1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "code/oopRecorder.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "oops/methodData.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "runtime/icache.hpp"
  32 #include "runtime/safepointVerifiers.hpp"
  33 #include "utilities/align.hpp"
  34 #include "utilities/copy.hpp"
  35 #include "utilities/xmlstream.hpp"
  36 
  37 // The structure of a CodeSection:
  38 //
  39 //    _start ->           +----------------+
  40 //                        | machine code...|
  41 //    _end ->             |----------------|
  42 //                        |                |
  43 //                        |    (empty)     |
  44 //                        |                |
  45 //                        |                |
  46 //                        +----------------+
  47 //    _limit ->           |                |
  48 //
  49 //    _locs_start ->      +----------------+
  50 //                        |reloc records...|
  51 //                        |----------------|
  52 //    _locs_end ->        |                |
  53 //                        |                |
  54 //                        |    (empty)     |
  55 //                        |                |
  56 //                        |                |
  57 //                        +----------------+
  58 //    _locs_limit ->      |                |
  59 // The _end (resp. _limit) pointer refers to the first
  60 // unused (resp. unallocated) byte.
  61 
  62 // The structure of the CodeBuffer while code is being accumulated:
  63 //
  64 //    _total_start ->    \
  65 //    _insts._start ->              +----------------+
  66 //                                  |                |
  67 //                                  |     Code       |
  68 //                                  |                |
  69 //    _stubs._start ->              |----------------|
  70 //                                  |                |
  71 //                                  |    Stubs       | (also handlers for deopt/exception)
  72 //                                  |                |
  73 //    _consts._start ->             |----------------|
  74 //                                  |                |
  75 //                                  |   Constants    |
  76 //                                  |                |
  77 //                                  +----------------+
  78 //    + _total_size ->              |                |
  79 //
  80 // When the code and relocations are copied to the code cache,
  81 // the empty parts of each section are removed, and everything
  82 // is copied into contiguous locations.
  83 
  84 typedef CodeBuffer::csize_t csize_t;  // file-local definition
  85 
  86 // External buffer, in a predefined CodeBlob.
  87 // Important: The code_start must be taken exactly, and not realigned.
  88 CodeBuffer::CodeBuffer(CodeBlob* blob) {
  89   // Provide code buffer with meaningful name
  90   initialize_misc(blob->name());
  91   initialize(blob->content_begin(), blob->content_size());
  92   verify_section_allocation();
  93 }
  94 
  95 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
  96   // Compute maximal alignment.
  97   int align = _insts.alignment();
  98   // Always allow for empty slop around each section.
  99   int slop = (int) CodeSection::end_slop();
 100 
 101   assert(blob() == NULL, "only once");
 102   set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
 103   if (blob() == NULL) {
 104     // The assembler constructor will throw a fatal on an empty CodeBuffer.
 105     return;  // caller must test this
 106   }
 107 
 108   // Set up various pointers into the blob.
 109   initialize(_total_start, _total_size);
 110 
 111   assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
 112 
 113   pd_initialize();
 114 
 115   if (locs_size != 0) {
 116     _insts.initialize_locs(locs_size / sizeof(relocInfo));
 117   }
 118 
 119   verify_section_allocation();
 120 }
 121 
 122 
 123 CodeBuffer::~CodeBuffer() {
 124   verify_section_allocation();
 125 
 126   // If we allocate our code buffer from the CodeCache
 127   // via a BufferBlob, and it's not permanent, then
 128   // free the BufferBlob.
 129   // The rest of the memory will be freed when the ResourceObj
 130   // is released.
 131   for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
 132     // Previous incarnations of this buffer are held live, so that internal
 133     // addresses constructed before expansions will not be confused.
 134     cb->free_blob();
 135   }
 136 
 137   // free any overflow storage
 138   delete _overflow_arena;
 139 
 140   // Claim is that stack allocation ensures resources are cleaned up.
 141   // This is resource clean up, let's hope that all were properly copied out.
 142   free_strings();
 143 
 144 #ifdef ASSERT
 145   // Save allocation type to execute assert in ~ResourceObj()
 146   // which is called after this destructor.
 147   assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object");
 148   ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
 149   Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
 150   ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
 151 #endif
 152 }
 153 
 154 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
 155   assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
 156   DEBUG_ONLY(_default_oop_recorder.freeze());  // force unused OR to be frozen
 157   _oop_recorder = r;
 158 }
 159 
 160 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
 161   assert(cs != &_insts, "insts is the memory provider, not the consumer");
 162   csize_t slop = CodeSection::end_slop();  // margin between sections
 163   int align = cs->alignment();
 164   assert(is_power_of_2(align), "sanity");
 165   address start  = _insts._start;
 166   address limit  = _insts._limit;
 167   address middle = limit - size;
 168   middle -= (intptr_t)middle & (align-1);  // align the division point downward
 169   guarantee(middle - slop > start, "need enough space to divide up");
 170   _insts._limit = middle - slop;  // subtract desired space, plus slop
 171   cs->initialize(middle, limit - middle);
 172   assert(cs->start() == middle, "sanity");
 173   assert(cs->limit() == limit,  "sanity");
 174   // give it some relocations to start with, if the main section has them
 175   if (_insts.has_locs())  cs->initialize_locs(1);
 176 }
 177 
 178 void CodeBuffer::freeze_section(CodeSection* cs) {
 179   CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
 180   csize_t frozen_size = cs->size();
 181   if (next_cs != NULL) {
 182     frozen_size = next_cs->align_at_start(frozen_size);
 183   }
 184   address old_limit = cs->limit();
 185   address new_limit = cs->start() + frozen_size;
 186   relocInfo* old_locs_limit = cs->locs_limit();
 187   relocInfo* new_locs_limit = cs->locs_end();
 188   // Patch the limits.
