1 /*
   2  * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2018 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "code/codeHeapState.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "runtime/sweeper.hpp"
  30 
  31 // -------------------------
  32 // |  General Description  |
  33 // -------------------------
  34 // The CodeHeap state analytics are divided in two parts.
  35 // The first part examines the entire CodeHeap and aggregates all
  36 // information that is believed useful/important.
  37 //
  38 // Aggregation condenses the information of a piece of the CodeHeap
  39 // (4096 bytes by default) into an analysis granule. These granules
  40 // contain enough detail to gain initial insight while keeping the
  41 // internal sttructure sizes in check.
  42 //
  43 // The CodeHeap is a living thing. Therefore, the aggregate is collected
  44 // under the CodeCache_lock. The subsequent print steps are only locked
  45 // against concurrent aggregations. That keeps the impact on
  46 // "normal operation" (JIT compiler and sweeper activity) to a minimum.
  47 //
  48 // The second part, which consists of several, independent steps,
  49 // prints the previously collected information with emphasis on
  50 // various aspects.
  51 //
  52 // Data collection and printing is done on an "on request" basis.
  53 // While no request is being processed, there is no impact on performance.
  54 // The CodeHeap state analytics do have some memory footprint.
  55 // The "aggregate" step allocates some data structures to hold the aggregated
  56 // information for later output. These data structures live until they are
  57 // explicitly discarded (function "discard") or until the VM terminates.
  58 // There is one exception: the function "all" does not leave any data
  59 // structures allocated.
  60 //
  61 // Requests for real-time, on-the-fly analysis can be issued via
  62 //   jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>]
  63 //
  64 // If you are (only) interested in how the CodeHeap looks like after running
  65 // a sample workload, you can use the command line option
  66 //   -Xlog:codecache=Trace
  67 //
  68 // To see the CodeHeap state in case of a "CodeCache full" condition, start the
  69 // VM with the
  70 //   -Xlog:codecache=Debug
  71 // command line option. It will produce output only for the first time the
  72 // condition is recognized.
  73 //
  74 // Both command line option variants produce output identical to the jcmd function
  75 //   jcmd <pid> Compiler.CodeHeap_Analytics all 4096
  76 // ---------------------------------------------------------------------------------
  77 
  78 // With this declaration macro, it is possible to switch between
  79 //  - direct output into an argument-passed outputStream and
  80 //  - buffered output into a bufferedStream with subsequent flush
  81 //    of the filled buffer to the outputStream.
  82 #define USE_STRINGSTREAM
  83 #define HEX32_FORMAT  "0x%x"  // just a helper format string used below multiple times
  84 //
  85 // Writing to a bufferedStream buffer first has a significant advantage:
  86 // It uses noticeably less cpu cycles and reduces (when wirting to a
  87 // network file) the required bandwidth by at least a factor of ten.
  88 // That clearly makes up for the increased code complexity.
  89 #if defined(USE_STRINGSTREAM)
  90 #define STRINGSTREAM_DECL(_anyst, _outst)                 \
  91     /* _anyst  name of the stream as used in the code */  \
  92     /* _outst  stream where final output will go to   */  \
  93     ResourceMark rm;                                      \
  94     bufferedStream   _sstobj(4*K);                        \
  95     bufferedStream*  _sstbuf = &_sstobj;                  \
  96     outputStream*    _outbuf = _outst;                    \
  97     bufferedStream*  _anyst  = &_sstobj; /* any stream. Use this to just print - no buffer flush.  */
  98 
  99 #define STRINGSTREAM_FLUSH(termString)                    \
 100     _sstbuf->print("%s", termString);                     \
 101     _outbuf->print("%s", _sstbuf->as_string());           \
 102     _sstbuf->reset();
 103 
 104 #define STRINGSTREAM_FLUSH_LOCKED(termString)             \
 105     { ttyLocker ttyl;/* keep this output block together */\
 106       STRINGSTREAM_FLUSH(termString)                      \
 107     }
 108 #else
 109 #define STRINGSTREAM_DECL(_anyst, _outst)                 \
 110     outputStream*  _outbuf = _outst;                      \
 111     outputStream*  _anyst  = _outst;   /* any stream. Use this to just print - no buffer flush.  */
 112 
 113 #define STRINGSTREAM_FLUSH(termString)                    \
 114     _outbuf->print("%s", termString);
 115 
 116 #define STRINGSTREAM_FLUSH_LOCKED(termString)             \
 117     _outbuf->print("%s", termString);
 118 #endif
 119 
 120 const char  blobTypeChar[] = {' ', 'C', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' };
 121 const char* blobTypeName[] = {"noType"
 122                              ,     "nMethod (under construction)"
 123                              ,          "nMethod (active)"
 124                              ,               "nMethod (inactive)"
 125                              ,                    "nMethod (deopt)"
 126                              ,                         "nMethod (zombie)"
 127                              ,                              "nMethod (unloaded)"
 128                              ,                                   "runtime stub"
 129                              ,                                        "ricochet stub"
 130                              ,                                             "deopt stub"
 131                              ,                                                  "uncommon trap stub"
 132                              ,                                                       "exception stub"
 133                              ,                                                            "safepoint stub"
 134                              ,                                                                 "adapter blob"
 135                              ,                                                                      "MH adapter blob"
 136                              ,                                                                           "buffer blob"
 137                              ,                                                                                "lastType"
 138                              };
 139 const char* compTypeName[] = { "none", "c1", "c2", "jvmci" };
 140 
 141 // Be prepared for ten different CodeHeap segments. Should be enough for a few years.
 142 const  unsigned int        nSizeDistElements = 31;  // logarithmic range growth, max size: 2**32
 143 const  unsigned int        maxTopSizeBlocks  = 50;
 144 const  unsigned int        tsbStopper        = 2 * maxTopSizeBlocks;
 145 const  unsigned int        maxHeaps          = 10;
 146 static unsigned int        nHeaps            = 0;
 147 static struct CodeHeapStat CodeHeapStatArray[maxHeaps];
 148 
 149 // static struct StatElement *StatArray      = NULL;
 150 static StatElement* StatArray             = NULL;
 151 static int          log2_seg_size         = 0;
 152 static size_t       seg_size              = 0;
 153 static size_t       alloc_granules        = 0;
 154 static size_t       granule_size          = 0;
 155 static bool         segment_granules      = false;
 156 static unsigned int nBlocks_t1            = 0;  // counting "in_use" nmethods only.
 157 static unsigned int nBlocks_t2            = 0;  // counting "in_use" nmethods only.
 158 static unsigned int nBlocks_alive         = 0;  // counting "not_used" and "not_entrant" nmethods only.
 159 static unsigned int nBlocks_dead          = 0;  // counting "zombie" and "unloaded" methods only.
 160 static unsigned int nBlocks_inconstr      = 0;  // counting "inconstruction" nmethods only. This is a transient state.
 161 static unsigned int nBlocks_unloaded      = 0;  // counting "unloaded" nmethods only. This is a transient state.
 162 static unsigned int nBlocks_stub          = 0;
 163 
 164 static struct FreeBlk*          FreeArray = NULL;
 165 static unsigned int      alloc_freeBlocks = 0;
 166 
 167 static struct TopSizeBlk*    TopSizeArray = NULL;
 168 static unsigned int   alloc_topSizeBlocks = 0;
 169 static unsigned int    used_topSizeBlocks = 0;
 170 
 171 static struct SizeDistributionElement*  SizeDistributionArray = NULL;
 172 
 173 // nMethod temperature (hotness) indicators.
 174 static int                     avgTemp    = 0;
 175 static int                     maxTemp    = 0;
 176 static int                     minTemp    = 0;
 177 
 178 static unsigned int  latest_compilation_id   = 0;
 179 static volatile bool initialization_complete = false;
 180 
 181 const char* CodeHeapState::get_heapName(CodeHeap* heap) {
 182   if (SegmentedCodeCache) {
 183     return heap->name();
 184   } else {
 185     return "CodeHeap";
 186   }
 187 }
 188 
 189 // returns the index for the heap being processed.
 190 unsigned int CodeHeapState::findHeapIndex(outputStream* out, const char* heapName) {
 191   if (heapName == NULL) {
 192     return maxHeaps;
 193   }
 194   if (SegmentedCodeCache) {
 195     // Search for a pre-existing entry. If found, return that index.
 196     for (unsigned int i = 0; i < nHeaps; i++) {
 197       if (CodeHeapStatArray[i].heapName != NULL && strcmp(heapName, CodeHeapStatArray[i].heapName) == 0) {
 198         return i;
 199       }
 200     }
 201 
 202     // check if there are more code heap segments than we can handle.
 203     if (nHeaps == maxHeaps) {
 204       out->print_cr("Too many heap segments for current limit(%d).", maxHeaps);
 205       return maxHeaps;
 206     }
 207 
 208     // allocate new slot in StatArray.
 209     CodeHeapStatArray[nHeaps].heapName = heapName;
 210     return nHeaps++;
 211   } else {
 212     nHeaps = 1;
 213     CodeHeapStatArray[0].heapName = heapName;
 214     return 0; // This is the default index if CodeCache is not segmented.
