // convert the operand to double, avoiding a dependency on __fabsf which
 499 // doesn't exist in early versions of Solaris 8.
 500 inline double fabsd(double value) {
 501   return fabs(value);
 502 }
 503 
 504 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 505 // is zero, return 0.0.
 506 template<typename T>
 507 inline double percent_of(T numerator, T denominator) {
 508   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 509 }
 510 
 511 //----------------------------------------------------------------------------------------------------
 512 // Special casts
 513 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 514 typedef union {
 515   jfloat f;
 516   jint i;
 517 } FloatIntConv;
 518 
 519 typedef union {
 520   jdouble d;
 521   jlong l;
 522   julong ul;
 523 } DoubleLongConv;
 524 
 525 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 526 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 527 
 528 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 529 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 530 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 531 
 532 inline jint low (jlong value)                    { return jint(value); }
 533 inline jint high(jlong value)                    { return jint(value >> 32); }
 534 
 535 // the fancy casts are a hopefully portable way
 536 // to do unsigned 32 to 64 bit type conversion
 537 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 538                                                    *value |= (jlong)(julong)(juint)low; }
 539 
 540 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 541                                                    *value |= (jlong)high       << 32; }
 542 
 543 inline jlong jlong_from(jint h, jint l) {
 544   jlong result = 0; // initialization to avoid warning
 545   set_high(&result, h);
 546   set_low(&result,  l);
 547   return result;
 548 }
 549 
 550 union jlong_accessor {
 551   jint  words[2];
 552   jlong long_value;
 553 };
 554 
 555 void basic_types_init(); // cannot define here; uses assert
 556 
 557 
 558 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 559 enum BasicType {
 560   T_BOOLEAN     =  4,
 561   T_CHAR        =  5,
 562   T_FLOAT       =  6,
 563   T_DOUBLE      =  7,
 564   T_BYTE        =  8,
 565   T_SHORT       =  9,
 566   T_INT         = 10,
 567   T_LONG        = 11,
 568   T_OBJECT      = 12,
 569   T_ARRAY       = 13,
 570   T_VOID        = 14,
 571   T_ADDRESS     = 15,
 572   T_NARROWOOP   = 16,
 573   T_METADATA    = 17,
 574   T_NARROWKLASS = 18,
 575   T_CONFLICT    = 19, // for stack value type with conflicting contents
 576   T_ILLEGAL     = 99
 577 };
 578 
 579 inline bool is_java_primitive(BasicType t) {
 580   return T_BOOLEAN <= t && t <= T_LONG;
 581 }
 582 
 583 inline bool is_subword_type(BasicType t) {
 584   // these guys are processed exactly like T_INT in calling sequences:
 585   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 586 }
 587 
 588 inline bool is_signed_subword_type(BasicType t) {
 589   return (t == T_BYTE || t == T_SHORT);
 590 }
 591 
 592 inline bool is_reference_type(BasicType t) {
 593   return (t == T_OBJECT || t == T_ARRAY);
 594 }
 595 
 596 // Convert a char from a classfile signature to a BasicType
 597 inline BasicType char2type(char c) {
 598   switch( c ) {
 599   case 'B': return T_BYTE;
 600   case 'C': return T_CHAR;
 601   case 'D': return T_DOUBLE;
 602   case 'F': return T_FLOAT;
 603   case 'I': return T_INT;
 604   case 'J': return T_LONG;
 605   case 'S': return T_SHORT;
 606   case 'Z': return T_BOOLEAN;
 607   case 'V': return T_VOID;
 608   case 'L': return T_OBJECT;
 609   case '[': return T_ARRAY;
 610   }
 611   return T_ILLEGAL;
 612 }
 613 