 189   cs->_limit = new_limit;
 190   cs->_locs_limit = new_locs_limit;
 191   cs->_frozen = true;
 192   if (next_cs != NULL && !next_cs->is_allocated() && !next_cs->is_frozen()) {
 193     // Give remaining buffer space to the following section.
 194     next_cs->initialize(new_limit, old_limit - new_limit);
 195     next_cs->initialize_shared_locs(new_locs_limit,
 196                                     old_locs_limit - new_locs_limit);
 197   }
 198 }
 199 
 200 void CodeBuffer::set_blob(BufferBlob* blob) {
 201   _blob = blob;
 202   if (blob != NULL) {
 203     address start = blob->content_begin();
 204     address end   = blob->content_end();
 205     // Round up the starting address.
 206     int align = _insts.alignment();
 207     start += (-(intptr_t)start) & (align-1);
 208     _total_start = start;
 209     _total_size  = end - start;
 210   } else {
 211 #ifdef ASSERT
 212     // Clean out dangling pointers.
 213     _total_start    = badAddress;
 214     _consts._start  = _consts._end  = badAddress;
 215     _insts._start   = _insts._end   = badAddress;
 216     _stubs._start   = _stubs._end   = badAddress;
 217 #endif //ASSERT
 218   }
 219 }
 220 
 221 void CodeBuffer::free_blob() {
 222   if (_blob != NULL) {
 223     BufferBlob::free(_blob);
 224     set_blob(NULL);
 225   }
 226 }
 227 
 228 const char* CodeBuffer::code_section_name(int n) {
 229 #ifdef PRODUCT
 230   return NULL;
 231 #else //PRODUCT
 232   switch (n) {
 233   case SECT_CONSTS:            return "consts";
 234   case SECT_INSTS:             return "insts";
 235   case SECT_STUBS:             return "stubs";
 236   default:                     return NULL;
 237   }
 238 #endif //PRODUCT
 239 }
 240 
 241 int CodeBuffer::section_index_of(address addr) const {
 242   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 243     const CodeSection* cs = code_section(n);
 244     if (cs->allocates(addr))  return n;
 245   }
 246   return SECT_NONE;
 247 }
 248 
 249 int CodeBuffer::locator(address addr) const {
 250   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 251     const CodeSection* cs = code_section(n);
 252     if (cs->allocates(addr)) {
 253       return locator(addr - cs->start(), n);
 254     }
 255   }
 256   return -1;
 257 }
 258 
 259 address CodeBuffer::locator_address(int locator) const {
 260   if (locator < 0)  return NULL;
 261   address start = code_section(locator_sect(locator))->start();
 262   return start + locator_pos(locator);
 263 }
 264 
 265 bool CodeBuffer::is_backward_branch(Label& L) {
 266   return L.is_bound() && insts_end() <= locator_address(L.loc());
 267 }
 268 
 269 address CodeBuffer::decode_begin() {
 270   address begin = _insts.start();
 271   if (_decode_begin != NULL && _decode_begin > begin)
 272     begin = _decode_begin;
 273   return begin;
 274 }
 275 
 276 
 277 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
 278   if (_overflow_arena == NULL) {
 279     _overflow_arena = new (mtCode) Arena(mtCode);
 280   }
 281   return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
 282 }
 283 
 284 
 285 // Helper function for managing labels and their target addresses.
 286 // Returns a sensible address, and if it is not the label's final
 287 // address, notes the dependency (at 'branch_pc') on the label.
 288 address CodeSection::target(Label& L, address branch_pc) {
 289   if (L.is_bound()) {
 290     int loc = L.loc();
 291     if (index() == CodeBuffer::locator_sect(loc)) {
 292       return start() + CodeBuffer::locator_pos(loc);
 293     } else {
 294       return outer()->locator_address(loc);
 295     }
 296   } else {
 297     assert(allocates2(branch_pc), "sanity");
 298     address base = start();
 299     int patch_loc = CodeBuffer::locator(branch_pc - base, index());
 300     L.add_patch_at(outer(), patch_loc);
 301 
 302     // Need to return a pc, doesn't matter what it is since it will be
 303     // replaced during resolution later.
 304     // Don't return NULL or badAddress, since branches shouldn't overflow.
 305     // Don't return base either because that could overflow displacements
 306     // for shorter branches.  It will get checked when bound.
 307     return branch_pc;
 308   }
 309 }
 310 
 311 void CodeSection::relocate(address at, relocInfo::relocType rtype, int format, jint method_index) {
 312   RelocationHolder rh;
 313   switch (rtype) {
 314     case relocInfo::none: return;
 315     case relocInfo::opt_virtual_call_type: {
 316       rh = opt_virtual_call_Relocation::spec(method_index);
 317       break;
 318     }
 319     case relocInfo::static_call_type: {
 320       rh = static_call_Relocation::spec(method_index);
 321       break;
 322     }
 323     case relocInfo::virtual_call_type: {
 324       assert(method_index == 0, "resolved method overriding is not supported");
 325       rh = Relocation::spec_simple(rtype);
 326       break;
 327     }
 328     default: {
 329       rh = Relocation::spec_simple(rtype);
 330       break;
 331     }
 332   }
 333   relocate(at, rh, format);
 334 }
 335 
 336 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
 337   // Do not relocate in scratch buffers.