 215   }
 216 }
 217 
 218 void CodeHeapState::get_HeapStatGlobals(outputStream* out, const char* heapName) {
 219   unsigned int ix = findHeapIndex(out, heapName);
 220   if (ix < maxHeaps) {
 221     StatArray             = CodeHeapStatArray[ix].StatArray;
 222     seg_size              = CodeHeapStatArray[ix].segment_size;
 223     log2_seg_size         = seg_size == 0 ? 0 : exact_log2(seg_size);
 224     alloc_granules        = CodeHeapStatArray[ix].alloc_granules;
 225     granule_size          = CodeHeapStatArray[ix].granule_size;
 226     segment_granules      = CodeHeapStatArray[ix].segment_granules;
 227     nBlocks_t1            = CodeHeapStatArray[ix].nBlocks_t1;
 228     nBlocks_t2            = CodeHeapStatArray[ix].nBlocks_t2;
 229     nBlocks_alive         = CodeHeapStatArray[ix].nBlocks_alive;
 230     nBlocks_dead          = CodeHeapStatArray[ix].nBlocks_dead;
 231     nBlocks_inconstr      = CodeHeapStatArray[ix].nBlocks_inconstr;
 232     nBlocks_unloaded      = CodeHeapStatArray[ix].nBlocks_unloaded;
 233     nBlocks_stub          = CodeHeapStatArray[ix].nBlocks_stub;
 234     FreeArray             = CodeHeapStatArray[ix].FreeArray;
 235     alloc_freeBlocks      = CodeHeapStatArray[ix].alloc_freeBlocks;
 236     TopSizeArray          = CodeHeapStatArray[ix].TopSizeArray;
 237     alloc_topSizeBlocks   = CodeHeapStatArray[ix].alloc_topSizeBlocks;
 238     used_topSizeBlocks    = CodeHeapStatArray[ix].used_topSizeBlocks;
 239     SizeDistributionArray = CodeHeapStatArray[ix].SizeDistributionArray;
 240     avgTemp               = CodeHeapStatArray[ix].avgTemp;
 241     maxTemp               = CodeHeapStatArray[ix].maxTemp;
 242     minTemp               = CodeHeapStatArray[ix].minTemp;
 243   } else {
 244     StatArray             = NULL;
 245     seg_size              = 0;
 246     log2_seg_size         = 0;
 247     alloc_granules        = 0;
 248     granule_size          = 0;
 249     segment_granules      = false;
 250     nBlocks_t1            = 0;
 251     nBlocks_t2            = 0;
 252     nBlocks_alive         = 0;
 253     nBlocks_dead          = 0;
 254     nBlocks_inconstr      = 0;
 255     nBlocks_unloaded      = 0;
 256     nBlocks_stub          = 0;
 257     FreeArray             = NULL;
 258     alloc_freeBlocks      = 0;
 259     TopSizeArray          = NULL;
 260     alloc_topSizeBlocks   = 0;
 261     used_topSizeBlocks    = 0;
 262     SizeDistributionArray = NULL;
 263     avgTemp               = 0;
 264     maxTemp               = 0;
 265     minTemp               = 0;
 266   }
 267 }
 268 
 269 void CodeHeapState::set_HeapStatGlobals(outputStream* out, const char* heapName) {
 270   unsigned int ix = findHeapIndex(out, heapName);
 271   if (ix < maxHeaps) {
 272     CodeHeapStatArray[ix].StatArray             = StatArray;
 273     CodeHeapStatArray[ix].segment_size          = seg_size;
 274     CodeHeapStatArray[ix].alloc_granules        = alloc_granules;
 275     CodeHeapStatArray[ix].granule_size          = granule_size;
 276     CodeHeapStatArray[ix].segment_granules      = segment_granules;
 277     CodeHeapStatArray[ix].nBlocks_t1            = nBlocks_t1;
 278     CodeHeapStatArray[ix].nBlocks_t2            = nBlocks_t2;
 279     CodeHeapStatArray[ix].nBlocks_alive         = nBlocks_alive;
 280     CodeHeapStatArray[ix].nBlocks_dead          = nBlocks_dead;
 281     CodeHeapStatArray[ix].nBlocks_inconstr      = nBlocks_inconstr;
 282     CodeHeapStatArray[ix].nBlocks_unloaded      = nBlocks_unloaded;
 283     CodeHeapStatArray[ix].nBlocks_stub          = nBlocks_stub;
 284     CodeHeapStatArray[ix].FreeArray             = FreeArray;
 285     CodeHeapStatArray[ix].alloc_freeBlocks      = alloc_freeBlocks;
 286     CodeHeapStatArray[ix].TopSizeArray          = TopSizeArray;
 287     CodeHeapStatArray[ix].alloc_topSizeBlocks   = alloc_topSizeBlocks;
 288     CodeHeapStatArray[ix].used_topSizeBlocks    = used_topSizeBlocks;
 289     CodeHeapStatArray[ix].SizeDistributionArray = SizeDistributionArray;
 290     CodeHeapStatArray[ix].avgTemp               = avgTemp;
 291     CodeHeapStatArray[ix].maxTemp               = maxTemp;
 292     CodeHeapStatArray[ix].minTemp               = minTemp;
 293   }
 294 }
 295 
 296 //---<  get a new statistics array  >---
 297 void CodeHeapState::prepare_StatArray(outputStream* out, size_t nElem, size_t granularity, const char* heapName) {
 298   if (StatArray == NULL) {
 299     StatArray      = new StatElement[nElem];
 300     //---<  reset some counts  >---
 301     alloc_granules = nElem;
 302     granule_size   = granularity;
 303   }
 304 
 305   if (StatArray == NULL) {
 306     //---<  just do nothing if allocation failed  >---
 307     out->print_cr("Statistics could not be collected for %s, probably out of memory.", heapName);
 308     out->print_cr("Current granularity is " SIZE_FORMAT " bytes. Try a coarser granularity.", granularity);
 309     alloc_granules = 0;
 310     granule_size   = 0;
 311   } else {
 312     //---<  initialize statistics array  >---
 313     memset((void*)StatArray, 0, nElem*sizeof(StatElement));
 314   }
 315 }
 316 
 317 //---<  get a new free block array  >---
 318 void CodeHeapState::prepare_FreeArray(outputStream* out, unsigned int nElem, const char* heapName) {
 319   if (FreeArray == NULL) {
 320     FreeArray      = new FreeBlk[nElem];
 321     //---<  reset some counts  >---
 322     alloc_freeBlocks = nElem;
 323   }
 324 
 325   if (FreeArray == NULL) {
 326     //---<  just do nothing if allocation failed  >---
 327     out->print_cr("Free space analysis cannot be done for %s, probably out of memory.", heapName);
 328     alloc_freeBlocks = 0;
 329   } else {
 330     //---<  initialize free block array  >---
 331     memset((void*)FreeArray, 0, alloc_freeBlocks*sizeof(FreeBlk));
 332   }
 333 }
 334 
 335 //---<  get a new TopSizeArray  >---
 336 void CodeHeapState::prepare_TopSizeArray(outputStream* out, unsigned int nElem, const char* heapName) {
 337   if (TopSizeArray == NULL) {
 338     TopSizeArray   = new TopSizeBlk[nElem];
 339     //---<  reset some counts  >---
 340     alloc_topSizeBlocks = nElem;
 341     used_topSizeBlocks  = 0;
 342   }
 343 
 344   if (TopSizeArray == NULL) {
 345     //---<  just do nothing if allocation failed  >---
 346     out->print_cr("Top-%d list of largest CodeHeap blocks can not be collected for %s, probably out of memory.", nElem, heapName);
 347     alloc_topSizeBlocks = 0;
 348   } else {
 349     //---<  initialize TopSizeArray  >---
 350     memset((void*)TopSizeArray, 0, nElem*sizeof(TopSizeBlk));
 351     used_topSizeBlocks  = 0;
 352   }
 353 }
 354 
 355 //---<  get a new SizeDistributionArray  >---
 356 void CodeHeapState::prepare_SizeDistArray(outputStream* out, unsigned int nElem, const char* heapName) {
 357   if (SizeDistributionArray == NULL) {
 358     SizeDistributionArray = new SizeDistributionElement[nElem];
 359   }
 360 
 361   if (SizeDistributionArray == NULL) {
 362     //---<  just do nothing if allocation failed  >---
 363     out->print_cr("Size distribution can not be collected for %s, probably out of memory.", heapName);
 364   } else {
 365     //---<  initialize SizeDistArray  >---
 366     memset((void*)SizeDistributionArray, 0, nElem*sizeof(SizeDistributionElement));
 367     // Logarithmic range growth. First range starts at _segment_size.
 368     SizeDistributionArray[log2_seg_size-1].rangeEnd = 1U;
 369     for (unsigned int i = log2_seg_size; i < nElem; i++) {
 370       SizeDistributionArray[i].rangeStart = 1U << (i     - log2_seg_size);
 371       SizeDistributionArray[i].rangeEnd   = 1U << ((i+1) - log2_seg_size);
 372     }
 373   }
 374 }
 375 
 376 //---<  get a new SizeDistributionArray  >---
 377 void CodeHeapState::update_SizeDistArray(outputStream* out, unsigned int len) {
 378   if (SizeDistributionArray != NULL) {
 379     for (unsigned int i = log2_seg_size-1; i < nSizeDistElements; i++) {
 380       if ((SizeDistributionArray[i].rangeStart <= len) && (len < SizeDistributionArray[i].rangeEnd)) {
 381         SizeDistributionArray[i].lenSum += len;
 382         SizeDistributionArray[i].count++;
 383         break;
 384       }
 385     }
 386   }
 387 }
 388 
 389 void CodeHeapState::discard_StatArray(outputStream* out) {
 390   if (StatArray != NULL) {
 391     delete StatArray;
 392     StatArray        = NULL;
 393     alloc_granules   = 0;
 394     granule_size     = 0;
 395   }
 396 }
 397 
 398 void CodeHeapState::discard_FreeArray(outputStream* out) {
 399   if (FreeArray != NULL) {
 400     delete[] FreeArray;
 401     FreeArray        = NULL;
 402     alloc_freeBlocks = 0;
 403   }
 404 }
 405 
 406 void CodeHeapState::discard_TopSizeArray(outputStream* out) {
 407   if (TopSizeArray != NULL) {
 408     delete[] TopSizeArray;
 409     TopSizeArray        = NULL;
 410     alloc_topSizeBlocks = 0;
 411     used_topSizeBlocks  = 0;
 412   }
 413 }
 414 
 415 void CodeHeapState::discard_SizeDistArray(outputStream* out) {
 416   if (SizeDistributionArray != NULL) {
 417     delete[] SizeDistributionArray;
 418     SizeDistributionArray = NULL;
 419   }
 420 }
 421 
 422 // Discard all allocated internal data structures.
 423 // This should be done after an analysis session is completed.