 614 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 615 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 616 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 617 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 618 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 619 extern BasicType name2type(const char* name);
 620 
 621 // Auxiliary math routines
 622 // least common multiple
 623 extern size_t lcm(size_t a, size_t b);
 624 
 625 
 626 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 627 enum BasicTypeSize {
 628   T_BOOLEAN_size     = 1,
 629   T_CHAR_size        = 1,
 630   T_FLOAT_size       = 1,
 631   T_DOUBLE_size      = 2,
 632   T_BYTE_size        = 1,
 633   T_SHORT_size       = 1,
 634   T_INT_size         = 1,
 635   T_LONG_size        = 2,
 636   T_OBJECT_size      = 1,
 637   T_ARRAY_size       = 1,
 638   T_NARROWOOP_size   = 1,
 639   T_NARROWKLASS_size = 1,
 640   T_VOID_size        = 0
 641 };
 642 
 643 
 644 // maps a BasicType to its instance field storage type:
 645 // all sub-word integral types are widened to T_INT
 646 extern BasicType type2field[T_CONFLICT+1];
 647 extern BasicType type2wfield[T_CONFLICT+1];
 648 
 649 
 650 // size in bytes
 651 enum ArrayElementSize {
 652   T_BOOLEAN_aelem_bytes     = 1,
 653   T_CHAR_aelem_bytes        = 2,
 654   T_FLOAT_aelem_bytes       = 4,
 655   T_DOUBLE_aelem_bytes      = 8,
 656   T_BYTE_aelem_bytes        = 1,
 657   T_SHORT_aelem_bytes       = 2,
 658   T_INT_aelem_bytes         = 4,
 659   T_LONG_aelem_bytes        = 8,
 660 #ifdef _LP64
 661   T_OBJECT_aelem_bytes      = 8,
 662   T_ARRAY_aelem_bytes       = 8,
 663 #else
 664   T_OBJECT_aelem_bytes      = 4,
 665   T_ARRAY_aelem_bytes       = 4,
 666 #endif
 667   T_NARROWOOP_aelem_bytes   = 4,
 668   T_NARROWKLASS_aelem_bytes = 4,
 669   T_VOID_aelem_bytes        = 0
 670 };
 671 
 672 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 673 #ifdef ASSERT
 674 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 675 #else
 676 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 677 #endif
 678 
 679 
 680 // JavaValue serves as a container for arbitrary Java values.
 681 
 682 class JavaValue {
 683 
 684  public:
 685   typedef union JavaCallValue {
 686     jfloat   f;
 687     jdouble  d;
 688     jint     i;
 689     jlong    l;
 690     jobject  h;
 691   } JavaCallValue;
 692 
 693  private:
 694   BasicType _type;
 695   JavaCallValue _value;
 696 
 697  public:
 698   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 699 
 700   JavaValue(jfloat value) {
 701     _type    = T_FLOAT;
 702     _value.f = value;
 703   }
 704 
 705   JavaValue(jdouble value) {
 706     _type    = T_DOUBLE;
 707     _value.d = value;
 708   }
 709 
 710  jfloat get_jfloat() const { return _value.f; }
 711  jdouble get_jdouble() const { return _value.d; }
 712  jint get_jint() const { return _value.i; }
 713  jlong get_jlong() const { return _value.l; }
 714  jobject get_jobject() const { return _value.h; }
 715  JavaCallValue* get_value_addr() { return &_value; }
 716  BasicType get_type() const { return _type; }
 717 
 718  void set_jfloat(jfloat f) { _value.f = f;}
 719  void set_jdouble(jdouble d) { _value.d = d;}
 720  void set_jint(jint i) { _value.i = i;}
 721  void set_jlong(jlong l) { _value.l = l;}
 722  void set_jobject(jobject h) { _value.h = h;}
 723  void set_type(BasicType t) { _type = t; }
 724 
 725  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 726  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 727  jchar get_jchar() const { return (jchar) (_value.i);}
 728  jshort get_jshort() const { return (jshort) (_value.i);}
 729 
 730 };
 731 
 732 
 733 #define STACK_BIAS      0
 734 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 735 // in order to extend the reach of the stack pointer.
