< prev index next >

src/hotspot/share/code/codeHeapState.cpp

Print this page
rev 53162 : imported patch 8217250.patch


   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 






  26 #include "precompiled.hpp"
  27 #include "code/codeHeapState.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "runtime/sweeper.hpp"
  30 
  31 // -------------------------
  32 // |  General Description  |
  33 // -------------------------
  34 // The CodeHeap state analytics are divided in two parts.
  35 // The first part examines the entire CodeHeap and aggregates all
  36 // information that is believed useful/important.
  37 //
  38 // Aggregation condenses the information of a piece of the CodeHeap
  39 // (4096 bytes by default) into an analysis granule. These granules
  40 // contain enough detail to gain initial insight while keeping the
  41 // internal structure sizes in check.
  42 //
  43 // The second part, which consists of several, independent steps,
  44 // prints the previously collected information with emphasis on
  45 // various aspects.


  56 // The CodeHeap state analytics do have some memory footprint.
  57 // The "aggregate" step allocates some data structures to hold the aggregated
  58 // information for later output. These data structures live until they are
  59 // explicitly discarded (function "discard") or until the VM terminates.
  60 // There is one exception: the function "all" does not leave any data
  61 // structures allocated.
  62 //
  63 // Requests for real-time, on-the-fly analysis can be issued via
  64 //   jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>]
  65 //
  66 // If you are (only) interested in how the CodeHeap looks like after running
  67 // a sample workload, you can use the command line option
  68 //   -XX:+PrintCodeHeapAnalytics
  69 // It will cause a full analysis to be written to tty. In addition, a full
  70 // analysis will be written the first time a "CodeCache full" condition is
  71 // detected.
  72 //
  73 // The command line option produces output identical to the jcmd function
  74 //   jcmd <pid> Compiler.CodeHeap_Analytics all 4096
  75 // ---------------------------------------------------------------------------------
  76 
  77 // With this declaration macro, it is possible to switch between
  78 //  - direct output into an argument-passed outputStream and
  79 //  - buffered output into a bufferedStream with subsequent flush
  80 //    of the filled buffer to the outputStream.
  81 #define USE_STRINGSTREAM
  82 #define HEX32_FORMAT  "0x%x"  // just a helper format string used below multiple times
  83 //


  84 // Writing to a bufferedStream buffer first has a significant advantage:
  85 // It uses noticeably less cpu cycles and reduces (when wirting to a
  86 // network file) the required bandwidth by at least a factor of ten.
  87 // That clearly makes up for the increased code complexity.
  88 #if defined(USE_STRINGSTREAM)
  89 #define STRINGSTREAM_DECL(_anyst, _outst)                 \



























  90     /* _anyst  name of the stream as used in the code */  \
  91     /* _outst  stream where final output will go to   */  \
  92     ResourceMark rm;                                      \
  93     bufferedStream   _sstobj = bufferedStream(4*K);       \






  94     bufferedStream*  _sstbuf = &_sstobj;                  \
  95     outputStream*    _outbuf = _outst;                    \
  96     bufferedStream*  _anyst  = &_sstobj; /* any stream. Use this to just print - no buffer flush.  */
  97 
  98 #define STRINGSTREAM_FLUSH(termString)                    \
  99     _sstbuf->print("%s", termString);                     \











 100     _outbuf->print("%s", _sstbuf->as_string());           \
 101     _sstbuf->reset();
 102 
 103 #define STRINGSTREAM_FLUSH_LOCKED(termString)             \
 104     { ttyLocker ttyl;/* keep this output block together */\
 105       STRINGSTREAM_FLUSH(termString)                      \
 106     }


































 107 #else
 108 #define STRINGSTREAM_DECL(_anyst, _outst)                 \

 109     outputStream*  _outbuf = _outst;                      \
 110     outputStream*  _anyst  = _outst;   /* any stream. Use this to just print - no buffer flush.  */
 111 
 112 #define STRINGSTREAM_FLUSH(termString)                    \
 113     _outbuf->print("%s", termString);














 114 
 115 #define STRINGSTREAM_FLUSH_LOCKED(termString)             \
 116     _outbuf->print("%s", termString);
 117 #endif

 118 
 119 const char  blobTypeChar[] = {' ', 'C', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' };
 120 const char* blobTypeName[] = {"noType"
 121                              ,     "nMethod (under construction)"
 122                              ,          "nMethod (active)"
 123                              ,               "nMethod (inactive)"
 124                              ,                    "nMethod (deopt)"
 125                              ,                         "nMethod (zombie)"
 126                              ,                              "nMethod (unloaded)"
 127                              ,                                   "runtime stub"
 128                              ,                                        "ricochet stub"
 129                              ,                                             "deopt stub"
 130                              ,                                                  "uncommon trap stub"
 131                              ,                                                       "exception stub"
 132                              ,                                                            "safepoint stub"
 133                              ,                                                                 "adapter blob"
 134                              ,                                                                      "MH adapter blob"
 135                              ,                                                                           "buffer blob"
 136                              ,                                                                                "lastType"
 137                              };


 444   unsigned int nBlocks_used    = 0;
 445   unsigned int nBlocks_zomb    = 0;
 446   unsigned int nBlocks_disconn = 0;
 447   unsigned int nBlocks_notentr = 0;
 448 
 449   //---<  max & min of TopSizeArray  >---
 450   //  it is sufficient to have these sizes as 32bit unsigned ints.
 451   //  The CodeHeap is limited in size to 4GB. Furthermore, the sizes
 452   //  are stored in _segment_size units, scaling them down by a factor of 64 (at least).
 453   unsigned int  currMax          = 0;
 454   unsigned int  currMin          = 0;
 455   unsigned int  currMin_ix       = 0;
 456   unsigned long total_iterations = 0;
 457 
 458   bool  done             = false;
 459   const int min_granules = 256;
 460   const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M
 461                                   // results in StatArray size of 24M (= max_granules * 48 Bytes per element)
 462                                   // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit.
 463   const char* heapName   = get_heapName(heap);
 464   STRINGSTREAM_DECL(ast, out)
 465 
 466   if (!initialization_complete) {
 467     memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray));
 468     initialization_complete = true;
 469 
 470     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (general remarks)", NULL);
 471     ast->print_cr("   The code heap analysis function provides deep insights into\n"
 472                   "   the inner workings and the internal state of the Java VM's\n"
 473                   "   code cache - the place where all the JVM generated machine\n"
 474                   "   code is stored.\n"
 475                   "   \n"
 476                   "   This function is designed and provided for support engineers\n"
 477                   "   to help them understand and solve issues in customer systems.\n"
 478                   "   It is not intended for use and interpretation by other persons.\n"
 479                   "   \n");
 480     STRINGSTREAM_FLUSH("")
 481   }
 482   get_HeapStatGlobals(out, heapName);
 483 
 484 
 485   // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock,
 486   // all heap information is "constant" and can be safely extracted/calculated before we
 487   // enter the while() loop. Actually, the loop will only be iterated once.
 488   char*  low_bound     = heap->low_boundary();
 489   size_t size          = heap->capacity();
 490   size_t res_size      = heap->max_capacity();
 491   seg_size             = heap->segment_size();
 492   log2_seg_size        = seg_size == 0 ? 0 : exact_log2(seg_size);  // This is a global static value.
 493 
 494   if (seg_size == 0) {
 495     printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment ", heapName);
 496     STRINGSTREAM_FLUSH("")
 497     return;
 498   }
 499 
 500   if (!CodeCache_lock->owned_by_self()) {
 501     printBox(ast, '-', "aggregate function called without holding the CodeCache_lock for ", heapName);
 502     STRINGSTREAM_FLUSH("")
 503     return;
 504   }
 505 
 506   // Calculate granularity of analysis (and output).
 507   //   The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize.
 508   //   The CodeHeap can become fairly large, in particular in productive real-life systems.
 509   //
 510   //   It is often neither feasible nor desirable to aggregate the data with the highest possible
 511   //   level of detail, i.e. inspecting and printing each segment on its own.
 512   //
 513   //   The granularity parameter allows to specify the level of detail available in the analysis.
 514   //   It must be a positive multiple of the segment size and should be selected such that enough
 515   //   detail is provided while, at the same time, the printed output does not explode.
 516   //
 517   //   By manipulating the granularity value, we enforce that at least min_granules units
 518   //   of analysis are available. We also enforce an upper limit of max_granules units to
 519   //   keep the amount of allocated storage in check.
 520   //
 521   //   Finally, we adjust the granularity such that each granule covers at most 64k-1 segments.
 522   //   This is necessary to prevent an unsigned short overflow while accumulating space information.


 538   granularity = granularity & (~(seg_size - 1));                       // must be multiple of seg_size
 539   if (granularity>>log2_seg_size >= (1L<<sizeof(unsigned short)*8)) {
 540     granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<log2_seg_size; // Limit: (64k-1) * seg_size
 541   }
 542   segment_granules = granularity == seg_size;
 543   size_t granules  = (size + (granularity-1))/granularity;
 544 
 545   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (used blocks) for segment ", heapName);
 546   ast->print_cr("   The aggregate step takes an aggregated snapshot of the CodeHeap.\n"
 547                 "   Subsequent print functions create their output based on this snapshot.\n"
 548                 "   The CodeHeap is a living thing, and every effort has been made for the\n"
 549                 "   collected data to be consistent. Only the method names and signatures\n"
 550                 "   are retrieved at print time. That may lead to rare cases where the\n"
 551                 "   name of a method is no longer available, e.g. because it was unloaded.\n");
 552   ast->print_cr("   CodeHeap committed size " SIZE_FORMAT "K (" SIZE_FORMAT "M), reserved size " SIZE_FORMAT "K (" SIZE_FORMAT "M), %d%% occupied.",
 553                 size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size));
 554   ast->print_cr("   CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity.", seg_size);
 555   ast->print_cr("   CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes.", granules, granularity);
 556   ast->print_cr("   Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K);
 557   ast->print_cr("   The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules));
 558   STRINGSTREAM_FLUSH("\n")
 559 
 560 
 561   while (!done) {
 562     //---<  reset counters with every aggregation  >---
 563     nBlocks_t1       = 0;
 564     nBlocks_t2       = 0;
 565     nBlocks_alive    = 0;
 566     nBlocks_dead     = 0;
 567     nBlocks_inconstr = 0;
 568     nBlocks_unloaded = 0;
 569     nBlocks_stub     = 0;
 570 
 571     nBlocks_free     = 0;
 572     nBlocks_used     = 0;
 573     nBlocks_zomb     = 0;
 574     nBlocks_disconn  = 0;
 575     nBlocks_notentr  = 0;
 576 
 577     //---<  discard old arrays if size does not match  >---
 578     if (granules != alloc_granules) {


 627       // This is a diagnostic function. It is not supposed to tear down the VM.
 628       if ((char*)h <  low_bound) {
 629         insane = true; ast->print_cr("Sanity check: HeapBlock @%p below low bound (%p)", (char*)h, low_bound);
 630       }
 631       if ((char*)h >  (low_bound + res_size)) {
 632         insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside reserved range (%p)", (char*)h, low_bound + res_size);
 633       }
 634       if ((char*)h >  (low_bound + size)) {
 635         insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside used range (%p)", (char*)h, low_bound + size);
 636       }
 637       if (ix_end   >= granules) {
 638         insane = true; ast->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")", ix_end, granules);
 639       }
 640       if (size     != heap->capacity()) {
 641         insane = true; ast->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)", size/(size_t)K, heap->capacity()/(size_t)K);
 642       }
 643       if (ix_beg   >  ix_end) {
 644         insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg);
 645       }
 646       if (insane) {
 647         STRINGSTREAM_FLUSH("")
 648         continue;
 649       }
 650 
 651       if (h->free()) {
 652         nBlocks_free++;
 653         freeSpace    += hb_bytelen;
 654         if (hb_bytelen > maxFreeSize) {
 655           maxFreeSize   = hb_bytelen;
 656           maxFreeBlock  = h;
 657         }
 658       } else {
 659         update_SizeDistArray(out, hb_len);
 660         nBlocks_used++;
 661         usedSpace    += hb_bytelen;
 662         CodeBlob* cb  = (CodeBlob*)heap->find_start(h);
 663         if (cb != NULL) {
 664           cbType = get_cbType(cb);
 665           if (cb->is_nmethod()) {
 666             compile_id = ((nmethod*)cb)->compile_id();
 667             comp_lvl   = (CompLevel)((nmethod*)cb)->comp_level();


1016       ast->cr();
1017       ast->print_cr("latest allocated compilation id = %d", latest_compilation_id);
1018       ast->print_cr("highest observed compilation id = %d", highest_compilation_id);
1019       ast->print_cr("Building TopSizeList iterations = %ld", total_iterations);
1020       ast->cr();
1021 
1022       int             reset_val = NMethodSweeper::hotness_counter_reset_val();
1023       double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size;
1024       printBox(ast, '-', "Method hotness information at time of this analysis", NULL);
1025       ast->print_cr("Highest possible method temperature:          %12d", reset_val);
1026       ast->print_cr("Threshold for method to be considered 'cold': %12.3f", -reset_val + reverse_free_ratio * NmethodSweepActivity);
1027       if (n_methods > 0) {
1028         avgTemp = hotnessAccumulator/n_methods;
1029         ast->print_cr("min. hotness = %6d", minTemp);
1030         ast->print_cr("avg. hotness = %6d", avgTemp);
1031         ast->print_cr("max. hotness = %6d", maxTemp);
1032       } else {
1033         avgTemp = 0;
1034         ast->print_cr("No hotness data available");
1035       }
1036       STRINGSTREAM_FLUSH("\n")
1037 
1038       // This loop is intentionally printing directly to "out".
1039       // It should not print anything, anyway.
1040       out->print("Verifying collected data...");
1041       size_t granule_segs = granule_size>>log2_seg_size;
1042       for (unsigned int ix = 0; ix < granules; ix++) {
1043         if (StatArray[ix].t1_count   > granule_segs) {
1044           out->print_cr("t1_count[%d]   = %d", ix, StatArray[ix].t1_count);
1045         }
1046         if (StatArray[ix].t2_count   > granule_segs) {
1047           out->print_cr("t2_count[%d]   = %d", ix, StatArray[ix].t2_count);
1048         }
1049         if (StatArray[ix].tx_count   > granule_segs) {
1050           out->print_cr("tx_count[%d]   = %d", ix, StatArray[ix].tx_count);
1051         }
1052         if (StatArray[ix].stub_count > granule_segs) {
1053           out->print_cr("stub_count[%d] = %d", ix, StatArray[ix].stub_count);
1054         }
1055         if (StatArray[ix].dead_count > granule_segs) {
1056           out->print_cr("dead_count[%d] = %d", ix, StatArray[ix].dead_count);


1098           }
1099         }
1100       }
1101       out->print_cr("...done\n\n");
1102     } else {
1103       // insane heap state detected. Analysis data incomplete. Just throw it away.
1104       discard_StatArray(out);
1105       discard_TopSizeArray(out);
1106     }
1107   }
1108 
1109 
1110   done        = false;
1111   while (!done && (nBlocks_free > 0)) {
1112 
1113     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (free blocks) for segment ", heapName);
1114     ast->print_cr("   The aggregate step collects information about all free blocks in CodeHeap.\n"
1115                   "   Subsequent print functions create their output based on this snapshot.\n");
1116     ast->print_cr("   Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free);
1117     ast->print_cr("   Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K);
1118     STRINGSTREAM_FLUSH("\n")
1119 
1120     //----------------------------------------
1121     //--  Prepare the FreeArray of FreeBlks --
1122     //----------------------------------------
1123 
1124     //---< discard old array if size does not match  >---
1125     if (nBlocks_free != alloc_freeBlocks) {
1126       discard_FreeArray(out);
1127     }
1128 
1129     prepare_FreeArray(out, nBlocks_free, heapName);
1130     if (FreeArray == NULL) {
1131       done = true;
1132       continue;
1133     }
1134 
1135     //----------------------------------------
1136     //--  Collect all FreeBlks in FreeArray --
1137     //----------------------------------------
1138 
1139     unsigned int ix = 0;
1140     FreeBlock* cur  = heap->freelist();
1141 
1142     while (cur != NULL) {
1143       if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated
1144         FreeArray[ix].start = cur;
1145         FreeArray[ix].len   = (unsigned int)(cur->length()<<log2_seg_size);
1146         FreeArray[ix].index = ix;
1147       }
1148       cur  = cur->link();
1149       ix++;
1150     }
1151     if (ix != alloc_freeBlocks) {
1152       ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix);
1153       ast->print_cr("I will update the counter and retry data collection");
1154       STRINGSTREAM_FLUSH("\n")
1155       nBlocks_free = ix;
1156       continue;
1157     }
1158     done = true;
1159   }
1160 
1161   if (!done || (nBlocks_free == 0)) {
1162     if (nBlocks_free == 0) {
1163       printBox(ast, '-', "no free blocks found in ", heapName);
1164     } else if (!done) {
1165       ast->print_cr("Free block count mismatch could not be resolved.");
1166       ast->print_cr("Try to run \"aggregate\" function to update counters");
1167     }
1168     STRINGSTREAM_FLUSH("")
1169 
1170     //---< discard old array and update global values  >---
1171     discard_FreeArray(out);
1172     set_HeapStatGlobals(out, heapName);
1173     return;
1174   }
1175 
1176   //---<  calculate and fill remaining fields  >---
1177   if (FreeArray != NULL) {
1178     // This loop is intentionally printing directly to "out".
1179     // It should not print anything, anyway.
1180     for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1181       size_t lenSum = 0;
1182       FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len));
1183       for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) {
1184         CodeBlob *cb  = (CodeBlob*)(heap->find_start(h));
1185         if ((cb != NULL) && !cb->is_nmethod()) {
1186           FreeArray[ix].stubs_in_gap = true;
1187         }
1188         FreeArray[ix].n_gapBlocks++;
1189         lenSum += h->length()<<log2_seg_size;
1190         if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) {
1191           out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)", h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start);
1192         }
1193       }
1194       if (lenSum != FreeArray[ix].gap) {
1195         out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d.", ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum);
1196       }
1197     }
1198   }
1199   set_HeapStatGlobals(out, heapName);
1200 
1201   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   C O M P L E T E   for segment ", heapName);
1202   STRINGSTREAM_FLUSH("\n")
1203 }
1204 
1205 
1206 void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) {
1207   if (!initialization_complete) {
1208     return;
1209   }
1210 
1211   const char* heapName   = get_heapName(heap);
1212   get_HeapStatGlobals(out, heapName);
1213 
1214   if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) {
1215     return;
1216   }
1217   STRINGSTREAM_DECL(ast, out)
1218 
1219   {
1220     printBox(ast, '=', "U S E D   S P A C E   S T A T I S T I C S   for ", heapName);
1221     ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n"
1222                   "      and other identifying information with the block size data.\n"
1223                   "\n"
1224                   "      Method names are dynamically retrieved from the code cache at print time.\n"
1225                   "      Due to the living nature of the code cache and because the CodeCache_lock\n"
1226                   "      is not continuously held, the displayed name might be wrong or no name\n"
1227                   "      might be found at all. The likelihood for that to happen increases\n"
1228                   "      over time passed between analysis and print step.\n", used_topSizeBlocks);
1229     STRINGSTREAM_FLUSH_LOCKED("\n")
1230   }
1231 
1232   //----------------------------
1233   //--  Print Top Used Blocks --
1234   //----------------------------
1235   {
1236     char*     low_bound = heap->low_boundary();
1237     bool      have_CodeCache_lock = CodeCache_lock->owned_by_self();
1238 
1239     printBox(ast, '-', "Largest Used Blocks in ", heapName);
1240     print_blobType_legend(ast);
1241 
1242     ast->fill_to(51);
1243     ast->print("%4s", "blob");
1244     ast->fill_to(56);
1245     ast->print("%9s", "compiler");
1246     ast->fill_to(66);
1247     ast->print_cr("%6s", "method");
1248     ast->print_cr("%18s %13s %17s %4s %9s  %5s %s",      "Addr(module)      ", "offset", "size", "type", " type lvl", " temp", "Name");
1249     STRINGSTREAM_FLUSH_LOCKED("")
1250 
1251     //---<  print Top Ten Used Blocks  >---
1252     if (used_topSizeBlocks > 0) {
1253       unsigned int printed_topSizeBlocks = 0;
1254       for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
1255         printed_topSizeBlocks++;
1256         nmethod*           nm = NULL;
1257         const char* blob_name = "unnamed blob or blob name unavailable";
1258         // heap->find_start() is safe. Only works on _segmap.
1259         // Returns NULL or void*. Returned CodeBlob may be uninitialized.
1260         HeapBlock* heapBlock = TopSizeArray[i].start;
1261         CodeBlob*  this_blob = (CodeBlob*)(heap->find_start(heapBlock));
1262         bool    blob_is_safe = blob_access_is_safe(this_blob, NULL);
1263         if (blob_is_safe) {
1264           //---<  access these fields only if we own the CodeCache_lock  >---
1265           if (have_CodeCache_lock) {
1266             blob_name = this_blob->name();
1267             nm        = this_blob->as_nmethod_or_null();
1268           }
1269           //---<  blob address  >---


1307           ast->print("%5d", nm->hotness_counter());
1308           //---<  name and signature  >---
1309           ast->fill_to(67+6);
1310           if (nm->is_not_installed()) {
1311             ast->print(" not (yet) installed method ");
1312           }
1313           if (nm->is_zombie()) {
1314             ast->print(" zombie method ");
1315           }
1316           ast->print("%s", blob_name);
1317         } else {
1318           //---<  block size in hex  >---
1319           ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size));
1320           ast->print("(" SIZE_FORMAT_W(4) "K)", (TopSizeArray[i].len<<log2_seg_size)/K);
1321           //---<  no compiler information  >---
1322           ast->fill_to(56);
1323           //---<  name and signature  >---
1324           ast->fill_to(67+6);
1325           ast->print("%s", blob_name);
1326         }
1327         STRINGSTREAM_FLUSH_LOCKED("\n")

1328       }
1329       if (used_topSizeBlocks != printed_topSizeBlocks) {
1330         ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks);
1331         STRINGSTREAM_FLUSH("")
1332         for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
1333           ast->print_cr("  TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
1334           STRINGSTREAM_FLUSH("")
1335         }
1336       }
1337       STRINGSTREAM_FLUSH_LOCKED("\n\n")
1338     }
1339   }
1340 
1341   //-----------------------------
1342   //--  Print Usage Histogram  --
1343   //-----------------------------
1344 
1345   if (SizeDistributionArray != NULL) {
1346     unsigned long total_count = 0;
1347     unsigned long total_size  = 0;
1348     const unsigned long pctFactor = 200;
1349 
1350     for (unsigned int i = 0; i < nSizeDistElements; i++) {
1351       total_count += SizeDistributionArray[i].count;
1352       total_size  += SizeDistributionArray[i].lenSum;
1353     }
1354 
1355     if ((total_count > 0) && (total_size > 0)) {
1356       printBox(ast, '-', "Block count histogram for ", heapName);
1357       ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n"
1358                     "      of all blocks) have a size in the given range.\n"
1359                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
1360       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1361       ast->print_cr("total number of all blocks: %7ld\n", total_count);
1362       STRINGSTREAM_FLUSH_LOCKED("")
1363 
1364       ast->print_cr("[Size Range)------avg.-size-+----count-+");
1365       for (unsigned int i = 0; i < nSizeDistElements; i++) {
1366         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1367           ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1368                     ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1369                     ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1370                     );
1371         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1372           ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1373                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1374                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1375                     );
1376         } else {
1377           ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1378                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1379                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1380                     );
1381         }
1382         ast->print(" %8d | %8d |",
1383                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1384                    SizeDistributionArray[i].count);
1385 
1386         unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count;
1387         for (unsigned int j = 1; j <= percent; j++) {
1388           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1389         }
1390         ast->cr();

1391       }
1392       ast->print_cr("----------------------------+----------+\n\n");
1393       STRINGSTREAM_FLUSH_LOCKED("\n")
1394 
1395       printBox(ast, '-', "Contribution per size range to total size for ", heapName);
1396       ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n"
1397                     "      occupied space) is used by the blocks in the given size range.\n"
1398                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
1399       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1400       ast->print_cr("total number of all blocks: %7ld\n", total_count);
1401       STRINGSTREAM_FLUSH_LOCKED("")
1402 
1403       ast->print_cr("[Size Range)------avg.-size-+----count-+");
1404       for (unsigned int i = 0; i < nSizeDistElements; i++) {
1405         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1406           ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1407                     ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1408                     ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1409                     );
1410         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1411           ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1412                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1413                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1414                     );
1415         } else {
1416           ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1417                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1418                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1419                     );
1420         }
1421         ast->print(" %8d | %8d |",
1422                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1423                    SizeDistributionArray[i].count);
1424 
1425         unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size;
1426         for (unsigned int j = 1; j <= percent; j++) {
1427           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1428         }
1429         ast->cr();

1430       }
1431       ast->print_cr("----------------------------+----------+");
1432       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1433     }
1434   }
1435 }
1436 
1437 
1438 void CodeHeapState::print_freeSpace(outputStream* out, CodeHeap* heap) {
1439   if (!initialization_complete) {
1440     return;
1441   }
1442 
1443   const char* heapName   = get_heapName(heap);
1444   get_HeapStatGlobals(out, heapName);
1445 
1446   if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) {
1447     return;
1448   }
1449   STRINGSTREAM_DECL(ast, out)
1450 
1451   {
1452     printBox(ast, '=', "F R E E   S P A C E   S T A T I S T I C S   for ", heapName);
1453     ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n"
1454                   "      Those gaps are of interest if there is a chance that they become\n"
1455                   "      unoccupied, e.g. by class unloading. Then, the two adjacent free\n"
1456                   "      blocks, together with the now unoccupied space, form a new, large\n"
1457                   "      free block.");
1458     STRINGSTREAM_FLUSH_LOCKED("\n")
1459   }
1460 
1461   {
1462     printBox(ast, '-', "List of all Free Blocks in ", heapName);
1463     STRINGSTREAM_FLUSH_LOCKED("")
1464 
1465     unsigned int ix = 0;
1466     for (ix = 0; ix < alloc_freeBlocks-1; ix++) {
1467       ast->print(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT ",", p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1468       ast->fill_to(38);
1469       ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes,", ix, ix+1, FreeArray[ix].gap);
1470       ast->fill_to(71);
1471       ast->print("block count: %6d", FreeArray[ix].n_gapBlocks);
1472       if (FreeArray[ix].stubs_in_gap) {
1473         ast->print(" !! permanent gap, contains stubs and/or blobs !!");
1474       }
1475       STRINGSTREAM_FLUSH_LOCKED("\n")

1476     }
1477     ast->print_cr(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT, p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1478     STRINGSTREAM_FLUSH_LOCKED("\n\n")
1479   }
1480 
1481 
1482   //-----------------------------------------
1483   //--  Find and Print Top Ten Free Blocks --
1484   //-----------------------------------------
1485 
1486   //---<  find Top Ten Free Blocks  >---
1487   const unsigned int nTop = 10;
1488   unsigned int  currMax10 = 0;
1489   struct FreeBlk* FreeTopTen[nTop];
1490   memset(FreeTopTen, 0, sizeof(FreeTopTen));
1491 
1492   for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) {
1493     if (FreeArray[ix].len > currMax10) {  // larger than the ten largest found so far
1494       unsigned int currSize = FreeArray[ix].len;
1495 
1496       unsigned int iy;
1497       for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) {
1498         if (FreeTopTen[iy]->len < currSize) {


1502           FreeTopTen[iy] = &FreeArray[ix];        // insert new free block
1503           if (FreeTopTen[nTop-1] != NULL) {
1504             currMax10 = FreeTopTen[nTop-1]->len;
1505           }
1506           break; // done with this, check next free block
1507         }
1508       }
1509       if (iy >= nTop) {
1510         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1511                       currSize, currMax10);
1512         continue;
1513       }
1514       if (FreeTopTen[iy] == NULL) {
1515         FreeTopTen[iy] = &FreeArray[ix];
1516         if (iy == (nTop-1)) {
1517           currMax10 = currSize;
1518         }
1519       }
1520     }
1521   }
1522   STRINGSTREAM_FLUSH_LOCKED("")
1523 
1524   {
1525     printBox(ast, '-', "Top Ten Free Blocks in ", heapName);
1526 
1527     //---<  print Top Ten Free Blocks  >---
1528     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) {
1529       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len);
1530       ast->fill_to(39);
1531       if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) {
1532         ast->print("last free block in list.");
1533       } else {
1534         ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap);
1535         ast->fill_to(63);
1536         ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks);
1537       }
1538       ast->cr();

1539     }
1540     STRINGSTREAM_FLUSH_LOCKED("\n\n")
1541   }

1542 
1543 
1544   //--------------------------------------------------------
1545   //--  Find and Print Top Ten Free-Occupied-Free Triples --
1546   //--------------------------------------------------------
1547 
1548   //---<  find and print Top Ten Triples (Free-Occupied-Free)  >---
1549   currMax10 = 0;
1550   struct FreeBlk  *FreeTopTenTriple[nTop];
1551   memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple));
1552 
1553   for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1554     // If there are stubs in the gap, this gap will never become completely free.
1555     // The triple will thus never merge to one free block.
1556     unsigned int lenTriple  = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len);
1557     FreeArray[ix].len = lenTriple;
1558     if (lenTriple > currMax10) {  // larger than the ten largest found so far
1559 
1560       unsigned int iy;
1561       for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {


1566           FreeTopTenTriple[iy] = &FreeArray[ix];
1567           if (FreeTopTenTriple[nTop-1] != NULL) {
1568             currMax10 = FreeTopTenTriple[nTop-1]->len;
1569           }
1570           break;
1571         }
1572       }
1573       if (iy == nTop) {
1574         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1575                       lenTriple, currMax10);
1576         continue;
1577       }
1578       if (FreeTopTenTriple[iy] == NULL) {
1579         FreeTopTenTriple[iy] = &FreeArray[ix];
1580         if (iy == (nTop-1)) {
1581           currMax10 = lenTriple;
1582         }
1583       }
1584     }
1585   }
1586   STRINGSTREAM_FLUSH_LOCKED("")
1587 
1588   {
1589     printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in ", heapName);
1590     ast->print_cr("  Use this information to judge how likely it is that a large(r) free block\n"
1591                   "  might get created by code cache sweeping.\n"
1592                   "  If all the occupied blocks can be swept, the three free blocks will be\n"
1593                   "  merged into one (much larger) free block. That would reduce free space\n"
1594                   "  fragmentation.\n");
1595 
1596     //---<  print Top Ten Free-Occupied-Free Triples  >---
1597     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
1598       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len);
1599       ast->fill_to(39);
1600       ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap);
1601       ast->fill_to(63);
1602       ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks);
1603       ast->cr();

1604     }
1605     STRINGSTREAM_FLUSH_LOCKED("\n\n")
1606   }

1607 }
1608 
1609 
1610 void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) {
1611   if (!initialization_complete) {
1612     return;
1613   }
1614 
1615   const char* heapName   = get_heapName(heap);
1616   get_HeapStatGlobals(out, heapName);
1617 
1618   if ((StatArray == NULL) || (alloc_granules == 0)) {
1619     return;
1620   }
1621   STRINGSTREAM_DECL(ast, out)
1622 
1623   unsigned int granules_per_line = 32;
1624   char*        low_bound         = heap->low_boundary();
1625 
1626   {
1627     printBox(ast, '=', "B L O C K   C O U N T S   for ", heapName);
1628     ast->print_cr("  Each granule contains an individual number of heap blocks. Large blocks\n"
1629                   "  may span multiple granules and are counted for each granule they touch.\n");
1630     if (segment_granules) {
1631       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
1632                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
1633                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1634                     "  Occupied granules show their BlobType character, see legend.\n");
1635       print_blobType_legend(ast);
1636     }
1637     STRINGSTREAM_FLUSH_LOCKED("")
1638   }
1639 
1640   {
1641     if (segment_granules) {
1642       printBox(ast, '-', "Total (all types) count for granule size == segment size", NULL);
1643       STRINGSTREAM_FLUSH_LOCKED("")
1644 
1645       granules_per_line = 128;
1646       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1647         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1648         print_blobType_single(ast, StatArray[ix].type);
1649       }
1650     } else {
1651       printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1652       STRINGSTREAM_FLUSH_LOCKED("")
1653 
1654       granules_per_line = 128;
1655       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1656         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1657         unsigned int count = StatArray[ix].t1_count   + StatArray[ix].t2_count   + StatArray[ix].tx_count
1658                            + StatArray[ix].stub_count + StatArray[ix].dead_count;
1659         print_count_single(ast, count);
1660       }
1661     }
1662     STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1663   }
1664 
1665   {
1666     if (nBlocks_t1 > 0) {
1667       printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1668       STRINGSTREAM_FLUSH_LOCKED("")
1669 
1670       granules_per_line = 128;
1671       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1672         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1673         if (segment_granules && StatArray[ix].t1_count > 0) {
1674           print_blobType_single(ast, StatArray[ix].type);
1675         } else {
1676           print_count_single(ast, StatArray[ix].t1_count);
1677         }
1678       }
1679       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1680     } else {
1681       ast->print("No Tier1 nMethods found in CodeHeap.");
1682       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1683     }

1684   }
1685 
1686   {
1687     if (nBlocks_t2 > 0) {
1688       printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1689       STRINGSTREAM_FLUSH_LOCKED("")
1690 
1691       granules_per_line = 128;
1692       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1693         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1694         if (segment_granules && StatArray[ix].t2_count > 0) {
1695           print_blobType_single(ast, StatArray[ix].type);
1696         } else {
1697           print_count_single(ast, StatArray[ix].t2_count);
1698         }
1699       }
1700       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1701     } else {
1702       ast->print("No Tier2 nMethods found in CodeHeap.");
1703       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1704     }

1705   }
1706 
1707   {
1708     if (nBlocks_alive > 0) {
1709       printBox(ast, '-', "not_used/not_entrant/not_installed nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1710       STRINGSTREAM_FLUSH_LOCKED("")
1711 
1712       granules_per_line = 128;
1713       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1714         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1715         if (segment_granules && StatArray[ix].tx_count > 0) {
1716           print_blobType_single(ast, StatArray[ix].type);
1717         } else {
1718           print_count_single(ast, StatArray[ix].tx_count);
1719         }
1720       }
1721       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1722     } else {
1723       ast->print("No not_used/not_entrant nMethods found in CodeHeap.");
1724       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1725     }

1726   }
1727 
1728   {
1729     if (nBlocks_stub > 0) {
1730       printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1731       STRINGSTREAM_FLUSH_LOCKED("")
1732 
1733       granules_per_line = 128;
1734       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1735         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1736         if (segment_granules && StatArray[ix].stub_count > 0) {
1737           print_blobType_single(ast, StatArray[ix].type);
1738         } else {
1739           print_count_single(ast, StatArray[ix].stub_count);
1740         }
1741       }
1742       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1743     } else {
1744       ast->print("No Stubs and Blobs found in CodeHeap.");
1745       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1746     }

1747   }
1748 
1749   {
1750     if (nBlocks_dead > 0) {
1751       printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1752       STRINGSTREAM_FLUSH_LOCKED("")
1753 
1754       granules_per_line = 128;
1755       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1756         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1757         if (segment_granules && StatArray[ix].dead_count > 0) {
1758           print_blobType_single(ast, StatArray[ix].type);
1759         } else {
1760           print_count_single(ast, StatArray[ix].dead_count);
1761         }
1762       }
1763       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1764     } else {
1765       ast->print("No dead nMethods found in CodeHeap.");
1766       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1767     }

1768   }
1769 
1770   {
1771     if (!segment_granules) { // Prevent totally redundant printouts
1772       printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL);
1773       STRINGSTREAM_FLUSH_LOCKED("")
1774 
1775       granules_per_line = 24;
1776       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1777         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1778 
1779         print_count_single(ast, StatArray[ix].t1_count);
1780         ast->print(":");
1781         print_count_single(ast, StatArray[ix].t2_count);
1782         ast->print(":");
1783         if (segment_granules && StatArray[ix].stub_count > 0) {
1784           print_blobType_single(ast, StatArray[ix].type);
1785         } else {
1786           print_count_single(ast, StatArray[ix].stub_count);
1787         }
1788         ast->print(" ");
1789       }
1790       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1791     }
1792   }
1793 }
1794 
1795 
1796 void CodeHeapState::print_space(outputStream* out, CodeHeap* heap) {
1797   if (!initialization_complete) {
1798     return;
1799   }
1800 
1801   const char* heapName   = get_heapName(heap);
1802   get_HeapStatGlobals(out, heapName);
1803 
1804   if ((StatArray == NULL) || (alloc_granules == 0)) {
1805     return;
1806   }
1807   STRINGSTREAM_DECL(ast, out)
1808 
1809   unsigned int granules_per_line = 32;
1810   char*        low_bound         = heap->low_boundary();
1811 
1812   {
1813     printBox(ast, '=', "S P A C E   U S A G E  &  F R A G M E N T A T I O N   for ", heapName);
1814     ast->print_cr("  The heap space covered by one granule is occupied to a various extend.\n"
1815                   "  The granule occupancy is displayed by one decimal digit per granule.\n");
1816     if (segment_granules) {
1817       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
1818                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
1819                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1820                     "  Occupied granules show their BlobType character, see legend.\n");
1821       print_blobType_legend(ast);
1822     } else {
1823       ast->print_cr("  These digits represent a fill percentage range (see legend).\n");
1824       print_space_legend(ast);
1825     }
1826     STRINGSTREAM_FLUSH_LOCKED("")
1827   }
1828 
1829   {
1830     if (segment_granules) {
1831       printBox(ast, '-', "Total (all types) space consumption for granule size == segment size", NULL);
1832       STRINGSTREAM_FLUSH_LOCKED("")
1833 
1834       granules_per_line = 128;
1835       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1836         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1837         print_blobType_single(ast, StatArray[ix].type);
1838       }
1839     } else {
1840       printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL);
1841       STRINGSTREAM_FLUSH_LOCKED("")
1842 
1843       granules_per_line = 128;
1844       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1845         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1846         unsigned int space    = StatArray[ix].t1_space   + StatArray[ix].t2_space  + StatArray[ix].tx_space
1847                               + StatArray[ix].stub_space + StatArray[ix].dead_space;
1848         print_space_single(ast, space);
1849       }
1850     }
1851     STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1852   }
1853 
1854   {
1855     if (nBlocks_t1 > 0) {
1856       printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL);
1857       STRINGSTREAM_FLUSH_LOCKED("")
1858 
1859       granules_per_line = 128;
1860       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1861         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1862         if (segment_granules && StatArray[ix].t1_space > 0) {
1863           print_blobType_single(ast, StatArray[ix].type);
1864         } else {
1865           print_space_single(ast, StatArray[ix].t1_space);
1866         }
1867       }
1868       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1869     } else {
1870       ast->print("No Tier1 nMethods found in CodeHeap.");
1871       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1872     }

1873   }
1874 
1875   {
1876     if (nBlocks_t2 > 0) {
1877       printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL);
1878       STRINGSTREAM_FLUSH_LOCKED("")
1879 
1880       granules_per_line = 128;
1881       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1882         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1883         if (segment_granules && StatArray[ix].t2_space > 0) {
1884           print_blobType_single(ast, StatArray[ix].type);
1885         } else {
1886           print_space_single(ast, StatArray[ix].t2_space);
1887         }
1888       }
1889       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1890     } else {
1891       ast->print("No Tier2 nMethods found in CodeHeap.");
1892       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1893     }

1894   }
1895 
1896   {
1897     if (nBlocks_alive > 0) {
1898       printBox(ast, '-', "not_used/not_entrant/not_installed space consumption. ' ' indicates empty, '*' indicates full", NULL);
1899 
1900       granules_per_line = 128;
1901       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1902         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1903         if (segment_granules && StatArray[ix].tx_space > 0) {
1904           print_blobType_single(ast, StatArray[ix].type);
1905         } else {
1906           print_space_single(ast, StatArray[ix].tx_space);
1907         }
1908       }
1909       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1910     } else {
1911       ast->print("No Tier2 nMethods found in CodeHeap.");
1912       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1913     }

1914   }
1915 
1916   {
1917     if (nBlocks_stub > 0) {
1918       printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL);
1919       STRINGSTREAM_FLUSH_LOCKED("")
1920 
1921       granules_per_line = 128;
1922       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1923         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1924         if (segment_granules && StatArray[ix].stub_space > 0) {
1925           print_blobType_single(ast, StatArray[ix].type);
1926         } else {
1927           print_space_single(ast, StatArray[ix].stub_space);
1928         }
1929       }
1930       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1931     } else {
1932       ast->print("No Stubs and Blobs found in CodeHeap.");
1933       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1934     }

1935   }
1936 
1937   {
1938     if (nBlocks_dead > 0) {
1939       printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL);
1940       STRINGSTREAM_FLUSH_LOCKED("")
1941 
1942       granules_per_line = 128;
1943       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1944         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1945         print_space_single(ast, StatArray[ix].dead_space);
1946       }
1947       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1948     } else {
1949       ast->print("No dead nMethods found in CodeHeap.");
1950       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1951     }

1952   }
1953 
1954   {
1955     if (!segment_granules) { // Prevent totally redundant printouts
1956       printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL);
1957       STRINGSTREAM_FLUSH_LOCKED("")
1958 
1959       granules_per_line = 24;
1960       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1961         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1962 
1963         if (segment_granules && StatArray[ix].t1_space > 0) {
1964           print_blobType_single(ast, StatArray[ix].type);
1965         } else {
1966           print_space_single(ast, StatArray[ix].t1_space);
1967         }
1968         ast->print(":");
1969         if (segment_granules && StatArray[ix].t2_space > 0) {
1970           print_blobType_single(ast, StatArray[ix].type);
1971         } else {
1972           print_space_single(ast, StatArray[ix].t2_space);
1973         }
1974         ast->print(":");
1975         if (segment_granules && StatArray[ix].stub_space > 0) {
1976           print_blobType_single(ast, StatArray[ix].type);
1977         } else {
1978           print_space_single(ast, StatArray[ix].stub_space);
1979         }
1980         ast->print(" ");
1981       }
1982       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")

1983     }
1984   }
1985 }
1986 
1987 void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) {
1988   if (!initialization_complete) {
1989     return;
1990   }
1991 
1992   const char* heapName   = get_heapName(heap);
1993   get_HeapStatGlobals(out, heapName);
1994 
1995   if ((StatArray == NULL) || (alloc_granules == 0)) {
1996     return;
1997   }
1998   STRINGSTREAM_DECL(ast, out)
1999 
2000   unsigned int granules_per_line = 32;
2001   char*        low_bound         = heap->low_boundary();
2002 
2003   {
2004     printBox(ast, '=', "M E T H O D   A G E   by CompileID for ", heapName);
2005     ast->print_cr("  The age of a compiled method in the CodeHeap is not available as a\n"
2006                   "  time stamp. Instead, a relative age is deducted from the method's compilation ID.\n"
2007                   "  Age information is available for tier1 and tier2 methods only. There is no\n"
2008                   "  age information for stubs and blobs, because they have no compilation ID assigned.\n"
2009                   "  Information for the youngest method (highest ID) in the granule is printed.\n"
2010                   "  Refer to the legend to learn how method age is mapped to the displayed digit.");
2011     print_age_legend(ast);
2012     STRINGSTREAM_FLUSH_LOCKED("")
2013   }
2014 
2015   {
2016     printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2017     STRINGSTREAM_FLUSH_LOCKED("")
2018 
2019     granules_per_line = 128;
2020     for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2021       print_line_delim(out, ast, low_bound, ix, granules_per_line);
2022       unsigned int age1      = StatArray[ix].t1_age;
2023       unsigned int age2      = StatArray[ix].t2_age;
2024       unsigned int agex      = StatArray[ix].tx_age;
2025       unsigned int age       = age1 > age2 ? age1 : age2;
2026       age       = age > agex ? age : agex;
2027       print_age_single(ast, age);
2028     }
2029     STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")

2030   }
2031 
2032   {
2033     if (nBlocks_t1 > 0) {
2034       printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2035       STRINGSTREAM_FLUSH_LOCKED("")
2036 
2037       granules_per_line = 128;
2038       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2039         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2040         print_age_single(ast, StatArray[ix].t1_age);
2041       }
2042       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
2043     } else {
2044       ast->print("No Tier1 nMethods found in CodeHeap.");
2045       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
2046     }

2047   }
2048 
2049   {
2050     if (nBlocks_t2 > 0) {
2051       printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2052       STRINGSTREAM_FLUSH_LOCKED("")
2053 
2054       granules_per_line = 128;
2055       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2056         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2057         print_age_single(ast, StatArray[ix].t2_age);
2058       }
2059       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
2060     } else {
2061       ast->print("No Tier2 nMethods found in CodeHeap.");
2062       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
2063     }

2064   }
2065 
2066   {
2067     if (nBlocks_alive > 0) {
2068       printBox(ast, '-', "not_used/not_entrant/not_installed age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2069       STRINGSTREAM_FLUSH_LOCKED("")
2070 
2071       granules_per_line = 128;
2072       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2073         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2074         print_age_single(ast, StatArray[ix].tx_age);
2075       }
2076       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
2077     } else {
2078       ast->print("No Tier2 nMethods found in CodeHeap.");
2079       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
2080     }

2081   }
2082 
2083   {
2084     if (!segment_granules) { // Prevent totally redundant printouts
2085       printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2086       STRINGSTREAM_FLUSH_LOCKED("")
2087 
2088       granules_per_line = 32;
2089       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2090         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2091         print_age_single(ast, StatArray[ix].t1_age);
2092         ast->print(":");
2093         print_age_single(ast, StatArray[ix].t2_age);
2094         ast->print(" ");
2095       }
2096       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")

2097     }
2098   }
2099 }
2100 
2101 
2102 void CodeHeapState::print_names(outputStream* out, CodeHeap* heap) {
2103   if (!initialization_complete) {
2104     return;
2105   }
2106 
2107   const char* heapName   = get_heapName(heap);
2108   get_HeapStatGlobals(out, heapName);
2109 
2110   if ((StatArray == NULL) || (alloc_granules == 0)) {
2111     return;
2112   }
2113   STRINGSTREAM_DECL(ast, out)
2114 
2115   unsigned int granules_per_line   = 128;
2116   char*        low_bound           = heap->low_boundary();
2117   CodeBlob*    last_blob           = NULL;
2118   bool         name_in_addr_range  = true;
2119   bool         have_CodeCache_lock = CodeCache_lock->owned_by_self();
2120 
2121   //---<  print at least 128K per block (i.e. between headers)  >---
2122   if (granules_per_line*granule_size < 128*K) {
2123     granules_per_line = (unsigned int)((128*K)/granule_size);
2124   }
2125 
2126   printBox(ast, '=', "M E T H O D   N A M E S   for ", heapName);
2127   ast->print_cr("  Method names are dynamically retrieved from the code cache at print time.\n"
2128                 "  Due to the living nature of the code heap and because the CodeCache_lock\n"
2129                 "  is not continuously held, the displayed name might be wrong or no name\n"
2130                 "  might be found at all. The likelihood for that to happen increases\n"
2131                 "  over time passed between aggregtion and print steps.\n");
2132   STRINGSTREAM_FLUSH_LOCKED("")
2133 
2134   for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2135     //---<  print a new blob on a new line  >---
2136     if (ix%granules_per_line == 0) {
2137       if (!name_in_addr_range) {
2138         ast->print_cr("No methods, blobs, or stubs found in this address range");
2139       }
2140       name_in_addr_range = false;
2141 
2142       size_t end_ix = (ix+granules_per_line <= alloc_granules) ? ix+granules_per_line : alloc_granules;
2143       ast->cr();
2144       ast->print_cr("--------------------------------------------------------------------");
2145       ast->print_cr("Address range [" INTPTR_FORMAT "," INTPTR_FORMAT "), " SIZE_FORMAT "k", p2i(low_bound+ix*granule_size), p2i(low_bound + end_ix*granule_size), (end_ix - ix)*granule_size/(size_t)K);
2146       ast->print_cr("--------------------------------------------------------------------");
2147       STRINGSTREAM_FLUSH_LOCKED("")
2148     }
2149     // Only check granule if it contains at least one blob.
2150     unsigned int nBlobs  = StatArray[ix].t1_count   + StatArray[ix].t2_count + StatArray[ix].tx_count +
2151                            StatArray[ix].stub_count + StatArray[ix].dead_count;
2152     if (nBlobs > 0 ) {
2153     for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) {
2154       // heap->find_start() is safe. Only works on _segmap.
2155       // Returns NULL or void*. Returned CodeBlob may be uninitialized.
2156       char*     this_seg  = low_bound + ix*granule_size + is;
2157       CodeBlob* this_blob = (CodeBlob*)(heap->find_start(this_seg));
2158       bool   blob_is_safe = blob_access_is_safe(this_blob, NULL);
2159       // blob could have been flushed, freed, and merged.
2160       // this_blob < last_blob is an indicator for that.
2161       if (blob_is_safe && (this_blob > last_blob)) {
2162         last_blob          = this_blob;
2163 
2164         //---<  get type and name  >---
2165         blobType       cbType = noType;
2166         if (segment_granules) {
2167           cbType = (blobType)StatArray[ix].type;


2175         //---<  access these fields only if we own the CodeCache_lock  >---
2176         const char* blob_name = "<unavailable>";
2177         nmethod*           nm = NULL;
2178         if (have_CodeCache_lock) {
2179           blob_name = this_blob->name();
2180           nm        = this_blob->as_nmethod_or_null();
2181           // this_blob->name() could return NULL if no name was given to CTOR. Inlined, maybe invisible on stack
2182           if ((blob_name == NULL) || !os::is_readable_pointer(blob_name)) {
2183             blob_name = "<unavailable>";
2184           }
2185         }
2186 
2187         //---<  print table header for new print range  >---
2188         if (!name_in_addr_range) {
2189           name_in_addr_range = true;
2190           ast->fill_to(51);
2191           ast->print("%9s", "compiler");
2192           ast->fill_to(61);
2193           ast->print_cr("%6s", "method");
2194           ast->print_cr("%18s %13s %17s %9s  %5s %18s  %s", "Addr(module)      ", "offset", "size", " type lvl", " temp", "blobType          ", "Name");
2195           STRINGSTREAM_FLUSH_LOCKED("")
2196         }
2197 
2198         //---<  print line prefix (address and offset from CodeHeap start)  >---
2199         ast->print(INTPTR_FORMAT, p2i(this_blob));
2200         ast->fill_to(19);
2201         ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
2202         ast->fill_to(33);
2203 
2204         // access nmethod and Method fields only if we own the CodeCache_lock.
2205         // This fact is implicitly transported via nm != NULL.
2206         if (CompiledMethod::nmethod_access_is_safe(nm)) {
2207           Method* method = nm->method();
2208           ResourceMark rm;
2209           //---<  collect all data to locals as quickly as possible  >---
2210           unsigned int total_size = nm->total_size();
2211           int          hotness    = nm->hotness_counter();
2212           bool         get_name   = (cbType == nMethod_inuse) || (cbType == nMethod_notused);
2213           //---<  nMethod size in hex  >---
2214           ast->print(PTR32_FORMAT, total_size);
2215           ast->print("(" SIZE_FORMAT_W(4) "K)", total_size/K);


2231             Symbol* methName  = method->name();
2232             const char*   methNameS = (methName == NULL) ? NULL : methName->as_C_string();
2233             methNameS = (methNameS == NULL) ? "<method name unavailable>" : methNameS;
2234             Symbol* methSig   = method->signature();
2235             const char*   methSigS  = (methSig  == NULL) ? NULL : methSig->as_C_string();
2236             methSigS  = (methSigS  == NULL) ? "<method signature unavailable>" : methSigS;
2237             ast->print("%s", methNameS);
2238             ast->print("%s", methSigS);
2239           } else {
2240             ast->print("%s", blob_name);
2241           }
2242         } else if (blob_is_safe) {
2243           ast->fill_to(62+6);
2244           ast->print("%s", blobTypeName[cbType]);
2245           ast->fill_to(82+6);
2246           ast->print("%s", blob_name);
2247         } else {
2248           ast->fill_to(62+6);
2249           ast->print("<stale blob>");
2250         }
2251         STRINGSTREAM_FLUSH_LOCKED("\n")

2252       } else if (!blob_is_safe && (this_blob != last_blob) && (this_blob != NULL)) {
2253         last_blob          = this_blob;
2254         STRINGSTREAM_FLUSH_LOCKED("\n")
2255       }
2256     }
2257     } // nBlobs > 0
2258   }
2259   STRINGSTREAM_FLUSH_LOCKED("\n\n")
2260 }
2261 
2262 
2263 void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) {
2264   unsigned int lineLen = 1 + 2 + 2 + 1;
2265   char edge, frame;
2266 
2267   if (text1 != NULL) {
2268     lineLen += (unsigned int)strlen(text1); // text1 is much shorter than MAX_INT chars.
2269   }
2270   if (text2 != NULL) {
2271     lineLen += (unsigned int)strlen(text2); // text2 is much shorter than MAX_INT chars.
2272   }
2273   if (border == '-') {
2274     edge  = '+';
2275     frame = '|';
2276   } else {
2277     edge  = border;
2278     frame = border;
2279   }


2376     if (ix > 0) {
2377       ast->print("|");
2378     }
2379     ast->cr();
2380     assert(out == ast, "must use the same stream!");
2381 
2382     ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2383     ast->fill_to(19);
2384     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2385   }
2386 }
2387 
2388 void CodeHeapState::print_line_delim(outputStream* out, bufferedStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
2389   assert(out != ast, "must not use the same stream!");
2390   if (ix % gpl == 0) {
2391     if (ix > 0) {
2392       ast->print("|");
2393     }
2394     ast->cr();
2395 
2396     { // can't use STRINGSTREAM_FLUSH_LOCKED("") here.




2397       ttyLocker ttyl;
2398       out->print("%s", ast->as_string());
2399       ast->reset();
2400     }
2401 
2402     ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2403     ast->fill_to(19);
2404     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2405   }
2406 }
2407 
2408 CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) {
2409   if ((cb != NULL) && os::is_readable_pointer(cb)) {
2410     if (cb->is_runtime_stub())                return runtimeStub;
2411     if (cb->is_deoptimization_stub())         return deoptimizationStub;
2412     if (cb->is_uncommon_trap_stub())          return uncommonTrapStub;
2413     if (cb->is_exception_stub())              return exceptionStub;
2414     if (cb->is_safepoint_stub())              return safepointStub;
2415     if (cb->is_adapter_blob())                return adapterBlob;
2416     if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob;




   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // With this declaration macro, it is possible to switch between
  27 //  - direct output into an argument-passed outputStream and
  28 //  - buffered output into a bufferedStream with subsequent flush
  29 //    of the filled buffer to the outputStream.
  30 #define USE_BUFFEREDSTREAM
  31 
  32 #include "precompiled.hpp"
  33 #include "code/codeHeapState.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "runtime/sweeper.hpp"
  36 
  37 // -------------------------
  38 // |  General Description  |
  39 // -------------------------
  40 // The CodeHeap state analytics are divided in two parts.
  41 // The first part examines the entire CodeHeap and aggregates all
  42 // information that is believed useful/important.
  43 //
  44 // Aggregation condenses the information of a piece of the CodeHeap
  45 // (4096 bytes by default) into an analysis granule. These granules
  46 // contain enough detail to gain initial insight while keeping the
  47 // internal structure sizes in check.
  48 //
  49 // The second part, which consists of several, independent steps,
  50 // prints the previously collected information with emphasis on
  51 // various aspects.


  62 // The CodeHeap state analytics do have some memory footprint.
  63 // The "aggregate" step allocates some data structures to hold the aggregated
  64 // information for later output. These data structures live until they are
  65 // explicitly discarded (function "discard") or until the VM terminates.
  66 // There is one exception: the function "all" does not leave any data
  67 // structures allocated.
  68 //
  69 // Requests for real-time, on-the-fly analysis can be issued via
  70 //   jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>]
  71 //
  72 // If you are (only) interested in how the CodeHeap looks like after running
  73 // a sample workload, you can use the command line option
  74 //   -XX:+PrintCodeHeapAnalytics
  75 // It will cause a full analysis to be written to tty. In addition, a full
  76 // analysis will be written the first time a "CodeCache full" condition is
  77 // detected.
  78 //
  79 // The command line option produces output identical to the jcmd function
  80 //   jcmd <pid> Compiler.CodeHeap_Analytics all 4096
  81 // ---------------------------------------------------------------------------------







  82 //
  83 // There are instances when composing an output line or a small set of
  84 // output lines out of many tty->print() calls creates significant overhead.
  85 // Writing to a bufferedStream buffer first has a significant advantage:
  86 // It uses noticeably less cpu cycles and reduces (when writing to a
  87 // network file) the required bandwidth by at least a factor of ten. Observed on MacOS.
  88 // That clearly makes up for the increased code complexity.
  89 //
  90 // Conversion of existing code is easy and straightforward, if the code already
  91 // uses a parameterized output destination, e.g. "outputStream st".
  92 //  - rename the formal parameter to any other name, e.g. out_st.
  93 //  - at a suitable place in your code, insert
  94 //      BUFFEREDSTEAM_DECL(buf_st, out_st)
  95 // This will provide all the declarations necessary. After that, all
  96 // buf_st->print() (and the like) calls will be directed to a bufferedStream object.
  97 // Once a block of output (a line or a small set of lines) is composed, insert
  98 //      BUFFEREDSTREAM_FLUSH(termstring)
  99 // to flush the bufferedStream to the final destination out_st. termstring is just
 100 // an arbitrary string (e.g. "\n") which is appended to the bufferedStream before
 101 // being written to out_st. Be aware that the last character written MUST be a '\n'.
 102 // Otherwise, buf_st->position() does not correspond to out_st->position() any longer.
 103 //      BUFFEREDSTREAM_FLUSH_LOCKED(termstring)
 104 // does the same thing, protected by the ttyLocker lock.
 105 //      BUFFEREDSTREAM_FLUSH_IF(termstring, remSize)
 106 // does a flush only if the remaining buffer space is less than remSize.
 107 //
 108 // To activate, #define USE_BUFFERED_STREAM before including this header.
 109 // If not activated, output will directly go to the originally used outputStream
 110 // with no additional overhead.
 111 //
 112 #if defined(USE_BUFFEREDSTREAM)
 113 // All necessary declarations to print via a bufferedStream
 114 // This macro must be placed before any other BUFFEREDSTREAM*
 115 // macro in the function.
 116 #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa)       \
 117     ResourceMark         _rm;                                 \
 118     /* _anyst  name of the stream as used in the code */      \
 119     /* _outst  stream where final output will go to   */      \
 120     /* _capa   allocated capacity of stream buffer    */      \
 121     size_t           _nflush = 0;                             \
 122     size_t     _nforcedflush = 0;                             \
 123     size_t      _nsavedflush = 0;                             \
 124     size_t     _nlockedflush = 0;                             \
 125     size_t     _nflush_bytes = 0;                             \
 126     size_t         _capacity = _capa;                         \
 127     bufferedStream   _sstobj = bufferedStream(_capa);         \
 128     bufferedStream*  _sstbuf = &_sstobj;                      \
 129     outputStream*    _outbuf = _outst;                        \
 130     bufferedStream*   _anyst = &_sstobj; /* any stream. Use this to just print - no buffer flush.  */
 131 
 132 // Same as above, but with fixed buffer size.
 133 #define BUFFEREDSTREAM_DECL(_anyst, _outst)                   \
 134     BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K);
 135 
 136 // Flush the buffer contents unconditionally.
 137 // No action if the buffer is empty.
 138 #define BUFFEREDSTREAM_FLUSH(_termString)                     \
 139     if (((_termString) != NULL) && (strlen(_termString) > 0)){\
 140       _sstbuf->print("%s", _termString);                      \
 141     }                                                         \
 142     if (_sstbuf != _outbuf) {                                 \
 143       if (_sstbuf->size() != 0) {                             \
 144         _nforcedflush++; _nflush_bytes += _sstbuf->size();    \
 145         _outbuf->print("%s", _sstbuf->as_string());           \
 146         _sstbuf->reset();                                     \
 147       }                                                       \



 148     }
 149 
 150 // Flush the buffer contents if the remaining capacity is
 151 // less than the given threshold.
 152 #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize)        \
 153     if (((_termString) != NULL) && (strlen(_termString) > 0)){\
 154       _sstbuf->print("%s", _termString);                      \
 155     }                                                         \
 156     if (_sstbuf != _outbuf) {                                 \
 157       if ((_capacity - _sstbuf->size()) < (size_t)(_remSize)){\
 158         _nflush++; _nforcedflush--;                           \
 159         BUFFEREDSTREAM_FLUSH("")                              \
 160       } else {                                                \
 161         _nsavedflush++;                                       \
 162       }                                                       \
 163     }
 164 
 165 // Flush the buffer contents if the remaining capacity is less
 166 // than the calculated threshold (256 bytes + capacity/16)
 167 // That should suffice for all reasonably sized output lines.
 168 #define BUFFEREDSTREAM_FLUSH_AUTO(_termString)                \
 169     BUFFEREDSTREAM_FLUSH_IF(_termString, 256+(_capacity>>4))
 170 
 171 #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString)              \
 172     { ttyLocker ttyl;/* keep this output block together */    \
 173       _nlockedflush++;                                        \
 174       BUFFEREDSTREAM_FLUSH(_termString)                       \
 175     }
 176 
 177 // #define BUFFEREDSTREAM_FLUSH_STAT()                           \
 178 //     if (_sstbuf != _outbuf) {                                 \
 179 //       _outbuf->print_cr("%ld flushes (buffer full), %ld forced, %ld locked, %ld bytes total, %ld flushes saved", _nflush, _nforcedflush, _nlockedflush, _nflush_bytes, _nsavedflush); \
 180 //    }
 181 
 182 #define BUFFEREDSTREAM_FLUSH_STAT()
 183 #else
 184 #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa)       \
 185     size_t       _capacity = _capa;                           \
 186     outputStream*  _outbuf = _outst;                          \
 187     outputStream*  _anyst  = _outst;   /* any stream. Use this to just print - no buffer flush.  */
 188 
 189 #define BUFFEREDSTREAM_DECL(_anyst, _outst)                   \
 190     BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K)
 191 
 192 #define BUFFEREDSTREAM_FLUSH(_termString)                     \
 193     if (((_termString) != NULL) && (strlen(_termString) > 0)){\
 194       _outbuf->print("%s", _termString);                      \
 195     }
 196 
 197 #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize)        \
 198     BUFFEREDSTREAM_FLUSH(_termString)
 199 
 200 #define BUFFEREDSTREAM_FLUSH_AUTO(_termString)                \
 201     BUFFEREDSTREAM_FLUSH(_termString)
 202 
 203 #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString)              \
 204     BUFFEREDSTREAM_FLUSH(_termString)
 205 
 206 #define BUFFEREDSTREAM_FLUSH_STAT()

 207 #endif
 208 #define HEX32_FORMAT  "0x%x"  // just a helper format string used below multiple times
 209 
 210 const char  blobTypeChar[] = {' ', 'C', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' };
 211 const char* blobTypeName[] = {"noType"
 212                              ,     "nMethod (under construction)"
 213                              ,          "nMethod (active)"
 214                              ,               "nMethod (inactive)"
 215                              ,                    "nMethod (deopt)"
 216                              ,                         "nMethod (zombie)"
 217                              ,                              "nMethod (unloaded)"
 218                              ,                                   "runtime stub"
 219                              ,                                        "ricochet stub"
 220                              ,                                             "deopt stub"
 221                              ,                                                  "uncommon trap stub"
 222                              ,                                                       "exception stub"
 223                              ,                                                            "safepoint stub"
 224                              ,                                                                 "adapter blob"
 225                              ,                                                                      "MH adapter blob"
 226                              ,                                                                           "buffer blob"
 227                              ,                                                                                "lastType"
 228                              };


 535   unsigned int nBlocks_used    = 0;
 536   unsigned int nBlocks_zomb    = 0;
 537   unsigned int nBlocks_disconn = 0;
 538   unsigned int nBlocks_notentr = 0;
 539 
 540   //---<  max & min of TopSizeArray  >---
 541   //  it is sufficient to have these sizes as 32bit unsigned ints.
 542   //  The CodeHeap is limited in size to 4GB. Furthermore, the sizes
 543   //  are stored in _segment_size units, scaling them down by a factor of 64 (at least).
 544   unsigned int  currMax          = 0;
 545   unsigned int  currMin          = 0;
 546   unsigned int  currMin_ix       = 0;
 547   unsigned long total_iterations = 0;
 548 
 549   bool  done             = false;
 550   const int min_granules = 256;
 551   const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M
 552                                   // results in StatArray size of 24M (= max_granules * 48 Bytes per element)
 553                                   // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit.
 554   const char* heapName   = get_heapName(heap);
 555   BUFFEREDSTREAM_DECL(ast, out)
 556 
 557   if (!initialization_complete) {
 558     memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray));
 559     initialization_complete = true;
 560 
 561     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (general remarks)", NULL);
 562     ast->print_cr("   The code heap analysis function provides deep insights into\n"
 563                   "   the inner workings and the internal state of the Java VM's\n"
 564                   "   code cache - the place where all the JVM generated machine\n"
 565                   "   code is stored.\n"
 566                   "   \n"
 567                   "   This function is designed and provided for support engineers\n"
 568                   "   to help them understand and solve issues in customer systems.\n"
 569                   "   It is not intended for use and interpretation by other persons.\n"
 570                   "   \n");
 571     BUFFEREDSTREAM_FLUSH("")
 572   }
 573   get_HeapStatGlobals(out, heapName);
 574 
 575 
 576   // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock,
 577   // all heap information is "constant" and can be safely extracted/calculated before we
 578   // enter the while() loop. Actually, the loop will only be iterated once.
 579   char*  low_bound     = heap->low_boundary();
 580   size_t size          = heap->capacity();
 581   size_t res_size      = heap->max_capacity();
 582   seg_size             = heap->segment_size();
 583   log2_seg_size        = seg_size == 0 ? 0 : exact_log2(seg_size);  // This is a global static value.
 584 
 585   if (seg_size == 0) {
 586     printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment ", heapName);
 587     BUFFEREDSTREAM_FLUSH("")
 588     return;
 589   }
 590 
 591   if (!CodeCache_lock->owned_by_self()) {
 592     printBox(ast, '-', "aggregate function called without holding the CodeCache_lock for ", heapName);
 593     BUFFEREDSTREAM_FLUSH("")
 594     return;
 595   }
 596 
 597   // Calculate granularity of analysis (and output).
 598   //   The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize.
 599   //   The CodeHeap can become fairly large, in particular in productive real-life systems.
 600   //
 601   //   It is often neither feasible nor desirable to aggregate the data with the highest possible
 602   //   level of detail, i.e. inspecting and printing each segment on its own.
 603   //
 604   //   The granularity parameter allows to specify the level of detail available in the analysis.
 605   //   It must be a positive multiple of the segment size and should be selected such that enough
 606   //   detail is provided while, at the same time, the printed output does not explode.
 607   //
 608   //   By manipulating the granularity value, we enforce that at least min_granules units
 609   //   of analysis are available. We also enforce an upper limit of max_granules units to
 610   //   keep the amount of allocated storage in check.
 611   //
 612   //   Finally, we adjust the granularity such that each granule covers at most 64k-1 segments.
 613   //   This is necessary to prevent an unsigned short overflow while accumulating space information.


 629   granularity = granularity & (~(seg_size - 1));                       // must be multiple of seg_size
 630   if (granularity>>log2_seg_size >= (1L<<sizeof(unsigned short)*8)) {
 631     granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<log2_seg_size; // Limit: (64k-1) * seg_size
 632   }
 633   segment_granules = granularity == seg_size;
 634   size_t granules  = (size + (granularity-1))/granularity;
 635 
 636   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (used blocks) for segment ", heapName);
 637   ast->print_cr("   The aggregate step takes an aggregated snapshot of the CodeHeap.\n"
 638                 "   Subsequent print functions create their output based on this snapshot.\n"
 639                 "   The CodeHeap is a living thing, and every effort has been made for the\n"
 640                 "   collected data to be consistent. Only the method names and signatures\n"
 641                 "   are retrieved at print time. That may lead to rare cases where the\n"
 642                 "   name of a method is no longer available, e.g. because it was unloaded.\n");
 643   ast->print_cr("   CodeHeap committed size " SIZE_FORMAT "K (" SIZE_FORMAT "M), reserved size " SIZE_FORMAT "K (" SIZE_FORMAT "M), %d%% occupied.",
 644                 size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size));
 645   ast->print_cr("   CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity.", seg_size);
 646   ast->print_cr("   CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes.", granules, granularity);
 647   ast->print_cr("   Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K);
 648   ast->print_cr("   The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules));
 649   BUFFEREDSTREAM_FLUSH("\n")
 650 
 651 
 652   while (!done) {
 653     //---<  reset counters with every aggregation  >---
 654     nBlocks_t1       = 0;
 655     nBlocks_t2       = 0;
 656     nBlocks_alive    = 0;
 657     nBlocks_dead     = 0;
 658     nBlocks_inconstr = 0;
 659     nBlocks_unloaded = 0;
 660     nBlocks_stub     = 0;
 661 
 662     nBlocks_free     = 0;
 663     nBlocks_used     = 0;
 664     nBlocks_zomb     = 0;
 665     nBlocks_disconn  = 0;
 666     nBlocks_notentr  = 0;
 667 
 668     //---<  discard old arrays if size does not match  >---
 669     if (granules != alloc_granules) {


 718       // This is a diagnostic function. It is not supposed to tear down the VM.
 719       if ((char*)h <  low_bound) {
 720         insane = true; ast->print_cr("Sanity check: HeapBlock @%p below low bound (%p)", (char*)h, low_bound);
 721       }
 722       if ((char*)h >  (low_bound + res_size)) {
 723         insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside reserved range (%p)", (char*)h, low_bound + res_size);
 724       }
 725       if ((char*)h >  (low_bound + size)) {
 726         insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside used range (%p)", (char*)h, low_bound + size);
 727       }
 728       if (ix_end   >= granules) {
 729         insane = true; ast->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")", ix_end, granules);
 730       }
 731       if (size     != heap->capacity()) {
 732         insane = true; ast->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)", size/(size_t)K, heap->capacity()/(size_t)K);
 733       }
 734       if (ix_beg   >  ix_end) {
 735         insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg);
 736       }
 737       if (insane) {
 738         BUFFEREDSTREAM_FLUSH("")
 739         continue;
 740       }
 741 
 742       if (h->free()) {
 743         nBlocks_free++;
 744         freeSpace    += hb_bytelen;
 745         if (hb_bytelen > maxFreeSize) {
 746           maxFreeSize   = hb_bytelen;
 747           maxFreeBlock  = h;
 748         }
 749       } else {
 750         update_SizeDistArray(out, hb_len);
 751         nBlocks_used++;
 752         usedSpace    += hb_bytelen;
 753         CodeBlob* cb  = (CodeBlob*)heap->find_start(h);
 754         if (cb != NULL) {
 755           cbType = get_cbType(cb);
 756           if (cb->is_nmethod()) {
 757             compile_id = ((nmethod*)cb)->compile_id();
 758             comp_lvl   = (CompLevel)((nmethod*)cb)->comp_level();


1107       ast->cr();
1108       ast->print_cr("latest allocated compilation id = %d", latest_compilation_id);
1109       ast->print_cr("highest observed compilation id = %d", highest_compilation_id);
1110       ast->print_cr("Building TopSizeList iterations = %ld", total_iterations);
1111       ast->cr();
1112 
1113       int             reset_val = NMethodSweeper::hotness_counter_reset_val();
1114       double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size;
1115       printBox(ast, '-', "Method hotness information at time of this analysis", NULL);
1116       ast->print_cr("Highest possible method temperature:          %12d", reset_val);
1117       ast->print_cr("Threshold for method to be considered 'cold': %12.3f", -reset_val + reverse_free_ratio * NmethodSweepActivity);
1118       if (n_methods > 0) {
1119         avgTemp = hotnessAccumulator/n_methods;
1120         ast->print_cr("min. hotness = %6d", minTemp);
1121         ast->print_cr("avg. hotness = %6d", avgTemp);
1122         ast->print_cr("max. hotness = %6d", maxTemp);
1123       } else {
1124         avgTemp = 0;
1125         ast->print_cr("No hotness data available");
1126       }
1127       BUFFEREDSTREAM_FLUSH("\n")
1128 
1129       // This loop is intentionally printing directly to "out".
1130       // It should not print anything, anyway.
1131       out->print("Verifying collected data...");
1132       size_t granule_segs = granule_size>>log2_seg_size;
1133       for (unsigned int ix = 0; ix < granules; ix++) {
1134         if (StatArray[ix].t1_count   > granule_segs) {
1135           out->print_cr("t1_count[%d]   = %d", ix, StatArray[ix].t1_count);
1136         }
1137         if (StatArray[ix].t2_count   > granule_segs) {
1138           out->print_cr("t2_count[%d]   = %d", ix, StatArray[ix].t2_count);
1139         }
1140         if (StatArray[ix].tx_count   > granule_segs) {
1141           out->print_cr("tx_count[%d]   = %d", ix, StatArray[ix].tx_count);
1142         }
1143         if (StatArray[ix].stub_count > granule_segs) {
1144           out->print_cr("stub_count[%d] = %d", ix, StatArray[ix].stub_count);
1145         }
1146         if (StatArray[ix].dead_count > granule_segs) {
1147           out->print_cr("dead_count[%d] = %d", ix, StatArray[ix].dead_count);


1189           }
1190         }
1191       }
1192       out->print_cr("...done\n\n");
1193     } else {
1194       // insane heap state detected. Analysis data incomplete. Just throw it away.
1195       discard_StatArray(out);
1196       discard_TopSizeArray(out);
1197     }
1198   }
1199 
1200 
1201   done        = false;
1202   while (!done && (nBlocks_free > 0)) {
1203 
1204     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (free blocks) for segment ", heapName);
1205     ast->print_cr("   The aggregate step collects information about all free blocks in CodeHeap.\n"
1206                   "   Subsequent print functions create their output based on this snapshot.\n");
1207     ast->print_cr("   Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free);
1208     ast->print_cr("   Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K);
1209     BUFFEREDSTREAM_FLUSH("\n")
1210 
1211     //----------------------------------------
1212     //--  Prepare the FreeArray of FreeBlks --
1213     //----------------------------------------
1214 
1215     //---< discard old array if size does not match  >---
1216     if (nBlocks_free != alloc_freeBlocks) {
1217       discard_FreeArray(out);
1218     }
1219 
1220     prepare_FreeArray(out, nBlocks_free, heapName);
1221     if (FreeArray == NULL) {
1222       done = true;
1223       continue;
1224     }
1225 
1226     //----------------------------------------
1227     //--  Collect all FreeBlks in FreeArray --
1228     //----------------------------------------
1229 
1230     unsigned int ix = 0;
1231     FreeBlock* cur  = heap->freelist();
1232 
1233     while (cur != NULL) {
1234       if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated
1235         FreeArray[ix].start = cur;
1236         FreeArray[ix].len   = (unsigned int)(cur->length()<<log2_seg_size);
1237         FreeArray[ix].index = ix;
1238       }
1239       cur  = cur->link();
1240       ix++;
1241     }
1242     if (ix != alloc_freeBlocks) {
1243       ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix);
1244       ast->print_cr("I will update the counter and retry data collection");
1245       BUFFEREDSTREAM_FLUSH("\n")
1246       nBlocks_free = ix;
1247       continue;
1248     }
1249     done = true;
1250   }
1251 
1252   if (!done || (nBlocks_free == 0)) {
1253     if (nBlocks_free == 0) {
1254       printBox(ast, '-', "no free blocks found in ", heapName);
1255     } else if (!done) {
1256       ast->print_cr("Free block count mismatch could not be resolved.");
1257       ast->print_cr("Try to run \"aggregate\" function to update counters");
1258     }
1259     BUFFEREDSTREAM_FLUSH("")
1260 
1261     //---< discard old array and update global values  >---
1262     discard_FreeArray(out);
1263     set_HeapStatGlobals(out, heapName);
1264     return;
1265   }
1266 
1267   //---<  calculate and fill remaining fields  >---
1268   if (FreeArray != NULL) {
1269     // This loop is intentionally printing directly to "out".
1270     // It should not print anything, anyway.
1271     for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1272       size_t lenSum = 0;
1273       FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len));
1274       for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) {
1275         CodeBlob *cb  = (CodeBlob*)(heap->find_start(h));
1276         if ((cb != NULL) && !cb->is_nmethod()) {
1277           FreeArray[ix].stubs_in_gap = true;
1278         }
1279         FreeArray[ix].n_gapBlocks++;
1280         lenSum += h->length()<<log2_seg_size;
1281         if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) {
1282           out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)", h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start);
1283         }
1284       }
1285       if (lenSum != FreeArray[ix].gap) {
1286         out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d.", ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum);
1287       }
1288     }
1289   }
1290   set_HeapStatGlobals(out, heapName);
1291 
1292   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   C O M P L E T E   for segment ", heapName);
1293   BUFFEREDSTREAM_FLUSH("\n")
1294 }
1295 
1296 
1297 void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) {
1298   if (!initialization_complete) {
1299     return;
1300   }
1301 
1302   const char* heapName   = get_heapName(heap);
1303   get_HeapStatGlobals(out, heapName);
1304 
1305   if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) {
1306     return;
1307   }
1308   BUFFEREDSTREAM_DECL(ast, out)
1309 
1310   {
1311     printBox(ast, '=', "U S E D   S P A C E   S T A T I S T I C S   for ", heapName);
1312     ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n"
1313                   "      and other identifying information with the block size data.\n"
1314                   "\n"
1315                   "      Method names are dynamically retrieved from the code cache at print time.\n"
1316                   "      Due to the living nature of the code cache and because the CodeCache_lock\n"
1317                   "      is not continuously held, the displayed name might be wrong or no name\n"
1318                   "      might be found at all. The likelihood for that to happen increases\n"
1319                   "      over time passed between analysis and print step.\n", used_topSizeBlocks);
1320     BUFFEREDSTREAM_FLUSH_LOCKED("\n")
1321   }
1322 
1323   //----------------------------
1324   //--  Print Top Used Blocks --
1325   //----------------------------
1326   {
1327     char*     low_bound = heap->low_boundary();
1328     bool      have_CodeCache_lock = CodeCache_lock->owned_by_self();
1329 
1330     printBox(ast, '-', "Largest Used Blocks in ", heapName);
1331     print_blobType_legend(ast);
1332 
1333     ast->fill_to(51);
1334     ast->print("%4s", "blob");
1335     ast->fill_to(56);
1336     ast->print("%9s", "compiler");
1337     ast->fill_to(66);
1338     ast->print_cr("%6s", "method");
1339     ast->print_cr("%18s %13s %17s %4s %9s  %5s %s",      "Addr(module)      ", "offset", "size", "type", " type lvl", " temp", "Name");
1340     BUFFEREDSTREAM_FLUSH_LOCKED("")
1341 
1342     //---<  print Top Ten Used Blocks  >---
1343     if (used_topSizeBlocks > 0) {
1344       unsigned int printed_topSizeBlocks = 0;
1345       for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
1346         printed_topSizeBlocks++;
1347         nmethod*           nm = NULL;
1348         const char* blob_name = "unnamed blob or blob name unavailable";
1349         // heap->find_start() is safe. Only works on _segmap.
1350         // Returns NULL or void*. Returned CodeBlob may be uninitialized.
1351         HeapBlock* heapBlock = TopSizeArray[i].start;
1352         CodeBlob*  this_blob = (CodeBlob*)(heap->find_start(heapBlock));
1353         bool    blob_is_safe = blob_access_is_safe(this_blob, NULL);
1354         if (blob_is_safe) {
1355           //---<  access these fields only if we own the CodeCache_lock  >---
1356           if (have_CodeCache_lock) {
1357             blob_name = this_blob->name();
1358             nm        = this_blob->as_nmethod_or_null();
1359           }
1360           //---<  blob address  >---


1398           ast->print("%5d", nm->hotness_counter());
1399           //---<  name and signature  >---
1400           ast->fill_to(67+6);
1401           if (nm->is_not_installed()) {
1402             ast->print(" not (yet) installed method ");
1403           }
1404           if (nm->is_zombie()) {
1405             ast->print(" zombie method ");
1406           }
1407           ast->print("%s", blob_name);
1408         } else {
1409           //---<  block size in hex  >---
1410           ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size));
1411           ast->print("(" SIZE_FORMAT_W(4) "K)", (TopSizeArray[i].len<<log2_seg_size)/K);
1412           //---<  no compiler information  >---
1413           ast->fill_to(56);
1414           //---<  name and signature  >---
1415           ast->fill_to(67+6);
1416           ast->print("%s", blob_name);
1417         }
1418         ast->cr();
1419         BUFFEREDSTREAM_FLUSH_AUTO("")
1420       }
1421       if (used_topSizeBlocks != printed_topSizeBlocks) {
1422         ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks);

1423         for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
1424           ast->print_cr("  TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
1425           BUFFEREDSTREAM_FLUSH_AUTO("")
1426         }
1427       }
1428       BUFFEREDSTREAM_FLUSH("\n\n")
1429     }
1430   }
1431 
1432   //-----------------------------
1433   //--  Print Usage Histogram  --
1434   //-----------------------------
1435 
1436   if (SizeDistributionArray != NULL) {
1437     unsigned long total_count = 0;
1438     unsigned long total_size  = 0;
1439     const unsigned long pctFactor = 200;
1440 
1441     for (unsigned int i = 0; i < nSizeDistElements; i++) {
1442       total_count += SizeDistributionArray[i].count;
1443       total_size  += SizeDistributionArray[i].lenSum;
1444     }
1445 
1446     if ((total_count > 0) && (total_size > 0)) {
1447       printBox(ast, '-', "Block count histogram for ", heapName);
1448       ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n"
1449                     "      of all blocks) have a size in the given range.\n"
1450                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
1451       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1452       ast->print_cr("total number of all blocks: %7ld\n", total_count);
1453       BUFFEREDSTREAM_FLUSH_LOCKED("")
1454 
1455       ast->print_cr("[Size Range)------avg.-size-+----count-+");
1456       for (unsigned int i = 0; i < nSizeDistElements; i++) {
1457         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1458           ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1459                     ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1460                     ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1461                     );
1462         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1463           ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1464                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1465                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1466                     );
1467         } else {
1468           ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1469                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1470                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1471                     );
1472         }
1473         ast->print(" %8d | %8d |",
1474                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1475                    SizeDistributionArray[i].count);
1476 
1477         unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count;
1478         for (unsigned int j = 1; j <= percent; j++) {
1479           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1480         }
1481         ast->cr();
1482         BUFFEREDSTREAM_FLUSH_AUTO("")
1483       }
1484       ast->print_cr("----------------------------+----------+");
1485       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1486 
1487       printBox(ast, '-', "Contribution per size range to total size for ", heapName);
1488       ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n"
1489                     "      occupied space) is used by the blocks in the given size range.\n"
1490                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
1491       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1492       ast->print_cr("total number of all blocks: %7ld\n", total_count);
1493       BUFFEREDSTREAM_FLUSH_LOCKED("")
1494 
1495       ast->print_cr("[Size Range)------avg.-size-+----count-+");
1496       for (unsigned int i = 0; i < nSizeDistElements; i++) {
1497         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1498           ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1499                     ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1500                     ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1501                     );
1502         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1503           ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1504                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1505                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1506                     );
1507         } else {
1508           ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1509                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1510                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1511                     );
1512         }
1513         ast->print(" %8d | %8d |",
1514                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1515                    SizeDistributionArray[i].count);
1516 
1517         unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size;
1518         for (unsigned int j = 1; j <= percent; j++) {
1519           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1520         }
1521         ast->cr();
1522         BUFFEREDSTREAM_FLUSH_AUTO("")
1523       }
1524       ast->print_cr("----------------------------+----------+");
1525       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1526     }
1527   }
1528 }
1529 
1530 
1531 void CodeHeapState::print_freeSpace(outputStream* out, CodeHeap* heap) {
1532   if (!initialization_complete) {
1533     return;
1534   }
1535 
1536   const char* heapName   = get_heapName(heap);
1537   get_HeapStatGlobals(out, heapName);
1538 
1539   if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) {
1540     return;
1541   }
1542   BUFFEREDSTREAM_DECL(ast, out)
1543 
1544   {
1545     printBox(ast, '=', "F R E E   S P A C E   S T A T I S T I C S   for ", heapName);
1546     ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n"
1547                   "      Those gaps are of interest if there is a chance that they become\n"
1548                   "      unoccupied, e.g. by class unloading. Then, the two adjacent free\n"
1549                   "      blocks, together with the now unoccupied space, form a new, large\n"
1550                   "      free block.");
1551     BUFFEREDSTREAM_FLUSH_LOCKED("\n")
1552   }
1553 
1554   {
1555     printBox(ast, '-', "List of all Free Blocks in ", heapName);

1556 
1557     unsigned int ix = 0;
1558     for (ix = 0; ix < alloc_freeBlocks-1; ix++) {
1559       ast->print(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT ",", p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1560       ast->fill_to(38);
1561       ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes,", ix, ix+1, FreeArray[ix].gap);
1562       ast->fill_to(71);
1563       ast->print("block count: %6d", FreeArray[ix].n_gapBlocks);
1564       if (FreeArray[ix].stubs_in_gap) {
1565         ast->print(" !! permanent gap, contains stubs and/or blobs !!");
1566       }
1567       ast->cr();
1568       BUFFEREDSTREAM_FLUSH_AUTO("")
1569     }
1570     ast->print_cr(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT, p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1571     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1572   }
1573 
1574 
1575   //-----------------------------------------
1576   //--  Find and Print Top Ten Free Blocks --
1577   //-----------------------------------------
1578 
1579   //---<  find Top Ten Free Blocks  >---
1580   const unsigned int nTop = 10;
1581   unsigned int  currMax10 = 0;
1582   struct FreeBlk* FreeTopTen[nTop];
1583   memset(FreeTopTen, 0, sizeof(FreeTopTen));
1584 
1585   for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) {
1586     if (FreeArray[ix].len > currMax10) {  // larger than the ten largest found so far
1587       unsigned int currSize = FreeArray[ix].len;
1588 
1589       unsigned int iy;
1590       for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) {
1591         if (FreeTopTen[iy]->len < currSize) {


1595           FreeTopTen[iy] = &FreeArray[ix];        // insert new free block
1596           if (FreeTopTen[nTop-1] != NULL) {
1597             currMax10 = FreeTopTen[nTop-1]->len;
1598           }
1599           break; // done with this, check next free block
1600         }
1601       }
1602       if (iy >= nTop) {
1603         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1604                       currSize, currMax10);
1605         continue;
1606       }
1607       if (FreeTopTen[iy] == NULL) {
1608         FreeTopTen[iy] = &FreeArray[ix];
1609         if (iy == (nTop-1)) {
1610           currMax10 = currSize;
1611         }
1612       }
1613     }
1614   }
1615   BUFFEREDSTREAM_FLUSH_AUTO("")
1616 
1617   {
1618     printBox(ast, '-', "Top Ten Free Blocks in ", heapName);
1619 
1620     //---<  print Top Ten Free Blocks  >---
1621     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) {
1622       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len);
1623       ast->fill_to(39);
1624       if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) {
1625         ast->print("last free block in list.");
1626       } else {
1627         ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap);
1628         ast->fill_to(63);
1629         ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks);
1630       }
1631       ast->cr();
1632       BUFFEREDSTREAM_FLUSH_AUTO("")
1633     }

1634   }
1635   BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1636 
1637 
1638   //--------------------------------------------------------
1639   //--  Find and Print Top Ten Free-Occupied-Free Triples --
1640   //--------------------------------------------------------
1641 
1642   //---<  find and print Top Ten Triples (Free-Occupied-Free)  >---
1643   currMax10 = 0;
1644   struct FreeBlk  *FreeTopTenTriple[nTop];
1645   memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple));
1646 
1647   for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1648     // If there are stubs in the gap, this gap will never become completely free.
1649     // The triple will thus never merge to one free block.
1650     unsigned int lenTriple  = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len);
1651     FreeArray[ix].len = lenTriple;
1652     if (lenTriple > currMax10) {  // larger than the ten largest found so far
1653 
1654       unsigned int iy;
1655       for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {


1660           FreeTopTenTriple[iy] = &FreeArray[ix];
1661           if (FreeTopTenTriple[nTop-1] != NULL) {
1662             currMax10 = FreeTopTenTriple[nTop-1]->len;
1663           }
1664           break;
1665         }
1666       }
1667       if (iy == nTop) {
1668         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1669                       lenTriple, currMax10);
1670         continue;
1671       }
1672       if (FreeTopTenTriple[iy] == NULL) {
1673         FreeTopTenTriple[iy] = &FreeArray[ix];
1674         if (iy == (nTop-1)) {
1675           currMax10 = lenTriple;
1676         }
1677       }
1678     }
1679   }
1680   BUFFEREDSTREAM_FLUSH_AUTO("")
1681 
1682   {
1683     printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in ", heapName);
1684     ast->print_cr("  Use this information to judge how likely it is that a large(r) free block\n"
1685                   "  might get created by code cache sweeping.\n"
1686                   "  If all the occupied blocks can be swept, the three free blocks will be\n"
1687                   "  merged into one (much larger) free block. That would reduce free space\n"
1688                   "  fragmentation.\n");
1689 
1690     //---<  print Top Ten Free-Occupied-Free Triples  >---
1691     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
1692       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len);
1693       ast->fill_to(39);
1694       ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap);
1695       ast->fill_to(63);
1696       ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks);
1697       ast->cr();
1698       BUFFEREDSTREAM_FLUSH_AUTO("")
1699     }

1700   }
1701   BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1702 }
1703 
1704 
1705 void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) {
1706   if (!initialization_complete) {
1707     return;
1708   }
1709 
1710   const char* heapName   = get_heapName(heap);
1711   get_HeapStatGlobals(out, heapName);
1712 
1713   if ((StatArray == NULL) || (alloc_granules == 0)) {
1714     return;
1715   }
1716   BUFFEREDSTREAM_DECL(ast, out)
1717 
1718   unsigned int granules_per_line = 32;
1719   char*        low_bound         = heap->low_boundary();
1720 
1721   {
1722     printBox(ast, '=', "B L O C K   C O U N T S   for ", heapName);
1723     ast->print_cr("  Each granule contains an individual number of heap blocks. Large blocks\n"
1724                   "  may span multiple granules and are counted for each granule they touch.\n");
1725     if (segment_granules) {
1726       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
1727                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
1728                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1729                     "  Occupied granules show their BlobType character, see legend.\n");
1730       print_blobType_legend(ast);
1731     }
1732     BUFFEREDSTREAM_FLUSH_LOCKED("")
1733   }
1734 
1735   {
1736     if (segment_granules) {
1737       printBox(ast, '-', "Total (all types) count for granule size == segment size", NULL);

1738 
1739       granules_per_line = 128;
1740       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1741         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1742         print_blobType_single(ast, StatArray[ix].type);
1743       }
1744     } else {
1745       printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);

1746 
1747       granules_per_line = 128;
1748       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1749         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1750         unsigned int count = StatArray[ix].t1_count   + StatArray[ix].t2_count   + StatArray[ix].tx_count
1751                            + StatArray[ix].stub_count + StatArray[ix].dead_count;
1752         print_count_single(ast, count);
1753       }
1754     }
1755     BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1756   }
1757 
1758   {
1759     if (nBlocks_t1 > 0) {
1760       printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);

1761 
1762       granules_per_line = 128;
1763       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1764         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1765         if (segment_granules && StatArray[ix].t1_count > 0) {
1766           print_blobType_single(ast, StatArray[ix].type);
1767         } else {
1768           print_count_single(ast, StatArray[ix].t1_count);
1769         }
1770       }
1771       ast->print("|");
1772     } else {
1773       ast->print("No Tier1 nMethods found in CodeHeap.");

1774     }
1775     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1776   }
1777 
1778   {
1779     if (nBlocks_t2 > 0) {
1780       printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);

1781 
1782       granules_per_line = 128;
1783       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1784         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1785         if (segment_granules && StatArray[ix].t2_count > 0) {
1786           print_blobType_single(ast, StatArray[ix].type);
1787         } else {
1788           print_count_single(ast, StatArray[ix].t2_count);
1789         }
1790       }
1791       ast->print("|");
1792     } else {
1793       ast->print("No Tier2 nMethods found in CodeHeap.");

1794     }
1795     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1796   }
1797 
1798   {
1799     if (nBlocks_alive > 0) {
1800       printBox(ast, '-', "not_used/not_entrant/not_installed nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);

1801 
1802       granules_per_line = 128;
1803       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1804         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1805         if (segment_granules && StatArray[ix].tx_count > 0) {
1806           print_blobType_single(ast, StatArray[ix].type);
1807         } else {
1808           print_count_single(ast, StatArray[ix].tx_count);
1809         }
1810       }
1811       ast->print("|");
1812     } else {
1813       ast->print("No not_used/not_entrant nMethods found in CodeHeap.");

1814     }
1815     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1816   }
1817 
1818   {
1819     if (nBlocks_stub > 0) {
1820       printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);

1821 
1822       granules_per_line = 128;
1823       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1824         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1825         if (segment_granules && StatArray[ix].stub_count > 0) {
1826           print_blobType_single(ast, StatArray[ix].type);
1827         } else {
1828           print_count_single(ast, StatArray[ix].stub_count);
1829         }
1830       }
1831       ast->print("|");
1832     } else {
1833       ast->print("No Stubs and Blobs found in CodeHeap.");

1834     }
1835     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1836   }
1837 
1838   {
1839     if (nBlocks_dead > 0) {
1840       printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);

1841 
1842       granules_per_line = 128;
1843       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1844         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1845         if (segment_granules && StatArray[ix].dead_count > 0) {
1846           print_blobType_single(ast, StatArray[ix].type);
1847         } else {
1848           print_count_single(ast, StatArray[ix].dead_count);
1849         }
1850       }
1851       ast->print("|");
1852     } else {
1853       ast->print("No dead nMethods found in CodeHeap.");

1854     }
1855     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1856   }
1857 
1858   {
1859     if (!segment_granules) { // Prevent totally redundant printouts
1860       printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL);

1861 
1862       granules_per_line = 24;
1863       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1864         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1865 
1866         print_count_single(ast, StatArray[ix].t1_count);
1867         ast->print(":");
1868         print_count_single(ast, StatArray[ix].t2_count);
1869         ast->print(":");
1870         if (segment_granules && StatArray[ix].stub_count > 0) {
1871           print_blobType_single(ast, StatArray[ix].type);
1872         } else {
1873           print_count_single(ast, StatArray[ix].stub_count);
1874         }
1875         ast->print(" ");
1876       }
1877       BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1878     }
1879   }
1880 }
1881 
1882 
1883 void CodeHeapState::print_space(outputStream* out, CodeHeap* heap) {
1884   if (!initialization_complete) {
1885     return;
1886   }
1887 
1888   const char* heapName   = get_heapName(heap);
1889   get_HeapStatGlobals(out, heapName);
1890 
1891   if ((StatArray == NULL) || (alloc_granules == 0)) {
1892     return;
1893   }
1894   BUFFEREDSTREAM_DECL(ast, out)
1895 
1896   unsigned int granules_per_line = 32;
1897   char*        low_bound         = heap->low_boundary();
1898 
1899   {
1900     printBox(ast, '=', "S P A C E   U S A G E  &  F R A G M E N T A T I O N   for ", heapName);
1901     ast->print_cr("  The heap space covered by one granule is occupied to a various extend.\n"
1902                   "  The granule occupancy is displayed by one decimal digit per granule.\n");
1903     if (segment_granules) {
1904       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
1905                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
1906                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1907                     "  Occupied granules show their BlobType character, see legend.\n");
1908       print_blobType_legend(ast);
1909     } else {
1910       ast->print_cr("  These digits represent a fill percentage range (see legend).\n");
1911       print_space_legend(ast);
1912     }
1913     BUFFEREDSTREAM_FLUSH_LOCKED("")
1914   }
1915 
1916   {
1917     if (segment_granules) {
1918       printBox(ast, '-', "Total (all types) space consumption for granule size == segment size", NULL);

1919 
1920       granules_per_line = 128;
1921       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1922         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1923         print_blobType_single(ast, StatArray[ix].type);
1924       }
1925     } else {
1926       printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL);

1927 
1928       granules_per_line = 128;
1929       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1930         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1931         unsigned int space    = StatArray[ix].t1_space   + StatArray[ix].t2_space  + StatArray[ix].tx_space
1932                               + StatArray[ix].stub_space + StatArray[ix].dead_space;
1933         print_space_single(ast, space);
1934       }
1935     }
1936     BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1937   }
1938 
1939   {
1940     if (nBlocks_t1 > 0) {
1941       printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL);

1942 
1943       granules_per_line = 128;
1944       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1945         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1946         if (segment_granules && StatArray[ix].t1_space > 0) {
1947           print_blobType_single(ast, StatArray[ix].type);
1948         } else {
1949           print_space_single(ast, StatArray[ix].t1_space);
1950         }
1951       }
1952       ast->print("|");
1953     } else {
1954       ast->print("No Tier1 nMethods found in CodeHeap.");

1955     }
1956     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1957   }
1958 
1959   {
1960     if (nBlocks_t2 > 0) {
1961       printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL);

1962 
1963       granules_per_line = 128;
1964       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1965         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1966         if (segment_granules && StatArray[ix].t2_space > 0) {
1967           print_blobType_single(ast, StatArray[ix].type);
1968         } else {
1969           print_space_single(ast, StatArray[ix].t2_space);
1970         }
1971       }
1972       ast->print("|");
1973     } else {
1974       ast->print("No Tier2 nMethods found in CodeHeap.");

1975     }
1976     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1977   }
1978 
1979   {
1980     if (nBlocks_alive > 0) {
1981       printBox(ast, '-', "not_used/not_entrant/not_installed space consumption. ' ' indicates empty, '*' indicates full", NULL);
1982 
1983       granules_per_line = 128;
1984       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1985         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1986         if (segment_granules && StatArray[ix].tx_space > 0) {
1987           print_blobType_single(ast, StatArray[ix].type);
1988         } else {
1989           print_space_single(ast, StatArray[ix].tx_space);
1990         }
1991       }
1992       ast->print("|");
1993     } else {
1994       ast->print("No Tier2 nMethods found in CodeHeap.");

1995     }
1996     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1997   }
1998 
1999   {
2000     if (nBlocks_stub > 0) {
2001       printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL);

2002 
2003       granules_per_line = 128;
2004       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2005         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2006         if (segment_granules && StatArray[ix].stub_space > 0) {
2007           print_blobType_single(ast, StatArray[ix].type);
2008         } else {
2009           print_space_single(ast, StatArray[ix].stub_space);
2010         }
2011       }
2012       ast->print("|");
2013     } else {
2014       ast->print("No Stubs and Blobs found in CodeHeap.");

2015     }
2016     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2017   }
2018 
2019   {
2020     if (nBlocks_dead > 0) {
2021       printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL);

2022 
2023       granules_per_line = 128;
2024       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2025         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2026         print_space_single(ast, StatArray[ix].dead_space);
2027       }
2028       ast->print("|");
2029     } else {
2030       ast->print("No dead nMethods found in CodeHeap.");

2031     }
2032     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2033   }
2034 
2035   {
2036     if (!segment_granules) { // Prevent totally redundant printouts
2037       printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL);

2038 
2039       granules_per_line = 24;
2040       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2041         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2042 
2043         if (segment_granules && StatArray[ix].t1_space > 0) {
2044           print_blobType_single(ast, StatArray[ix].type);
2045         } else {
2046           print_space_single(ast, StatArray[ix].t1_space);
2047         }
2048         ast->print(":");
2049         if (segment_granules && StatArray[ix].t2_space > 0) {
2050           print_blobType_single(ast, StatArray[ix].type);
2051         } else {
2052           print_space_single(ast, StatArray[ix].t2_space);
2053         }
2054         ast->print(":");
2055         if (segment_granules && StatArray[ix].stub_space > 0) {
2056           print_blobType_single(ast, StatArray[ix].type);
2057         } else {
2058           print_space_single(ast, StatArray[ix].stub_space);
2059         }
2060         ast->print(" ");
2061       }
2062       ast->print("|");
2063       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2064     }
2065   }
2066 }
2067 
2068 void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) {
2069   if (!initialization_complete) {
2070     return;
2071   }
2072 
2073   const char* heapName   = get_heapName(heap);
2074   get_HeapStatGlobals(out, heapName);
2075 
2076   if ((StatArray == NULL) || (alloc_granules == 0)) {
2077     return;
2078   }
2079   BUFFEREDSTREAM_DECL(ast, out)
2080 
2081   unsigned int granules_per_line = 32;
2082   char*        low_bound         = heap->low_boundary();
2083 
2084   {
2085     printBox(ast, '=', "M E T H O D   A G E   by CompileID for ", heapName);
2086     ast->print_cr("  The age of a compiled method in the CodeHeap is not available as a\n"
2087                   "  time stamp. Instead, a relative age is deducted from the method's compilation ID.\n"
2088                   "  Age information is available for tier1 and tier2 methods only. There is no\n"
2089                   "  age information for stubs and blobs, because they have no compilation ID assigned.\n"
2090                   "  Information for the youngest method (highest ID) in the granule is printed.\n"
2091                   "  Refer to the legend to learn how method age is mapped to the displayed digit.");
2092     print_age_legend(ast);
2093     BUFFEREDSTREAM_FLUSH_LOCKED("")
2094   }
2095 
2096   {
2097     printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);

2098 
2099     granules_per_line = 128;
2100     for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2101       print_line_delim(out, ast, low_bound, ix, granules_per_line);
2102       unsigned int age1      = StatArray[ix].t1_age;
2103       unsigned int age2      = StatArray[ix].t2_age;
2104       unsigned int agex      = StatArray[ix].tx_age;
2105       unsigned int age       = age1 > age2 ? age1 : age2;
2106       age       = age > agex ? age : agex;
2107       print_age_single(ast, age);
2108     }
2109     ast->print("|");
2110     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2111   }
2112 
2113   {
2114     if (nBlocks_t1 > 0) {
2115       printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);

2116 
2117       granules_per_line = 128;
2118       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2119         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2120         print_age_single(ast, StatArray[ix].t1_age);
2121       }
2122       ast->print("|");
2123     } else {
2124       ast->print("No Tier1 nMethods found in CodeHeap.");

2125     }
2126     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2127   }
2128 
2129   {
2130     if (nBlocks_t2 > 0) {
2131       printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);

2132 
2133       granules_per_line = 128;
2134       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2135         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2136         print_age_single(ast, StatArray[ix].t2_age);
2137       }
2138       ast->print("|");
2139     } else {
2140       ast->print("No Tier2 nMethods found in CodeHeap.");

2141     }
2142     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2143   }
2144 
2145   {
2146     if (nBlocks_alive > 0) {
2147       printBox(ast, '-', "not_used/not_entrant/not_installed age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);

2148 
2149       granules_per_line = 128;
2150       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2151         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2152         print_age_single(ast, StatArray[ix].tx_age);
2153       }
2154       ast->print("|");
2155     } else {
2156       ast->print("No Tier2 nMethods found in CodeHeap.");

2157     }
2158     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2159   }
2160 
2161   {
2162     if (!segment_granules) { // Prevent totally redundant printouts
2163       printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);

2164 
2165       granules_per_line = 32;
2166       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2167         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2168         print_age_single(ast, StatArray[ix].t1_age);
2169         ast->print(":");
2170         print_age_single(ast, StatArray[ix].t2_age);
2171         ast->print(" ");
2172       }
2173       ast->print("|");
2174       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2175     }
2176   }
2177 }
2178 
2179 
2180 void CodeHeapState::print_names(outputStream* out, CodeHeap* heap) {
2181   if (!initialization_complete) {
2182     return;
2183   }
2184 
2185   const char* heapName   = get_heapName(heap);
2186   get_HeapStatGlobals(out, heapName);
2187 
2188   if ((StatArray == NULL) || (alloc_granules == 0)) {
2189     return;
2190   }
2191   BUFFEREDSTREAM_DECL(ast, out)
2192 
2193   unsigned int granules_per_line   = 128;
2194   char*        low_bound           = heap->low_boundary();
2195   CodeBlob*    last_blob           = NULL;
2196   bool         name_in_addr_range  = true;
2197   bool         have_CodeCache_lock = CodeCache_lock->owned_by_self();
2198 
2199   //---<  print at least 128K per block (i.e. between headers)  >---
2200   if (granules_per_line*granule_size < 128*K) {
2201     granules_per_line = (unsigned int)((128*K)/granule_size);
2202   }
2203 
2204   printBox(ast, '=', "M E T H O D   N A M E S   for ", heapName);
2205   ast->print_cr("  Method names are dynamically retrieved from the code cache at print time.\n"
2206                 "  Due to the living nature of the code heap and because the CodeCache_lock\n"
2207                 "  is not continuously held, the displayed name might be wrong or no name\n"
2208                 "  might be found at all. The likelihood for that to happen increases\n"
2209                 "  over time passed between aggregtion and print steps.\n");
2210   BUFFEREDSTREAM_FLUSH_LOCKED("")
2211 
2212   for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2213     //---<  print a new blob on a new line  >---
2214     if (ix%granules_per_line == 0) {
2215       if (!name_in_addr_range) {
2216         ast->print_cr("No methods, blobs, or stubs found in this address range");
2217       }
2218       name_in_addr_range = false;
2219 
2220       size_t end_ix = (ix+granules_per_line <= alloc_granules) ? ix+granules_per_line : alloc_granules;
2221       ast->cr();
2222       ast->print_cr("--------------------------------------------------------------------");
2223       ast->print_cr("Address range [" INTPTR_FORMAT "," INTPTR_FORMAT "), " SIZE_FORMAT "k", p2i(low_bound+ix*granule_size), p2i(low_bound + end_ix*granule_size), (end_ix - ix)*granule_size/(size_t)K);
2224       ast->print_cr("--------------------------------------------------------------------");
2225       BUFFEREDSTREAM_FLUSH_AUTO("")
2226     }
2227     // Only check granule if it contains at least one blob.
2228     unsigned int nBlobs  = StatArray[ix].t1_count   + StatArray[ix].t2_count + StatArray[ix].tx_count +
2229                            StatArray[ix].stub_count + StatArray[ix].dead_count;
2230     if (nBlobs > 0 ) {
2231     for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) {
2232       // heap->find_start() is safe. Only works on _segmap.
2233       // Returns NULL or void*. Returned CodeBlob may be uninitialized.
2234       char*     this_seg  = low_bound + ix*granule_size + is;
2235       CodeBlob* this_blob = (CodeBlob*)(heap->find_start(this_seg));
2236       bool   blob_is_safe = blob_access_is_safe(this_blob, NULL);
2237       // blob could have been flushed, freed, and merged.
2238       // this_blob < last_blob is an indicator for that.
2239       if (blob_is_safe && (this_blob > last_blob)) {
2240         last_blob          = this_blob;
2241 
2242         //---<  get type and name  >---
2243         blobType       cbType = noType;
2244         if (segment_granules) {
2245           cbType = (blobType)StatArray[ix].type;


2253         //---<  access these fields only if we own the CodeCache_lock  >---
2254         const char* blob_name = "<unavailable>";
2255         nmethod*           nm = NULL;
2256         if (have_CodeCache_lock) {
2257           blob_name = this_blob->name();
2258           nm        = this_blob->as_nmethod_or_null();
2259           // this_blob->name() could return NULL if no name was given to CTOR. Inlined, maybe invisible on stack
2260           if ((blob_name == NULL) || !os::is_readable_pointer(blob_name)) {
2261             blob_name = "<unavailable>";
2262           }
2263         }
2264 
2265         //---<  print table header for new print range  >---
2266         if (!name_in_addr_range) {
2267           name_in_addr_range = true;
2268           ast->fill_to(51);
2269           ast->print("%9s", "compiler");
2270           ast->fill_to(61);
2271           ast->print_cr("%6s", "method");
2272           ast->print_cr("%18s %13s %17s %9s  %5s %18s  %s", "Addr(module)      ", "offset", "size", " type lvl", " temp", "blobType          ", "Name");
2273           BUFFEREDSTREAM_FLUSH_AUTO("")
2274         }
2275 
2276         //---<  print line prefix (address and offset from CodeHeap start)  >---
2277         ast->print(INTPTR_FORMAT, p2i(this_blob));
2278         ast->fill_to(19);
2279         ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
2280         ast->fill_to(33);
2281 
2282         // access nmethod and Method fields only if we own the CodeCache_lock.
2283         // This fact is implicitly transported via nm != NULL.
2284         if (CompiledMethod::nmethod_access_is_safe(nm)) {
2285           Method* method = nm->method();
2286           ResourceMark rm;
2287           //---<  collect all data to locals as quickly as possible  >---
2288           unsigned int total_size = nm->total_size();
2289           int          hotness    = nm->hotness_counter();
2290           bool         get_name   = (cbType == nMethod_inuse) || (cbType == nMethod_notused);
2291           //---<  nMethod size in hex  >---
2292           ast->print(PTR32_FORMAT, total_size);
2293           ast->print("(" SIZE_FORMAT_W(4) "K)", total_size/K);


2309             Symbol* methName  = method->name();
2310             const char*   methNameS = (methName == NULL) ? NULL : methName->as_C_string();
2311             methNameS = (methNameS == NULL) ? "<method name unavailable>" : methNameS;
2312             Symbol* methSig   = method->signature();
2313             const char*   methSigS  = (methSig  == NULL) ? NULL : methSig->as_C_string();
2314             methSigS  = (methSigS  == NULL) ? "<method signature unavailable>" : methSigS;
2315             ast->print("%s", methNameS);
2316             ast->print("%s", methSigS);
2317           } else {
2318             ast->print("%s", blob_name);
2319           }
2320         } else if (blob_is_safe) {
2321           ast->fill_to(62+6);
2322           ast->print("%s", blobTypeName[cbType]);
2323           ast->fill_to(82+6);
2324           ast->print("%s", blob_name);
2325         } else {
2326           ast->fill_to(62+6);
2327           ast->print("<stale blob>");
2328         }
2329         ast->cr();
2330         BUFFEREDSTREAM_FLUSH_AUTO("")
2331       } else if (!blob_is_safe && (this_blob != last_blob) && (this_blob != NULL)) {
2332         last_blob          = this_blob;

2333       }
2334     }
2335     } // nBlobs > 0
2336   }
2337   BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
2338 }
2339 
2340 
2341 void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) {
2342   unsigned int lineLen = 1 + 2 + 2 + 1;
2343   char edge, frame;
2344 
2345   if (text1 != NULL) {
2346     lineLen += (unsigned int)strlen(text1); // text1 is much shorter than MAX_INT chars.
2347   }
2348   if (text2 != NULL) {
2349     lineLen += (unsigned int)strlen(text2); // text2 is much shorter than MAX_INT chars.
2350   }
2351   if (border == '-') {
2352     edge  = '+';
2353     frame = '|';
2354   } else {
2355     edge  = border;
2356     frame = border;
2357   }


2454     if (ix > 0) {
2455       ast->print("|");
2456     }
2457     ast->cr();
2458     assert(out == ast, "must use the same stream!");
2459 
2460     ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2461     ast->fill_to(19);
2462     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2463   }
2464 }
2465 
2466 void CodeHeapState::print_line_delim(outputStream* out, bufferedStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
2467   assert(out != ast, "must not use the same stream!");
2468   if (ix % gpl == 0) {
2469     if (ix > 0) {
2470       ast->print("|");
2471     }
2472     ast->cr();
2473 
2474     // can't use BUFFEREDSTREAM_FLUSH_IF("", 512) here.
2475     // can't use this expression. bufferedStream::capacity() does not exist.
2476     // if ((ast->capacity() - ast->size()) < 512) {
2477     // Assume instead that default bufferedStream capacity (4K) was used.
2478     if (ast->size() > 3*K) {
2479       ttyLocker ttyl;
2480       out->print("%s", ast->as_string());
2481       ast->reset();
2482     }
2483 
2484     ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2485     ast->fill_to(19);
2486     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2487   }
2488 }
2489 
2490 CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) {
2491   if ((cb != NULL) && os::is_readable_pointer(cb)) {
2492     if (cb->is_runtime_stub())                return runtimeStub;
2493     if (cb->is_deoptimization_stub())         return deoptimizationStub;
2494     if (cb->is_uncommon_trap_stub())          return uncommonTrapStub;
2495     if (cb->is_exception_stub())              return exceptionStub;
2496     if (cb->is_safepoint_stub())              return safepointStub;
2497     if (cb->is_adapter_blob())                return adapterBlob;
2498     if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob;


< prev index next >