 424 void CodeHeapState::discard(outputStream* out, CodeHeap* heap) {
 425   if (!initialization_complete) {
 426     return;
 427   }
 428 
 429   if (nHeaps > 0) {
 430     for (unsigned int ix = 0; ix < nHeaps; ix++) {
 431       get_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
 432       discard_StatArray(out);
 433       discard_FreeArray(out);
 434       discard_TopSizeArray(out);
 435       discard_SizeDistArray(out);
 436       set_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
 437       CodeHeapStatArray[ix].heapName = NULL;
 438     }
 439     nHeaps = 0;
 440   }
 441 }
 442 
 443 void CodeHeapState::aggregate(outputStream* out, CodeHeap* heap, size_t granularity) {
 444   unsigned int nBlocks_free    = 0;
 445   unsigned int nBlocks_used    = 0;
 446   unsigned int nBlocks_zomb    = 0;
 447   unsigned int nBlocks_disconn = 0;
 448   unsigned int nBlocks_notentr = 0;
 449 
 450   //---<  max & min of TopSizeArray  >---
 451   //  it is sufficient to have these sizes as 32bit unsigned ints.
 452   //  The CodeHeap is limited in size to 4GB. Furthermore, the sizes
 453   //  are stored in _segment_size units, scaling them down by a factor of 64 (at least).
 454   unsigned int  currMax          = 0;
 455   unsigned int  currMin          = 0;
 456   unsigned int  currMin_ix       = 0;
 457   unsigned long total_iterations = 0;
 458 
 459   bool  done             = false;
 460   const int min_granules = 256;
 461   const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M
 462                                   // results in StatArray size of 20M (= max_granules * 40 Bytes per element)
 463                                   // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit.
 464   const char* heapName   = get_heapName(heap);
 465   STRINGSTREAM_DECL(ast, out)
 466 
 467   if (!initialization_complete) {
 468     memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray));
 469     initialization_complete = true;
 470 
 471     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (general remarks)", NULL);
 472     ast->print_cr("   The code heap analysis function provides deep insights into\n"
 473                   "   the inner workings and the internal state of the Java VM's\n"
 474                   "   code cache - the place where all the JVM generated machine\n"
 475                   "   code is stored.\n"
 476                   "   \n"
 477                   "   This function is designed and provided for support engineers\n"
 478                   "   to help them understand and solve issues in customer systems.\n"
 479                   "   It is not intended for use and interpretation by other persons.\n"
 480                   "   \n");
 481     STRINGSTREAM_FLUSH("")
 482   }
 483   get_HeapStatGlobals(out, heapName);
 484 
 485 
 486   // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock,
 487   // all heap information is "constant" and can be safely extracted/calculated before we
 488   // enter the while() loop. Actually, the loop will only be iterated once.
 489   char*  low_bound     = heap->low_boundary();
 490   size_t size          = heap->capacity();
 491   size_t res_size      = heap->max_capacity();
 492   seg_size             = heap->segment_size();
 493   log2_seg_size        = seg_size == 0 ? 0 : exact_log2(seg_size);  // This is a global static value.
 494 
 495   if (seg_size == 0) {
 496     printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment ", heapName);
 497     STRINGSTREAM_FLUSH("")
 498     return;
 499   }
 500 
 501   // Calculate granularity of analysis (and output).
 502   //   The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize.
 503   //   The CodeHeap can become fairly large, in particular in productive real-life systems.
 504   //
 505   //   It is often neither feasible nor desirable to aggregate the data with the highest possible
 506   //   level of detail, i.e. inspecting and printing each segment on its own.
 507   //
 508   //   The granularity parameter allows to specify the level of detail available in the analysis.
 509   //   It must be a positive multiple of the segment size and should be selected such that enough
 510   //   detail is provided while, at the same time, the printed output does not explode.
 511   //
 512   //   By manipulating the granularity value, we enforce that at least min_granules units
 513   //   of analysis are available. We also enforce an upper limit of max_granules units to
 514   //   keep the amount of allocated storage in check.
 515   //
 516   //   Finally, we adjust the granularity such that each granule covers at most 64k-1 segments.
 517   //   This is necessary to prevent an unsigned short overflow while accumulating space information.
 518   //
 519   assert(granularity > 0, "granularity should be positive.");
 520 
 521   if (granularity > size) {
 522     granularity = size;
 523   }
 524   if (size/granularity < min_granules) {
 525     granularity = size/min_granules;                                   // at least min_granules granules
 526   }
 527   granularity = granularity & (~(seg_size - 1));                       // must be multiple of seg_size
 528   if (granularity < seg_size) {
 529     granularity = seg_size;                                            // must be at least seg_size
 530   }
 531   if (size/granularity > max_granules) {
 532     granularity = size/max_granules;                                   // at most max_granules granules
 533   }
 534   granularity = granularity & (~(seg_size - 1));                       // must be multiple of seg_size
 535   if (granularity>>log2_seg_size >= (1L<<sizeof(unsigned short)*8)) {
 536     granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<log2_seg_size; // Limit: (64k-1) * seg_size
 537   }
 538   segment_granules = granularity == seg_size;
 539   size_t granules  = (size + (granularity-1))/granularity;
 540 
 541   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (used blocks) for segment ", heapName);
 542   ast->print_cr("   The aggregate step takes an aggregated snapshot of the CodeHeap.\n"
 543                 "   Subsequent print functions create their output based on this snapshot.\n"
 544                 "   The CodeHeap is a living thing, and every effort has been made for the\n"
 545                 "   collected data to be consistent. Only the method names and signatures\n"
 546                 "   are retrieved at print time. That may lead to rare cases where the\n"
 547                 "   name of a method is no longer available, e.g. because it was unloaded.\n");
 548   ast->print_cr("   CodeHeap committed size " SIZE_FORMAT "K (" SIZE_FORMAT "M), reserved size " SIZE_FORMAT "K (" SIZE_FORMAT "M), %d%% occupied.",
 549                 size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size));
 550   ast->print_cr("   CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity.", seg_size);
 551   ast->print_cr("   CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes.", granules, granularity);
 552   ast->print_cr("   Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K);
 553   ast->print_cr("   The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules));
 554   STRINGSTREAM_FLUSH("\n")
 555 
 556 
 557   while (!done) {
 558     //---<  reset counters with every aggregation  >---
 559     nBlocks_t1       = 0;
 560     nBlocks_t2       = 0;
 561     nBlocks_alive    = 0;
 562     nBlocks_dead     = 0;
 563     nBlocks_inconstr = 0;
 564     nBlocks_unloaded = 0;
 565     nBlocks_stub     = 0;
 566 
 567     nBlocks_free     = 0;
 568     nBlocks_used     = 0;
 569     nBlocks_zomb     = 0;
 570     nBlocks_disconn  = 0;
 571     nBlocks_notentr  = 0;
 572 
 573     //---<  discard old arrays if size does not match  >---
 574     if (granules != alloc_granules) {
 575       discard_StatArray(out);
 576       discard_TopSizeArray(out);
 577     }
 578 
 579     //---<  allocate arrays if they don't yet exist, initialize  >---
 580     prepare_StatArray(out, granules, granularity, heapName);
 581     if (StatArray == NULL) {
 582       set_HeapStatGlobals(out, heapName);
 583       return;
 584     }
 585     prepare_TopSizeArray(out, maxTopSizeBlocks, heapName);
 586     prepare_SizeDistArray(out, nSizeDistElements, heapName);
 587 
 588     latest_compilation_id = CompileBroker::get_compilation_id();
 589     unsigned int highest_compilation_id = 0;
 590     size_t       usedSpace     = 0;
 591     size_t       t1Space       = 0;
 592     size_t       t2Space       = 0;
 593     size_t       aliveSpace    = 0;
 594     size_t       disconnSpace  = 0;
 595     size_t       notentrSpace  = 0;
 596     size_t       deadSpace     = 0;
 597     size_t       inconstrSpace = 0;
 598     size_t       unloadedSpace = 0;
 599     size_t       stubSpace     = 0;
 600     size_t       freeSpace     = 0;
 601     size_t       maxFreeSize   = 0;
 602     HeapBlock*   maxFreeBlock  = NULL;
 603     bool         insane        = false;
 604 
 605     int64_t hotnessAccumulator = 0;
 606     unsigned int n_methods     = 0;
 607     avgTemp       = 0;
 608     minTemp       = (int)(res_size > M ? (res_size/M)*2 : 1);
 609     maxTemp       = -minTemp;
 610 
 611     for (HeapBlock *h = heap->first_block(); h != NULL && !insane; h = heap->next_block(h)) {
 612       unsigned int hb_len     = (unsigned int)h->length();  // despite being size_t, length can never overflow an unsigned int.
 613       size_t       hb_bytelen = ((size_t)hb_len)<<log2_seg_size;
 614       unsigned int ix_beg     = (unsigned int)(((char*)h-low_bound)/granule_size);
 615       unsigned int ix_end     = (unsigned int)(((char*)h-low_bound+(hb_bytelen-1))/granule_size);
 616       unsigned int compile_id = 0;
 617       CompLevel    comp_lvl   = CompLevel_none;
 618       compType     cType      = noComp;
 619       blobType     cbType     = noType;
 620 
 621       //---<  some sanity checks  >---
 622       // Do not assert here, just check, print error message and return.
 623       // This is a diagnostic function. It is not supposed to tear down the VM.
 624       if ((char*)h <  low_bound) {
 625         insane = true; ast->print_cr("Sanity check: HeapBlock @%p below low bound (%p)", (char*)h, low_bound);
 626       }
 627       if ((char*)h >  (low_bound + res_size)) {
 628         insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside reserved range (%p)", (char*)h, low_bound + res_size);
 629       }
 630       if ((char*)h >  (low_bound + size)) {
 631         insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside used range (%p)", (char*)h, low_bound + size);
 632       }
 633       if (ix_end   >= granules) {
 634         insane = true; ast->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")", ix_end, granules);
 635       }
 636       if (size     != heap->capacity()) {
 637         insane = true; ast->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)", size/(size_t)K, heap->capacity()/(size_t)K);
 638       }
 639       if (ix_beg   >  ix_end) {
 640         insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg);
 641       }
 642       if (insane) {
 643         STRINGSTREAM_FLUSH("")
 644         continue;
 645       }
 646 
 647       if (h->free()) {
 648         nBlocks_free++;
 649         freeSpace    += hb_bytelen;
 650         if (hb_bytelen > maxFreeSize) {
 651           maxFreeSize   = hb_bytelen;
 652           maxFreeBlock  = h;
 653         }
 654       } else {
 655         update_SizeDistArray(out, hb_len);
 656         nBlocks_used++;
 657         usedSpace    += hb_bytelen;
 658         CodeBlob* cb  = (CodeBlob*)heap->find_start(h);
 659         if (cb != NULL) {
 660           cbType = get_cbType(cb);
 661           if (cb->is_nmethod()) {
 662             compile_id = ((nmethod*)cb)->compile_id();
 663             comp_lvl   = (CompLevel)((nmethod*)cb)->comp_level();
 664             if (((nmethod*)cb)->is_compiled_by_c1()) {
 665               cType = c1;
 666             }
 667             if (((nmethod*)cb)->is_compiled_by_c2()) {
 668               cType = c2;
 669             }
 670             if (((nmethod*)cb)->is_compiled_by_jvmci()) {
 671               cType = jvmci;
 672             }
 673             switch (cbType) {
 674               case nMethod_inuse: { // only for executable methods!!!