 736 #if defined(SPARC) && defined(_LP64)
 737 #undef STACK_BIAS
 738 #define STACK_BIAS      0x7ff
 739 #endif
 740 
 741 
 742 // TosState describes the top-of-stack state before and after the execution of
 743 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 744 // registers. The TosState corresponds to the 'machine representation' of this cached
 745 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 746 // as well as a 5th state in case the top-of-stack value is actually on the top
 747 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 748 // state when it comes to machine representation but is used separately for (oop)
 749 // type specific operations (e.g. verification code).
 750 
 751 enum TosState {         // describes the tos cache contents
 752   btos = 0,             // byte, bool tos cached
 753   ztos = 1,             // byte, bool tos cached
 754   ctos = 2,             // char tos cached
 755   stos = 3,             // short tos cached
 756   itos = 4,             // int tos cached
 757   ltos = 5,             // long tos cached
 758   ftos = 6,             // float tos cached
 759   dtos = 7,             // double tos cached
 760   atos = 8,             // object cached
 761   vtos = 9,             // tos not cached
 762   number_of_states,
 763   ilgl                  // illegal state: should not occur
 764 };
 765 
 766 
 767 inline TosState as_TosState(BasicType type) {
 768   switch (type) {
 769     case T_BYTE   : return btos;
 770     case T_BOOLEAN: return ztos;
 771     case T_CHAR   : return ctos;
 772     case T_SHORT  : return stos;
 773     case T_INT    : return itos;
 774     case T_LONG   : return ltos;
 775     case T_FLOAT  : return ftos;
 776     case T_DOUBLE : return dtos;
 777     case T_VOID   : return vtos;
 778     case T_ARRAY  : // fall through
 779     case T_OBJECT : return atos;
 780     default       : return ilgl;
 781   }
 782 }
 783 
 784 inline BasicType as_BasicType(TosState state) {
 785   switch (state) {
 786     case btos : return T_BYTE;
 787     case ztos : return T_BOOLEAN;
 788     case ctos : return T_CHAR;
 789     case stos : return T_SHORT;
 790     case itos : return T_INT;
 791     case ltos : return T_LONG;
 792     case ftos : return T_FLOAT;
 793     case dtos : return T_DOUBLE;
 794     case atos : return T_OBJECT;
 795     case vtos : return T_VOID;
 796     default   : return T_ILLEGAL;
 797   }
 798 }
 799 
 800 
 801 // Helper function to convert BasicType info into TosState
 802 // Note: Cannot define here as it uses global constant at the time being.
 803 TosState as_TosState(BasicType type);
 804 
 805 
 806 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 807 // information is needed by the safepoint code.
 808 //
 809 // There are 4 essential states:
 810 //
 811 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 812 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 813 //  _thread_in_vm       : Executing in the vm
 814 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 815 //
 816 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 817 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 818 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 819 //
 820 // Given a state, the xxxx_trans state can always be found by adding 1.
 821 //
 822 enum JavaThreadState {
 823   _thread_uninitialized     =  0, // should never happen (missing initialization)
 824   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 825   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 826   _thread_in_native         =  4, // running in native code
 827   _thread_in_native_trans   =  5, // corresponding transition state
 828   _thread_in_vm             =  6, // running in VM
 829   _thread_in_vm_trans       =  7, // corresponding transition state
 830   _thread_in_Java           =  8, // running in Java or in stub code
 831   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 832   _thread_blocked           = 10, // blocked in vm
 833   _thread_blocked_trans     = 11, // corresponding transition state
 834   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 835 };
 836 
 837 //----------------------------------------------------------------------------------------------------
 838 // Special constants for debugging
 839 
 840 const jint     badInt           = -3;                       // generic "bad int" value
 841 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
 842 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
 843 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 844 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
 845 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 846 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 847 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 848 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 849 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
 850 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 851 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 852 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 853 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 854 
 855 
 856 // (These must be implemented as #defines because C++ compilers are
 857 // not obligated to inline non-integral constants!)
