1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "code/oopRecorder.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "oops/methodData.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "runtime/icache.hpp"
  32 #include "runtime/safepointVerifiers.hpp"
  33 #include "utilities/align.hpp"
  34 #include "utilities/copy.hpp"
  35 #include "utilities/xmlstream.hpp"
  36 
  37 // The structure of a CodeSection:
  38 //
  39 //    _start ->           +----------------+
  40 //                        | machine code...|
  41 //    _end ->             |----------------|
  42 //                        |                |
  43 //                        |    (empty)     |
  44 //                        |                |
  45 //                        |                |
  46 //                        +----------------+
  47 //    _limit ->           |                |
  48 //
  49 //    _locs_start ->      +----------------+
  50 //                        |reloc records...|
  51 //                        |----------------|
  52 //    _locs_end ->        |                |
  53 //                        |                |
  54 //                        |    (empty)     |
  55 //                        |                |
  56 //                        |                |
  57 //                        +----------------+
  58 //    _locs_limit ->      |                |
  59 // The _end (resp. _limit) pointer refers to the first
  60 // unused (resp. unallocated) byte.
  61 
  62 // The structure of the CodeBuffer while code is being accumulated:
  63 //
  64 //    _total_start ->    \
  65 //    _insts._start ->              +----------------+
  66 //                                  |                |
  67 //                                  |     Code       |
  68 //                                  |                |
  69 //    _stubs._start ->              |----------------|
  70 //                                  |                |
  71 //                                  |    Stubs       | (also handlers for deopt/exception)
  72 //                                  |                |
  73 //    _consts._start ->             |----------------|
  74 //                                  |                |
  75 //                                  |   Constants    |
  76 //                                  |                |
  77 //                                  +----------------+
  78 //    + _total_size ->              |                |
  79 //
  80 // When the code and relocations are copied to the code cache,
  81 // the empty parts of each section are removed, and everything
  82 // is copied into contiguous locations.
  83 
  84 typedef CodeBuffer::csize_t csize_t;  // file-local definition
  85 
  86 // External buffer, in a predefined CodeBlob.
  87 // Important: The code_start must be taken exactly, and not realigned.
  88 CodeBuffer::CodeBuffer(CodeBlob* blob) {
  89   initialize_misc("static buffer");
  90   initialize(blob->content_begin(), blob->content_size());
  91   verify_section_allocation();
  92 }
  93 
  94 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
  95   // Compute maximal alignment.
  96   int align = _insts.alignment();
  97   // Always allow for empty slop around each section.
  98   int slop = (int) CodeSection::end_slop();
  99 
 100   assert(blob() == NULL, "only once");
 101   set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
 102   if (blob() == NULL) {
 103     // The assembler constructor will throw a fatal on an empty CodeBuffer.
 104     return;  // caller must test this
 105   }
 106 
 107   // Set up various pointers into the blob.
 108   initialize(_total_start, _total_size);
 109 
 110   assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
 111 
 112   pd_initialize();
 113 
 114   if (locs_size != 0) {
 115     _insts.initialize_locs(locs_size / sizeof(relocInfo));
 116   }
 117 
 118   verify_section_allocation();
 119 }
 120 
 121 
 122 CodeBuffer::~CodeBuffer() {
 123   verify_section_allocation();
 124 
 125   // If we allocate our code buffer from the CodeCache
 126   // via a BufferBlob, and it's not permanent, then
 127   // free the BufferBlob.
 128   // The rest of the memory will be freed when the ResourceObj
 129   // is released.
 130   for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
 131     // Previous incarnations of this buffer are held live, so that internal
 132     // addresses constructed before expansions will not be confused.
 133     cb->free_blob();
 134   }
 135 
 136   // free any overflow storage
 137   delete _overflow_arena;
 138 
 139   // Claim is that stack allocation ensures resources are cleaned up.
 140   // This is resource clean up, let's hope that all were properly copied out.
 141   free_strings();
 142 
 143 #ifdef ASSERT
 144   // Save allocation type to execute assert in ~ResourceObj()
 145   // which is called after this destructor.
 146   assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object");
 147   ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
 148   Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
 149   ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
 150 #endif
 151 }
 152 
 153 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
 154   assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
 155   DEBUG_ONLY(_default_oop_recorder.freeze());  // force unused OR to be frozen
 156   _oop_recorder = r;
 157 }
 158 
 159 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
 160   assert(cs != &_insts, "insts is the memory provider, not the consumer");
 161   csize_t slop = CodeSection::end_slop();  // margin between sections
 162   int align = cs->alignment();
 163   assert(is_power_of_2(align), "sanity");
 164   address start  = _insts._start;
 165   address limit  = _insts._limit;
 166   address middle = limit - size;
 167   middle -= (intptr_t)middle & (align-1);  // align the division point downward
 168   guarantee(middle - slop > start, "need enough space to divide up");
 169   _insts._limit = middle - slop;  // subtract desired space, plus slop
 170   cs->initialize(middle, limit - middle);
 171   assert(cs->start() == middle, "sanity");
 172   assert(cs->limit() == limit,  "sanity");
 173   // give it some relocations to start with, if the main section has them
 174   if (_insts.has_locs())  cs->initialize_locs(1);
 175 }
 176 
 177 void CodeBuffer::freeze_section(CodeSection* cs) {
 178   CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
 179   csize_t frozen_size = cs->size();
 180   if (next_cs != NULL) {
 181     frozen_size = next_cs->align_at_start(frozen_size);
 182   }
 183   address old_limit = cs->limit();
 184   address new_limit = cs->start() + frozen_size;
 185   relocInfo* old_locs_limit = cs->locs_limit();
 186   relocInfo* new_locs_limit = cs->locs_end();
 187   // Patch the limits.
 188   cs->_limit = new_limit;
 189   cs->_locs_limit = new_locs_limit;
 190   cs->_frozen = true;
 191   if (next_cs != NULL && !next_cs->is_allocated() && !next_cs->is_frozen()) {
 192     // Give remaining buffer space to the following section.
 193     next_cs->initialize(new_limit, old_limit - new_limit);
 194     next_cs->initialize_shared_locs(new_locs_limit,
 195                                     old_locs_limit - new_locs_limit);
 196   }
 197 }
 198 
 199 void CodeBuffer::set_blob(BufferBlob* blob) {
 200   _blob = blob;
 201   if (blob != NULL) {
 202     address start = blob->content_begin();
 203     address end   = blob->content_end();
 204     // Round up the starting address.
 205     int align = _insts.alignment();
 206     start += (-(intptr_t)start) & (align-1);
 207     _total_start = start;
 208     _total_size  = end - start;
 209   } else {
 210 #ifdef ASSERT
 211     // Clean out dangling pointers.
 212     _total_start    = badAddress;
 213     _consts._start  = _consts._end  = badAddress;
 214     _insts._start   = _insts._end   = badAddress;
 215     _stubs._start   = _stubs._end   = badAddress;
 216 #endif //ASSERT
 217   }
 218 }
 219 
 220 void CodeBuffer::free_blob() {
 221   if (_blob != NULL) {
 222     BufferBlob::free(_blob);
 223     set_blob(NULL);
 224   }
 225 }
 226 
 227 const char* CodeBuffer::code_section_name(int n) {
 228 #ifdef PRODUCT
 229   return NULL;
 230 #else //PRODUCT
 231   switch (n) {
 232   case SECT_CONSTS:            return "consts";
 233   case SECT_INSTS:             return "insts";
 234   case SECT_STUBS:             return "stubs";
 235   default:                     return NULL;
 236   }
 237 #endif //PRODUCT
 238 }
 239 
 240 int CodeBuffer::section_index_of(address addr) const {
 241   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 242     const CodeSection* cs = code_section(n);
 243     if (cs->allocates(addr))  return n;
 244   }
 245   return SECT_NONE;
 246 }
 247 
 248 int CodeBuffer::locator(address addr) const {
 249   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 250     const CodeSection* cs = code_section(n);
 251     if (cs->allocates(addr)) {
 252       return locator(addr - cs->start(), n);
 253     }
 254   }
 255   return -1;
 256 }
 257 
 258 address CodeBuffer::locator_address(int locator) const {
 259   if (locator < 0)  return NULL;
 260   address start = code_section(locator_sect(locator))->start();
 261   return start + locator_pos(locator);
 262 }
 263 
 264 bool CodeBuffer::is_backward_branch(Label& L) {
 265   return L.is_bound() && insts_end() <= locator_address(L.loc());
 266 }
 267 
 268 address CodeBuffer::decode_begin() {
 269   address begin = _insts.start();
 270   if (_decode_begin != NULL && _decode_begin > begin)
 271     begin = _decode_begin;
 272   return begin;
 273 }
 274 
 275 
 276 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
 277   if (_overflow_arena == NULL) {
 278     _overflow_arena = new (mtCode) Arena(mtCode);
 279   }
 280   return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
 281 }
 282 
 283 
 284 // Helper function for managing labels and their target addresses.
 285 // Returns a sensible address, and if it is not the label's final
 286 // address, notes the dependency (at 'branch_pc') on the label.
 287 address CodeSection::target(Label& L, address branch_pc) {
 288   if (L.is_bound()) {
 289     int loc = L.loc();
 290     if (index() == CodeBuffer::locator_sect(loc)) {
 291       return start() + CodeBuffer::locator_pos(loc);
 292     } else {
 293       return outer()->locator_address(loc);
 294     }
 295   } else {
 296     assert(allocates2(branch_pc), "sanity");
 297     address base = start();
 298     int patch_loc = CodeBuffer::locator(branch_pc - base, index());
 299     L.add_patch_at(outer(), patch_loc);
 300 
 301     // Need to return a pc, doesn't matter what it is since it will be
 302     // replaced during resolution later.
 303     // Don't return NULL or badAddress, since branches shouldn't overflow.
 304     // Don't return base either because that could overflow displacements
 305     // for shorter branches.  It will get checked when bound.
 306     return branch_pc;
 307   }
 308 }
 309 
 310 void CodeSection::relocate(address at, relocInfo::relocType rtype, int format, jint method_index) {
 311   RelocationHolder rh;
 312   switch (rtype) {
 313     case relocInfo::none: return;
 314     case relocInfo::opt_virtual_call_type: {
 315       rh = opt_virtual_call_Relocation::spec(method_index);
 316       break;
 317     }
 318     case relocInfo::static_call_type: {
 319       rh = static_call_Relocation::spec(method_index);
 320       break;
 321     }
 322     case relocInfo::virtual_call_type: {
 323       assert(method_index == 0, "resolved method overriding is not supported");
 324       rh = Relocation::spec_simple(rtype);
 325       break;
 326     }
 327     default: {
 328       rh = Relocation::spec_simple(rtype);
 329       break;
 330     }
 331   }
 332   relocate(at, rh, format);
 333 }
 334 
 335 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
 336   // Do not relocate in scratch buffers.
 337   if (scratch_emit()) { return; }
 338   Relocation* reloc = spec.reloc();
 339   relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
 340   if (rtype == relocInfo::none)  return;
 341 
 342   // The assertion below has been adjusted, to also work for
 343   // relocation for fixup.  Sometimes we want to put relocation
 344   // information for the next instruction, since it will be patched
 345   // with a call.
 346   assert(start() <= at && at <= end()+1,
 347          "cannot relocate data outside code boundaries");
 348 
 349   if (!has_locs()) {
 350     // no space for relocation information provided => code cannot be
 351     // relocated.  Make sure that relocate is only called with rtypes
 352     // that can be ignored for this kind of code.
 353     assert(rtype == relocInfo::none              ||
 354            rtype == relocInfo::runtime_call_type ||
 355            rtype == relocInfo::internal_word_type||
 356            rtype == relocInfo::section_word_type ||
 357            rtype == relocInfo::external_word_type,
 358            "code needs relocation information");
 359     // leave behind an indication that we attempted a relocation
 360     DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
 361     return;
 362   }
 363 
 364   // Advance the point, noting the offset we'll have to record.
 365   csize_t offset = at - locs_point();
 366   set_locs_point(at);
 367 
 368   // Test for a couple of overflow conditions; maybe expand the buffer.
 369   relocInfo* end = locs_end();
 370   relocInfo* req = end + relocInfo::length_limit;
 371   // Check for (potential) overflow
 372   if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
 373     req += (uint)offset / (uint)relocInfo::offset_limit();
 374     if (req >= locs_limit()) {
 375       // Allocate or reallocate.
 376       expand_locs(locs_count() + (req - end));
 377       // reload pointer
 378       end = locs_end();
 379     }
 380   }
 381 
 382   // If the offset is giant, emit filler relocs, of type 'none', but
 383   // each carrying the largest possible offset, to advance the locs_point.
 384   while (offset >= relocInfo::offset_limit()) {
 385     assert(end < locs_limit(), "adjust previous paragraph of code");
 386     *end++ = filler_relocInfo();
 387     offset -= filler_relocInfo().addr_offset();
 388   }
 389 
 390   // If it's a simple reloc with no data, we'll just write (rtype | offset).
 391   (*end) = relocInfo(rtype, offset, format);
 392 
 393   // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
 394   end->initialize(this, reloc);
 395 }
 396 
 397 void CodeSection::initialize_locs(int locs_capacity) {
 398   assert(_locs_start == NULL, "only one locs init step, please");
 399   // Apply a priori lower limits to relocation size:
 400   csize_t min_locs = MAX2(size() / 16, (csize_t)4);
 401   if (locs_capacity < min_locs)  locs_capacity = min_locs;
 402   relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
 403   _locs_start    = locs_start;
 404   _locs_end      = locs_start;
 405   _locs_limit    = locs_start + locs_capacity;
 406   _locs_own      = true;
 407 }
 408 
 409 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
 410   assert(_locs_start == NULL, "do this before locs are allocated");
 411   // Internal invariant:  locs buf must be fully aligned.
 412   // See copy_relocations_to() below.
 413   while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
 414     ++buf; --length;
 415   }
 416   if (length > 0) {
 417     _locs_start = buf;
 418     _locs_end   = buf;
 419     _locs_limit = buf + length;
 420     _locs_own   = false;
 421   }
 422 }
 423 
 424 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
 425   int lcount = source_cs->locs_count();
 426   if (lcount != 0) {
 427     initialize_shared_locs(source_cs->locs_start(), lcount);
 428     _locs_end = _locs_limit = _locs_start + lcount;
 429     assert(is_allocated(), "must have copied code already");
 430     set_locs_point(start() + source_cs->locs_point_off());
 431   }
 432   assert(this->locs_count() == source_cs->locs_count(), "sanity");
 433 }
 434 
 435 void CodeSection::expand_locs(int new_capacity) {
 436   if (_locs_start == NULL) {
 437     initialize_locs(new_capacity);
 438     return;
 439   } else {
 440     int old_count    = locs_count();
 441     int old_capacity = locs_capacity();
 442     if (new_capacity < old_capacity * 2)
 443       new_capacity = old_capacity * 2;
 444     relocInfo* locs_start;
 445     if (_locs_own) {
 446       locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
 447     } else {
 448       locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
 449       Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
 450       _locs_own = true;
 451     }
 452     _locs_start    = locs_start;
 453     _locs_end      = locs_start + old_count;
 454     _locs_limit    = locs_start + new_capacity;
 455   }
 456 }
 457 
 458 
 459 /// Support for emitting the code to its final location.
 460 /// The pattern is the same for all functions.
 461 /// We iterate over all the sections, padding each to alignment.
 462 
 463 csize_t CodeBuffer::total_content_size() const {
 464   csize_t size_so_far = 0;
 465   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 466     const CodeSection* cs = code_section(n);
 467     if (cs->is_empty())  continue;  // skip trivial section
 468     size_so_far = cs->align_at_start(size_so_far);
 469     size_so_far += cs->size();
 470   }
 471   return size_so_far;
 472 }
 473 
 474 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
 475   address buf = dest->_total_start;
 476   csize_t buf_offset = 0;
 477   assert(dest->_total_size >= total_content_size(), "must be big enough");
 478 
 479   {
 480     // not sure why this is here, but why not...
 481     int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
 482     assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
 483   }
 484 
 485   const CodeSection* prev_cs      = NULL;
 486   CodeSection*       prev_dest_cs = NULL;
 487 
 488   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 489     // figure compact layout of each section
 490     const CodeSection* cs = code_section(n);
 491     csize_t csize = cs->size();
 492 
 493     CodeSection* dest_cs = dest->code_section(n);
 494     if (!cs->is_empty()) {
 495       // Compute initial padding; assign it to the previous non-empty guy.
 496       // Cf. figure_expanded_capacities.
 497       csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
 498       if (prev_dest_cs != NULL) {
 499         if (padding != 0) {
 500           buf_offset += padding;
 501           prev_dest_cs->_limit += padding;
 502         }
 503       } else {
 504         guarantee(padding == 0, "In first iteration no padding should be needed.");
 505       }
 506       #ifdef ASSERT
 507       if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
 508         // Make sure the ends still match up.
 509         // This is important because a branch in a frozen section
 510         // might target code in a following section, via a Label,
 511         // and without a relocation record.  See Label::patch_instructions.
 512         address dest_start = buf+buf_offset;
 513         csize_t start2start = cs->start() - prev_cs->start();
 514         csize_t dest_start2start = dest_start - prev_dest_cs->start();
 515         assert(start2start == dest_start2start, "cannot stretch frozen sect");
 516       }
 517       #endif //ASSERT
 518       prev_dest_cs = dest_cs;
 519       prev_cs      = cs;
 520     }
 521 
 522     debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
 523     dest_cs->initialize(buf+buf_offset, csize);
 524     dest_cs->set_end(buf+buf_offset+csize);
 525     assert(dest_cs->is_allocated(), "must always be allocated");
 526     assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
 527 
 528     buf_offset += csize;
 529   }
 530 
 531   // Done calculating sections; did it come out to the right end?
 532   assert(buf_offset == total_content_size(), "sanity");
 533   dest->verify_section_allocation();
 534 }
 535 
 536 // Append an oop reference that keeps the class alive.
 537 static void append_oop_references(GrowableArray<oop>* oops, Klass* k) {
 538   oop cl = k->klass_holder();
 539   if (cl != NULL && !oops->contains(cl)) {
 540     oops->append(cl);
 541   }
 542 }
 543 
 544 void CodeBuffer::finalize_oop_references(const methodHandle& mh) {
 545   NoSafepointVerifier nsv;
 546 
 547   GrowableArray<oop> oops;
 548 
 549   // Make sure that immediate metadata records something in the OopRecorder
 550   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 551     // pull code out of each section
 552     CodeSection* cs = code_section(n);
 553     if (cs->is_empty())  continue;  // skip trivial section
 554     RelocIterator iter(cs);
 555     while (iter.next()) {
 556       if (iter.type() == relocInfo::metadata_type) {
 557         metadata_Relocation* md = iter.metadata_reloc();
 558         if (md->metadata_is_immediate()) {
 559           Metadata* m = md->metadata_value();
 560           if (oop_recorder()->is_real(m)) {
 561             if (m->is_methodData()) {
 562               m = ((MethodData*)m)->method();
 563             }
 564             if (m->is_method()) {
 565               m = ((Method*)m)->method_holder();
 566             }
 567             if (m->is_klass()) {
 568               append_oop_references(&oops, (Klass*)m);
 569             } else {
 570               // XXX This will currently occur for MDO which don't
 571               // have a backpointer.  This has to be fixed later.
 572               m->print();
 573               ShouldNotReachHere();
 574             }
 575           }
 576         }
 577       }
 578     }
 579   }
 580 
 581   if (!oop_recorder()->is_unused()) {
 582     for (int i = 0; i < oop_recorder()->metadata_count(); i++) {
 583       Metadata* m = oop_recorder()->metadata_at(i);
 584       if (oop_recorder()->is_real(m)) {
 585         if (m->is_methodData()) {
 586           m = ((MethodData*)m)->method();
 587         }
 588         if (m->is_method()) {
 589           m = ((Method*)m)->method_holder();
 590         }
 591         if (m->is_klass()) {
 592           append_oop_references(&oops, (Klass*)m);
 593         } else {
 594           m->print();
 595           ShouldNotReachHere();
 596         }
 597       }
 598     }
 599 
 600   }
 601 
 602   // Add the class loader of Method* for the nmethod itself
 603   append_oop_references(&oops, mh->method_holder());
 604 
 605   // Add any oops that we've found
 606   Thread* thread = Thread::current();
 607   for (int i = 0; i < oops.length(); i++) {
 608     oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i)));
 609   }
 610 }
 611 
 612 
 613 
 614 csize_t CodeBuffer::total_offset_of(const CodeSection* cs) const {
 615   csize_t size_so_far = 0;
 616   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 617     const CodeSection* cur_cs = code_section(n);
 618     if (!cur_cs->is_empty()) {
 619       size_so_far = cur_cs->align_at_start(size_so_far);
 620     }
 621     if (cur_cs->index() == cs->index()) {
 622       return size_so_far;
 623     }
 624     size_so_far += cur_cs->size();
 625   }
 626   ShouldNotReachHere();
 627   return -1;
 628 }
 629 
 630 csize_t CodeBuffer::total_relocation_size() const {
 631   csize_t total = copy_relocations_to(NULL);  // dry run only
 632   return (csize_t) align_up(total, HeapWordSize);
 633 }
 634 
 635 csize_t CodeBuffer::copy_relocations_to(address buf, csize_t buf_limit, bool only_inst) const {
 636   csize_t buf_offset = 0;
 637   csize_t code_end_so_far = 0;
 638   csize_t code_point_so_far = 0;
 639 
 640   assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
 641   assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
 642 
 643   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 644     if (only_inst && (n != (int)SECT_INSTS)) {
 645       // Need only relocation info for code.
 646       continue;
 647     }
 648     // pull relocs out of each section
 649     const CodeSection* cs = code_section(n);
 650     assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
 651     if (cs->is_empty())  continue;  // skip trivial section
 652     relocInfo* lstart = cs->locs_start();
 653     relocInfo* lend   = cs->locs_end();
 654     csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
 655     csize_t    csize  = cs->size();
 656     code_end_so_far = cs->align_at_start(code_end_so_far);
 657 
 658     if (lsize > 0) {
 659       // Figure out how to advance the combined relocation point
 660       // first to the beginning of this section.
 661       // We'll insert one or more filler relocs to span that gap.
 662       // (Don't bother to improve this by editing the first reloc's offset.)
 663       csize_t new_code_point = code_end_so_far;
 664       for (csize_t jump;
 665            code_point_so_far < new_code_point;
 666            code_point_so_far += jump) {
 667         jump = new_code_point - code_point_so_far;
 668         relocInfo filler = filler_relocInfo();
 669         if (jump >= filler.addr_offset()) {
 670           jump = filler.addr_offset();
 671         } else {  // else shrink the filler to fit
 672           filler = relocInfo(relocInfo::none, jump);
 673         }
 674         if (buf != NULL) {
 675           assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
 676           *(relocInfo*)(buf+buf_offset) = filler;
 677         }
 678         buf_offset += sizeof(filler);
 679       }
 680 
 681       // Update code point and end to skip past this section:
 682       csize_t last_code_point = code_end_so_far + cs->locs_point_off();
 683       assert(code_point_so_far <= last_code_point, "sanity");
 684       code_point_so_far = last_code_point; // advance past this guy's relocs
 685     }
 686     code_end_so_far += csize;  // advance past this guy's instructions too
 687 
 688     // Done with filler; emit the real relocations:
 689     if (buf != NULL && lsize != 0) {
 690       assert(buf_offset + lsize <= buf_limit, "target in bounds");
 691       assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
 692       if (buf_offset % HeapWordSize == 0) {
 693         // Use wordwise copies if possible:
 694         Copy::disjoint_words((HeapWord*)lstart,
 695                              (HeapWord*)(buf+buf_offset),
 696                              (lsize + HeapWordSize-1) / HeapWordSize);
 697       } else {
 698         Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
 699       }
 700     }
 701     buf_offset += lsize;
 702   }
 703 
 704   // Align end of relocation info in target.
 705   while (buf_offset % HeapWordSize != 0) {
 706     if (buf != NULL) {
 707       relocInfo padding = relocInfo(relocInfo::none, 0);
 708       assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
 709       *(relocInfo*)(buf+buf_offset) = padding;
 710     }
 711     buf_offset += sizeof(relocInfo);
 712   }
 713 
 714   assert(only_inst || code_end_so_far == total_content_size(), "sanity");
 715 
 716   return buf_offset;
 717 }
 718 
 719 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
 720   address buf = NULL;
 721   csize_t buf_offset = 0;
 722   csize_t buf_limit = 0;
 723 
 724   if (dest != NULL) {
 725     buf = (address)dest->relocation_begin();
 726     buf_limit = (address)dest->relocation_end() - buf;
 727   }
 728   // if dest == NULL, this is just the sizing pass
 729   //
 730   buf_offset = copy_relocations_to(buf, buf_limit, false);
 731 
 732   return buf_offset;
 733 }
 734 
 735 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
 736 #ifndef PRODUCT
 737   if (PrintNMethods && (WizardMode || Verbose)) {
 738     tty->print("done with CodeBuffer:");
 739     ((CodeBuffer*)this)->print();
 740   }
 741 #endif //PRODUCT
 742 
 743   CodeBuffer dest(dest_blob);
 744   assert(dest_blob->content_size() >= total_content_size(), "good sizing");
 745   this->compute_final_layout(&dest);
 746 
 747   // Set beginning of constant table before relocating.
 748   dest_blob->set_ctable_begin(dest.consts()->start());
 749 
 750   relocate_code_to(&dest);
 751 
 752   // transfer strings and comments from buffer to blob
 753   dest_blob->set_strings(_code_strings);
 754 
 755   // Done moving code bytes; were they the right size?
 756   assert((int)align_up(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
 757 
 758   // Flush generated code
 759   ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
 760 }
 761 
 762 // Move all my code into another code buffer.  Consult applicable
 763 // relocs to repair embedded addresses.  The layout in the destination
 764 // CodeBuffer is different to the source CodeBuffer: the destination
 765 // CodeBuffer gets the final layout (consts, insts, stubs in order of
 766 // ascending address).
 767 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
 768   address dest_end = dest->_total_start + dest->_total_size;
 769   address dest_filled = NULL;
 770   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 771     // pull code out of each section
 772     const CodeSection* cs = code_section(n);
 773     if (cs->is_empty())  continue;  // skip trivial section
 774     CodeSection* dest_cs = dest->code_section(n);
 775     assert(cs->size() == dest_cs->size(), "sanity");
 776     csize_t usize = dest_cs->size();
 777     csize_t wsize = align_up(usize, HeapWordSize);
 778     assert(dest_cs->start() + wsize <= dest_end, "no overflow");
 779     // Copy the code as aligned machine words.
 780     // This may also include an uninitialized partial word at the end.
 781     Copy::disjoint_words((HeapWord*)cs->start(),
 782                          (HeapWord*)dest_cs->start(),
 783                          wsize / HeapWordSize);
 784 
 785     if (dest->blob() == NULL) {
 786       // Destination is a final resting place, not just another buffer.
 787       // Normalize uninitialized bytes in the final padding.
 788       Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
 789                           Assembler::code_fill_byte());
 790     }
 791     // Keep track of the highest filled address
 792     dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
 793 
 794     assert(cs->locs_start() != (relocInfo*)badAddress,
 795            "this section carries no reloc storage, but reloc was attempted");
 796 
 797     // Make the new code copy use the old copy's relocations:
 798     dest_cs->initialize_locs_from(cs);
 799   }
 800 
 801   // Do relocation after all sections are copied.
 802   // This is necessary if the code uses constants in stubs, which are
 803   // relocated when the corresponding instruction in the code (e.g., a
 804   // call) is relocated. Stubs are placed behind the main code
 805   // section, so that section has to be copied before relocating.
 806   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 807     // pull code out of each section
 808     const CodeSection* cs = code_section(n);
 809     if (cs->is_empty()) continue;  // skip trivial section
 810     CodeSection* dest_cs = dest->code_section(n);
 811     { // Repair the pc relative information in the code after the move
 812       RelocIterator iter(dest_cs);
 813       while (iter.next()) {
 814         iter.reloc()->fix_relocation_after_move(this, dest);
 815       }
 816     }
 817   }
 818 
 819   if (dest->blob() == NULL && dest_filled != NULL) {
 820     // Destination is a final resting place, not just another buffer.
 821     // Normalize uninitialized bytes in the final padding.
 822     Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
 823                         Assembler::code_fill_byte());
 824 
 825   }
 826 }
 827 
 828 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
 829                                                csize_t amount,
 830                                                csize_t* new_capacity) {
 831   csize_t new_total_cap = 0;
 832 
 833   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 834     const CodeSection* sect = code_section(n);
 835 
 836     if (!sect->is_empty()) {
 837       // Compute initial padding; assign it to the previous section,
 838       // even if it's empty (e.g. consts section can be empty).
 839       // Cf. compute_final_layout
 840       csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
 841       if (padding != 0) {
 842         new_total_cap += padding;
 843         assert(n - 1 >= SECT_FIRST, "sanity");
 844         new_capacity[n - 1] += padding;
 845       }
 846     }
 847 
 848     csize_t exp = sect->size();  // 100% increase
 849     if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
 850     if (sect == which_cs) {
 851       if (exp < amount)  exp = amount;
 852       if (StressCodeBuffers)  exp = amount;  // expand only slightly
 853     } else if (n == SECT_INSTS) {
 854       // scale down inst increases to a more modest 25%
 855       exp = 4*K + ((exp - 4*K) >> 2);
 856       if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
 857     } else if (sect->is_empty()) {
 858       // do not grow an empty secondary section
 859       exp = 0;
 860     }
 861     // Allow for inter-section slop:
 862     exp += CodeSection::end_slop();
 863     csize_t new_cap = sect->size() + exp;
 864     if (new_cap < sect->capacity()) {
 865       // No need to expand after all.
 866       new_cap = sect->capacity();
 867     }
 868     new_capacity[n] = new_cap;
 869     new_total_cap += new_cap;
 870   }
 871 
 872   return new_total_cap;
 873 }
 874 
 875 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
 876 #ifndef PRODUCT
 877   if (PrintNMethods && (WizardMode || Verbose)) {
 878     tty->print("expanding CodeBuffer:");
 879     this->print();
 880   }
 881 
 882   if (StressCodeBuffers && blob() != NULL) {
 883     static int expand_count = 0;
 884     if (expand_count >= 0)  expand_count += 1;
 885     if (expand_count > 100 && is_power_of_2(expand_count)) {
 886       tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
 887       // simulate an occasional allocation failure:
 888       free_blob();
 889     }
 890   }
 891 #endif //PRODUCT
 892 
 893   // Resizing must be allowed
 894   {
 895     if (blob() == NULL)  return;  // caller must check for blob == NULL
 896     for (int n = 0; n < (int)SECT_LIMIT; n++) {
 897       guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
 898     }
 899   }
 900 
 901   // Figure new capacity for each section.
 902   csize_t new_capacity[SECT_LIMIT];
 903   memset(new_capacity, 0, sizeof(csize_t) * SECT_LIMIT);
 904   csize_t new_total_cap
 905     = figure_expanded_capacities(which_cs, amount, new_capacity);
 906 
 907   // Create a new (temporary) code buffer to hold all the new data
 908   CodeBuffer cb(name(), new_total_cap, 0);
 909   if (cb.blob() == NULL) {
 910     // Failed to allocate in code cache.
 911     free_blob();
 912     return;
 913   }
 914 
 915   // Create an old code buffer to remember which addresses used to go where.
 916   // This will be useful when we do final assembly into the code cache,
 917   // because we will need to know how to warp any internal address that
 918   // has been created at any time in this CodeBuffer's past.
 919   CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
 920   bxp->take_over_code_from(this);  // remember the old undersized blob
 921   DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
 922   bxp->_before_expand = this->_before_expand;
 923   this->_before_expand = bxp;
 924 
 925   // Give each section its required (expanded) capacity.
 926   for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
 927     CodeSection* cb_sect   = cb.code_section(n);
 928     CodeSection* this_sect = code_section(n);
 929     if (new_capacity[n] == 0)  continue;  // already nulled out
 930     if (n != SECT_INSTS) {
 931       cb.initialize_section_size(cb_sect, new_capacity[n]);
 932     }
 933     assert(cb_sect->capacity() >= new_capacity[n], "big enough");
 934     address cb_start = cb_sect->start();
 935     cb_sect->set_end(cb_start + this_sect->size());
 936     if (this_sect->mark() == NULL) {
 937       cb_sect->clear_mark();
 938     } else {
 939       cb_sect->set_mark(cb_start + this_sect->mark_off());
 940     }
 941   }
 942 
 943   // Needs to be initialized when calling fix_relocation_after_move.
 944   cb.blob()->set_ctable_begin(cb.consts()->start());
 945 
 946   // Move all the code and relocations to the new blob:
 947   relocate_code_to(&cb);
 948 
 949   // Copy the temporary code buffer into the current code buffer.
 950   // Basically, do {*this = cb}, except for some control information.
 951   this->take_over_code_from(&cb);
 952   cb.set_blob(NULL);
 953 
 954   // Zap the old code buffer contents, to avoid mistakenly using them.
 955   debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
 956                                  badCodeHeapFreeVal));
 957 
 958   _decode_begin = NULL;  // sanity
 959 
 960   // Make certain that the new sections are all snugly inside the new blob.
 961   verify_section_allocation();
 962 
 963 #ifndef PRODUCT
 964   if (PrintNMethods && (WizardMode || Verbose)) {
 965     tty->print("expanded CodeBuffer:");
 966     this->print();
 967   }
 968 #endif //PRODUCT
 969 }
 970 
 971 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
 972   // Must already have disposed of the old blob somehow.
 973   assert(blob() == NULL, "must be empty");
 974   // Take the new blob away from cb.
 975   set_blob(cb->blob());
 976   // Take over all the section pointers.
 977   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 978     CodeSection* cb_sect   = cb->code_section(n);
 979     CodeSection* this_sect = code_section(n);
 980     this_sect->take_over_code_from(cb_sect);
 981   }
 982   _overflow_arena = cb->_overflow_arena;
 983   // Make sure the old cb won't try to use it or free it.
 984   DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
 985 }
 986 
 987 void CodeBuffer::verify_section_allocation() {
 988   address tstart = _total_start;
 989   if (tstart == badAddress)  return;  // smashed by set_blob(NULL)
 990   address tend   = tstart + _total_size;
 991   if (_blob != NULL) {
 992 
 993     guarantee(tstart >= _blob->content_begin(), "sanity");
 994     guarantee(tend   <= _blob->content_end(),   "sanity");
 995   }
 996   // Verify disjointness.
 997   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 998     CodeSection* sect = code_section(n);
 999     if (!sect->is_allocated() || sect->is_empty())  continue;
1000     guarantee((intptr_t)sect->start() % sect->alignment() == 0
1001            || sect->is_empty() || _blob == NULL,
1002            "start is aligned");
1003     for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
1004       CodeSection* other = code_section(m);
1005       if (!other->is_allocated() || other == sect)  continue;
1006       guarantee(!other->contains(sect->start()    ), "sanity");
1007       // limit is an exclusive address and can be the start of another
1008       // section.
1009       guarantee(!other->contains(sect->limit() - 1), "sanity");
1010     }
1011     guarantee(sect->end() <= tend, "sanity");
1012     guarantee(sect->end() <= sect->limit(), "sanity");
1013   }
1014 }
1015 
1016 void CodeBuffer::log_section_sizes(const char* name) {
1017   if (xtty != NULL) {
1018     ttyLocker ttyl;
1019     // log info about buffer usage
1020     xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
1021     for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
1022       CodeSection* sect = code_section(n);
1023       if (!sect->is_allocated() || sect->is_empty())  continue;
1024       xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
1025                      n, sect->limit() - sect->start(), sect->limit() - sect->end());
1026     }
1027     xtty->print_cr("</blob>");
1028   }
1029 }
1030 
1031 #ifndef PRODUCT
1032 
1033 void CodeSection::decode() {
1034   Disassembler::decode(start(), end());
1035 }
1036 
1037 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
1038   _code_strings.add_comment(offset, comment);
1039 }
1040 
1041 const char* CodeBuffer::code_string(const char* str) {
1042   return _code_strings.add_string(str);
1043 }
1044 
1045 class CodeString: public CHeapObj<mtCode> {
1046  private:
1047   friend class CodeStrings;
1048   const char * _string;
1049   CodeString*  _next;
1050   intptr_t     _offset;
1051 
1052   ~CodeString() {
1053     assert(_next == NULL, "wrong interface for freeing list");
1054     os::free((void*)_string);
1055   }
1056 
1057   bool is_comment() const { return _offset >= 0; }
1058 
1059  public:
1060   CodeString(const char * string, intptr_t offset = -1)
1061     : _next(NULL), _offset(offset) {
1062     _string = os::strdup(string, mtCode);
1063   }
1064 
1065   const char * string() const { return _string; }
1066   intptr_t     offset() const { assert(_offset >= 0, "offset for non comment?"); return _offset;  }
1067   CodeString* next()    const { return _next; }
1068 
1069   void set_next(CodeString* next) { _next = next; }
1070 
1071   CodeString* first_comment() {
1072     if (is_comment()) {
1073       return this;
1074     } else {
1075       return next_comment();
1076     }
1077   }
1078   CodeString* next_comment() const {
1079     CodeString* s = _next;
1080     while (s != NULL && !s->is_comment()) {
1081       s = s->_next;
1082     }
1083     return s;
1084   }
1085 };
1086 
1087 CodeString* CodeStrings::find(intptr_t offset) const {
1088   CodeString* a = _strings->first_comment();
1089   while (a != NULL && a->offset() != offset) {
1090     a = a->next_comment();
1091   }
1092   return a;
1093 }
1094 
1095 // Convenience for add_comment.
1096 CodeString* CodeStrings::find_last(intptr_t offset) const {
1097   CodeString* a = find(offset);
1098   if (a != NULL) {
1099     CodeString* c = NULL;
1100     while (((c = a->next_comment()) != NULL) && (c->offset() == offset)) {
1101       a = c;
1102     }
1103   }
1104   return a;
1105 }
1106 
1107 void CodeStrings::add_comment(intptr_t offset, const char * comment) {
1108   check_valid();
1109   CodeString* c      = new CodeString(comment, offset);
1110   CodeString* inspos = (_strings == NULL) ? NULL : find_last(offset);
1111 
1112   if (inspos) {
1113     // insert after already existing comments with same offset
1114     c->set_next(inspos->next());
1115     inspos->set_next(c);
1116   } else {
1117     // no comments with such offset, yet. Insert before anything else.
1118     c->set_next(_strings);
1119     _strings = c;
1120   }
1121 }
1122 
1123 void CodeStrings::assign(CodeStrings& other) {
1124   other.check_valid();
1125   assert(is_null(), "Cannot assign onto non-empty CodeStrings");
1126   _strings = other._strings;
1127 #ifdef ASSERT
1128   _defunct = false;
1129 #endif
1130   other.set_null_and_invalidate();
1131 }
1132 
1133 // Deep copy of CodeStrings for consistent memory management.
1134 // Only used for actual disassembly so this is cheaper than reference counting
1135 // for the "normal" fastdebug case.
1136 void CodeStrings::copy(CodeStrings& other) {
1137   other.check_valid();
1138   check_valid();
1139   assert(is_null(), "Cannot copy onto non-empty CodeStrings");
1140   CodeString* n = other._strings;
1141   CodeString** ps = &_strings;
1142   while (n != NULL) {
1143     *ps = new CodeString(n->string(),n->offset());
1144     ps = &((*ps)->_next);
1145     n = n->next();
1146   }
1147 }
1148 
1149 const char* CodeStrings::_prefix = " ;; ";  // default: can be changed via set_prefix
1150 
1151 void CodeStrings::print_block_comment(outputStream* stream, intptr_t offset) const {
1152     check_valid();
1153     if (_strings != NULL) {
1154     CodeString* c = find(offset);
1155     while (c && c->offset() == offset) {
1156       stream->bol();
1157       stream->print("%s", _prefix);
1158       // Don't interpret as format strings since it could contain %
1159       stream->print_raw_cr(c->string());
1160       c = c->next_comment();
1161     }
1162   }
1163 }
1164 
1165 // Also sets isNull()
1166 void CodeStrings::free() {
1167   CodeString* n = _strings;
1168   while (n) {
1169     // unlink the node from the list saving a pointer to the next
1170     CodeString* p = n->next();
1171     n->set_next(NULL);
1172     delete n;
1173     n = p;
1174   }
1175   set_null_and_invalidate();
1176 }
1177 
1178 const char* CodeStrings::add_string(const char * string) {
1179   check_valid();
1180   CodeString* s = new CodeString(string);
1181   s->set_next(_strings);
1182   _strings = s;
1183   assert(s->string() != NULL, "should have a string");
1184   return s->string();
1185 }
1186 
1187 void CodeBuffer::decode() {
1188   ttyLocker ttyl;
1189   Disassembler::decode(decode_begin(), insts_end());
1190   _decode_begin = insts_end();
1191 }
1192 
1193 void CodeSection::print(const char* name) {
1194   csize_t locs_size = locs_end() - locs_start();
1195   tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1196                 name, p2i(start()), p2i(end()), p2i(limit()), size(), capacity(),
1197                 is_frozen()? " [frozen]": "");
1198   tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1199                 name, p2i(locs_start()), p2i(locs_end()), p2i(locs_limit()), locs_size, locs_capacity(), locs_point_off());
1200   if (PrintRelocations) {
1201     RelocIterator iter(this);
1202     iter.print();
1203   }
1204 }
1205 
1206 void CodeBuffer::print() {
1207   if (this == NULL) {
1208     tty->print_cr("NULL CodeBuffer pointer");
1209     return;
1210   }
1211 
1212   tty->print_cr("CodeBuffer:");
1213   for (int n = 0; n < (int)SECT_LIMIT; n++) {
1214     // print each section
1215     CodeSection* cs = code_section(n);
1216     cs->print(code_section_name(n));
1217   }
1218 }
1219 
1220 #endif // PRODUCT