 338   if (scratch_emit()) { return; }
 339   Relocation* reloc = spec.reloc();
 340   relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
 341   if (rtype == relocInfo::none)  return;
 342 
 343   // The assertion below has been adjusted, to also work for
 344   // relocation for fixup.  Sometimes we want to put relocation
 345   // information for the next instruction, since it will be patched
 346   // with a call.
 347   assert(start() <= at && at <= end()+1,
 348          "cannot relocate data outside code boundaries");
 349 
 350   if (!has_locs()) {
 351     // no space for relocation information provided => code cannot be
 352     // relocated.  Make sure that relocate is only called with rtypes
 353     // that can be ignored for this kind of code.
 354     assert(rtype == relocInfo::none              ||
 355            rtype == relocInfo::runtime_call_type ||
 356            rtype == relocInfo::internal_word_type||
 357            rtype == relocInfo::section_word_type ||
 358            rtype == relocInfo::external_word_type,
 359            "code needs relocation information");
 360     // leave behind an indication that we attempted a relocation
 361     DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
 362     return;
 363   }
 364 
 365   // Advance the point, noting the offset we'll have to record.
 366   csize_t offset = at - locs_point();
 367   set_locs_point(at);
 368 
 369   // Test for a couple of overflow conditions; maybe expand the buffer.
 370   relocInfo* end = locs_end();
 371   relocInfo* req = end + relocInfo::length_limit;
 372   // Check for (potential) overflow
 373   if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
 374     req += (uint)offset / (uint)relocInfo::offset_limit();
 375     if (req >= locs_limit()) {
 376       // Allocate or reallocate.
 377       expand_locs(locs_count() + (req - end));
 378       // reload pointer
 379       end = locs_end();
 380     }
 381   }
 382 
 383   // If the offset is giant, emit filler relocs, of type 'none', but
 384   // each carrying the largest possible offset, to advance the locs_point.
 385   while (offset >= relocInfo::offset_limit()) {
 386     assert(end < locs_limit(), "adjust previous paragraph of code");
 387     *end++ = filler_relocInfo();
 388     offset -= filler_relocInfo().addr_offset();
 389   }
 390 
 391   // If it's a simple reloc with no data, we'll just write (rtype | offset).
 392   (*end) = relocInfo(rtype, offset, format);
 393 
 394   // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
 395   end->initialize(this, reloc);
 396 }
 397 
 398 void CodeSection::initialize_locs(int locs_capacity) {
 399   assert(_locs_start == NULL, "only one locs init step, please");
 400   // Apply a priori lower limits to relocation size:
 401   csize_t min_locs = MAX2(size() / 16, (csize_t)4);
 402   if (locs_capacity < min_locs)  locs_capacity = min_locs;
 403   relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
 404   _locs_start    = locs_start;
 405   _locs_end      = locs_start;
 406   _locs_limit    = locs_start + locs_capacity;
 407   _locs_own      = true;
 408 }
 409 
 410 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
 411   assert(_locs_start == NULL, "do this before locs are allocated");
 412   // Internal invariant:  locs buf must be fully aligned.
 413   // See copy_relocations_to() below.
 414   while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
 415     ++buf; --length;
 416   }
 417   if (length > 0) {
 418     _locs_start = buf;
 419     _locs_end   = buf;
 420     _locs_limit = buf + length;
 421     _locs_own   = false;
 422   }
 423 }
 424 
 425 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
 426   int lcount = source_cs->locs_count();
 427   if (lcount != 0) {
 428     initialize_shared_locs(source_cs->locs_start(), lcount);
 429     _locs_end = _locs_limit = _locs_start + lcount;
 430     assert(is_allocated(), "must have copied code already");
 431     set_locs_point(start() + source_cs->locs_point_off());
 432   }
 433   assert(this->locs_count() == source_cs->locs_count(), "sanity");
 434 }
 435 
 436 void CodeSection::expand_locs(int new_capacity) {
 437   if (_locs_start == NULL) {
 438     initialize_locs(new_capacity);
 439     return;
 440   } else {
 441     int old_count    = locs_count();
 442     int old_capacity = locs_capacity();
 443     if (new_capacity < old_capacity * 2)
 444       new_capacity = old_capacity * 2;
 445     relocInfo* locs_start;
 446     if (_locs_own) {
 447       locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
 448     } else {
 449       locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
 450       Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
 451       _locs_own = true;
 452     }
 453     _locs_start    = locs_start;
 454     _locs_end      = locs_start + old_count;
 455     _locs_limit    = locs_start + new_capacity;
 456   }
 457 }
 458 
 459 
 460 /// Support for emitting the code to its final location.
 461 /// The pattern is the same for all functions.
 462 /// We iterate over all the sections, padding each to alignment.
 463 
 464 csize_t CodeBuffer::total_content_size() const {
 465   csize_t size_so_far = 0;
 466   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 467     const CodeSection* cs = code_section(n);
 468     if (cs->is_empty())  continue;  // skip trivial section
 469     size_so_far = cs->align_at_start(size_so_far);
 470     size_so_far += cs->size();
 471   }
 472   return size_so_far;
 473 }
 474 
 475 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
 476   address buf = dest->_total_start;
 477   csize_t buf_offset = 0;
 478   assert(dest->_total_size >= total_content_size(), "must be big enough");
 479 
 480   {
 481     // not sure why this is here, but why not...