 858 #define       badAddress        ((address)::badAddressVal)
 859 #define       badOop            (cast_to_oop(::badOopVal))
 860 #define       badHeapWord       (::badHeapWordVal)
 861 
 862 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 863 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 864 
 865 //----------------------------------------------------------------------------------------------------
 866 // Utility functions for bitfield manipulations
 867 
 868 const intptr_t AllBits    = ~0; // all bits set in a word
 869 const intptr_t NoBits     =  0; // no bits set in a word
 870 const jlong    NoLongBits =  0; // no bits set in a long
 871 const intptr_t OneBit     =  1; // only right_most bit set in a word
 872 
 873 // get a word with the n.th or the right-most or left-most n bits set
 874 // (note: #define used only so that they can be used in enum constant definitions)
 875 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
 876 #define right_n_bits(n)   (nth_bit(n) - 1)
 877 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
 878 
 879 // bit-operations using a mask m
 880 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 881 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 882 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 883 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 884 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 885 
 886 // bit-operations using the n.th bit
 887 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
 888 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
 889 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
 890 
 891 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
 892 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
 893   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
 894 }
 895 
 896 
 897 //----------------------------------------------------------------------------------------------------
 898 // Utility functions for integers
 899 
 900 // Avoid use of global min/max macros which may cause unwanted double
 901 // evaluation of arguments.
 902 #ifdef max
 903 #undef max
 904 #endif
 905 
 906 #ifdef min
 907 #undef min
 908 #endif
 909 
 910 // It is necessary to use templates here. Having normal overloaded
 911 // functions does not work because it is necessary to provide both 32-
 912 // and 64-bit overloaded functions, which does not work, and having
 913 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
 914 // will be even more error-prone than macros.
 915 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
 916 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
 917 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
 918 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
 919 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
 920 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
 921 
 922 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
 923 
 924 // true if x is a power of 2, false otherwise
 925 inline bool is_power_of_2(intptr_t x) {
 926   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
 927 }
 928 
 929 // long version of is_power_of_2
 930 inline bool is_power_of_2_long(jlong x) {
 931   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
 932 }
 933 
 934 // Returns largest i such that 2^i <= x.
 935 // If x == 0, the function returns -1.
 936 inline int log2_intptr(uintptr_t x) {
 937   int i = -1;
 938   uintptr_t p = 1;
 939   while (p != 0 && p <= x) {
 940     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 941     i++; p *= 2;
 942   }
 943   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 944   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
 945   return i;
 946 }
 947 
 948 //* largest i such that 2^i <= x
 949 inline int log2_long(julong x) {
 950   int i = -1;
 951   julong p =  1;
 952   while (p != 0 && p <= x) {
 953     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 954     i++; p *= 2;
 955   }
 956   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 957   // (if p = 0 then overflow occurred and i = 63)
 958   return i;
 959 }
 960 
 961 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
 962 inline int log2_intptr(intptr_t x) {
 963   return log2_intptr((uintptr_t)x);
 964 }
 965 
 966 inline int log2_int(int x) {
 967   STATIC_ASSERT(sizeof(int) <= sizeof(uintptr_t));
 968   return log2_intptr((uintptr_t)x);
 969 }
 970 
 971 inline int log2_jint(jint x) {
 972   STATIC_ASSERT(sizeof(jint) <= sizeof(uintptr_t));
 973   return log2_intptr((uintptr_t)x);
 974 }
 975 
 976 inline int log2_uint(uint x) {
 977   STATIC_ASSERT(sizeof(uint) <= sizeof(uintptr_t));
 978   return log2_intptr((uintptr_t)x);
 979 }
 980 
 981 //  A negative value of 'x' will return '63'
 982 inline int log2_jlong(jlong x) {
 983   STATIC_ASSERT(sizeof(jlong) <= sizeof(julong));
 984   return log2_long((julong)x);
 985 }
 986 
 987 //* the argument must be exactly a power of 2
 988 inline int exact_log2(intptr_t x) {
 989   assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
 990   return log2_intptr(x);
 991 }
 992 
 993 //* the argument must be exactly a power of 2
 994 inline int exact_log2_long(jlong x) {
 995   assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
 996   return log2_long(x);
 997 }
 998 
 999 inline bool is_odd (intx x) { return x & 1;      }
1000 inline bool is_even(intx x) { return !is_odd(x); }
1001 
1002 // abs methods which cannot overflow and so are well-defined across
1003 // the entire domain of integer types.