 675                 // space for these cbs is accounted for later.
 676                 int temperature = ((nmethod*)cb)->hotness_counter();
 677                 hotnessAccumulator += temperature;
 678                 n_methods++;
 679                 maxTemp = (temperature > maxTemp) ? temperature : maxTemp;
 680                 minTemp = (temperature < minTemp) ? temperature : minTemp;
 681                 break;
 682               }
 683               case nMethod_notused:
 684                 nBlocks_alive++;
 685                 nBlocks_disconn++;
 686                 aliveSpace     += hb_bytelen;
 687                 disconnSpace   += hb_bytelen;
 688                 break;
 689               case nMethod_notentrant:  // equivalent to nMethod_alive
 690                 nBlocks_alive++;
 691                 nBlocks_notentr++;
 692                 aliveSpace     += hb_bytelen;
 693                 notentrSpace   += hb_bytelen;
 694                 break;
 695               case nMethod_unloaded:
 696                 nBlocks_unloaded++;
 697                 unloadedSpace  += hb_bytelen;
 698                 break;
 699               case nMethod_dead:
 700                 nBlocks_dead++;
 701                 deadSpace      += hb_bytelen;
 702                 break;
 703               case nMethod_inconstruction:
 704                 nBlocks_inconstr++;
 705                 inconstrSpace  += hb_bytelen;
 706                 break;
 707               default:
 708                 break;
 709             }
 710           }
 711 
 712           //------------------------------------------
 713           //---<  register block in TopSizeArray  >---
 714           //------------------------------------------
 715           if (alloc_topSizeBlocks > 0) {
 716             if (used_topSizeBlocks == 0) {
 717               TopSizeArray[0].start    = h;
 718               TopSizeArray[0].len      = hb_len;
 719               TopSizeArray[0].index    = tsbStopper;
 720               TopSizeArray[0].compiler = cType;
 721               TopSizeArray[0].level    = comp_lvl;
 722               TopSizeArray[0].type     = cbType;
 723               currMax    = hb_len;
 724               currMin    = hb_len;
 725               currMin_ix = 0;
 726               used_topSizeBlocks++;
 727             // This check roughly cuts 5000 iterations (JVM98, mixed, dbg, termination stats):
 728             } else if ((used_topSizeBlocks < alloc_topSizeBlocks) && (hb_len < currMin)) {
 729               //---<  all blocks in list are larger, but there is room left in array  >---
 730               TopSizeArray[currMin_ix].index = used_topSizeBlocks;
 731               TopSizeArray[used_topSizeBlocks].start    = h;
 732               TopSizeArray[used_topSizeBlocks].len      = hb_len;
 733               TopSizeArray[used_topSizeBlocks].index    = tsbStopper;
 734               TopSizeArray[used_topSizeBlocks].compiler = cType;
 735               TopSizeArray[used_topSizeBlocks].level    = comp_lvl;
 736               TopSizeArray[used_topSizeBlocks].type     = cbType;
 737               currMin    = hb_len;
 738               currMin_ix = used_topSizeBlocks;
 739               used_topSizeBlocks++;
 740             } else {
 741               // This check cuts total_iterations by a factor of 6 (JVM98, mixed, dbg, termination stats):
 742               //   We don't need to search the list if we know beforehand that the current block size is
 743               //   smaller than the currently recorded minimum and there is no free entry left in the list.
 744               if (!((used_topSizeBlocks == alloc_topSizeBlocks) && (hb_len <= currMin))) {
 745                 if (currMax < hb_len) {
 746                   currMax = hb_len;
 747                 }
 748                 unsigned int i;
 749                 unsigned int prev_i  = tsbStopper;
 750                 unsigned int limit_i =  0;
 751                 for (i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
 752                   if (limit_i++ >= alloc_topSizeBlocks) {
 753                     insane = true; break; // emergency exit
 754                   }
 755                   if (i >= used_topSizeBlocks)  {
 756                     insane = true; break; // emergency exit
 757                   }
 758                   total_iterations++;
 759                   if (TopSizeArray[i].len < hb_len) {
 760                     //---<  We want to insert here, element <i> is smaller than the current one  >---
 761                     if (used_topSizeBlocks < alloc_topSizeBlocks) { // still room for a new entry to insert
 762                       // old entry gets moved to the next free element of the array.
 763                       // That's necessary to keep the entry for the largest block at index 0.
 764                       // This move might cause the current minimum to be moved to another place
 765                       if (i == currMin_ix) {
 766                         assert(TopSizeArray[i].len == currMin, "sort error");
 767                         currMin_ix = used_topSizeBlocks;
 768                       }
 769                       memcpy((void*)&TopSizeArray[used_topSizeBlocks], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
 770                       TopSizeArray[i].start    = h;
 771                       TopSizeArray[i].len      = hb_len;
 772                       TopSizeArray[i].index    = used_topSizeBlocks;
 773                       TopSizeArray[i].compiler = cType;
 774                       TopSizeArray[i].level    = comp_lvl;
 775                       TopSizeArray[i].type     = cbType;
 776                       used_topSizeBlocks++;
 777                     } else { // no room for new entries, current block replaces entry for smallest block
 778                       //---<  Find last entry (entry for smallest remembered block)  >---
 779                       unsigned int      j  = i;
 780                       unsigned int prev_j  = tsbStopper;
 781                       unsigned int limit_j = 0;
 782                       while (TopSizeArray[j].index != tsbStopper) {
 783                         if (limit_j++ >= alloc_topSizeBlocks) {
 784                           insane = true; break; // emergency exit
 785                         }
 786                         if (j >= used_topSizeBlocks)  {
 787                           insane = true; break; // emergency exit
 788                         }
 789                         total_iterations++;
 790                         prev_j = j;
 791                         j      = TopSizeArray[j].index;
 792                       }
 793                       if (!insane) {
 794                         if (prev_j == tsbStopper) {
 795                           //---<  Above while loop did not iterate, we already are the min entry  >---
 796                           //---<  We have to just replace the smallest entry                      >---
 797                           currMin    = hb_len;
 798                           currMin_ix = j;
 799                           TopSizeArray[j].start    = h;
 800                           TopSizeArray[j].len      = hb_len;
 801                           TopSizeArray[j].index    = tsbStopper; // already set!!
 802                           TopSizeArray[j].compiler = cType;
 803                           TopSizeArray[j].level    = comp_lvl;
 804                           TopSizeArray[j].type     = cbType;
 805                         } else {
 806                           //---<  second-smallest entry is now smallest  >---
 807                           TopSizeArray[prev_j].index = tsbStopper;
 808                           currMin    = TopSizeArray[prev_j].len;
 809                           currMin_ix = prev_j;
 810                           //---<  smallest entry gets overwritten  >---
 811                           memcpy((void*)&TopSizeArray[j], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
 812                           TopSizeArray[i].start    = h;
 813                           TopSizeArray[i].len      = hb_len;
 814                           TopSizeArray[i].index    = j;
 815                           TopSizeArray[i].compiler = cType;
 816                           TopSizeArray[i].level    = comp_lvl;
 817                           TopSizeArray[i].type     = cbType;
 818                         }
 819                       } // insane
 820                     }
 821                     break;
 822                   }
 823                   prev_i = i;
 824                 }
 825                 if (insane) {
 826                   // Note: regular analysis could probably continue by resetting "insane" flag.
 827                   out->print_cr("Possible loop in TopSizeBlocks list detected. Analysis aborted.");
 828                   discard_TopSizeArray(out);
 829                 }
 830               }
 831             }
 832           }
 833           //----------------------------------------------
 834           //---<  END register block in TopSizeArray  >---
 835           //----------------------------------------------
 836         } else {
 837           nBlocks_zomb++;
 838         }
 839 
 840         if (ix_beg == ix_end) {
 841           StatArray[ix_beg].type = cbType;
 842           switch (cbType) {
 843             case nMethod_inuse:
 844               highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
 845               if (comp_lvl < CompLevel_full_optimization) {
 846                 nBlocks_t1++;
 847                 t1Space   += hb_bytelen;
 848                 StatArray[ix_beg].t1_count++;
 849                 StatArray[ix_beg].t1_space += (unsigned short)hb_len;
 850                 StatArray[ix_beg].t1_age    = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
 851               } else {
 852                 nBlocks_t2++;
 853                 t2Space   += hb_bytelen;
 854                 StatArray[ix_beg].t2_count++;
 855                 StatArray[ix_beg].t2_space += (unsigned short)hb_len;
 856                 StatArray[ix_beg].t2_age    = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
 857               }
 858               StatArray[ix_beg].level     = comp_lvl;
 859               StatArray[ix_beg].compiler  = cType;
 860               break;
 861             case nMethod_inconstruction: // let's count "in construction" nmethods here.