 482     int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
 483     assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
 484   }
 485 
 486   const CodeSection* prev_cs      = NULL;
 487   CodeSection*       prev_dest_cs = NULL;
 488 
 489   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 490     // figure compact layout of each section
 491     const CodeSection* cs = code_section(n);
 492     csize_t csize = cs->size();
 493 
 494     CodeSection* dest_cs = dest->code_section(n);
 495     if (!cs->is_empty()) {
 496       // Compute initial padding; assign it to the previous non-empty guy.
 497       // Cf. figure_expanded_capacities.
 498       csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
 499       if (prev_dest_cs != NULL) {
 500         if (padding != 0) {
 501           buf_offset += padding;
 502           prev_dest_cs->_limit += padding;
 503         }
 504       } else {
 505         guarantee(padding == 0, "In first iteration no padding should be needed.");
 506       }
 507       #ifdef ASSERT
 508       if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
 509         // Make sure the ends still match up.
 510         // This is important because a branch in a frozen section
 511         // might target code in a following section, via a Label,
 512         // and without a relocation record.  See Label::patch_instructions.
 513         address dest_start = buf+buf_offset;
 514         csize_t start2start = cs->start() - prev_cs->start();
 515         csize_t dest_start2start = dest_start - prev_dest_cs->start();
 516         assert(start2start == dest_start2start, "cannot stretch frozen sect");
 517       }
 518       #endif //ASSERT
 519       prev_dest_cs = dest_cs;
 520       prev_cs      = cs;
 521     }
 522 
 523     debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
 524     dest_cs->initialize(buf+buf_offset, csize);
 525     dest_cs->set_end(buf+buf_offset+csize);
 526     assert(dest_cs->is_allocated(), "must always be allocated");
 527     assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
 528 
 529     buf_offset += csize;
 530   }
 531 
 532   // Done calculating sections; did it come out to the right end?
 533   assert(buf_offset == total_content_size(), "sanity");
 534   dest->verify_section_allocation();
 535 }
 536 
 537 // Append an oop reference that keeps the class alive.
 538 static void append_oop_references(GrowableArray<oop>* oops, Klass* k) {
 539   oop cl = k->klass_holder();
 540   if (cl != NULL && !oops->contains(cl)) {
 541     oops->append(cl);
 542   }
 543 }
 544 
 545 void CodeBuffer::finalize_oop_references(const methodHandle& mh) {
 546   NoSafepointVerifier nsv;
 547 
 548   GrowableArray<oop> oops;
 549 
 550   // Make sure that immediate metadata records something in the OopRecorder
 551   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 552     // pull code out of each section
 553     CodeSection* cs = code_section(n);
 554     if (cs->is_empty())  continue;  // skip trivial section
 555     RelocIterator iter(cs);
 556     while (iter.next()) {
 557       if (iter.type() == relocInfo::metadata_type) {
 558         metadata_Relocation* md = iter.metadata_reloc();
 559         if (md->metadata_is_immediate()) {
 560           Metadata* m = md->metadata_value();
 561           if (oop_recorder()->is_real(m)) {
 562             if (m->is_methodData()) {
 563               m = ((MethodData*)m)->method();
 564             }
 565             if (m->is_method()) {
 566               m = ((Method*)m)->method_holder();
 567             }
 568             if (m->is_klass()) {
 569               append_oop_references(&oops, (Klass*)m);
 570             } else {
 571               // XXX This will currently occur for MDO which don't
 572               // have a backpointer.  This has to be fixed later.
 573               m->print();
 574               ShouldNotReachHere();
 575             }
 576           }
 577         }
 578       }
 579     }
 580   }
 581 
 582   if (!oop_recorder()->is_unused()) {
 583     for (int i = 0; i < oop_recorder()->metadata_count(); i++) {
 584       Metadata* m = oop_recorder()->metadata_at(i);
 585       if (oop_recorder()->is_real(m)) {
 586         if (m->is_methodData()) {
 587           m = ((MethodData*)m)->method();
 588         }
 589         if (m->is_method()) {
 590           m = ((Method*)m)->method_holder();
 591         }
 592         if (m->is_klass()) {
 593           append_oop_references(&oops, (Klass*)m);
 594         } else {
 595           m->print();
 596           ShouldNotReachHere();
 597         }
 598       }
 599     }
 600 
 601   }
 602 
 603   // Add the class loader of Method* for the nmethod itself
 604   append_oop_references(&oops, mh->method_holder());
 605 
 606   // Add any oops that we've found
 607   Thread* thread = Thread::current();
 608   for (int i = 0; i < oops.length(); i++) {
 609     oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i)));
 610   }
 611 }
 612 
 613 
 614 
 615 csize_t CodeBuffer::total_offset_of(const CodeSection* cs) const {
 616   csize_t size_so_far = 0;
 617   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 618     const CodeSection* cur_cs = code_section(n);
 619     if (!cur_cs->is_empty()) {
 620       size_so_far = cur_cs->align_at_start(size_so_far);
 621     }
 622     if (cur_cs->index() == cs->index()) {
 623       return size_so_far;
 624     }
 625     size_so_far += cur_cs->size();
 626   }
 627   ShouldNotReachHere();
 628   return -1;
 629 }
 630 
 631 csize_t CodeBuffer::total_relocation_size() const {
 632   csize_t total = copy_relocations_to(NULL);  // dry run only
 633   return (csize_t) align_up(total, HeapWordSize);
 634 }
 635 
 636 csize_t CodeBuffer::copy_relocations_to(address buf, csize_t buf_limit, bool only_inst) const {
 637   csize_t buf_offset = 0;
 638   csize_t code_end_so_far = 0;
 639   csize_t code_point_so_far = 0;
 640 
 641   assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
 642   assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
 643 
 644   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 645     if (only_inst && (n != (int)SECT_INSTS)) {
 646       // Need only relocation info for code.