1004 static inline unsigned int uabs(unsigned int n) {
1005   union {
1006     unsigned int result;
1007     int value;
1008   };
1009   result = n;
1010   if (value < 0) result = 0-result;
1011   return result;
1012 }
1013 static inline julong uabs(julong n) {
1014   union {
1015     julong result;
1016     jlong value;
1017   };
1018   result = n;
1019   if (value < 0) result = 0-result;
1020   return result;
1021 }
1022 static inline julong uabs(jlong n) { return uabs((julong)n); }
1023 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1024 
1025 // "to" should be greater than "from."
1026 inline intx byte_size(void* from, void* to) {
1027   return (address)to - (address)from;
1028 }
1029 
1030 
1031 // Pack and extract shorts to/from ints:
1032 
1033 inline int extract_low_short_from_int(jint x) {
1034   return x & 0xffff;
1035 }
1036 
1037 inline int extract_high_short_from_int(jint x) {
1038   return (x >> 16) & 0xffff;
1039 }
1040 
1041 inline int build_int_from_shorts( jushort low, jushort high ) {
1042   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1043 }
1044 
1045 // Convert pointer to intptr_t, for use in printing pointers.
1046 inline intptr_t p2i(const void * p) {
1047   return (intptr_t) p;
1048 }
1049 
1050 // swap a & b
1051 template<class T> static void swap(T& a, T& b) {
1052   T tmp = a;
1053   a = b;
1054   b = tmp;
1055 }
1056 
1057 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1058 
1059 //----------------------------------------------------------------------------------------------------
1060 // Sum and product which can never overflow: they wrap, just like the
1061 // Java operations.  Note that we don't intend these to be used for
1062 // general-purpose arithmetic: their purpose is to emulate Java
1063 // operations.
1064 
1065 // The goal of this code to avoid undefined or implementation-defined
1066 // behavior.  The use of an lvalue to reference cast is explicitly
1067 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1068 // 15 in C++03]
1069 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1070 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1071   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1072   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1073   return reinterpret_cast<TYPE&>(ures);                 \
1074 }
1075 
1076 JAVA_INTEGER_OP(+, java_add, jint, juint)
1077 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1078 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1079 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1080 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1081 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1082 
1083 #undef JAVA_INTEGER_OP
1084 
1085 // Dereference vptr
1086 // All C++ compilers that we know of have the vtbl pointer in the first
1087 // word.  If there are exceptions, this function needs to be made compiler
1088 // specific.
1089 static inline void* dereference_vptr(const void* addr) {
1090   return *(void**)addr;
1091 }
1092 
1093 //----------------------------------------------------------------------------------------------------
1094 // String type aliases used by command line flag declarations and
1095 // processing utilities.
1096 
1097 typedef const char* ccstr;
1098 typedef const char* ccstrlist;   // represents string arguments which accumulate
1099 
1100 //----------------------------------------------------------------------------------------------------
1101 // Default hash/equals functions used by ResourceHashtable and KVHashtable
1102 
1103 template<typename K> unsigned primitive_hash(const K& k) {
1104   unsigned hash = (unsigned)((uintptr_t)k);
1105   return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs
1106 }
1107 
1108 template<typename K> bool primitive_equals(const K& k0, const K& k1) {
1109   return k0 == k1;
1110 }
1111 
1112 
1113 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP