1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_ASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/register.hpp"
  30 
  31 // definitions of various symbolic names for machine registers
  32 
  33 // First intercalls between C and Java which use 8 general registers
  34 // and 8 floating registers
  35 
  36 // we also have to copy between x86 and ARM registers but that's a
  37 // secondary complication -- not all code employing C call convention
  38 // executes as x86 code though -- we generate some of it
  39 
  40 class Argument {
  41  public:
  42   enum {
  43     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  44     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  45 
  46     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  47     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  48   };
  49 };
  50 
  51 REGISTER_DECLARATION(Register, c_rarg0, r0);
  52 REGISTER_DECLARATION(Register, c_rarg1, r1);
  53 REGISTER_DECLARATION(Register, c_rarg2, r2);
  54 REGISTER_DECLARATION(Register, c_rarg3, r3);
  55 REGISTER_DECLARATION(Register, c_rarg4, r4);
  56 REGISTER_DECLARATION(Register, c_rarg5, r5);
  57 REGISTER_DECLARATION(Register, c_rarg6, r6);
  58 REGISTER_DECLARATION(Register, c_rarg7, r7);
  59 
  60 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  61 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  62 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  63 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  64 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  65 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  66 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  67 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  68 
  69 // Symbolically name the register arguments used by the Java calling convention.
  70 // We have control over the convention for java so we can do what we please.
  71 // What pleases us is to offset the java calling convention so that when
  72 // we call a suitable jni method the arguments are lined up and we don't
  73 // have to do much shuffling. A suitable jni method is non-static and a
  74 // small number of arguments
  75 //
  76 //  |--------------------------------------------------------------------|
  77 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  78 //  |--------------------------------------------------------------------|
  79 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  80 //  |--------------------------------------------------------------------|
  81 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  82 //  |--------------------------------------------------------------------|
  83 
  84 
  85 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
  86 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
  87 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
  88 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
  89 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
  90 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
  91 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
  92 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
  93 
  94 // Java floating args are passed as per C
  95 
  96 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
  97 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
  98 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
  99 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 100 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 101 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 102 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 103 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 104 
 105 // registers used to hold VM data either temporarily within a method
 106 // or across method calls
 107 
 108 // volatile (caller-save) registers
 109 
 110 // r8 is used for indirect result location return
 111 // we use it and r9 as scratch registers
 112 REGISTER_DECLARATION(Register, rscratch1, r8);
 113 REGISTER_DECLARATION(Register, rscratch2, r9);
 114 
 115 // current method -- must be in a call-clobbered register
 116 REGISTER_DECLARATION(Register, rmethod,   r12);
 117 
 118 // non-volatile (callee-save) registers are r16-29
 119 // of which the following are dedicated global state
 120 
 121 // link register
 122 REGISTER_DECLARATION(Register, lr,        r30);
 123 // frame pointer
 124 REGISTER_DECLARATION(Register, rfp,       r29);
 125 // current thread
 126 REGISTER_DECLARATION(Register, rthread,   r28);
 127 // base of heap
 128 REGISTER_DECLARATION(Register, rheapbase, r27);
 129 // constant pool cache
 130 REGISTER_DECLARATION(Register, rcpool,    r26);
 131 // monitors allocated on stack
 132 REGISTER_DECLARATION(Register, rmonitors, r25);
 133 // locals on stack
 134 REGISTER_DECLARATION(Register, rlocals,   r24);
 135 // bytecode pointer
 136 REGISTER_DECLARATION(Register, rbcp,      r22);
 137 // Dispatch table base
 138 REGISTER_DECLARATION(Register, rdispatch, r21);
 139 // Java stack pointer
 140 REGISTER_DECLARATION(Register, esp,      r20);
 141 
 142 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 143 
 144 namespace asm_util {
 145   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 146 };
 147 
 148 using namespace asm_util;
 149 
 150 
 151 class Assembler;
 152 
 153 class Instruction_aarch64 {
 154   unsigned insn;
 155 #ifdef ASSERT
 156   unsigned bits;
 157 #endif
 158   Assembler *assem;
 159 
 160 public:
 161 
 162   Instruction_aarch64(class Assembler *as) {
 163 #ifdef ASSERT
 164     bits = 0;
 165 #endif
 166     insn = 0;
 167     assem = as;
 168   }
 169 
 170   inline ~Instruction_aarch64();
 171 
 172   unsigned &get_insn() { return insn; }
 173 #ifdef ASSERT
 174   unsigned &get_bits() { return bits; }
 175 #endif
 176 
 177   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 178     union {
 179       unsigned u;
 180       int n;
 181     };
 182 
 183     u = val << (31 - hi);
 184     n = n >> (31 - hi + lo);
 185     return n;
 186   }
 187 
 188   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 189     int nbits = msb - lsb + 1;
 190     assert_cond(msb >= lsb);
 191     uint32_t mask = (1U << nbits) - 1;
 192     uint32_t result = val >> lsb;
 193     result &= mask;
 194     return result;
 195   }
 196 
 197   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 198     uint32_t uval = extract(val, msb, lsb);
 199     return extend(uval, msb - lsb);
 200   }
 201 
 202   static void patch(address a, int msb, int lsb, unsigned long val) {
 203     int nbits = msb - lsb + 1;
 204     guarantee(val < (1U << nbits), "Field too big for insn");
 205     assert_cond(msb >= lsb);
 206     unsigned mask = (1U << nbits) - 1;
 207     val <<= lsb;
 208     mask <<= lsb;
 209     unsigned target = *(unsigned *)a;
 210     target &= ~mask;
 211     target |= val;
 212     *(unsigned *)a = target;
 213   }
 214 
 215   static void spatch(address a, int msb, int lsb, long val) {
 216     int nbits = msb - lsb + 1;
 217     long chk = val >> (nbits - 1);
 218     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 219     unsigned uval = val;
 220     unsigned mask = (1U << nbits) - 1;
 221     uval &= mask;
 222     uval <<= lsb;
 223     mask <<= lsb;
 224     unsigned target = *(unsigned *)a;
 225     target &= ~mask;
 226     target |= uval;
 227     *(unsigned *)a = target;
 228   }
 229 
 230   void f(unsigned val, int msb, int lsb) {
 231     int nbits = msb - lsb + 1;
 232     guarantee(val < (1U << nbits), "Field too big for insn");
 233     assert_cond(msb >= lsb);
 234     unsigned mask = (1U << nbits) - 1;
 235     val <<= lsb;
 236     mask <<= lsb;
 237     insn |= val;
 238     assert_cond((bits & mask) == 0);
 239 #ifdef ASSERT
 240     bits |= mask;
 241 #endif
 242   }
 243 
 244   void f(unsigned val, int bit) {
 245     f(val, bit, bit);
 246   }
 247 
 248   void sf(long val, int msb, int lsb) {
 249     int nbits = msb - lsb + 1;
 250     long chk = val >> (nbits - 1);
 251     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 252     unsigned uval = val;
 253     unsigned mask = (1U << nbits) - 1;
 254     uval &= mask;
 255     f(uval, lsb + nbits - 1, lsb);
 256   }
 257 
 258   void rf(Register r, int lsb) {
 259     f(r->encoding_nocheck(), lsb + 4, lsb);
 260   }
 261 
 262   // reg|ZR
 263   void zrf(Register r, int lsb) {
 264     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 265   }
 266 
 267   // reg|SP
 268   void srf(Register r, int lsb) {
 269     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 270   }
 271 
 272   void rf(FloatRegister r, int lsb) {
 273     f(r->encoding_nocheck(), lsb + 4, lsb);
 274   }
 275 
 276   unsigned get(int msb = 31, int lsb = 0) {
 277     int nbits = msb - lsb + 1;
 278     unsigned mask = ((1U << nbits) - 1) << lsb;
 279     assert_cond(bits & mask == mask);
 280     return (insn & mask) >> lsb;
 281   }
 282 
 283   void fixed(unsigned value, unsigned mask) {
 284     assert_cond ((mask & bits) == 0);
 285 #ifdef ASSERT
 286     bits |= mask;
 287 #endif
 288     insn |= value;
 289   }
 290 };
 291 
 292 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 293 
 294 class PrePost {
 295   int _offset;
 296   Register _r;
 297 public:
 298   PrePost(Register reg, int o) : _offset(o), _r(reg) { }
 299   int offset() { return _offset; }
 300   Register reg() { return _r; }
 301 };
 302 
 303 class Pre : public PrePost {
 304 public:
 305   Pre(Register reg, int o) : PrePost(reg, o) { }
 306 };
 307 class Post : public PrePost {
 308   Register _idx;
 309 public:
 310   Post(Register reg, int o) : PrePost(reg, o) { _idx = NULL; }
 311   Post(Register reg, Register idx) : PrePost(reg, 0) { _idx = idx; }
 312   Register idx_reg() { return _idx; }
 313 };
 314 
 315 namespace ext
 316 {
 317   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 318 };
 319 
 320 // Addressing modes
 321 class Address {
 322  public:
 323 
 324   enum mode { no_mode, base_plus_offset, pre, post, post_reg, pcrel,
 325               base_plus_offset_reg, literal };
 326 
 327   // Shift and extend for base reg + reg offset addressing
 328   class extend {
 329     int _option, _shift;
 330     ext::operation _op;
 331   public:
 332     extend() { }
 333     extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { }
 334     int option() const{ return _option; }
 335     int shift() const { return _shift; }
 336     ext::operation op() const { return _op; }
 337   };
 338   class uxtw : public extend {
 339   public:
 340     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 341   };
 342   class lsl : public extend {
 343   public:
 344     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 345   };
 346   class sxtw : public extend {
 347   public:
 348     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 349   };
 350   class sxtx : public extend {
 351   public:
 352     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 353   };
 354 
 355  private:
 356   Register _base;
 357   Register _index;
 358   long _offset;
 359   enum mode _mode;
 360   extend _ext;
 361 
 362   RelocationHolder _rspec;
 363 
 364   // Typically we use AddressLiterals we want to use their rval
 365   // However in some situations we want the lval (effect address) of
 366   // the item.  We provide a special factory for making those lvals.
 367   bool _is_lval;
 368 
 369   // If the target is far we'll need to load the ea of this to a
 370   // register to reach it. Otherwise if near we can do PC-relative
 371   // addressing.
 372   address          _target;
 373 
 374  public:
 375   Address()
 376     : _mode(no_mode) { }
 377   Address(Register r)
 378     : _base(r), _index(noreg), _offset(0), _mode(base_plus_offset), _target(0) { }
 379   Address(Register r, int o)
 380     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 381   Address(Register r, long o)
 382     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 383   Address(Register r, unsigned long o)
 384     : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { }
 385 #ifdef ASSERT
 386   Address(Register r, ByteSize disp)
 387     : _base(r), _index(noreg), _offset(in_bytes(disp)), _mode(base_plus_offset), _target(0) { }
 388 #endif
 389   Address(Register r, Register r1, extend ext = lsl())
 390     : _base(r), _index(r1), _offset(0), _mode(base_plus_offset_reg),
 391       _ext(ext), _target(0) { }
 392   Address(Pre p)
 393     : _base(p.reg()), _offset(p.offset()), _mode(pre) { }
 394   Address(Post p)
 395     : _base(p.reg()),  _index(p.idx_reg()), _offset(p.offset()),
 396       _mode(p.idx_reg() == NULL ? post : post_reg), _target(0) { }
 397   Address(address target, RelocationHolder const& rspec)
 398     : _mode(literal),
 399       _rspec(rspec),
 400       _is_lval(false),
 401       _target(target)  { }
 402   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 403   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 404     : _base (base),
 405       _offset(0), _ext(ext), _target(0) {
 406     if (index.is_register()) {
 407       _mode = base_plus_offset_reg;
 408       _index = index.as_register();
 409     } else {
 410       guarantee(ext.option() == ext::uxtx, "should be");
 411       assert(index.is_constant(), "should be");
 412       _mode = base_plus_offset;
 413       _offset = index.as_constant() << ext.shift();
 414     }
 415   }
 416 
 417   Register base() const {
 418     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 419                | _mode == post | _mode == post_reg),
 420               "wrong mode");
 421     return _base;
 422   }
 423   long offset() const {
 424     return _offset;
 425   }
 426   Register index() const {
 427     return _index;
 428   }
 429   mode getMode() const {
 430     return _mode;
 431   }
 432   bool uses(Register reg) const { return _base == reg || _index == reg; }
 433   address target() const { return _target; }
 434   const RelocationHolder& rspec() const { return _rspec; }
 435 
 436   void encode(Instruction_aarch64 *i) const {
 437     i->f(0b111, 29, 27);
 438     i->srf(_base, 5);
 439 
 440     switch(_mode) {
 441     case base_plus_offset:
 442       {
 443         unsigned size = i->get(31, 30);
 444         if (i->get(26, 26) && i->get(23, 23)) {
 445           // SIMD Q Type - Size = 128 bits
 446           assert(size == 0, "bad size");
 447           size = 0b100;
 448         }
 449         unsigned mask = (1 << size) - 1;
 450         if (_offset < 0 || _offset & mask)
 451           {
 452             i->f(0b00, 25, 24);
 453             i->f(0, 21), i->f(0b00, 11, 10);
 454             i->sf(_offset, 20, 12);
 455           } else {
 456             i->f(0b01, 25, 24);
 457             i->f(_offset >> size, 21, 10);
 458           }
 459       }
 460       break;
 461 
 462     case base_plus_offset_reg:
 463       {
 464         i->f(0b00, 25, 24);
 465         i->f(1, 21);
 466         i->rf(_index, 16);
 467         i->f(_ext.option(), 15, 13);
 468         unsigned size = i->get(31, 30);
 469         if (i->get(26, 26) && i->get(23, 23)) {
 470           // SIMD Q Type - Size = 128 bits
 471           assert(size == 0, "bad size");
 472           size = 0b100;
 473         }
 474         if (size == 0) // It's a byte
 475           i->f(_ext.shift() >= 0, 12);
 476         else {
 477           if (_ext.shift() > 0)
 478             assert(_ext.shift() == (int)size, "bad shift");
 479           i->f(_ext.shift() > 0, 12);
 480         }
 481         i->f(0b10, 11, 10);
 482       }
 483       break;
 484 
 485     case pre:
 486       i->f(0b00, 25, 24);
 487       i->f(0, 21), i->f(0b11, 11, 10);
 488       i->sf(_offset, 20, 12);
 489       break;
 490 
 491     case post:
 492       i->f(0b00, 25, 24);
 493       i->f(0, 21), i->f(0b01, 11, 10);
 494       i->sf(_offset, 20, 12);
 495       break;
 496 
 497     default:
 498       ShouldNotReachHere();
 499     }
 500   }
 501 
 502   void encode_pair(Instruction_aarch64 *i) const {
 503     switch(_mode) {
 504     case base_plus_offset:
 505       i->f(0b010, 25, 23);
 506       break;
 507     case pre:
 508       i->f(0b011, 25, 23);
 509       break;
 510     case post:
 511       i->f(0b001, 25, 23);
 512       break;
 513     default:
 514       ShouldNotReachHere();
 515     }
 516 
 517     unsigned size; // Operand shift in 32-bit words
 518 
 519     if (i->get(26, 26)) { // float
 520       switch(i->get(31, 30)) {
 521       case 0b10:
 522         size = 2; break;
 523       case 0b01:
 524         size = 1; break;
 525       case 0b00:
 526         size = 0; break;
 527       default:
 528         ShouldNotReachHere();
 529         size = 0;  // unreachable
 530       }
 531     } else {
 532       size = i->get(31, 31);
 533     }
 534 
 535     size = 4 << size;
 536     guarantee(_offset % size == 0, "bad offset");
 537     i->sf(_offset / size, 21, 15);
 538     i->srf(_base, 5);
 539   }
 540 
 541   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 542     // Only base + offset is allowed
 543     i->f(0b000, 25, 23);
 544     unsigned size = i->get(31, 31);
 545     size = 4 << size;
 546     guarantee(_offset % size == 0, "bad offset");
 547     i->sf(_offset / size, 21, 15);
 548     i->srf(_base, 5);
 549     guarantee(_mode == Address::base_plus_offset,
 550               "Bad addressing mode for non-temporal op");
 551   }
 552 
 553   void lea(MacroAssembler *, Register) const;
 554 
 555   static bool offset_ok_for_immed(long offset, int shift = 0) {
 556     unsigned mask = (1 << shift) - 1;
 557     if (offset < 0 || offset & mask) {
 558       return (uabs(offset) < (1 << (20 - 12))); // Unscaled offset
 559     } else {
 560       return ((offset >> shift) < (1 << (21 - 10 + 1))); // Scaled, unsigned offset
 561     }
 562   }
 563 };
 564 
 565 // Convience classes
 566 class RuntimeAddress: public Address {
 567 
 568   public:
 569 
 570   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 571 
 572 };
 573 
 574 class OopAddress: public Address {
 575 
 576   public:
 577 
 578   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 579 
 580 };
 581 
 582 class ExternalAddress: public Address {
 583  private:
 584   static relocInfo::relocType reloc_for_target(address target) {
 585     // Sometimes ExternalAddress is used for values which aren't
 586     // exactly addresses, like the card table base.
 587     // external_word_type can't be used for values in the first page
 588     // so just skip the reloc in that case.
 589     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 590   }
 591 
 592  public:
 593 
 594   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 595 
 596 };
 597 
 598 class InternalAddress: public Address {
 599 
 600   public:
 601 
 602   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 603 };
 604 
 605 const int FPUStateSizeInWords = 32 * 2;
 606 typedef enum {
 607   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 608   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 609   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 610 } prfop;
 611 
 612 class Assembler : public AbstractAssembler {
 613 
 614 #ifndef PRODUCT
 615   static const unsigned long asm_bp;
 616 
 617   void emit_long(jint x) {
 618     if ((unsigned long)pc() == asm_bp)
 619       asm volatile ("nop");
 620     AbstractAssembler::emit_int32(x);
 621   }
 622 #else
 623   void emit_long(jint x) {
 624     AbstractAssembler::emit_int32(x);
 625   }
 626 #endif
 627 
 628 public:
 629 
 630   enum { instruction_size = 4 };
 631 
 632   //---<  calculate length of instruction  >---
 633   // We just use the values set above.
 634   // instruction must start at passed address
 635   static unsigned int instr_len(unsigned char *instr) { return instruction_size; }
 636 
 637   //---<  longest instructions  >---
 638   static unsigned int instr_maxlen() { return instruction_size; }
 639 
 640   Address adjust(Register base, int offset, bool preIncrement) {
 641     if (preIncrement)
 642       return Address(Pre(base, offset));
 643     else
 644       return Address(Post(base, offset));
 645   }
 646 
 647   Address pre(Register base, int offset) {
 648     return adjust(base, offset, true);
 649   }
 650 
 651   Address post(Register base, int offset) {
 652     return adjust(base, offset, false);
 653   }
 654 
 655   Address post(Register base, Register idx) {
 656     return Address(Post(base, idx));
 657   }
 658 
 659   Instruction_aarch64* current;
 660 
 661   void set_current(Instruction_aarch64* i) { current = i; }
 662 
 663   void f(unsigned val, int msb, int lsb) {
 664     current->f(val, msb, lsb);
 665   }
 666   void f(unsigned val, int msb) {
 667     current->f(val, msb, msb);
 668   }
 669   void sf(long val, int msb, int lsb) {
 670     current->sf(val, msb, lsb);
 671   }
 672   void rf(Register reg, int lsb) {
 673     current->rf(reg, lsb);
 674   }
 675   void srf(Register reg, int lsb) {
 676     current->srf(reg, lsb);
 677   }
 678   void zrf(Register reg, int lsb) {
 679     current->zrf(reg, lsb);
 680   }
 681   void rf(FloatRegister reg, int lsb) {
 682     current->rf(reg, lsb);
 683   }
 684   void fixed(unsigned value, unsigned mask) {
 685     current->fixed(value, mask);
 686   }
 687 
 688   void emit() {
 689     emit_long(current->get_insn());
 690     assert_cond(current->get_bits() == 0xffffffff);
 691     current = NULL;
 692   }
 693 
 694   typedef void (Assembler::* uncond_branch_insn)(address dest);
 695   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 696   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 697   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 698 
 699   void wrap_label(Label &L, uncond_branch_insn insn);
 700   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 701   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 702   void wrap_label(Label &L, prfop, prefetch_insn insn);
 703 
 704   // PC-rel. addressing
 705 
 706   void adr(Register Rd, address dest);
 707   void _adrp(Register Rd, address dest);
 708 
 709   void adr(Register Rd, const Address &dest);
 710   void _adrp(Register Rd, const Address &dest);
 711 
 712   void adr(Register Rd, Label &L) {
 713     wrap_label(Rd, L, &Assembler::Assembler::adr);
 714   }
 715   void _adrp(Register Rd, Label &L) {
 716     wrap_label(Rd, L, &Assembler::_adrp);
 717   }
 718 
 719   void adrp(Register Rd, const Address &dest, unsigned long &offset);
 720 
 721 #undef INSN
 722 
 723   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 724                          int negated_op);
 725 
 726   // Add/subtract (immediate)
 727 #define INSN(NAME, decode, negated)                                     \
 728   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 729     starti;                                                             \
 730     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 731     zrf(Rd, 0), srf(Rn, 5);                                             \
 732   }                                                                     \
 733                                                                         \
 734   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 735     starti;                                                             \
 736     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 737   }
 738 
 739   INSN(addsw, 0b001, 0b011);
 740   INSN(subsw, 0b011, 0b001);
 741   INSN(adds,  0b101, 0b111);
 742   INSN(subs,  0b111, 0b101);
 743 
 744 #undef INSN
 745 
 746 #define INSN(NAME, decode, negated)                     \
 747   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 748     starti;                                             \
 749     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 750   }
 751 
 752   INSN(addw, 0b000, 0b010);
 753   INSN(subw, 0b010, 0b000);
 754   INSN(add,  0b100, 0b110);
 755   INSN(sub,  0b110, 0b100);
 756 
 757 #undef INSN
 758 
 759  // Logical (immediate)
 760 #define INSN(NAME, decode, is32)                                \
 761   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 762     starti;                                                     \
 763     uint32_t val = encode_logical_immediate(is32, imm);         \
 764     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 765     srf(Rd, 0), zrf(Rn, 5);                                     \
 766   }
 767 
 768   INSN(andw, 0b000, true);
 769   INSN(orrw, 0b001, true);
 770   INSN(eorw, 0b010, true);
 771   INSN(andr,  0b100, false);
 772   INSN(orr,  0b101, false);
 773   INSN(eor,  0b110, false);
 774 
 775 #undef INSN
 776 
 777 #define INSN(NAME, decode, is32)                                \
 778   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 779     starti;                                                     \
 780     uint32_t val = encode_logical_immediate(is32, imm);         \
 781     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 782     zrf(Rd, 0), zrf(Rn, 5);                                     \
 783   }
 784 
 785   INSN(ands, 0b111, false);
 786   INSN(andsw, 0b011, true);
 787 
 788 #undef INSN
 789 
 790   // Move wide (immediate)
 791 #define INSN(NAME, opcode)                                              \
 792   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 793     assert_cond((shift/16)*16 == shift);                                \
 794     starti;                                                             \
 795     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 796       f(imm, 20, 5);                                                    \
 797     rf(Rd, 0);                                                          \
 798   }
 799 
 800   INSN(movnw, 0b000);
 801   INSN(movzw, 0b010);
 802   INSN(movkw, 0b011);
 803   INSN(movn, 0b100);
 804   INSN(movz, 0b110);
 805   INSN(movk, 0b111);
 806 
 807 #undef INSN
 808 
 809   // Bitfield
 810 #define INSN(NAME, opcode)                                              \
 811   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 812     starti;                                                             \
 813     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 814     zrf(Rn, 5), rf(Rd, 0);                                              \
 815   }
 816 
 817   INSN(sbfmw, 0b0001001100);
 818   INSN(bfmw,  0b0011001100);
 819   INSN(ubfmw, 0b0101001100);
 820   INSN(sbfm,  0b1001001101);
 821   INSN(bfm,   0b1011001101);
 822   INSN(ubfm,  0b1101001101);
 823 
 824 #undef INSN
 825 
 826   // Extract
 827 #define INSN(NAME, opcode)                                              \
 828   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 829     starti;                                                             \
 830     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 831     rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                                   \
 832   }
 833 
 834   INSN(extrw, 0b00010011100);
 835   INSN(extr,  0b10010011110);
 836 
 837 #undef INSN
 838 
 839   // The maximum range of a branch is fixed for the AArch64
 840   // architecture.  In debug mode we shrink it in order to test
 841   // trampolines, but not so small that branches in the interpreter
 842   // are out of range.
 843   static const unsigned long branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
 844 
 845   static bool reachable_from_branch_at(address branch, address target) {
 846     return uabs(target - branch) < branch_range;
 847   }
 848 
 849   // Unconditional branch (immediate)
 850 #define INSN(NAME, opcode)                                              \
 851   void NAME(address dest) {                                             \
 852     starti;                                                             \
 853     long offset = (dest - pc()) >> 2;                                   \
 854     DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
 855     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);               \
 856   }                                                                     \
 857   void NAME(Label &L) {                                                 \
 858     wrap_label(L, &Assembler::NAME);                                    \
 859   }                                                                     \
 860   void NAME(const Address &dest);
 861 
 862   INSN(b, 0);
 863   INSN(bl, 1);
 864 
 865 #undef INSN
 866 
 867   // Compare & branch (immediate)
 868 #define INSN(NAME, opcode)                              \
 869   void NAME(Register Rt, address dest) {                \
 870     long offset = (dest - pc()) >> 2;                   \
 871     starti;                                             \
 872     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 873   }                                                     \
 874   void NAME(Register Rt, Label &L) {                    \
 875     wrap_label(Rt, L, &Assembler::NAME);                \
 876   }
 877 
 878   INSN(cbzw,  0b00110100);
 879   INSN(cbnzw, 0b00110101);
 880   INSN(cbz,   0b10110100);
 881   INSN(cbnz,  0b10110101);
 882 
 883 #undef INSN
 884 
 885   // Test & branch (immediate)
 886 #define INSN(NAME, opcode)                                              \
 887   void NAME(Register Rt, int bitpos, address dest) {                    \
 888     long offset = (dest - pc()) >> 2;                                   \
 889     int b5 = bitpos >> 5;                                               \
 890     bitpos &= 0x1f;                                                     \
 891     starti;                                                             \
 892     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 893     rf(Rt, 0);                                                          \
 894   }                                                                     \
 895   void NAME(Register Rt, int bitpos, Label &L) {                        \
 896     wrap_label(Rt, bitpos, L, &Assembler::NAME);                        \
 897   }
 898 
 899   INSN(tbz,  0b0110110);
 900   INSN(tbnz, 0b0110111);
 901 
 902 #undef INSN
 903 
 904   // Conditional branch (immediate)
 905   enum Condition
 906     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 907 
 908   void br(Condition  cond, address dest) {
 909     long offset = (dest - pc()) >> 2;
 910     starti;
 911     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 912   }
 913 
 914 #define INSN(NAME, cond)                        \
 915   void NAME(address dest) {                     \
 916     br(cond, dest);                             \
 917   }
 918 
 919   INSN(beq, EQ);
 920   INSN(bne, NE);
 921   INSN(bhs, HS);
 922   INSN(bcs, CS);
 923   INSN(blo, LO);
 924   INSN(bcc, CC);
 925   INSN(bmi, MI);
 926   INSN(bpl, PL);
 927   INSN(bvs, VS);
 928   INSN(bvc, VC);
 929   INSN(bhi, HI);
 930   INSN(bls, LS);
 931   INSN(bge, GE);
 932   INSN(blt, LT);
 933   INSN(bgt, GT);
 934   INSN(ble, LE);
 935   INSN(bal, AL);
 936   INSN(bnv, NV);
 937 
 938   void br(Condition cc, Label &L);
 939 
 940 #undef INSN
 941 
 942   // Exception generation
 943   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 944     starti;
 945     f(0b11010100, 31, 24);
 946     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 947   }
 948 
 949 #define INSN(NAME, opc, op2, LL)                \
 950   void NAME(unsigned imm) {                     \
 951     generate_exception(opc, op2, LL, imm);      \
 952   }
 953 
 954   INSN(svc, 0b000, 0, 0b01);
 955   INSN(hvc, 0b000, 0, 0b10);
 956   INSN(smc, 0b000, 0, 0b11);
 957   INSN(brk, 0b001, 0, 0b00);
 958   INSN(hlt, 0b010, 0, 0b00);
 959   INSN(dpcs1, 0b101, 0, 0b01);
 960   INSN(dpcs2, 0b101, 0, 0b10);
 961   INSN(dpcs3, 0b101, 0, 0b11);
 962 
 963 #undef INSN
 964 
 965   // System
 966   void system(int op0, int op1, int CRn, int CRm, int op2,
 967               Register rt = dummy_reg)
 968   {
 969     starti;
 970     f(0b11010101000, 31, 21);
 971     f(op0, 20, 19);
 972     f(op1, 18, 16);
 973     f(CRn, 15, 12);
 974     f(CRm, 11, 8);
 975     f(op2, 7, 5);
 976     rf(rt, 0);
 977   }
 978 
 979   void hint(int imm) {
 980     system(0b00, 0b011, 0b0010, 0b0000, imm);
 981   }
 982 
 983   void nop() {
 984     hint(0);
 985   }
 986 
 987   void yield() {
 988     hint(1);
 989   }
 990 
 991   void wfe() {
 992     hint(2);
 993   }
 994 
 995   void wfi() {
 996     hint(3);
 997   }
 998 
 999   void sev() {
1000     hint(4);
1001   }
1002 
1003   void sevl() {
1004     hint(5);
1005   }
1006 
1007   // we only provide mrs and msr for the special purpose system
1008   // registers where op1 (instr[20:19]) == 11 and, (currently) only
1009   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
1010 
1011   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
1012     starti;
1013     f(0b1101010100011, 31, 19);
1014     f(op1, 18, 16);
1015     f(CRn, 15, 12);
1016     f(CRm, 11, 8);
1017     f(op2, 7, 5);
1018     // writing zr is ok
1019     zrf(rt, 0);
1020   }
1021 
1022   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1023     starti;
1024     f(0b1101010100111, 31, 19);
1025     f(op1, 18, 16);
1026     f(CRn, 15, 12);
1027     f(CRm, 11, 8);
1028     f(op2, 7, 5);
1029     // reading to zr is a mistake
1030     rf(rt, 0);
1031   }
1032 
1033   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1034                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1035 
1036   void dsb(barrier imm) {
1037     system(0b00, 0b011, 0b00011, imm, 0b100);
1038   }
1039 
1040   void dmb(barrier imm) {
1041     system(0b00, 0b011, 0b00011, imm, 0b101);
1042   }
1043 
1044   void isb() {
1045     system(0b00, 0b011, 0b00011, SY, 0b110);
1046   }
1047 
1048   void sys(int op1, int CRn, int CRm, int op2,
1049            Register rt = (Register)0b11111) {
1050     system(0b01, op1, CRn, CRm, op2, rt);
1051   }
1052 
1053   // Only implement operations accessible from EL0 or higher, i.e.,
1054   //            op1    CRn    CRm    op2
1055   // IC IVAU     3      7      5      1
1056   // DC CVAC     3      7      10     1
1057   // DC CVAU     3      7      11     1
1058   // DC CIVAC    3      7      14     1
1059   // DC ZVA      3      7      4      1
1060   // So only deal with the CRm field.
1061   enum icache_maintenance {IVAU = 0b0101};
1062   enum dcache_maintenance {CVAC = 0b1010, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
1063 
1064   void dc(dcache_maintenance cm, Register Rt) {
1065     sys(0b011, 0b0111, cm, 0b001, Rt);
1066   }
1067 
1068   void ic(icache_maintenance cm, Register Rt) {
1069     sys(0b011, 0b0111, cm, 0b001, Rt);
1070   }
1071 
1072   // A more convenient access to dmb for our purposes
1073   enum Membar_mask_bits {
1074     // We can use ISH for a barrier because the ARM ARM says "This
1075     // architecture assumes that all Processing Elements that use the
1076     // same operating system or hypervisor are in the same Inner
1077     // Shareable shareability domain."
1078     StoreStore = ISHST,
1079     LoadStore  = ISHLD,
1080     LoadLoad   = ISHLD,
1081     StoreLoad  = ISH,
1082     AnyAny     = ISH
1083   };
1084 
1085   void membar(Membar_mask_bits order_constraint) {
1086     dmb(Assembler::barrier(order_constraint));
1087   }
1088 
1089   // Unconditional branch (register)
1090   void branch_reg(Register R, int opc) {
1091     starti;
1092     f(0b1101011, 31, 25);
1093     f(opc, 24, 21);
1094     f(0b11111000000, 20, 10);
1095     rf(R, 5);
1096     f(0b00000, 4, 0);
1097   }
1098 
1099 #define INSN(NAME, opc)                         \
1100   void NAME(Register R) {                       \
1101     branch_reg(R, opc);                         \
1102   }
1103 
1104   INSN(br, 0b0000);
1105   INSN(blr, 0b0001);
1106   INSN(ret, 0b0010);
1107 
1108   void ret(void *p); // This forces a compile-time error for ret(0)
1109 
1110 #undef INSN
1111 
1112 #define INSN(NAME, opc)                         \
1113   void NAME() {                 \
1114     branch_reg(dummy_reg, opc);         \
1115   }
1116 
1117   INSN(eret, 0b0100);
1118   INSN(drps, 0b0101);
1119 
1120 #undef INSN
1121 
1122   // Load/store exclusive
1123   enum operand_size { byte, halfword, word, xword };
1124 
1125   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1126     Register Rn, enum operand_size sz, int op, bool ordered) {
1127     starti;
1128     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1129     rf(Rs, 16), f(ordered, 15), rf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0);
1130   }
1131 
1132   void load_exclusive(Register dst, Register addr,
1133                       enum operand_size sz, bool ordered) {
1134     load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
1135                          sz, 0b010, ordered);
1136   }
1137 
1138   void store_exclusive(Register status, Register new_val, Register addr,
1139                        enum operand_size sz, bool ordered) {
1140     load_store_exclusive(status, new_val, dummy_reg, addr,
1141                          sz, 0b000, ordered);
1142   }
1143 
1144 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1145   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1146     guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
1147     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1148   }
1149 
1150 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1151   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1152     guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction");       \
1153     load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
1154   }
1155 
1156 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1157   void NAME(Register Rt, Register Rn) {                                 \
1158     load_store_exclusive(dummy_reg, Rt, dummy_reg, \
1159                          Rn, sz, op, o0);                               \
1160   }
1161 
1162 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1163   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1164     guarantee(Rt1 != Rt2, "unpredictable instruction");                 \
1165     load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0);          \
1166   }
1167 
1168   // bytes
1169   INSN3(stxrb, byte, 0b000, 0);
1170   INSN3(stlxrb, byte, 0b000, 1);
1171   INSN2(ldxrb, byte, 0b010, 0);
1172   INSN2(ldaxrb, byte, 0b010, 1);
1173   INSN2(stlrb, byte, 0b100, 1);
1174   INSN2(ldarb, byte, 0b110, 1);
1175 
1176   // halfwords
1177   INSN3(stxrh, halfword, 0b000, 0);
1178   INSN3(stlxrh, halfword, 0b000, 1);
1179   INSN2(ldxrh, halfword, 0b010, 0);
1180   INSN2(ldaxrh, halfword, 0b010, 1);
1181   INSN2(stlrh, halfword, 0b100, 1);
1182   INSN2(ldarh, halfword, 0b110, 1);
1183 
1184   // words
1185   INSN3(stxrw, word, 0b000, 0);
1186   INSN3(stlxrw, word, 0b000, 1);
1187   INSN4(stxpw, word, 0b001, 0);
1188   INSN4(stlxpw, word, 0b001, 1);
1189   INSN2(ldxrw, word, 0b010, 0);
1190   INSN2(ldaxrw, word, 0b010, 1);
1191   INSN_FOO(ldxpw, word, 0b011, 0);
1192   INSN_FOO(ldaxpw, word, 0b011, 1);
1193   INSN2(stlrw, word, 0b100, 1);
1194   INSN2(ldarw, word, 0b110, 1);
1195 
1196   // xwords
1197   INSN3(stxr, xword, 0b000, 0);
1198   INSN3(stlxr, xword, 0b000, 1);
1199   INSN4(stxp, xword, 0b001, 0);
1200   INSN4(stlxp, xword, 0b001, 1);
1201   INSN2(ldxr, xword, 0b010, 0);
1202   INSN2(ldaxr, xword, 0b010, 1);
1203   INSN_FOO(ldxp, xword, 0b011, 0);
1204   INSN_FOO(ldaxp, xword, 0b011, 1);
1205   INSN2(stlr, xword, 0b100, 1);
1206   INSN2(ldar, xword, 0b110, 1);
1207 
1208 #undef INSN2
1209 #undef INSN3
1210 #undef INSN4
1211 #undef INSN_FOO
1212 
1213   // 8.1 Compare and swap extensions
1214   void lse_cas(Register Rs, Register Rt, Register Rn,
1215                         enum operand_size sz, bool a, bool r, bool not_pair) {
1216     starti;
1217     if (! not_pair) { // Pair
1218       assert(sz == word || sz == xword, "invalid size");
1219       /* The size bit is in bit 30, not 31 */
1220       sz = (operand_size)(sz == word ? 0b00:0b01);
1221     }
1222     f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21);
1223     zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0);
1224   }
1225 
1226   // CAS
1227 #define INSN(NAME, a, r)                                                \
1228   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1229     assert(Rs != Rn && Rs != Rt, "unpredictable instruction");          \
1230     lse_cas(Rs, Rt, Rn, sz, a, r, true);                                \
1231   }
1232   INSN(cas,    false, false)
1233   INSN(casa,   true,  false)
1234   INSN(casl,   false, true)
1235   INSN(casal,  true,  true)
1236 #undef INSN
1237 
1238   // CASP
1239 #define INSN(NAME, a, r)                                                \
1240   void NAME(operand_size sz, Register Rs, Register Rs1,                 \
1241             Register Rt, Register Rt1, Register Rn) {                   \
1242     assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 &&    \
1243            Rs->successor() == Rs1 && Rt->successor() == Rt1 &&          \
1244            Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers");     \
1245     lse_cas(Rs, Rt, Rn, sz, a, r, false);                               \
1246   }
1247   INSN(casp,    false, false)
1248   INSN(caspa,   true,  false)
1249   INSN(caspl,   false, true)
1250   INSN(caspal,  true,  true)
1251 #undef INSN
1252 
1253   // 8.1 Atomic operations
1254   void lse_atomic(Register Rs, Register Rt, Register Rn,
1255                   enum operand_size sz, int op1, int op2, bool a, bool r) {
1256     starti;
1257     f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
1258     rf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0);
1259   }
1260 
1261 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2)                   \
1262   void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) {   \
1263     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false);                 \
1264   }                                                                     \
1265   void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1266     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false);                  \
1267   }                                                                     \
1268   void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
1269     lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true);                  \
1270   }                                                                     \
1271   void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
1272     lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true);                   \
1273   }
1274   INSN(ldadd,  ldadda,  ldaddl,  ldaddal,  0, 0b000);
1275   INSN(ldbic,  ldbica,  ldbicl,  ldbical,  0, 0b001);
1276   INSN(ldeor,  ldeora,  ldeorl,  ldeoral,  0, 0b010);
1277   INSN(ldorr,  ldorra,  ldorrl,  ldorral,  0, 0b011);
1278   INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
1279   INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
1280   INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
1281   INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
1282   INSN(swp,    swpa,    swpl,    swpal,    1, 0b000);
1283 #undef INSN
1284 
1285   // Load register (literal)
1286 #define INSN(NAME, opc, V)                                              \
1287   void NAME(Register Rt, address dest) {                                \
1288     long offset = (dest - pc()) >> 2;                                   \
1289     starti;                                                             \
1290     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1291       sf(offset, 23, 5);                                                \
1292     rf(Rt, 0);                                                          \
1293   }                                                                     \
1294   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1295     InstructionMark im(this);                                           \
1296     guarantee(rtype == relocInfo::internal_word_type,                   \
1297               "only internal_word_type relocs make sense here");        \
1298     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1299     NAME(Rt, dest);                                                     \
1300   }                                                                     \
1301   void NAME(Register Rt, Label &L) {                                    \
1302     wrap_label(Rt, L, &Assembler::NAME);                                \
1303   }
1304 
1305   INSN(ldrw, 0b00, 0);
1306   INSN(ldr, 0b01, 0);
1307   INSN(ldrsw, 0b10, 0);
1308 
1309 #undef INSN
1310 
1311 #define INSN(NAME, opc, V)                                              \
1312   void NAME(FloatRegister Rt, address dest) {                           \
1313     long offset = (dest - pc()) >> 2;                                   \
1314     starti;                                                             \
1315     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1316       sf(offset, 23, 5);                                                \
1317     rf((Register)Rt, 0);                                                \
1318   }
1319 
1320   INSN(ldrs, 0b00, 1);
1321   INSN(ldrd, 0b01, 1);
1322   INSN(ldrq, 0b10, 1);
1323 
1324 #undef INSN
1325 
1326 #define INSN(NAME, opc, V)                                              \
1327   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1328     long offset = (dest - pc()) >> 2;                                   \
1329     starti;                                                             \
1330     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1331       sf(offset, 23, 5);                                                \
1332     f(op, 4, 0);                                                        \
1333   }                                                                     \
1334   void NAME(Label &L, prfop op = PLDL1KEEP) {                           \
1335     wrap_label(L, op, &Assembler::NAME);                                \
1336   }
1337 
1338   INSN(prfm, 0b11, 0);
1339 
1340 #undef INSN
1341 
1342   // Load/store
1343   void ld_st1(int opc, int p1, int V, int L,
1344               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1345     starti;
1346     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1347     zrf(Rt2, 10), zrf(Rt1, 0);
1348     if (no_allocate) {
1349       adr.encode_nontemporal_pair(current);
1350     } else {
1351       adr.encode_pair(current);
1352     }
1353   }
1354 
1355   // Load/store register pair (offset)
1356 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1357   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1358     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1359    }
1360 
1361   INSN(stpw, 0b00, 0b101, 0, 0, false);
1362   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1363   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1364   INSN(stp, 0b10, 0b101, 0, 0, false);
1365   INSN(ldp, 0b10, 0b101, 0, 1, false);
1366 
1367   // Load/store no-allocate pair (offset)
1368   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1369   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1370   INSN(stnp, 0b10, 0b101, 0, 0, true);
1371   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1372 
1373 #undef INSN
1374 
1375 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1376   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1377     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1378    }
1379 
1380   INSN(stps, 0b00, 0b101, 1, 0, false);
1381   INSN(ldps, 0b00, 0b101, 1, 1, false);
1382   INSN(stpd, 0b01, 0b101, 1, 0, false);
1383   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1384   INSN(stpq, 0b10, 0b101, 1, 0, false);
1385   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1386 
1387 #undef INSN
1388 
1389   // Load/store register (all modes)
1390   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1391     starti;
1392 
1393     f(V, 26); // general reg?
1394     zrf(Rt, 0);
1395 
1396     // Encoding for literal loads is done here (rather than pushed
1397     // down into Address::encode) because the encoding of this
1398     // instruction is too different from all of the other forms to
1399     // make it worth sharing.
1400     if (adr.getMode() == Address::literal) {
1401       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1402       assert(op == 0b01, "literal form can only be used with loads");
1403       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1404       long offset = (adr.target() - pc()) >> 2;
1405       sf(offset, 23, 5);
1406       code_section()->relocate(pc(), adr.rspec());
1407       return;
1408     }
1409 
1410     f(size, 31, 30);
1411     f(op, 23, 22); // str
1412     adr.encode(current);
1413   }
1414 
1415 #define INSN(NAME, size, op)                            \
1416   void NAME(Register Rt, const Address &adr) {          \
1417     ld_st2(Rt, adr, size, op);                          \
1418   }                                                     \
1419 
1420   INSN(str, 0b11, 0b00);
1421   INSN(strw, 0b10, 0b00);
1422   INSN(strb, 0b00, 0b00);
1423   INSN(strh, 0b01, 0b00);
1424 
1425   INSN(ldr, 0b11, 0b01);
1426   INSN(ldrw, 0b10, 0b01);
1427   INSN(ldrb, 0b00, 0b01);
1428   INSN(ldrh, 0b01, 0b01);
1429 
1430   INSN(ldrsb, 0b00, 0b10);
1431   INSN(ldrsbw, 0b00, 0b11);
1432   INSN(ldrsh, 0b01, 0b10);
1433   INSN(ldrshw, 0b01, 0b11);
1434   INSN(ldrsw, 0b10, 0b10);
1435 
1436 #undef INSN
1437 
1438 #define INSN(NAME, size, op)                                    \
1439   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {       \
1440     ld_st2((Register)pfop, adr, size, op);                      \
1441   }
1442 
1443   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1444                           // writeback modes, but the assembler
1445                           // doesn't enfore that.
1446 
1447 #undef INSN
1448 
1449 #define INSN(NAME, size, op)                            \
1450   void NAME(FloatRegister Rt, const Address &adr) {     \
1451     ld_st2((Register)Rt, adr, size, op, 1);             \
1452   }
1453 
1454   INSN(strd, 0b11, 0b00);
1455   INSN(strs, 0b10, 0b00);
1456   INSN(ldrd, 0b11, 0b01);
1457   INSN(ldrs, 0b10, 0b01);
1458   INSN(strq, 0b00, 0b10);
1459   INSN(ldrq, 0x00, 0b11);
1460 
1461 #undef INSN
1462 
1463   enum shift_kind { LSL, LSR, ASR, ROR };
1464 
1465   void op_shifted_reg(unsigned decode,
1466                       enum shift_kind kind, unsigned shift,
1467                       unsigned size, unsigned op) {
1468     f(size, 31);
1469     f(op, 30, 29);
1470     f(decode, 28, 24);
1471     f(shift, 15, 10);
1472     f(kind, 23, 22);
1473   }
1474 
1475   // Logical (shifted register)
1476 #define INSN(NAME, size, op, N)                                 \
1477   void NAME(Register Rd, Register Rn, Register Rm,              \
1478             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1479     starti;                                                     \
1480     f(N, 21);                                                   \
1481     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1482     op_shifted_reg(0b01010, kind, shift, size, op);             \
1483   }
1484 
1485   INSN(andr, 1, 0b00, 0);
1486   INSN(orr, 1, 0b01, 0);
1487   INSN(eor, 1, 0b10, 0);
1488   INSN(ands, 1, 0b11, 0);
1489   INSN(andw, 0, 0b00, 0);
1490   INSN(orrw, 0, 0b01, 0);
1491   INSN(eorw, 0, 0b10, 0);
1492   INSN(andsw, 0, 0b11, 0);
1493 
1494   INSN(bic, 1, 0b00, 1);
1495   INSN(orn, 1, 0b01, 1);
1496   INSN(eon, 1, 0b10, 1);
1497   INSN(bics, 1, 0b11, 1);
1498   INSN(bicw, 0, 0b00, 1);
1499   INSN(ornw, 0, 0b01, 1);
1500   INSN(eonw, 0, 0b10, 1);
1501   INSN(bicsw, 0, 0b11, 1);
1502 
1503 #undef INSN
1504 
1505   // Aliases for short forms of orn
1506 void mvn(Register Rd, Register Rm,
1507             enum shift_kind kind = LSL, unsigned shift = 0) {
1508   orn(Rd, zr, Rm, kind, shift);
1509 }
1510 
1511 void mvnw(Register Rd, Register Rm,
1512             enum shift_kind kind = LSL, unsigned shift = 0) {
1513   ornw(Rd, zr, Rm, kind, shift);
1514 }
1515 
1516   // Add/subtract (shifted register)
1517 #define INSN(NAME, size, op)                            \
1518   void NAME(Register Rd, Register Rn, Register Rm,      \
1519             enum shift_kind kind, unsigned shift = 0) { \
1520     starti;                                             \
1521     f(0, 21);                                           \
1522     assert_cond(kind != ROR);                           \
1523     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1524     op_shifted_reg(0b01011, kind, shift, size, op);     \
1525   }
1526 
1527   INSN(add, 1, 0b000);
1528   INSN(sub, 1, 0b10);
1529   INSN(addw, 0, 0b000);
1530   INSN(subw, 0, 0b10);
1531 
1532   INSN(adds, 1, 0b001);
1533   INSN(subs, 1, 0b11);
1534   INSN(addsw, 0, 0b001);
1535   INSN(subsw, 0, 0b11);
1536 
1537 #undef INSN
1538 
1539   // Add/subtract (extended register)
1540 #define INSN(NAME, op)                                                  \
1541   void NAME(Register Rd, Register Rn, Register Rm,                      \
1542            ext::operation option, int amount = 0) {                     \
1543     starti;                                                             \
1544     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1545     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1546   }
1547 
1548   void add_sub_extended_reg(unsigned op, unsigned decode,
1549     Register Rd, Register Rn, Register Rm,
1550     unsigned opt, ext::operation option, unsigned imm) {
1551     guarantee(imm <= 4, "shift amount must be < 4");
1552     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1553     f(option, 15, 13), f(imm, 12, 10);
1554   }
1555 
1556   INSN(addw, 0b000);
1557   INSN(subw, 0b010);
1558   INSN(add, 0b100);
1559   INSN(sub, 0b110);
1560 
1561 #undef INSN
1562 
1563 #define INSN(NAME, op)                                                  \
1564   void NAME(Register Rd, Register Rn, Register Rm,                      \
1565            ext::operation option, int amount = 0) {                     \
1566     starti;                                                             \
1567     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1568     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1569   }
1570 
1571   INSN(addsw, 0b001);
1572   INSN(subsw, 0b011);
1573   INSN(adds, 0b101);
1574   INSN(subs, 0b111);
1575 
1576 #undef INSN
1577 
1578   // Aliases for short forms of add and sub
1579 #define INSN(NAME)                                      \
1580   void NAME(Register Rd, Register Rn, Register Rm) {    \
1581     if (Rd == sp || Rn == sp)                           \
1582       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1583     else                                                \
1584       NAME(Rd, Rn, Rm, LSL);                            \
1585   }
1586 
1587   INSN(addw);
1588   INSN(subw);
1589   INSN(add);
1590   INSN(sub);
1591 
1592   INSN(addsw);
1593   INSN(subsw);
1594   INSN(adds);
1595   INSN(subs);
1596 
1597 #undef INSN
1598 
1599   // Add/subtract (with carry)
1600   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1601     starti;
1602     f(op, 31, 29);
1603     f(0b11010000, 28, 21);
1604     f(0b000000, 15, 10);
1605     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1606   }
1607 
1608   #define INSN(NAME, op)                                \
1609     void NAME(Register Rd, Register Rn, Register Rm) {  \
1610       add_sub_carry(op, Rd, Rn, Rm);                    \
1611     }
1612 
1613   INSN(adcw, 0b000);
1614   INSN(adcsw, 0b001);
1615   INSN(sbcw, 0b010);
1616   INSN(sbcsw, 0b011);
1617   INSN(adc, 0b100);
1618   INSN(adcs, 0b101);
1619   INSN(sbc,0b110);
1620   INSN(sbcs, 0b111);
1621 
1622 #undef INSN
1623 
1624   // Conditional compare (both kinds)
1625   void conditional_compare(unsigned op, int o1, int o2, int o3,
1626                            Register Rn, unsigned imm5, unsigned nzcv,
1627                            unsigned cond) {
1628     starti;
1629     f(op, 31, 29);
1630     f(0b11010010, 28, 21);
1631     f(cond, 15, 12);
1632     f(o1, 11);
1633     f(o2, 10);
1634     f(o3, 4);
1635     f(nzcv, 3, 0);
1636     f(imm5, 20, 16), rf(Rn, 5);
1637   }
1638 
1639 #define INSN(NAME, op)                                                  \
1640   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1641     int regNumber = (Rm == zr ? 31 : (uintptr_t)Rm);                    \
1642     conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond);         \
1643   }                                                                     \
1644                                                                         \
1645   void NAME(Register Rn, int imm5, int imm, Condition cond) {           \
1646     conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond);              \
1647   }
1648 
1649   INSN(ccmnw, 0b001);
1650   INSN(ccmpw, 0b011);
1651   INSN(ccmn, 0b101);
1652   INSN(ccmp, 0b111);
1653 
1654 #undef INSN
1655 
1656   // Conditional select
1657   void conditional_select(unsigned op, unsigned op2,
1658                           Register Rd, Register Rn, Register Rm,
1659                           unsigned cond) {
1660     starti;
1661     f(op, 31, 29);
1662     f(0b11010100, 28, 21);
1663     f(cond, 15, 12);
1664     f(op2, 11, 10);
1665     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1666   }
1667 
1668 #define INSN(NAME, op, op2)                                             \
1669   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1670     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1671   }
1672 
1673   INSN(cselw, 0b000, 0b00);
1674   INSN(csincw, 0b000, 0b01);
1675   INSN(csinvw, 0b010, 0b00);
1676   INSN(csnegw, 0b010, 0b01);
1677   INSN(csel, 0b100, 0b00);
1678   INSN(csinc, 0b100, 0b01);
1679   INSN(csinv, 0b110, 0b00);
1680   INSN(csneg, 0b110, 0b01);
1681 
1682 #undef INSN
1683 
1684   // Data processing
1685   void data_processing(unsigned op29, unsigned opcode,
1686                        Register Rd, Register Rn) {
1687     f(op29, 31, 29), f(0b11010110, 28, 21);
1688     f(opcode, 15, 10);
1689     rf(Rn, 5), rf(Rd, 0);
1690   }
1691 
1692   // (1 source)
1693 #define INSN(NAME, op29, opcode2, opcode)       \
1694   void NAME(Register Rd, Register Rn) {         \
1695     starti;                                     \
1696     f(opcode2, 20, 16);                         \
1697     data_processing(op29, opcode, Rd, Rn);      \
1698   }
1699 
1700   INSN(rbitw,  0b010, 0b00000, 0b00000);
1701   INSN(rev16w, 0b010, 0b00000, 0b00001);
1702   INSN(revw,   0b010, 0b00000, 0b00010);
1703   INSN(clzw,   0b010, 0b00000, 0b00100);
1704   INSN(clsw,   0b010, 0b00000, 0b00101);
1705 
1706   INSN(rbit,   0b110, 0b00000, 0b00000);
1707   INSN(rev16,  0b110, 0b00000, 0b00001);
1708   INSN(rev32,  0b110, 0b00000, 0b00010);
1709   INSN(rev,    0b110, 0b00000, 0b00011);
1710   INSN(clz,    0b110, 0b00000, 0b00100);
1711   INSN(cls,    0b110, 0b00000, 0b00101);
1712 
1713 #undef INSN
1714 
1715   // (2 sources)
1716 #define INSN(NAME, op29, opcode)                        \
1717   void NAME(Register Rd, Register Rn, Register Rm) {    \
1718     starti;                                             \
1719     rf(Rm, 16);                                         \
1720     data_processing(op29, opcode, Rd, Rn);              \
1721   }
1722 
1723   INSN(udivw, 0b000, 0b000010);
1724   INSN(sdivw, 0b000, 0b000011);
1725   INSN(lslvw, 0b000, 0b001000);
1726   INSN(lsrvw, 0b000, 0b001001);
1727   INSN(asrvw, 0b000, 0b001010);
1728   INSN(rorvw, 0b000, 0b001011);
1729 
1730   INSN(udiv, 0b100, 0b000010);
1731   INSN(sdiv, 0b100, 0b000011);
1732   INSN(lslv, 0b100, 0b001000);
1733   INSN(lsrv, 0b100, 0b001001);
1734   INSN(asrv, 0b100, 0b001010);
1735   INSN(rorv, 0b100, 0b001011);
1736 
1737 #undef INSN
1738 
1739   // (3 sources)
1740   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1741                        Register Rd, Register Rn, Register Rm,
1742                        Register Ra) {
1743     starti;
1744     f(op54, 31, 29), f(0b11011, 28, 24);
1745     f(op31, 23, 21), f(o0, 15);
1746     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1747   }
1748 
1749 #define INSN(NAME, op54, op31, o0)                                      \
1750   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1751     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1752   }
1753 
1754   INSN(maddw, 0b000, 0b000, 0);
1755   INSN(msubw, 0b000, 0b000, 1);
1756   INSN(madd, 0b100, 0b000, 0);
1757   INSN(msub, 0b100, 0b000, 1);
1758   INSN(smaddl, 0b100, 0b001, 0);
1759   INSN(smsubl, 0b100, 0b001, 1);
1760   INSN(umaddl, 0b100, 0b101, 0);
1761   INSN(umsubl, 0b100, 0b101, 1);
1762 
1763 #undef INSN
1764 
1765 #define INSN(NAME, op54, op31, o0)                      \
1766   void NAME(Register Rd, Register Rn, Register Rm) {    \
1767     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1768   }
1769 
1770   INSN(smulh, 0b100, 0b010, 0);
1771   INSN(umulh, 0b100, 0b110, 0);
1772 
1773 #undef INSN
1774 
1775   // Floating-point data-processing (1 source)
1776   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1777                        FloatRegister Vd, FloatRegister Vn) {
1778     starti;
1779     f(op31, 31, 29);
1780     f(0b11110, 28, 24);
1781     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1782     rf(Vn, 5), rf(Vd, 0);
1783   }
1784 
1785 #define INSN(NAME, op31, type, opcode)                  \
1786   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1787     data_processing(op31, type, opcode, Vd, Vn);        \
1788   }
1789 
1790 private:
1791   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1792 public:
1793   INSN(fabss, 0b000, 0b00, 0b000001);
1794   INSN(fnegs, 0b000, 0b00, 0b000010);
1795   INSN(fsqrts, 0b000, 0b00, 0b000011);
1796   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1797 
1798 private:
1799   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1800 public:
1801   INSN(fabsd, 0b000, 0b01, 0b000001);
1802   INSN(fnegd, 0b000, 0b01, 0b000010);
1803   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1804   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1805 
1806   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1807     assert(Vd != Vn, "should be");
1808     i_fmovd(Vd, Vn);
1809   }
1810 
1811   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1812     assert(Vd != Vn, "should be");
1813     i_fmovs(Vd, Vn);
1814   }
1815 
1816 #undef INSN
1817 
1818   // Floating-point data-processing (2 source)
1819   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1820                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1821     starti;
1822     f(op31, 31, 29);
1823     f(0b11110, 28, 24);
1824     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1825     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1826   }
1827 
1828 #define INSN(NAME, op31, type, opcode)                  \
1829   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1830     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1831   }
1832 
1833   INSN(fmuls, 0b000, 0b00, 0b0000);
1834   INSN(fdivs, 0b000, 0b00, 0b0001);
1835   INSN(fadds, 0b000, 0b00, 0b0010);
1836   INSN(fsubs, 0b000, 0b00, 0b0011);
1837   INSN(fmaxs, 0b000, 0b00, 0b0100);
1838   INSN(fmins, 0b000, 0b00, 0b0101);
1839   INSN(fnmuls, 0b000, 0b00, 0b1000);
1840 
1841   INSN(fmuld, 0b000, 0b01, 0b0000);
1842   INSN(fdivd, 0b000, 0b01, 0b0001);
1843   INSN(faddd, 0b000, 0b01, 0b0010);
1844   INSN(fsubd, 0b000, 0b01, 0b0011);
1845   INSN(fmaxd, 0b000, 0b01, 0b0100);
1846   INSN(fmind, 0b000, 0b01, 0b0101);
1847   INSN(fnmuld, 0b000, 0b01, 0b1000);
1848 
1849 #undef INSN
1850 
1851    // Floating-point data-processing (3 source)
1852   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1853                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1854                        FloatRegister Va) {
1855     starti;
1856     f(op31, 31, 29);
1857     f(0b11111, 28, 24);
1858     f(type, 23, 22), f(o1, 21), f(o0, 15);
1859     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1860   }
1861 
1862 #define INSN(NAME, op31, type, o1, o0)                                  \
1863   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1864             FloatRegister Va) {                                         \
1865     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1866   }
1867 
1868   INSN(fmadds, 0b000, 0b00, 0, 0);
1869   INSN(fmsubs, 0b000, 0b00, 0, 1);
1870   INSN(fnmadds, 0b000, 0b00, 1, 0);
1871   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1872 
1873   INSN(fmaddd, 0b000, 0b01, 0, 0);
1874   INSN(fmsubd, 0b000, 0b01, 0, 1);
1875   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1876   INSN(fnmsub, 0b000, 0b01, 1, 1);
1877 
1878 #undef INSN
1879 
1880    // Floating-point conditional select
1881   void fp_conditional_select(unsigned op31, unsigned type,
1882                              unsigned op1, unsigned op2,
1883                              Condition cond, FloatRegister Vd,
1884                              FloatRegister Vn, FloatRegister Vm) {
1885     starti;
1886     f(op31, 31, 29);
1887     f(0b11110, 28, 24);
1888     f(type, 23, 22);
1889     f(op1, 21, 21);
1890     f(op2, 11, 10);
1891     f(cond, 15, 12);
1892     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1893   }
1894 
1895 #define INSN(NAME, op31, type, op1, op2)                                \
1896   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1897             FloatRegister Vm, Condition cond) {                         \
1898     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1899   }
1900 
1901   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1902   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1903 
1904 #undef INSN
1905 
1906    // Floating-point<->integer conversions
1907   void float_int_convert(unsigned op31, unsigned type,
1908                          unsigned rmode, unsigned opcode,
1909                          Register Rd, Register Rn) {
1910     starti;
1911     f(op31, 31, 29);
1912     f(0b11110, 28, 24);
1913     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1914     f(opcode, 18, 16), f(0b000000, 15, 10);
1915     zrf(Rn, 5), zrf(Rd, 0);
1916   }
1917 
1918 #define INSN(NAME, op31, type, rmode, opcode)                           \
1919   void NAME(Register Rd, FloatRegister Vn) {                            \
1920     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
1921   }
1922 
1923   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
1924   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
1925   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
1926   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
1927 
1928   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
1929   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
1930 
1931   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
1932 
1933 #undef INSN
1934 
1935 #define INSN(NAME, op31, type, rmode, opcode)                           \
1936   void NAME(FloatRegister Vd, Register Rn) {                            \
1937     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
1938   }
1939 
1940   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
1941   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
1942 
1943   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
1944   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
1945   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
1946   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
1947 
1948   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
1949 
1950 #undef INSN
1951 
1952   // Floating-point compare
1953   void float_compare(unsigned op31, unsigned type,
1954                      unsigned op, unsigned op2,
1955                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
1956     starti;
1957     f(op31, 31, 29);
1958     f(0b11110, 28, 24);
1959     f(type, 23, 22), f(1, 21);
1960     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
1961     rf(Vn, 5), rf(Vm, 16);
1962   }
1963 
1964 
1965 #define INSN(NAME, op31, type, op, op2)                 \
1966   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
1967     float_compare(op31, type, op, op2, Vn, Vm);         \
1968   }
1969 
1970 #define INSN1(NAME, op31, type, op, op2)        \
1971   void NAME(FloatRegister Vn, double d) {       \
1972     assert_cond(d == 0.0);                      \
1973     float_compare(op31, type, op, op2, Vn);     \
1974   }
1975 
1976   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
1977   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
1978   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
1979   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
1980 
1981   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
1982   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
1983   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
1984   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
1985 
1986 #undef INSN
1987 #undef INSN1
1988 
1989   // Floating-point Move (immediate)
1990 private:
1991   unsigned pack(double value);
1992 
1993   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
1994     starti;
1995     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
1996     f(pack(value), 20, 13), f(0b10000000, 12, 5);
1997     rf(Vn, 0);
1998   }
1999 
2000 public:
2001 
2002   void fmovs(FloatRegister Vn, double value) {
2003     if (value)
2004       fmov_imm(Vn, value, 0b00);
2005     else
2006       fmovs(Vn, zr);
2007   }
2008   void fmovd(FloatRegister Vn, double value) {
2009     if (value)
2010       fmov_imm(Vn, value, 0b01);
2011     else
2012       fmovd(Vn, zr);
2013   }
2014 
2015    // Floating-point rounding
2016    // type: half-precision = 11
2017    //       single         = 00
2018    //       double         = 01
2019    // rmode: A = Away     = 100
2020    //        I = current  = 111
2021    //        M = MinusInf = 010
2022    //        N = eveN     = 000
2023    //        P = PlusInf  = 001
2024    //        X = eXact    = 110
2025    //        Z = Zero     = 011
2026   void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) {
2027     starti;
2028     f(0b00011110, 31, 24);
2029     f(type, 23, 22);
2030     f(0b1001, 21, 18);
2031     f(rmode, 17, 15);
2032     f(0b10000, 14, 10);
2033     rf(Rn, 5), rf(Rd, 0);
2034   }
2035 #define INSN(NAME, type, rmode)                   \
2036   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2037     float_round(type, rmode, Vd, Vn);             \
2038   }
2039 
2040 public:
2041   INSN(frintah, 0b11, 0b100);
2042   INSN(frintih, 0b11, 0b111);
2043   INSN(frintmh, 0b11, 0b010);
2044   INSN(frintnh, 0b11, 0b000);
2045   INSN(frintph, 0b11, 0b001);
2046   INSN(frintxh, 0b11, 0b110);
2047   INSN(frintzh, 0b11, 0b011);
2048 
2049   INSN(frintas, 0b00, 0b100);
2050   INSN(frintis, 0b00, 0b111);
2051   INSN(frintms, 0b00, 0b010);
2052   INSN(frintns, 0b00, 0b000);
2053   INSN(frintps, 0b00, 0b001);
2054   INSN(frintxs, 0b00, 0b110);
2055   INSN(frintzs, 0b00, 0b011);
2056 
2057   INSN(frintad, 0b01, 0b100);
2058   INSN(frintid, 0b01, 0b111);
2059   INSN(frintmd, 0b01, 0b010);
2060   INSN(frintnd, 0b01, 0b000);
2061   INSN(frintpd, 0b01, 0b001);
2062   INSN(frintxd, 0b01, 0b110);
2063   INSN(frintzd, 0b01, 0b011);
2064 #undef INSN
2065 
2066 /* SIMD extensions
2067  *
2068  * We just use FloatRegister in the following. They are exactly the same
2069  * as SIMD registers.
2070  */
2071  public:
2072 
2073   enum SIMD_Arrangement {
2074        T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
2075   };
2076 
2077   enum SIMD_RegVariant {
2078        B, H, S, D, Q
2079   };
2080 
2081 private:
2082   static short SIMD_Size_in_bytes[];
2083 
2084 public:
2085 #define INSN(NAME, op)                                            \
2086   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
2087     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
2088   }                                                                      \
2089 
2090   INSN(ldr, 1);
2091   INSN(str, 0);
2092 
2093 #undef INSN
2094 
2095  private:
2096 
2097   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
2098     starti;
2099     f(0,31), f((int)T & 1, 30);
2100     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
2101     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2102   }
2103   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2104              int imm, int op1, int op2, int regs) {
2105     guarantee(T <= T1Q && imm == SIMD_Size_in_bytes[T] * regs, "bad offset");
2106     starti;
2107     f(0,31), f((int)T & 1, 30);
2108     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
2109     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2110   }
2111   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
2112              Register Xm, int op1, int op2) {
2113     starti;
2114     f(0,31), f((int)T & 1, 30);
2115     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
2116     f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0);
2117   }
2118 
2119   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) {
2120     switch (a.getMode()) {
2121     case Address::base_plus_offset:
2122       guarantee(a.offset() == 0, "no offset allowed here");
2123       ld_st(Vt, T, a.base(), op1, op2);
2124       break;
2125     case Address::post:
2126       ld_st(Vt, T, a.base(), a.offset(), op1, op2, regs);
2127       break;
2128     case Address::post_reg:
2129       ld_st(Vt, T, a.base(), a.index(), op1, op2);
2130       break;
2131     default:
2132       ShouldNotReachHere();
2133     }
2134   }
2135 
2136  public:
2137 
2138 #define INSN1(NAME, op1, op2)                                           \
2139   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {   \
2140     ld_st(Vt, T, a, op1, op2, 1);                                       \
2141  }
2142 
2143 #define INSN2(NAME, op1, op2)                                           \
2144   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
2145     assert(Vt->successor() == Vt2, "Registers must be ordered");        \
2146     ld_st(Vt, T, a, op1, op2, 2);                                       \
2147   }
2148 
2149 #define INSN3(NAME, op1, op2)                                           \
2150   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2151             SIMD_Arrangement T, const Address &a) {                     \
2152     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,           \
2153            "Registers must be ordered");                                \
2154     ld_st(Vt, T, a, op1, op2, 3);                                       \
2155   }
2156 
2157 #define INSN4(NAME, op1, op2)                                           \
2158   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
2159             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {  \
2160     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&         \
2161            Vt3->successor() == Vt4, "Registers must be ordered");       \
2162     ld_st(Vt, T, a, op1, op2, 4);                                       \
2163   }
2164 
2165   INSN1(ld1,  0b001100010, 0b0111);
2166   INSN2(ld1,  0b001100010, 0b1010);
2167   INSN3(ld1,  0b001100010, 0b0110);
2168   INSN4(ld1,  0b001100010, 0b0010);
2169 
2170   INSN2(ld2,  0b001100010, 0b1000);
2171   INSN3(ld3,  0b001100010, 0b0100);
2172   INSN4(ld4,  0b001100010, 0b0000);
2173 
2174   INSN1(st1,  0b001100000, 0b0111);
2175   INSN2(st1,  0b001100000, 0b1010);
2176   INSN3(st1,  0b001100000, 0b0110);
2177   INSN4(st1,  0b001100000, 0b0010);
2178 
2179   INSN2(st2,  0b001100000, 0b1000);
2180   INSN3(st3,  0b001100000, 0b0100);
2181   INSN4(st4,  0b001100000, 0b0000);
2182 
2183   INSN1(ld1r, 0b001101010, 0b1100);
2184   INSN2(ld2r, 0b001101011, 0b1100);
2185   INSN3(ld3r, 0b001101010, 0b1110);
2186   INSN4(ld4r, 0b001101011, 0b1110);
2187 
2188 #undef INSN1
2189 #undef INSN2
2190 #undef INSN3
2191 #undef INSN4
2192 
2193 #define INSN(NAME, opc)                                                                 \
2194   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2195     starti;                                                                             \
2196     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2197     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2198     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2199   }
2200 
2201   INSN(eor,  0b101110001);
2202   INSN(orr,  0b001110101);
2203   INSN(andr, 0b001110001);
2204   INSN(bic,  0b001110011);
2205   INSN(bif,  0b101110111);
2206   INSN(bit,  0b101110101);
2207   INSN(bsl,  0b101110011);
2208   INSN(orn,  0b001110111);
2209 
2210 #undef INSN
2211 
2212 #define INSN(NAME, opc, opc2)                                                                 \
2213   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2214     starti;                                                                             \
2215     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2216     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2217     rf(Vn, 5), rf(Vd, 0);                                                               \
2218   }
2219 
2220   INSN(addv,   0, 0b100001);
2221   INSN(subv,   1, 0b100001);
2222   INSN(mulv,   0, 0b100111);
2223   INSN(mlav,   0, 0b100101);
2224   INSN(mlsv,   1, 0b100101);
2225   INSN(sshl,   0, 0b010001);
2226   INSN(ushl,   1, 0b010001);
2227   INSN(umullv, 1, 0b110000);
2228   INSN(umlalv, 1, 0b100000);
2229 
2230 #undef INSN
2231 
2232 #define INSN(NAME, opc, opc2) \
2233   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2234     starti;                                                                             \
2235     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2236     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2237     rf(Vn, 5), rf(Vd, 0);                                                               \
2238   }
2239 
2240   INSN(absr,   0, 0b100000101110);
2241   INSN(negr,   1, 0b100000101110);
2242   INSN(notr,   1, 0b100000010110);
2243   INSN(addv,   0, 0b110001101110);
2244   INSN(cls,    0, 0b100000010010);
2245   INSN(clz,    1, 0b100000010010);
2246   INSN(cnt,    0, 0b100000010110);
2247   INSN(uaddlv, 1, 0b110000001110);
2248 
2249 #undef INSN
2250 
2251 #define INSN(NAME, opc) \
2252   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                  \
2253     starti;                                                                            \
2254     assert(T == T4S, "arrangement must be T4S");                                       \
2255     f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23),                      \
2256     f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0);          \
2257   }
2258 
2259   INSN(fmaxv, 0);
2260   INSN(fminv, 1);
2261 
2262 #undef INSN
2263 
2264 #define INSN(NAME, op0, cmode0) \
2265   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2266     unsigned cmode = cmode0;                                                           \
2267     unsigned op = op0;                                                                 \
2268     starti;                                                                            \
2269     assert(lsl == 0 ||                                                                 \
2270            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2271            ((T == T2S || T == T4S) && ((lsl >> 3) < 4)), "invalid shift");             \
2272     cmode |= lsl >> 2;                                                                 \
2273     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2274     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2275       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2276       cmode = 0b1110;                                                                  \
2277       if (T == T1D || T == T2D) op = 1;                                                \
2278     }                                                                                  \
2279     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2280     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2281     rf(Vd, 0);                                                                         \
2282   }
2283 
2284   INSN(movi, 0, 0);
2285   INSN(orri, 0, 1);
2286   INSN(mvni, 1, 0);
2287   INSN(bici, 1, 1);
2288 
2289 #undef INSN
2290 
2291 #define INSN(NAME, op1, op2, op3) \
2292   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2293     starti;                                                                             \
2294     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2295     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2296     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2297   }
2298 
2299   INSN(fadd, 0, 0, 0b110101);
2300   INSN(fdiv, 1, 0, 0b111111);
2301   INSN(fmul, 1, 0, 0b110111);
2302   INSN(fsub, 0, 1, 0b110101);
2303   INSN(fmla, 0, 0, 0b110011);
2304   INSN(fmls, 0, 1, 0b110011);
2305   INSN(fmax, 0, 0, 0b111101);
2306   INSN(fmin, 0, 1, 0b111101);
2307 
2308 #undef INSN
2309 
2310 #define INSN(NAME, opc)                                                                 \
2311   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2312     starti;                                                                             \
2313     assert(T == T4S, "arrangement must be T4S");                                        \
2314     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2315   }
2316 
2317   INSN(sha1c,     0b000000);
2318   INSN(sha1m,     0b001000);
2319   INSN(sha1p,     0b000100);
2320   INSN(sha1su0,   0b001100);
2321   INSN(sha256h2,  0b010100);
2322   INSN(sha256h,   0b010000);
2323   INSN(sha256su1, 0b011000);
2324 
2325 #undef INSN
2326 
2327 #define INSN(NAME, opc)                                                                 \
2328   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2329     starti;                                                                             \
2330     assert(T == T4S, "arrangement must be T4S");                                        \
2331     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2332   }
2333 
2334   INSN(sha1h,     0b000010);
2335   INSN(sha1su1,   0b000110);
2336   INSN(sha256su0, 0b001010);
2337 
2338 #undef INSN
2339 
2340 #define INSN(NAME, opc)                           \
2341   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2342     starti;                                       \
2343     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2344   }
2345 
2346   INSN(aese, 0b0100111000101000010010);
2347   INSN(aesd, 0b0100111000101000010110);
2348   INSN(aesmc, 0b0100111000101000011010);
2349   INSN(aesimc, 0b0100111000101000011110);
2350 
2351 #undef INSN
2352 
2353 #define INSN(NAME, op1, op2) \
2354   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \
2355     starti;                                                                                            \
2356     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                                   \
2357     assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index");     \
2358     f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23);                                      \
2359     f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16);                              \
2360     f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10);                                  \
2361     rf(Vn, 5), rf(Vd, 0);                                                                              \
2362   }
2363 
2364   // FMLA/FMLS - Vector - Scalar
2365   INSN(fmlavs, 0, 0b0001);
2366   INSN(fmlsvs, 0, 0b0101);
2367   // FMULX - Vector - Scalar
2368   INSN(fmulxvs, 1, 0b1001);
2369 
2370 #undef INSN
2371 
2372   // Floating-point Reciprocal Estimate
2373   void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) {
2374     assert(type == D || type == S, "Wrong type for frecpe");
2375     starti;
2376     f(0b010111101, 31, 23);
2377     f(type == D ? 1 : 0, 22);
2378     f(0b100001110110, 21, 10);
2379     rf(Vn, 5), rf(Vd, 0);
2380   }
2381 
2382   // (double) {a, b} -> (a + b)
2383   void faddpd(FloatRegister Vd, FloatRegister Vn) {
2384     starti;
2385     f(0b0111111001110000110110, 31, 10);
2386     rf(Vn, 5), rf(Vd, 0);
2387   }
2388 
2389   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2390     starti;
2391     assert(T != Q, "invalid register variant");
2392     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2393     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2394   }
2395 
2396   void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2397     starti;
2398     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2399     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
2400     rf(Vn, 5), rf(Rd, 0);
2401   }
2402 
2403 #define INSN(NAME, opc, opc2, isSHR)                                    \
2404   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
2405     starti;                                                             \
2406     /* The encodings for the immh:immb fields (bits 22:16) in *SHR are  \
2407      *   0001 xxx       8B/16B, shift = 16  - UInt(immh:immb)           \
2408      *   001x xxx       4H/8H,  shift = 32  - UInt(immh:immb)           \