 647       continue;
 648     }
 649     // pull relocs out of each section
 650     const CodeSection* cs = code_section(n);
 651     assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
 652     if (cs->is_empty())  continue;  // skip trivial section
 653     relocInfo* lstart = cs->locs_start();
 654     relocInfo* lend   = cs->locs_end();
 655     csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
 656     csize_t    csize  = cs->size();
 657     code_end_so_far = cs->align_at_start(code_end_so_far);
 658 
 659     if (lsize > 0) {
 660       // Figure out how to advance the combined relocation point
 661       // first to the beginning of this section.
 662       // We'll insert one or more filler relocs to span that gap.
 663       // (Don't bother to improve this by editing the first reloc's offset.)
 664       csize_t new_code_point = code_end_so_far;
 665       for (csize_t jump;
 666            code_point_so_far < new_code_point;
 667            code_point_so_far += jump) {
 668         jump = new_code_point - code_point_so_far;
 669         relocInfo filler = filler_relocInfo();
 670         if (jump >= filler.addr_offset()) {
 671           jump = filler.addr_offset();
 672         } else {  // else shrink the filler to fit
 673           filler = relocInfo(relocInfo::none, jump);
 674         }
 675         if (buf != NULL) {
 676           assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
 677           *(relocInfo*)(buf+buf_offset) = filler;
 678         }
 679         buf_offset += sizeof(filler);
 680       }
 681 
 682       // Update code point and end to skip past this section:
 683       csize_t last_code_point = code_end_so_far + cs->locs_point_off();
 684       assert(code_point_so_far <= last_code_point, "sanity");
 685       code_point_so_far = last_code_point; // advance past this guy's relocs
 686     }
 687     code_end_so_far += csize;  // advance past this guy's instructions too
 688 
 689     // Done with filler; emit the real relocations:
 690     if (buf != NULL && lsize != 0) {
 691       assert(buf_offset + lsize <= buf_limit, "target in bounds");
 692       assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
 693       if (buf_offset % HeapWordSize == 0) {
 694         // Use wordwise copies if possible:
 695         Copy::disjoint_words((HeapWord*)lstart,
 696                              (HeapWord*)(buf+buf_offset),
 697                              (lsize + HeapWordSize-1) / HeapWordSize);
 698       } else {
 699         Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
 700       }
 701     }
 702     buf_offset += lsize;
 703   }
 704 
 705   // Align end of relocation info in target.
 706   while (buf_offset % HeapWordSize != 0) {
 707     if (buf != NULL) {
 708       relocInfo padding = relocInfo(relocInfo::none, 0);
 709       assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
 710       *(relocInfo*)(buf+buf_offset) = padding;
 711     }
 712     buf_offset += sizeof(relocInfo);
 713   }
 714 
 715   assert(only_inst || code_end_so_far == total_content_size(), "sanity");
 716 
 717   return buf_offset;
 718 }
 719 
 720 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
 721   address buf = NULL;
 722   csize_t buf_offset = 0;
 723   csize_t buf_limit = 0;
 724 
 725   if (dest != NULL) {
 726     buf = (address)dest->relocation_begin();
 727     buf_limit = (address)dest->relocation_end() - buf;
 728   }
 729   // if dest == NULL, this is just the sizing pass
 730   //
 731   buf_offset = copy_relocations_to(buf, buf_limit, false);
 732 
 733   return buf_offset;
 734 }
 735 
 736 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
 737 #ifndef PRODUCT
 738   if (PrintNMethods && (WizardMode || Verbose)) {
 739     tty->print("done with CodeBuffer:");
 740     ((CodeBuffer*)this)->print();
 741   }
 742 #endif //PRODUCT
 743 
 744   CodeBuffer dest(dest_blob);
 745   assert(dest_blob->content_size() >= total_content_size(), "good sizing");
 746   this->compute_final_layout(&dest);
 747 
 748   // Set beginning of constant table before relocating.
 749   dest_blob->set_ctable_begin(dest.consts()->start());
 750 
 751   relocate_code_to(&dest);
 752 
 753   // transfer strings and comments from buffer to blob
 754   dest_blob->set_strings(_code_strings);
 755 
 756   // Done moving code bytes; were they the right size?
 757   assert((int)align_up(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
 758 
 759   // Flush generated code
 760   ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
 761 }
 762 
 763 // Move all my code into another code buffer.  Consult applicable
 764 // relocs to repair embedded addresses.  The layout in the destination
 765 // CodeBuffer is different to the source CodeBuffer: the destination
 766 // CodeBuffer gets the final layout (consts, insts, stubs in order of
 767 // ascending address).
 768 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
 769   address dest_end = dest->_total_start + dest->_total_size;
 770   address dest_filled = NULL;
 771   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 772     // pull code out of each section
 773     const CodeSection* cs = code_section(n);
 774     if (cs->is_empty())  continue;  // skip trivial section
 775     CodeSection* dest_cs = dest->code_section(n);
 776     assert(cs->size() == dest_cs->size(), "sanity");
 777     csize_t usize = dest_cs->size();
 778     csize_t wsize = align_up(usize, HeapWordSize);
 779     assert(dest_cs->start() + wsize <= dest_end, "no overflow");
 780     // Copy the code as aligned machine words.
 781     // This may also include an uninitialized partial word at the end.
 782     Copy::disjoint_words((HeapWord*)cs->start(),
 783                          (HeapWord*)dest_cs->start(),
 784                          wsize / HeapWordSize);
 785 
 786     if (dest->blob() == NULL) {
 787       // Destination is a final resting place, not just another buffer.
 788       // Normalize uninitialized bytes in the final padding.
 789       Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
 790                           Assembler::code_fill_byte());
 791     }
 792     // Keep track of the highest filled address
 793     dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
 794 
 795     assert(cs->locs_start() != (relocInfo*)badAddress,
 796            "this section carries no reloc storage, but reloc was attempted");
 797 
 798     // Make the new code copy use the old copy's relocations:
 799     dest_cs->initialize_locs_from(cs);
 800   }
 801 
 802   // Do relocation after all sections are copied.
 803   // This is necessary if the code uses constants in stubs, which are
 804   // relocated when the corresponding instruction in the code (e.g., a
 805   // call) is relocated. Stubs are placed behind the main code
 806   // section, so that section has to be copied before relocating.
 807   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 808     // pull code out of each section
 809     const CodeSection* cs = code_section(n);
 810     if (cs->is_empty()) continue;  // skip trivial section
 811     CodeSection* dest_cs = dest->code_section(n);
 812     { // Repair the pc relative information in the code after the move
 813       RelocIterator iter(dest_cs);
 814       while (iter.next()) {
 815         iter.reloc()->fix_relocation_after_move(this, dest);
 816       }
 817     }
 818   }
 819 
 820   if (dest->blob() == NULL && dest_filled != NULL) {
 821     // Destination is a final resting place, not just another buffer.
 822     // Normalize uninitialized bytes in the final padding.
 823     Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
 824                         Assembler::code_fill_byte());
 825 
 826   }
 827 }
 828 
 829 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
 830                                                csize_t amount,
 831                                                csize_t* new_capacity) {
 832   csize_t new_total_cap = 0;
 833 
 834   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 835     const CodeSection* sect = code_section(n);
 836 
 837     if (!sect->is_empty()) {
 838       // Compute initial padding; assign it to the previous section,
 839       // even if it's empty (e.g. consts section can be empty).
 840       // Cf. compute_final_layout
 841       csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
 842       if (padding != 0) {
 843         new_total_cap += padding;
 844         assert(n - 1 >= SECT_FIRST, "sanity");
 845         new_capacity[n - 1] += padding;
 846       }
 847     }
 848 
 849     csize_t exp = sect->size();  // 100% increase
 850     if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
 851     if (sect == which_cs) {
 852       if (exp < amount)  exp = amount;
 853       if (StressCodeBuffers)  exp = amount;  // expand only slightly
 854     } else if (n == SECT_INSTS) {
 855       // scale down inst increases to a more modest 25%
 856       exp = 4*K + ((exp - 4*K) >> 2);
 857       if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
 858     } else if (sect->is_empty()) {
 859       // do not grow an empty secondary section
 860       exp = 0;
 861     }
 862     // Allow for inter-section slop:
 863     exp += CodeSection::end_slop();
 864     csize_t new_cap = sect->size() + exp;
 865     if (new_cap < sect->capacity()) {
 866       // No need to expand after all.
 867       new_cap = sect->capacity();
 868     }
 869     new_capacity[n] = new_cap;
 870     new_total_cap += new_cap;
 871   }
 872 
 873   return new_total_cap;
 874 }
 875 
 876 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
 877 #ifndef PRODUCT
 878   if (PrintNMethods && (WizardMode || Verbose)) {
 879     tty->print("expanding CodeBuffer:");
 880     this->print();
 881   }
 882 
 883   if (StressCodeBuffers && blob() != NULL) {
 884     static int expand_count = 0;
 885     if (expand_count >= 0)  expand_count += 1;
 886     if (expand_count > 100 && is_power_of_2(expand_count)) {
 887       tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
 888       // simulate an occasional allocation failure:
 889       free_blob();
 890     }
 891   }
 892 #endif //PRODUCT
 893 
 894   // Resizing must be allowed
 895   {
 896     if (blob() == NULL)  return;  // caller must check for blob == NULL
 897     for (int n = 0; n < (int)SECT_LIMIT; n++) {
 898       guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
 899     }
 900   }
 901 
 902   // Figure new capacity for each section.
 903   csize_t new_capacity[SECT_LIMIT];
 904   memset(new_capacity, 0, sizeof(csize_t) * SECT_LIMIT);
 905   csize_t new_total_cap
 906     = figure_expanded_capacities(which_cs, amount, new_capacity);
 907 
 908   // Create a new (temporary) code buffer to hold all the new data
 909   CodeBuffer cb(name(), new_total_cap, 0);
 910   if (cb.blob() == NULL) {
 911     // Failed to allocate in code cache.
 912     free_blob();
 913     return;
 914   }
 915 
 916   // Create an old code buffer to remember which addresses used to go where.
 917   // This will be useful when we do final assembly into the code cache,
 918   // because we will need to know how to warp any internal address that
 919   // has been created at any time in this CodeBuffer's past.
 920   CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
 921   bxp->take_over_code_from(this);  // remember the old undersized blob
 922   DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
 923   bxp->_before_expand = this->_before_expand;
 924   this->_before_expand = bxp;
 925 
 926   // Give each section its required (expanded) capacity.
 927   for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
 928     CodeSection* cb_sect   = cb.code_section(n);
 929     CodeSection* this_sect = code_section(n);
 930     if (new_capacity[n] == 0)  continue;  // already nulled out
 931     if (n != SECT_INSTS) {
 932       cb.initialize_section_size(cb_sect, new_capacity[n]);
 933     }
 934     assert(cb_sect->capacity() >= new_capacity[n], "big enough");
 935     address cb_start = cb_sect->start();
 936     cb_sect->set_end(cb_start + this_sect->size());
 937     if (this_sect->mark() == NULL) {
 938       cb_sect->clear_mark();
 939     } else {
 940       cb_sect->set_mark(cb_start + this_sect->mark_off());
 941     }
 942   }
 943 
 944   // Needs to be initialized when calling fix_relocation_after_move.
 945   cb.blob()->set_ctable_begin(cb.consts()->start());
 946 
 947   // Move all the code and relocations to the new blob:
 948   relocate_code_to(&cb);
 949 
 950   // Copy the temporary code buffer into the current code buffer.
 951   // Basically, do {*this = cb}, except for some control information.
 952   this->take_over_code_from(&cb);
 953   cb.set_blob(NULL);
 954 
 955   // Zap the old code buffer contents, to avoid mistakenly using them.
 956   debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
 957                                  badCodeHeapFreeVal));
 958 
 959   _decode_begin = NULL;  // sanity
 960 
 961   // Make certain that the new sections are all snugly inside the new blob.
 962   verify_section_allocation();
 963 
 964 #ifndef PRODUCT
 965   if (PrintNMethods && (WizardMode || Verbose)) {
 966     tty->print("expanded CodeBuffer:");
 967     this->print();
 968   }
 969 #endif //PRODUCT
 970 }
 971 
 972 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
 973   // Must already have disposed of the old blob somehow.
 974   assert(blob() == NULL, "must be empty");
 975   // Take the new blob away from cb.
 976   set_blob(cb->blob());
 977   // Take over all the section pointers.
 978   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 979     CodeSection* cb_sect   = cb->code_section(n);
 980     CodeSection* this_sect = code_section(n);
 981     this_sect->take_over_code_from(cb_sect);
 982   }
 983   _overflow_arena = cb->_overflow_arena;
 984   // Make sure the old cb won't try to use it or free it.
 985   DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
 986 }
 987 
 988 void CodeBuffer::verify_section_allocation() {
 989   address tstart = _total_start;
 990   if (tstart == badAddress)  return;  // smashed by set_blob(NULL)
 991   address tend   = tstart + _total_size;
 992   if (_blob != NULL) {
 993 
 994     guarantee(tstart >= _blob->content_begin(), "sanity");
 995     guarantee(tend   <= _blob->content_end(),   "sanity");
 996   }
 997   // Verify disjointness.
 998   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 999     CodeSection* sect = code_section(n);
1000     if (!sect->is_allocated() || sect->is_empty())  continue;
1001     guarantee((intptr_t)sect->start() % sect->alignment() == 0
1002            || sect->is_empty() || _blob == NULL,
1003            "start is aligned");
1004     for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
1005       CodeSection* other = code_section(m);
1006       if (!other->is_allocated() || other == sect)  continue;
1007       guarantee(!other->contains(sect->start()    ), "sanity");
1008       // limit is an exclusive address and can be the start of another
1009       // section.
1010       guarantee(!other->contains(sect->limit() - 1), "sanity");
1011     }
1012     guarantee(sect->end() <= tend, "sanity");
1013     guarantee(sect->end() <= sect->limit(), "sanity");
1014   }
1015 }
1016 
1017 void CodeBuffer::log_section_sizes(const char* name) {
1018   if (xtty != NULL) {
1019     ttyLocker ttyl;
1020     // log info about buffer usage
1021     xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
1022     for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
1023       CodeSection* sect = code_section(n);
1024       if (!sect->is_allocated() || sect->is_empty())  continue;
1025       xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
1026                      n, sect->limit() - sect->start(), sect->limit() - sect->end());
1027     }
1028     xtty->print_cr("</blob>");
1029   }
1030 }
1031 
1032 #ifndef PRODUCT
1033 
1034 void CodeSection::decode() {
1035   Disassembler::decode(start(), end());
1036 }
1037 
1038 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
1039   if (_collect_comments) {
1040     _code_strings.add_comment(offset, comment);
1041   }
1042 }
1043 
1044 const char* CodeBuffer::code_string(const char* str) {
1045   return _code_strings.add_string(str);
1046 }
1047 
1048 class CodeString: public CHeapObj<mtCode> {
1049  private:
1050   friend class CodeStrings;
1051   const char * _string;
1052   CodeString*  _next;
1053   intptr_t     _offset;
1054 
1055   ~CodeString() {
1056     assert(_next == NULL, "wrong interface for freeing list");
1057     os::free((void*)_string);
1058   }
1059 
1060   bool is_comment() const { return _offset >= 0; }
1061 
1062  public:
1063   CodeString(const char * string, intptr_t offset = -1)
1064     : _next(NULL), _offset(offset) {
1065     _string = os::strdup(string, mtCode);
1066   }
1067 
1068   const char * string() const { return _string; }
1069   intptr_t     offset() const { assert(_offset >= 0, "offset for non comment?"); return _offset;  }
1070   CodeString* next()    const { return _next; }
1071 
1072   void set_next(CodeString* next) { _next = next; }
1073 
1074   CodeString* first_comment() {
1075     if (is_comment()) {
1076       return this;
1077     } else {
1078       return next_comment();
1079     }
1080   }
1081   CodeString* next_comment() const {
1082     CodeString* s = _next;
1083     while (s != NULL && !s->is_comment()) {
1084       s = s->_next;
1085     }
1086     return s;
1087   }
1088 };
1089 
1090 CodeString* CodeStrings::find(intptr_t offset) const {
1091   CodeString* a = _strings->first_comment();
1092   while (a != NULL && a->offset() != offset) {
1093     a = a->next_comment();
1094   }
1095   return a;
1096 }
1097 
1098 // Convenience for add_comment.
1099 CodeString* CodeStrings::find_last(intptr_t offset) const {
1100   CodeString* a = find(offset);
1101   if (a != NULL) {
1102     CodeString* c = NULL;
1103     while (((c = a->next_comment()) != NULL) && (c->offset() == offset)) {
1104       a = c;
1105     }
1106   }
1107   return a;
1108 }
1109 
1110 void CodeStrings::add_comment(intptr_t offset, const char * comment) {
1111   check_valid();
1112   CodeString* c      = new CodeString(comment, offset);
1113   CodeString* inspos = (_strings == NULL) ? NULL : find_last(offset);
1114 
1115   if (inspos) {
1116     // insert after already existing comments with same offset
1117     c->set_next(inspos->next());
1118     inspos->set_next(c);
1119   } else {
1120     // no comments with such offset, yet. Insert before anything else.
1121     c->set_next(_strings);
1122     _strings = c;
1123   }
1124 }
1125 
1126 void CodeStrings::assign(CodeStrings& other) {
1127   other.check_valid();
1128   assert(is_null(), "Cannot assign onto non-empty CodeStrings");
1129   _strings = other._strings;
1130 #ifdef ASSERT
1131   _defunct = false;
1132 #endif
1133   other.set_null_and_invalidate();
1134 }
1135 
1136 // Deep copy of CodeStrings for consistent memory management.
1137 // Only used for actual disassembly so this is cheaper than reference counting
1138 // for the "normal" fastdebug case.
1139 void CodeStrings::copy(CodeStrings& other) {
1140   other.check_valid();
1141   check_valid();
1142   assert(is_null(), "Cannot copy onto non-empty CodeStrings");
1143   CodeString* n = other._strings;
1144   CodeString** ps = &_strings;
1145   while (n != NULL) {
1146     *ps = new CodeString(n->string(),n->offset());
1147     ps = &((*ps)->_next);
1148     n = n->next();
1149   }
1150 }
1151 
1152 const char* CodeStrings::_prefix = " ;; ";  // default: can be changed via set_prefix
1153 
1154 // Check if any block comments are pending for the given offset.
1155 bool CodeStrings::has_block_comment(intptr_t offset) const {
1156   if (_strings == NULL) return false;
1157   CodeString* c = find(offset);
1158   return c != NULL;
1159 }
1160 
1161 void CodeStrings::print_block_comment(outputStream* stream, intptr_t offset) const {
1162   check_valid();
1163   if (_strings != NULL) {
1164     CodeString* c = find(offset);
1165     while (c && c->offset() == offset) {
1166       stream->bol();
1167       stream->print("%s", _prefix);
1168       // Don't interpret as format strings since it could contain %
1169       stream->print_raw(c->string());
1170       stream->bol(); // advance to next line only if string didn't contain a cr() at the end.
1171       c = c->next_comment();
1172     }
1173   }
1174 }
1175 
1176 // Also sets isNull()
1177 void CodeStrings::free() {
1178   CodeString* n = _strings;
1179   while (n) {
1180     // unlink the node from the list saving a pointer to the next
1181     CodeString* p = n->next();
1182     n->set_next(NULL);
1183     delete n;
1184     n = p;
1185   }
1186   set_null_and_invalidate();
1187 }
1188 
1189 const char* CodeStrings::add_string(const char * string) {
1190   check_valid();
1191   CodeString* s = new CodeString(string);
1192   s->set_next(_strings);
1193   _strings = s;
1194   assert(s->string() != NULL, "should have a string");
1195   return s->string();
1196 }
1197 
1198 void CodeBuffer::decode() {
1199   ttyLocker ttyl;
1200   Disassembler::decode(decode_begin(), insts_end(), tty);
1201   _decode_begin = insts_end();
1202 }
1203 
1204 void CodeSection::print(const char* name) {
1205   csize_t locs_size = locs_end() - locs_start();
1206   tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1207                 name, p2i(start()), p2i(end()), p2i(limit()), size(), capacity(),
1208                 is_frozen()? " [frozen]": "");
1209   tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1210                 name, p2i(locs_start()), p2i(locs_end()), p2i(locs_limit()), locs_size, locs_capacity(), locs_point_off());
1211   if (PrintRelocations) {
1212     RelocIterator iter(this);
1213     iter.print();
1214   }
1215 }
1216 
1217 void CodeBuffer::print() {
1218   if (this == NULL) {
1219     tty->print_cr("NULL CodeBuffer pointer");
1220     return;
1221   }
1222 
1223   tty->print_cr("CodeBuffer:");
1224   for (int n = 0; n < (int)SECT_LIMIT; n++) {
1225     // print each section
1226     CodeSection* cs = code_section(n);
1227     cs->print(code_section_name(n));
1228   }
1229 }
1230 
1231 // Directly disassemble code buffer.
1232 void CodeBuffer::decode(address start, address end) {
1233   ttyLocker ttyl;
1234   Disassembler::decode(this, start, end, tty);
1235 }
1236 
1237 #endif // PRODUCT