 862             case nMethod_alive:
 863               StatArray[ix_beg].tx_count++;
 864               StatArray[ix_beg].tx_space += (unsigned short)hb_len;
 865               StatArray[ix_beg].tx_age    = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
 866               StatArray[ix_beg].level     = comp_lvl;
 867               StatArray[ix_beg].compiler  = cType;
 868               break;
 869             case nMethod_dead:
 870             case nMethod_unloaded:
 871               StatArray[ix_beg].dead_count++;
 872               StatArray[ix_beg].dead_space += (unsigned short)hb_len;
 873               break;
 874             default:
 875               // must be a stub, if it's not a dead or alive nMethod
 876               nBlocks_stub++;
 877               stubSpace   += hb_bytelen;
 878               StatArray[ix_beg].stub_count++;
 879               StatArray[ix_beg].stub_space += (unsigned short)hb_len;
 880               break;
 881           }
 882         } else {
 883           unsigned int beg_space = (unsigned int)(granule_size - ((char*)h - low_bound - ix_beg*granule_size));
 884           unsigned int end_space = (unsigned int)(hb_bytelen - beg_space - (ix_end-ix_beg-1)*granule_size);
 885           beg_space = beg_space>>log2_seg_size;  // store in units of _segment_size
 886           end_space = end_space>>log2_seg_size;  // store in units of _segment_size
 887           StatArray[ix_beg].type = cbType;
 888           StatArray[ix_end].type = cbType;
 889           switch (cbType) {
 890             case nMethod_inuse:
 891               highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
 892               if (comp_lvl < CompLevel_full_optimization) {
 893                 nBlocks_t1++;
 894                 t1Space   += hb_bytelen;
 895                 StatArray[ix_beg].t1_count++;
 896                 StatArray[ix_beg].t1_space += (unsigned short)beg_space;
 897                 StatArray[ix_beg].t1_age    = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
 898 
 899                 StatArray[ix_end].t1_count++;
 900                 StatArray[ix_end].t1_space += (unsigned short)end_space;
 901                 StatArray[ix_end].t1_age    = StatArray[ix_end].t1_age < compile_id ? compile_id : StatArray[ix_end].t1_age;
 902               } else {
 903                 nBlocks_t2++;
 904                 t2Space   += hb_bytelen;
 905                 StatArray[ix_beg].t2_count++;
 906                 StatArray[ix_beg].t2_space += (unsigned short)beg_space;
 907                 StatArray[ix_beg].t2_age    = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
 908 
 909                 StatArray[ix_end].t2_count++;
 910                 StatArray[ix_end].t2_space += (unsigned short)end_space;
 911                 StatArray[ix_end].t2_age    = StatArray[ix_end].t2_age < compile_id ? compile_id : StatArray[ix_end].t2_age;
 912               }
 913               StatArray[ix_beg].level     = comp_lvl;
 914               StatArray[ix_beg].compiler  = cType;
 915               StatArray[ix_end].level     = comp_lvl;
 916               StatArray[ix_end].compiler  = cType;
 917               break;
 918             case nMethod_inconstruction: // let's count "in construction" nmethods here.
 919             case nMethod_alive:
 920               StatArray[ix_beg].tx_count++;
 921               StatArray[ix_beg].tx_space += (unsigned short)beg_space;
 922               StatArray[ix_beg].tx_age    = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
 923 
 924               StatArray[ix_end].tx_count++;
 925               StatArray[ix_end].tx_space += (unsigned short)end_space;
 926               StatArray[ix_end].tx_age    = StatArray[ix_end].tx_age < compile_id ? compile_id : StatArray[ix_end].tx_age;
 927 
 928               StatArray[ix_beg].level     = comp_lvl;
 929               StatArray[ix_beg].compiler  = cType;
 930               StatArray[ix_end].level     = comp_lvl;
 931               StatArray[ix_end].compiler  = cType;
 932               break;
 933             case nMethod_dead:
 934             case nMethod_unloaded:
 935               StatArray[ix_beg].dead_count++;
 936               StatArray[ix_beg].dead_space += (unsigned short)beg_space;
 937               StatArray[ix_end].dead_count++;
 938               StatArray[ix_end].dead_space += (unsigned short)end_space;
 939               break;
 940             default:
 941               // must be a stub, if it's not a dead or alive nMethod
 942               nBlocks_stub++;
 943               stubSpace   += hb_bytelen;
 944               StatArray[ix_beg].stub_count++;
 945               StatArray[ix_beg].stub_space += (unsigned short)beg_space;
 946               StatArray[ix_end].stub_count++;
 947               StatArray[ix_end].stub_space += (unsigned short)end_space;
 948               break;
 949           }
 950           for (unsigned int ix = ix_beg+1; ix < ix_end; ix++) {
 951             StatArray[ix].type = cbType;
 952             switch (cbType) {
 953               case nMethod_inuse:
 954                 if (comp_lvl < CompLevel_full_optimization) {
 955                   StatArray[ix].t1_count++;
 956                   StatArray[ix].t1_space += (unsigned short)(granule_size>>log2_seg_size);
 957                   StatArray[ix].t1_age    = StatArray[ix].t1_age < compile_id ? compile_id : StatArray[ix].t1_age;
 958                 } else {
 959                   StatArray[ix].t2_count++;
 960                   StatArray[ix].t2_space += (unsigned short)(granule_size>>log2_seg_size);
 961                   StatArray[ix].t2_age    = StatArray[ix].t2_age < compile_id ? compile_id : StatArray[ix].t2_age;
 962                 }
 963                 StatArray[ix].level     = comp_lvl;
 964                 StatArray[ix].compiler  = cType;
 965                 break;
 966               case nMethod_inconstruction: // let's count "in construction" nmethods here.
 967               case nMethod_alive:
 968                 StatArray[ix].tx_count++;
 969                 StatArray[ix].tx_space += (unsigned short)(granule_size>>log2_seg_size);
 970                 StatArray[ix].tx_age    = StatArray[ix].tx_age < compile_id ? compile_id : StatArray[ix].tx_age;
 971                 StatArray[ix].level     = comp_lvl;
 972                 StatArray[ix].compiler  = cType;
 973                 break;
 974               case nMethod_dead:
 975               case nMethod_unloaded:
 976                 StatArray[ix].dead_count++;
 977                 StatArray[ix].dead_space += (unsigned short)(granule_size>>log2_seg_size);
 978                 break;
 979               default:
 980                 // must be a stub, if it's not a dead or alive nMethod
 981                 StatArray[ix].stub_count++;
 982                 StatArray[ix].stub_space += (unsigned short)(granule_size>>log2_seg_size);
 983                 break;
 984             }
 985           }
 986         }
 987       }
 988     }
 989     done = true;
 990 
 991     if (!insane) {
 992       // There is a risk for this block (because it contains many print statements) to get
 993       // interspersed with print data from other threads. We take this risk intentionally.
 994       // Getting stalled waiting for tty_lock while holding the CodeCache_lock is not desirable.
 995       printBox(ast, '-', "Global CodeHeap statistics for segment ", heapName);
 996       ast->print_cr("freeSpace        = " SIZE_FORMAT_W(8) "k, nBlocks_free     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", freeSpace/(size_t)K,     nBlocks_free,     (100.0*freeSpace)/size,     (100.0*freeSpace)/res_size);
 997       ast->print_cr("usedSpace        = " SIZE_FORMAT_W(8) "k, nBlocks_used     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", usedSpace/(size_t)K,     nBlocks_used,     (100.0*usedSpace)/size,     (100.0*usedSpace)/res_size);
 998       ast->print_cr("  Tier1 Space    = " SIZE_FORMAT_W(8) "k, nBlocks_t1       = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t1Space/(size_t)K,       nBlocks_t1,       (100.0*t1Space)/size,       (100.0*t1Space)/res_size);
 999       ast->print_cr("  Tier2 Space    = " SIZE_FORMAT_W(8) "k, nBlocks_t2       = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t2Space/(size_t)K,       nBlocks_t2,       (100.0*t2Space)/size,       (100.0*t2Space)/res_size);
1000       ast->print_cr("  Alive Space    = " SIZE_FORMAT_W(8) "k, nBlocks_alive    = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", aliveSpace/(size_t)K,    nBlocks_alive,    (100.0*aliveSpace)/size,    (100.0*aliveSpace)/res_size);
1001       ast->print_cr("    disconnected = " SIZE_FORMAT_W(8) "k, nBlocks_disconn  = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", disconnSpace/(size_t)K,  nBlocks_disconn,  (100.0*disconnSpace)/size,  (100.0*disconnSpace)/res_size);
1002       ast->print_cr("    not entrant  = " SIZE_FORMAT_W(8) "k, nBlocks_notentr  = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", notentrSpace/(size_t)K,  nBlocks_notentr,  (100.0*notentrSpace)/size,  (100.0*notentrSpace)/res_size);
1003       ast->print_cr("  inconstrSpace  = " SIZE_FORMAT_W(8) "k, nBlocks_inconstr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", inconstrSpace/(size_t)K, nBlocks_inconstr, (100.0*inconstrSpace)/size, (100.0*inconstrSpace)/res_size);
1004       ast->print_cr("  unloadedSpace  = " SIZE_FORMAT_W(8) "k, nBlocks_unloaded = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", unloadedSpace/(size_t)K, nBlocks_unloaded, (100.0*unloadedSpace)/size, (100.0*unloadedSpace)/res_size);
1005       ast->print_cr("  deadSpace      = " SIZE_FORMAT_W(8) "k, nBlocks_dead     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", deadSpace/(size_t)K,     nBlocks_dead,     (100.0*deadSpace)/size,     (100.0*deadSpace)/res_size);
1006       ast->print_cr("  stubSpace      = " SIZE_FORMAT_W(8) "k, nBlocks_stub     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", stubSpace/(size_t)K,     nBlocks_stub,     (100.0*stubSpace)/size,     (100.0*stubSpace)/res_size);
1007       ast->print_cr("ZombieBlocks     = %8d. These are HeapBlocks which could not be identified as CodeBlobs.", nBlocks_zomb);
1008       ast->cr();
1009       ast->print_cr("Segment start          = " INTPTR_FORMAT ", used space      = " SIZE_FORMAT_W(8)"k", p2i(low_bound), size/K);
1010       ast->print_cr("Segment end (used)     = " INTPTR_FORMAT ", remaining space = " SIZE_FORMAT_W(8)"k", p2i(low_bound) + size, (res_size - size)/K);
1011       ast->print_cr("Segment end (reserved) = " INTPTR_FORMAT ", reserved space  = " SIZE_FORMAT_W(8)"k", p2i(low_bound) + res_size, res_size/K);
1012       ast->cr();
1013       ast->print_cr("latest allocated compilation id = %d", latest_compilation_id);
1014       ast->print_cr("highest observed compilation id = %d", highest_compilation_id);
1015       ast->print_cr("Building TopSizeList iterations = %ld", total_iterations);
1016       ast->cr();
1017 
1018       int             reset_val = NMethodSweeper::hotness_counter_reset_val();
1019       double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size;
1020       printBox(ast, '-', "Method hotness information at time of this analysis", NULL);
1021       ast->print_cr("Highest possible method temperature:          %12d", reset_val);
1022       ast->print_cr("Threshold for method to be considered 'cold': %12.3f", -reset_val + reverse_free_ratio * NmethodSweepActivity);
1023       if (n_methods > 0) {
1024         avgTemp = hotnessAccumulator/n_methods;
1025         ast->print_cr("min. hotness = %6d", minTemp);
1026         ast->print_cr("avg. hotness = %6d", avgTemp);
1027         ast->print_cr("max. hotness = %6d", maxTemp);
1028       } else {
1029         avgTemp = 0;
1030         ast->print_cr("No hotness data available");
1031       }
1032       STRINGSTREAM_FLUSH("\n")
1033 
1034       // This loop is intentionally printing directly to "out".
1035       out->print("Verifying collected data...");
1036       size_t granule_segs = granule_size>>log2_seg_size;
1037       for (unsigned int ix = 0; ix < granules; ix++) {
1038         if (StatArray[ix].t1_count   > granule_segs) {
1039           out->print_cr("t1_count[%d]   = %d", ix, StatArray[ix].t1_count);
1040         }
1041         if (StatArray[ix].t2_count   > granule_segs) {
1042           out->print_cr("t2_count[%d]   = %d", ix, StatArray[ix].t2_count);
1043         }
1044         if (StatArray[ix].tx_count   > granule_segs) {
1045           out->print_cr("tx_count[%d]   = %d", ix, StatArray[ix].tx_count);
1046         }
1047         if (StatArray[ix].stub_count > granule_segs) {
1048           out->print_cr("stub_count[%d] = %d", ix, StatArray[ix].stub_count);
1049         }
1050         if (StatArray[ix].dead_count > granule_segs) {
1051           out->print_cr("dead_count[%d] = %d", ix, StatArray[ix].dead_count);
1052         }
1053         if (StatArray[ix].t1_space   > granule_segs) {
1054           out->print_cr("t1_space[%d]   = %d", ix, StatArray[ix].t1_space);
1055         }
1056         if (StatArray[ix].t2_space   > granule_segs) {
1057           out->print_cr("t2_space[%d]   = %d", ix, StatArray[ix].t2_space);
1058         }
1059         if (StatArray[ix].tx_space   > granule_segs) {
1060           out->print_cr("tx_space[%d]   = %d", ix, StatArray[ix].tx_space);
1061         }
1062         if (StatArray[ix].stub_space > granule_segs) {
1063           out->print_cr("stub_space[%d] = %d", ix, StatArray[ix].stub_space);
1064         }
1065         if (StatArray[ix].dead_space > granule_segs) {
1066           out->print_cr("dead_space[%d] = %d", ix, StatArray[ix].dead_space);
1067         }
1068         //   this cast is awful! I need it because NT/Intel reports a signed/unsigned mismatch.
1069         if ((size_t)(StatArray[ix].t1_count+StatArray[ix].t2_count+StatArray[ix].tx_count+StatArray[ix].stub_count+StatArray[ix].dead_count) > granule_segs) {
1070           out->print_cr("t1_count[%d] = %d, t2_count[%d] = %d, tx_count[%d] = %d, stub_count[%d] = %d", ix, StatArray[ix].t1_count, ix, StatArray[ix].t2_count, ix, StatArray[ix].tx_count, ix, StatArray[ix].stub_count);
1071         }
1072         if ((size_t)(StatArray[ix].t1_space+StatArray[ix].t2_space+StatArray[ix].tx_space+StatArray[ix].stub_space+StatArray[ix].dead_space) > granule_segs) {
1073           out->print_cr("t1_space[%d] = %d, t2_space[%d] = %d, tx_space[%d] = %d, stub_space[%d] = %d", ix, StatArray[ix].t1_space, ix, StatArray[ix].t2_space, ix, StatArray[ix].tx_space, ix, StatArray[ix].stub_space);
1074         }
1075       }
1076 
1077       // This loop is intentionally printing directly to "out".
1078       if (used_topSizeBlocks > 0) {
1079         unsigned int j = 0;
1080         if (TopSizeArray[0].len != currMax) {
1081           out->print_cr("currMax(%d) differs from TopSizeArray[0].len(%d)", currMax, TopSizeArray[0].len);
1082         }
1083         for (unsigned int i = 0; (TopSizeArray[i].index != tsbStopper) && (j++ < alloc_topSizeBlocks); i = TopSizeArray[i].index) {
1084           if (TopSizeArray[i].len < TopSizeArray[TopSizeArray[i].index].len) {
1085             out->print_cr("sort error at index %d: %d !>= %d", i, TopSizeArray[i].len, TopSizeArray[TopSizeArray[i].index].len);
1086           }
1087         }
1088         if (j >= alloc_topSizeBlocks) {
1089           out->print_cr("Possible loop in TopSizeArray chaining!\n  allocBlocks = %d, usedBlocks = %d", alloc_topSizeBlocks, used_topSizeBlocks);
1090           for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
1091             out->print_cr("  TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
1092           }
1093         }
1094       }
1095       out->print_cr("...done\n\n");
1096     } else {
1097       // insane heap state detected. Analysis data incomplete. Just throw it away.
1098       discard_StatArray(out);
1099       discard_TopSizeArray(out);
1100     }
1101   }
1102 
1103 
1104   done        = false;
1105   while (!done && (nBlocks_free > 0)) {
1106 
1107     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (free blocks) for segment ", heapName);
1108     ast->print_cr("   The aggregate step collects information about all free blocks in CodeHeap.\n"
1109                   "   Subsequent print functions create their output based on this snapshot.\n");
1110     ast->print_cr("   Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free);
1111     ast->print_cr("   Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K);
1112     STRINGSTREAM_FLUSH("\n")
1113 
1114     //----------------------------------------
1115     //--  Prepare the FreeArray of FreeBlks --
1116     //----------------------------------------
1117 
1118     //---< discard old array if size does not match  >---
1119     if (nBlocks_free != alloc_freeBlocks) {
1120       discard_FreeArray(out);
1121     }
1122 
1123     prepare_FreeArray(out, nBlocks_free, heapName);
1124     if (FreeArray == NULL) {
1125       done = true;
1126       continue;
1127     }
1128 
1129     //----------------------------------------
1130     //--  Collect all FreeBlks in FreeArray --
1131     //----------------------------------------
1132 
1133     unsigned int ix = 0;
1134     FreeBlock* cur  = heap->freelist();
1135 
1136     while (cur != NULL) {
1137       if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated
1138         FreeArray[ix].start = cur;
1139         FreeArray[ix].len   = (unsigned int)(cur->length()<<log2_seg_size);
1140         FreeArray[ix].index = ix;
1141       }
1142       cur  = cur->link();
1143       ix++;
1144     }
1145     if (ix != alloc_freeBlocks) {
1146       ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix);
1147       ast->print_cr("I will update the counter and retry data collection");
1148       STRINGSTREAM_FLUSH("\n")
1149       nBlocks_free = ix;
1150       continue;
1151     }
1152     done = true;
1153   }
1154 
1155   if (!done || (nBlocks_free == 0)) {
1156     if (nBlocks_free == 0) {
1157       printBox(ast, '-', "no free blocks found in ", heapName);
1158     } else if (!done) {
1159       ast->print_cr("Free block count mismatch could not be resolved.");
1160       ast->print_cr("Try to run \"aggregate\" function to update counters");
1161     }
1162     STRINGSTREAM_FLUSH("")
1163 
1164     //---< discard old array and update global values  >---
1165     discard_FreeArray(out);
1166     set_HeapStatGlobals(out, heapName);
1167     return;
1168   }
1169 
1170   //---<  calculate and fill remaining fields  >---
1171   if (FreeArray != NULL) {
1172     // This loop is intentionally printing directly to "out".
1173     for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1174       size_t lenSum = 0;
1175       FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len));
1176       for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) {
1177         CodeBlob *cb  = (CodeBlob*)(heap->find_start(h));
1178         if ((cb != NULL) && !cb->is_nmethod()) {
1179           FreeArray[ix].stubs_in_gap = true;
1180         }
1181         FreeArray[ix].n_gapBlocks++;
1182         lenSum += h->length()<<log2_seg_size;
1183         if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) {
1184           out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)", h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start);
1185         }
1186       }
1187       if (lenSum != FreeArray[ix].gap) {
1188         out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d.", ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum);
1189       }
1190     }
1191   }
1192   set_HeapStatGlobals(out, heapName);
1193 
1194   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   C O M P L E T E   for segment ", heapName);
1195   STRINGSTREAM_FLUSH("\n")
1196 }
1197 
1198 
1199 void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) {
1200   if (!initialization_complete) {
1201     return;
1202   }
1203 
1204   const char* heapName   = get_heapName(heap);
1205   get_HeapStatGlobals(out, heapName);
1206 
1207   if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) {
1208     return;
1209   }
1210   STRINGSTREAM_DECL(ast, out)
1211 
1212   {
1213     printBox(ast, '=', "U S E D   S P A C E   S T A T I S T I C S   for ", heapName);
1214     ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n"
1215                   "      and other identifying information with the block size data.\n"
1216                   "\n"
1217                   "      Method names are dynamically retrieved from the code cache at print time.\n"
1218                   "      Due to the living nature of the code cache and because the CodeCache_lock\n"
1219                   "      is not continuously held, the displayed name might be wrong or no name\n"
1220                   "      might be found at all. The likelihood for that to happen increases\n"
1221                   "      over time passed between analysis and print step.\n", used_topSizeBlocks);
1222     STRINGSTREAM_FLUSH_LOCKED("\n")
1223   }
1224 
1225   //----------------------------
1226   //--  Print Top Used Blocks --
1227   //----------------------------
1228   {
1229     char*     low_bound = heap->low_boundary();
1230 
1231     printBox(ast, '-', "Largest Used Blocks in ", heapName);
1232     print_blobType_legend(ast);
1233 
1234     ast->fill_to(51);
1235     ast->print("%4s", "blob");
1236     ast->fill_to(56);
1237     ast->print("%9s", "compiler");
1238     ast->fill_to(66);
1239     ast->print_cr("%6s", "method");
1240     ast->print_cr("%18s %13s %17s %4s %9s  %5s %s",      "Addr(module)      ", "offset", "size", "type", " type lvl", " temp", "Name");
1241     STRINGSTREAM_FLUSH_LOCKED("")
1242 
1243     //---<  print Top Ten Used Blocks  >---
1244     if (used_topSizeBlocks > 0) {
1245       unsigned int printed_topSizeBlocks = 0;
1246       for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
1247         printed_topSizeBlocks++;
1248         CodeBlob*   this_blob = (CodeBlob*)(heap->find_start(TopSizeArray[i].start));
1249         nmethod*           nm = NULL;
1250         const char* blob_name = "unnamed blob";
1251         if (this_blob != NULL) {
1252           blob_name = this_blob->name();
1253           nm        = this_blob->as_nmethod_or_null();
1254           //---<  blob address  >---
1255           ast->print(INTPTR_FORMAT, p2i(this_blob));
1256           ast->fill_to(19);
1257           //---<  blob offset from CodeHeap begin  >---
1258           ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
1259           ast->fill_to(33);
1260         } else {
1261           //---<  block address  >---
1262           ast->print(INTPTR_FORMAT, p2i(TopSizeArray[i].start));
1263           ast->fill_to(19);
1264           //---<  block offset from CodeHeap begin  >---
1265           ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)TopSizeArray[i].start-low_bound));
1266           ast->fill_to(33);
1267         }
1268 
1269 
1270         //---<  print size, name, and signature (for nMethods)  >---
1271         if ((nm != NULL) && (nm->method() != NULL)) {
1272           ResourceMark rm;
1273           //---<  nMethod size in hex  >---
1274           unsigned int total_size = nm->total_size();
1275           ast->print(PTR32_FORMAT, total_size);
1276           ast->print("(" SIZE_FORMAT_W(4) "K)", total_size/K);
1277           ast->fill_to(51);
1278           ast->print("  %c", blobTypeChar[TopSizeArray[i].type]);
1279           //---<  compiler information  >---
1280           ast->fill_to(56);
1281           ast->print("%5s %3d", compTypeName[TopSizeArray[i].compiler], TopSizeArray[i].level);
1282           //---<  method temperature  >---
1283           ast->fill_to(67);
1284           ast->print("%5d", nm->hotness_counter());
1285           //---<  name and signature  >---
1286           ast->fill_to(67+6);
1287           if (nm->is_in_use())        {blob_name = nm->method()->name_and_sig_as_C_string(); }
1288           if (nm->is_not_entrant())   {blob_name = nm->method()->name_and_sig_as_C_string(); }
1289           if (nm->is_not_installed()) {ast->print("%s", " not (yet) installed method "); }
1290           if (nm->is_zombie())        {ast->print("%s", " zombie method "); }
1291           ast->print("%s", blob_name);
1292         } else {
1293           //---<  block size in hex  >---
1294           ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size));
1295           ast->print("(" SIZE_FORMAT_W(4) "K)", (TopSizeArray[i].len<<log2_seg_size)/K);
1296           //---<  no compiler information  >---
1297           ast->fill_to(56);
1298           //---<  name and signature  >---
1299           ast->fill_to(67+6);
1300           ast->print("%s", blob_name);
1301         }
1302         STRINGSTREAM_FLUSH_LOCKED("\n")
1303       }
1304       if (used_topSizeBlocks != printed_topSizeBlocks) {
1305         ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks);
1306         STRINGSTREAM_FLUSH("")
1307         for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
1308           ast->print_cr("  TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
1309           STRINGSTREAM_FLUSH("")
1310         }
1311       }
1312       STRINGSTREAM_FLUSH_LOCKED("\n\n")
1313     }
1314   }
1315 
1316   //-----------------------------
1317   //--  Print Usage Histogram  --
1318   //-----------------------------
1319 
1320   if (SizeDistributionArray != NULL) {
1321     unsigned long total_count = 0;
1322     unsigned long total_size  = 0;
1323     const unsigned long pctFactor = 200;
1324 
1325     for (unsigned int i = 0; i < nSizeDistElements; i++) {
1326       total_count += SizeDistributionArray[i].count;
1327       total_size  += SizeDistributionArray[i].lenSum;
1328     }
1329 
1330     if ((total_count > 0) && (total_size > 0)) {
1331       printBox(ast, '-', "Block count histogram for ", heapName);
1332       ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n"
1333                     "      of all blocks) have a size in the given range.\n"
1334                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
1335       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1336       ast->print_cr("total number of all blocks: %7ld\n", total_count);
1337       STRINGSTREAM_FLUSH_LOCKED("")
1338 
1339       ast->print_cr("[Size Range)------avg.-size-+----count-+");
1340       for (unsigned int i = 0; i < nSizeDistElements; i++) {
1341         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1342           ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1343                     ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1344                     ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1345                     );
1346         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1347           ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1348                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1349                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1350                     );
1351         } else {
1352           ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1353                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1354                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1355                     );
1356         }
1357         ast->print(" %8d | %8d |",
1358                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1359                    SizeDistributionArray[i].count);
1360 
1361         unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count;
1362         for (unsigned int j = 1; j <= percent; j++) {
1363           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1364         }
1365         ast->cr();
1366       }
1367       ast->print_cr("----------------------------+----------+\n\n");
1368       STRINGSTREAM_FLUSH_LOCKED("\n")
1369 
1370       printBox(ast, '-', "Contribution per size range to total size for ", heapName);
1371       ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n"
1372                     "      occupied space) is used by the blocks in the given size range.\n"
1373                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
1374       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1375       ast->print_cr("total number of all blocks: %7ld\n", total_count);
1376       STRINGSTREAM_FLUSH_LOCKED("")
1377 
1378       ast->print_cr("[Size Range)------avg.-size-+----count-+");
1379       for (unsigned int i = 0; i < nSizeDistElements; i++) {
1380         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1381           ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1382                     ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1383                     ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1384                     );
1385         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1386           ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1387                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1388                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1389                     );
1390         } else {
1391           ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1392                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1393                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1394                     );
1395         }
1396         ast->print(" %8d | %8d |",
1397                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1398                    SizeDistributionArray[i].count);
1399 
1400         unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size;
1401         for (unsigned int j = 1; j <= percent; j++) {
1402           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1403         }
1404         ast->cr();
1405       }
1406       ast->print_cr("----------------------------+----------+");
1407       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1408     }
1409   }
1410 }
1411 
1412 
1413 void CodeHeapState::print_freeSpace(outputStream* out, CodeHeap* heap) {
1414   if (!initialization_complete) {
1415     return;
1416   }
1417 
1418   const char* heapName   = get_heapName(heap);
1419   get_HeapStatGlobals(out, heapName);
1420 
1421   if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) {
1422     return;
1423   }
1424   STRINGSTREAM_DECL(ast, out)
1425 
1426   {
1427     printBox(ast, '=', "F R E E   S P A C E   S T A T I S T I C S   for ", heapName);
1428     ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n"
1429                   "      Those gaps are of interest if there is a chance that they become\n"
1430                   "      unoccupied, e.g. by class unloading. Then, the two adjacent free\n"
1431                   "      blocks, together with the now unoccupied space, form a new, large\n"
1432                   "      free block.");
1433     STRINGSTREAM_FLUSH_LOCKED("\n")
1434   }
1435 
1436   {
1437     printBox(ast, '-', "List of all Free Blocks in ", heapName);
1438     STRINGSTREAM_FLUSH_LOCKED("")
1439 
1440     unsigned int ix = 0;
1441     for (ix = 0; ix < alloc_freeBlocks-1; ix++) {
1442       ast->print(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT ",", p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1443       ast->fill_to(38);
1444       ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes,", ix, ix+1, FreeArray[ix].gap);
1445       ast->fill_to(71);
1446       ast->print("block count: %6d", FreeArray[ix].n_gapBlocks);
1447       if (FreeArray[ix].stubs_in_gap) {
1448         ast->print(" !! permanent gap, contains stubs and/or blobs !!");
1449       }
1450       STRINGSTREAM_FLUSH_LOCKED("\n")
1451     }
1452     ast->print_cr(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT, p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1453     STRINGSTREAM_FLUSH_LOCKED("\n\n")
1454   }
1455 
1456 
1457   //-----------------------------------------
1458   //--  Find and Print Top Ten Free Blocks --
1459   //-----------------------------------------
1460 
1461   //---<  find Top Ten Free Blocks  >---
1462   const unsigned int nTop = 10;
1463   unsigned int  currMax10 = 0;
1464   struct FreeBlk* FreeTopTen[nTop];
1465   memset(FreeTopTen, 0, sizeof(FreeTopTen));
1466 
1467   for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) {
1468     if (FreeArray[ix].len > currMax10) {  // larger than the ten largest found so far
1469       unsigned int currSize = FreeArray[ix].len;
1470 
1471       unsigned int iy;
1472       for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) {
1473         if (FreeTopTen[iy]->len < currSize) {
1474           for (unsigned int iz = nTop-1; iz > iy; iz--) { // make room to insert new free block
1475             FreeTopTen[iz] = FreeTopTen[iz-1];
1476           }
1477           FreeTopTen[iy] = &FreeArray[ix];        // insert new free block
1478           if (FreeTopTen[nTop-1] != NULL) {
1479             currMax10 = FreeTopTen[nTop-1]->len;
1480           }
1481           break; // done with this, check next free block
1482         }
1483       }
1484       if (iy >= nTop) {
1485         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1486                       currSize, currMax10);
1487         continue;
1488       }
1489       if (FreeTopTen[iy] == NULL) {
1490         FreeTopTen[iy] = &FreeArray[ix];
1491         if (iy == (nTop-1)) {
1492           currMax10 = currSize;
1493         }
1494       }
1495     }
1496   }
1497   STRINGSTREAM_FLUSH_LOCKED("")
1498 
1499   {
1500     printBox(ast, '-', "Top Ten Free Blocks in ", heapName);
1501 
1502     //---<  print Top Ten Free Blocks  >---
1503     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) {
1504       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len);
1505       ast->fill_to(39);
1506       if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) {
1507         ast->print("last free block in list.");
1508       } else {
1509         ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap);
1510         ast->fill_to(63);
1511         ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks);
1512       }
1513       ast->cr();
1514     }
1515     STRINGSTREAM_FLUSH_LOCKED("\n\n")
1516   }
1517 
1518 
1519   //--------------------------------------------------------
1520   //--  Find and Print Top Ten Free-Occupied-Free Triples --
1521   //--------------------------------------------------------
1522 
1523   //---<  find and print Top Ten Triples (Free-Occupied-Free)  >---
1524   currMax10 = 0;
1525   struct FreeBlk  *FreeTopTenTriple[nTop];
1526   memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple));
1527 
1528   for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1529     // If there are stubs in the gap, this gap will never become completely free.