2409      *   01xx xxx       2S/4S,  shift = 64  - UInt(immh:immb)           \
2410      *   1xxx xxx       1D/2D,  shift = 128 - UInt(immh:immb)           \
2411      *   (1D is RESERVED)                                               \
2412      * for SHL shift is calculated as:                                  \
2413      *   0001 xxx       8B/16B, shift = UInt(immh:immb) - 8             \
2414      *   001x xxx       4H/8H,  shift = UInt(immh:immb) - 16            \
2415      *   01xx xxx       2S/4S,  shift = UInt(immh:immb) - 32            \
2416      *   1xxx xxx       1D/2D,  shift = UInt(immh:immb) - 64            \
2417      *   (1D is RESERVED)                                               \
2418      */                                                                 \
2419     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");           \
2420     int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0)));               \
2421     int encodedShift = isSHR ? cVal - shift : cVal + shift;             \
2422     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),            \
2423     f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);     \
2424   }
2425 
2426   INSN(shl,  0, 0b010101, /* isSHR = */ false);
2427   INSN(sshr, 0, 0b000001, /* isSHR = */ true);
2428   INSN(ushr, 1, 0b000001, /* isSHR = */ true);
2429 
2430 #undef INSN
2431 
2432   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2433     starti;
2434     /* The encodings for the immh:immb fields (bits 22:16) are
2435      *   0001 xxx       8H, 8B/16b shift = xxx
2436      *   001x xxx       4S, 4H/8H  shift = xxxx
2437      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2438      *   1xxx xxx       RESERVED
2439      */
2440     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2441     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2442     f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
2443     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2444   }
2445   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2446     ushll(Vd, Ta, Vn, Tb, shift);
2447   }
2448 
2449   // Move from general purpose register
2450   //   mov  Vd.T[index], Rn
2451   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2452     starti;
2453     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2454     f(0b000111, 15, 10), rf(Xn, 5), rf(Vd, 0);
2455   }
2456 
2457   // Move to general purpose register
2458   //   mov  Rd, Vn.T[index]
2459   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2460     starti;
2461     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2462     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2463     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2464   }
2465 
2466   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2467     starti;
2468     assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
2469            (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
2470     int size = (Ta == T1Q) ? 0b11 : 0b00;
2471     f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
2472     f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
2473   }
2474   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2475     assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
2476     pmull(Vd, Ta, Vn, Vm, Tb);
2477   }
2478 
2479   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2480     starti;
2481     int size_b = (int)Tb >> 1;
2482     int size_a = (int)Ta >> 1;
2483     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2484     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2485     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2486   }
2487 
2488   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2489   {
2490     starti;
2491     assert(T != T1D, "reserved encoding");
2492     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2493     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), rf(Xs, 5), rf(Vd, 0);
2494   }
2495 
2496   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2497   {
2498     starti;
2499     assert(T != T1D, "reserved encoding");
2500     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2501     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2502     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2503   }
2504 
2505   // AdvSIMD ZIP/UZP/TRN
2506 #define INSN(NAME, opcode)                                              \
2507   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2508     starti;                                                             \
2509     f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15);                  \
2510     f(opcode, 14, 12), f(0b10, 11, 10);                                 \
2511     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);                                   \
2512     f(T & 1, 30), f(T >> 1, 23, 22);                                    \
2513   }
2514 
2515   INSN(uzp1, 0b001);
2516   INSN(trn1, 0b010);
2517   INSN(zip1, 0b011);
2518   INSN(uzp2, 0b101);
2519   INSN(trn2, 0b110);
2520   INSN(zip2, 0b111);
2521 
2522 #undef INSN
2523 
2524   // CRC32 instructions
2525 #define INSN(NAME, c, sf, sz)                                             \
2526   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2527     starti;                                                               \
2528     f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12);       \
2529     f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                      \
2530   }
2531 
2532   INSN(crc32b,  0, 0, 0b00);
2533   INSN(crc32h,  0, 0, 0b01);
2534   INSN(crc32w,  0, 0, 0b10);
2535   INSN(crc32x,  0, 1, 0b11);
2536   INSN(crc32cb, 1, 0, 0b00);
2537   INSN(crc32ch, 1, 0, 0b01);
2538   INSN(crc32cw, 1, 0, 0b10);
2539   INSN(crc32cx, 1, 1, 0b11);
2540 
2541 #undef INSN
2542 
2543   // Table vector lookup
2544 #define INSN(NAME, op)                                                  \
2545   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
2546     starti;                                                             \
2547     assert(T == T8B || T == T16B, "invalid arrangement");               \
2548     assert(0 < registers && registers <= 4, "invalid number of registers"); \
2549     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
2550     f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
2551   }
2552 
2553   INSN(tbl, 0);
2554   INSN(tbx, 1);
2555 
2556 #undef INSN
2557 
2558   // AdvSIMD two-reg misc
2559 #define INSN(NAME, U, opcode)                                                       \
2560   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {               \
2561        starti;                                                                      \
2562        assert((ASSERTION), MSG);                                                    \
2563        f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24);                   \
2564        f((int)(T >> 1), 23, 22), f(0b10000, 21, 17), f(opcode, 16, 12);             \
2565        f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0);                                       \
2566  }
2567 
2568 #define MSG "invalid arrangement"
2569 
2570 #define ASSERTION (T == T2S || T == T4S || T == T2D)
2571   INSN(fsqrt, 1, 0b11111);
2572   INSN(fabs,  0, 0b01111);
2573   INSN(fneg,  1, 0b01111);
2574 #undef ASSERTION
2575 
2576 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
2577   INSN(rev64, 0, 0b00000);
2578 #undef ASSERTION
2579 
2580 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
2581   INSN(rev32, 1, 0b00000);
2582 private:
2583   INSN(_rbit, 1, 0b00101);
2584 public:
2585 
2586 #undef ASSERTION
2587 
2588 #define ASSERTION (T == T8B || T == T16B)
2589   INSN(rev16, 0, 0b00001);
2590   // RBIT only allows T8B and T16B but encodes them oddly.  Argh...
2591   void rbit(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
2592     assert((ASSERTION), MSG);
2593     _rbit(Vd, SIMD_Arrangement(T & 1 | 0b010), Vn);
2594   }
2595 #undef ASSERTION
2596 
2597 #undef MSG
2598 
2599 #undef INSN
2600 
2601 void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
2602   {
2603     starti;
2604     assert(T == T8B || T == T16B, "invalid arrangement");
2605     assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
2606     f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
2607     rf(Vm, 16), f(0, 15), f(index, 14, 11);
2608     f(0, 10), rf(Vn, 5), rf(Vd, 0);
2609   }
2610 
2611 /* Simulator extensions to the ISA
2612 
2613    haltsim
2614 
2615    takes no arguments, causes the sim to enter a debug break and then
2616    return from the simulator run() call with STATUS_HALT? The linking
2617    code will call fatal() when it sees STATUS_HALT.
2618 
2619    blrt Xn, Wm
2620    blrt Xn, #gpargs, #fpargs, #type
2621    Xn holds the 64 bit x86 branch_address
2622    call format is encoded either as immediate data in the call
2623    or in register Wm. In the latter case
2624      Wm[13..6] = #gpargs,
2625      Wm[5..2] = #fpargs,
2626      Wm[1,0] = #type
2627 
2628    calls the x86 code address 'branch_address' supplied in Xn passing
2629    arguments taken from the general and floating point registers according
2630    to the supplied counts 'gpargs' and 'fpargs'. may return a result in r0
2631    or v0 according to the the return type #type' where
2632 
2633    address branch_address;
2634    uimm4 gpargs;
2635    uimm4 fpargs;
2636    enum ReturnType type;
2637 
2638    enum ReturnType
2639      {
2640        void_ret = 0,
2641        int_ret = 1,
2642        long_ret = 1,
2643        obj_ret = 1, // i.e. same as long
2644        float_ret = 2,
2645        double_ret = 3
2646      }
2647 
2648    notify
2649 
2650    notifies the simulator of a transfer of control. instr[14:0]
2651    identifies the type of change of control.
2652 
2653    0 ==> initial entry to a method.
2654 
2655    1 ==> return into a method from a submethod call.
2656 
2657    2 ==> exit out of Java method code.
2658 
2659    3 ==> start execution for a new bytecode.
2660 
2661    in cases 1 and 2 the simulator is expected to use a JVM callback to
2662    identify the name of the specific method being executed. in case 4
2663    the simulator is expected to use a JVM callback to identify the
2664    bytecode index.
2665 
2666    Instruction encodings
2667    ---------------------
2668 
2669    These are encoded in the space with instr[28:25] = 00 which is
2670    unallocated. Encodings are
2671 
2672                      10987654321098765432109876543210
2673    PSEUDO_HALT   = 0x11100000000000000000000000000000
2674    PSEUDO_BLRT  = 0x11000000000000000_______________
2675    PSEUDO_BLRTR = 0x1100000000000000100000__________
2676    PSEUDO_NOTIFY = 0x10100000000000000_______________
2677 
2678    instr[31,29] = op1 : 111 ==> HALT, 110 ==> BLRT/BLRTR, 101 ==> NOTIFY
2679 
2680    for BLRT
2681      instr[14,11] = #gpargs, instr[10,7] = #fpargs
2682      instr[6,5] = #type, instr[4,0] = Rn
2683    for BLRTR
2684      instr[9,5] = Rm, instr[4,0] = Rn
2685    for NOTIFY
2686      instr[14:0] = type : 0 ==> entry, 1 ==> reentry, 2 ==> exit, 3 ==> bcstart
2687 */
2688 
2689   enum NotifyType { method_entry, method_reentry, method_exit, bytecode_start };
2690 
2691   virtual void notify(int type) {
2692     if (UseBuiltinSim) {
2693       starti;
2694       //  109
2695       f(0b101, 31, 29);
2696       //  87654321098765
2697       f(0b00000000000000, 28, 15);
2698       f(type, 14, 0);
2699     }
2700   }
2701 
2702   void blrt(Register Rn, int gpargs, int fpargs, int type) {
2703     if (UseBuiltinSim) {
2704       starti;
2705       f(0b110, 31 ,29);
2706       f(0b00, 28, 25);
2707       //  4321098765
2708       f(0b0000000000, 24, 15);
2709       f(gpargs, 14, 11);
2710       f(fpargs, 10, 7);
2711       f(type, 6, 5);
2712       rf(Rn, 0);
2713     } else {
2714       blr(Rn);
2715     }
2716   }
2717 
2718   void blrt(Register Rn, Register Rm) {
2719     if (UseBuiltinSim) {
2720       starti;
2721       f(0b110, 31 ,29);
2722       f(0b00, 28, 25);
2723       //  4321098765
2724       f(0b0000000001, 24, 15);
2725       //  43210
2726       f(0b00000, 14, 10);
2727       rf(Rm, 5);
2728       rf(Rn, 0);
2729     } else {
2730       blr(Rn);
2731     }
2732   }
2733 
2734   void haltsim() {
2735     starti;
2736     f(0b111, 31 ,29);
2737     f(0b00, 28, 27);
2738     //  654321098765432109876543210
2739     f(0b000000000000000000000000000, 26, 0);
2740   }
2741 
2742   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2743   }
2744 
2745   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2746                                                 Register tmp,
2747                                                 int offset) {
2748     ShouldNotCallThis();
2749     return RegisterOrConstant();
2750   }
2751 
2752   // Stack overflow checking
2753   virtual void bang_stack_with_offset(int offset);
2754 
2755   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
2756   static bool operand_valid_for_add_sub_immediate(long imm);
2757   static bool operand_valid_for_float_immediate(double imm);
2758 
2759   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
2760   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
2761 };
2762 
2763 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
2764                                              Assembler::Membar_mask_bits b) {
2765   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
2766 }
2767 
2768 Instruction_aarch64::~Instruction_aarch64() {
2769   assem->emit();
2770 }
2771 
2772 #undef starti
2773 
2774 // Invert a condition
2775 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
2776   return Assembler::Condition(int(cond) ^ 1);
2777 }
2778 
2779 class BiasedLockingCounters;
2780 
2781 extern "C" void das(uint64_t start, int len);
2782 
2783 #endif // CPU_AARCH64_ASSEMBLER_AARCH64_HPP