1530     // The triple will thus never merge to one free block.
1531     unsigned int lenTriple  = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len);
1532     FreeArray[ix].len = lenTriple;
1533     if (lenTriple > currMax10) {  // larger than the ten largest found so far
1534 
1535       unsigned int iy;
1536       for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
1537         if (FreeTopTenTriple[iy]->len < lenTriple) {
1538           for (unsigned int iz = nTop-1; iz > iy; iz--) {
1539             FreeTopTenTriple[iz] = FreeTopTenTriple[iz-1];
1540           }
1541           FreeTopTenTriple[iy] = &FreeArray[ix];
1542           if (FreeTopTenTriple[nTop-1] != NULL) {
1543             currMax10 = FreeTopTenTriple[nTop-1]->len;
1544           }
1545           break;
1546         }
1547       }
1548       if (iy == nTop) {
1549         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1550                       lenTriple, currMax10);
1551         continue;
1552       }
1553       if (FreeTopTenTriple[iy] == NULL) {
1554         FreeTopTenTriple[iy] = &FreeArray[ix];
1555         if (iy == (nTop-1)) {
1556           currMax10 = lenTriple;
1557         }
1558       }
1559     }
1560   }
1561   STRINGSTREAM_FLUSH_LOCKED("")
1562 
1563   {
1564     printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in ", heapName);
1565     ast->print_cr("  Use this information to judge how likely it is that a large(r) free block\n"
1566                   "  might get created by code cache sweeping.\n"
1567                   "  If all the occupied blocks can be swept, the three free blocks will be\n"
1568                   "  merged into one (much larger) free block. That would reduce free space\n"
1569                   "  fragmentation.\n");
1570 
1571     //---<  print Top Ten Free-Occupied-Free Triples  >---
1572     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
1573       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len);
1574       ast->fill_to(39);
1575       ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap);
1576       ast->fill_to(63);
1577       ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks);
1578       ast->cr();
1579     }
1580     STRINGSTREAM_FLUSH_LOCKED("\n\n")
1581   }
1582 }
1583 
1584 
1585 void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) {
1586   if (!initialization_complete) {
1587     return;
1588   }
1589 
1590   const char* heapName   = get_heapName(heap);
1591   get_HeapStatGlobals(out, heapName);
1592 
1593   if ((StatArray == NULL) || (alloc_granules == 0)) {
1594     return;
1595   }
1596   STRINGSTREAM_DECL(ast, out)
1597 
1598   unsigned int granules_per_line = 32;
1599   char*        low_bound         = heap->low_boundary();
1600 
1601   {
1602     printBox(ast, '=', "B L O C K   C O U N T S   for ", heapName);
1603     ast->print_cr("  Each granule contains an individual number of heap blocks. Large blocks\n"
1604                   "  may span multiple granules and are counted for each granule they touch.\n");
1605     if (segment_granules) {
1606       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
1607                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
1608                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1609                     "  Occupied granules show their BlobType character, see legend.\n");
1610       print_blobType_legend(ast);
1611     }
1612     STRINGSTREAM_FLUSH_LOCKED("")
1613   }
1614 
1615   {
1616     if (segment_granules) {
1617       printBox(ast, '-', "Total (all types) count for granule size == segment size", NULL);
1618       STRINGSTREAM_FLUSH_LOCKED("")
1619 
1620       granules_per_line = 128;
1621       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1622         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1623         print_blobType_single(ast, StatArray[ix].type);
1624       }
1625     } else {
1626       printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1627       STRINGSTREAM_FLUSH_LOCKED("")
1628 
1629       granules_per_line = 128;
1630       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1631         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1632         unsigned int count = StatArray[ix].t1_count   + StatArray[ix].t2_count   + StatArray[ix].tx_count
1633                            + StatArray[ix].stub_count + StatArray[ix].dead_count;
1634         print_count_single(ast, count);
1635       }
1636     }
1637     STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1638   }
1639 
1640   {
1641     if (nBlocks_t1 > 0) {
1642       printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1643       STRINGSTREAM_FLUSH_LOCKED("")
1644 
1645       granules_per_line = 128;
1646       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1647         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1648         if (segment_granules && StatArray[ix].t1_count > 0) {
1649           print_blobType_single(ast, StatArray[ix].type);
1650         } else {
1651           print_count_single(ast, StatArray[ix].t1_count);
1652         }
1653       }
1654       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1655     } else {
1656       ast->print("No Tier1 nMethods found in CodeHeap.");
1657       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1658     }
1659   }
1660 
1661   {
1662     if (nBlocks_t2 > 0) {
1663       printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1664       STRINGSTREAM_FLUSH_LOCKED("")
1665 
1666       granules_per_line = 128;
1667       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1668         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1669         if (segment_granules && StatArray[ix].t2_count > 0) {
1670           print_blobType_single(ast, StatArray[ix].type);
1671         } else {
1672           print_count_single(ast, StatArray[ix].t2_count);
1673         }
1674       }
1675       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1676     } else {
1677       ast->print("No Tier2 nMethods found in CodeHeap.");
1678       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1679     }
1680   }
1681 
1682   {
1683     if (nBlocks_alive > 0) {
1684       printBox(ast, '-', "not_used/not_entrant/not_installed nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1685       STRINGSTREAM_FLUSH_LOCKED("")
1686 
1687       granules_per_line = 128;
1688       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1689         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1690         if (segment_granules && StatArray[ix].tx_count > 0) {
1691           print_blobType_single(ast, StatArray[ix].type);
1692         } else {
1693           print_count_single(ast, StatArray[ix].tx_count);
1694         }
1695       }
1696       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1697     } else {
1698       ast->print("No not_used/not_entrant nMethods found in CodeHeap.");
1699       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1700     }
1701   }
1702 
1703   {
1704     if (nBlocks_stub > 0) {
1705       printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1706       STRINGSTREAM_FLUSH_LOCKED("")
1707 
1708       granules_per_line = 128;
1709       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1710         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1711         if (segment_granules && StatArray[ix].stub_count > 0) {
1712           print_blobType_single(ast, StatArray[ix].type);
1713         } else {
1714           print_count_single(ast, StatArray[ix].stub_count);
1715         }
1716       }
1717       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1718     } else {
1719       ast->print("No Stubs and Blobs found in CodeHeap.");
1720       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1721     }
1722   }
1723 
1724   {
1725     if (nBlocks_dead > 0) {
1726       printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1727       STRINGSTREAM_FLUSH_LOCKED("")
1728 
1729       granules_per_line = 128;
1730       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1731         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1732         if (segment_granules && StatArray[ix].dead_count > 0) {
1733           print_blobType_single(ast, StatArray[ix].type);
1734         } else {
1735           print_count_single(ast, StatArray[ix].dead_count);
1736         }
1737       }
1738       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1739     } else {
1740       ast->print("No dead nMethods found in CodeHeap.");
1741       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1742     }
1743   }
1744 
1745   {
1746     if (!segment_granules) { // Prevent totally redundant printouts
1747       printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL);
1748       STRINGSTREAM_FLUSH_LOCKED("")
1749 
1750       granules_per_line = 24;
1751       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1752         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1753 
1754         print_count_single(ast, StatArray[ix].t1_count);
1755         ast->print(":");
1756         print_count_single(ast, StatArray[ix].t2_count);
1757         ast->print(":");
1758         if (segment_granules && StatArray[ix].stub_count > 0) {
1759           print_blobType_single(ast, StatArray[ix].type);
1760         } else {
1761           print_count_single(ast, StatArray[ix].stub_count);
1762         }
1763         ast->print(" ");
1764       }
1765       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1766     }
1767   }
1768 }
1769 
1770 
1771 void CodeHeapState::print_space(outputStream* out, CodeHeap* heap) {
1772   if (!initialization_complete) {
1773     return;
1774   }
1775 
1776   const char* heapName   = get_heapName(heap);
1777   get_HeapStatGlobals(out, heapName);
1778 
1779   if ((StatArray == NULL) || (alloc_granules == 0)) {
1780     return;
1781   }
1782   STRINGSTREAM_DECL(ast, out)
1783 
1784   unsigned int granules_per_line = 32;
1785   char*        low_bound         = heap->low_boundary();
1786 
1787   {
1788     printBox(ast, '=', "S P A C E   U S A G E  &  F R A G M E N T A T I O N   for ", heapName);
1789     ast->print_cr("  The heap space covered by one granule is occupied to a various extend.\n"
1790                   "  The granule occupancy is displayed by one decimal digit per granule.\n");
1791     if (segment_granules) {
1792       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
1793                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
1794                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1795                     "  Occupied granules show their BlobType character, see legend.\n");
1796       print_blobType_legend(ast);
1797     } else {
1798       ast->print_cr("  These digits represent a fill percentage range (see legend).\n");
1799       print_space_legend(ast);
1800     }
1801     STRINGSTREAM_FLUSH_LOCKED("")
1802   }
1803 
1804   {
1805     if (segment_granules) {
1806       printBox(ast, '-', "Total (all types) space consumption for granule size == segment size", NULL);
1807       STRINGSTREAM_FLUSH_LOCKED("")
1808 
1809       granules_per_line = 128;
1810       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1811         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1812         print_blobType_single(ast, StatArray[ix].type);
1813       }
1814     } else {
1815       printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL);
1816       STRINGSTREAM_FLUSH_LOCKED("")
1817 
1818       granules_per_line = 128;
1819       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1820         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1821         unsigned int space    = StatArray[ix].t1_space   + StatArray[ix].t2_space  + StatArray[ix].tx_space
1822                               + StatArray[ix].stub_space + StatArray[ix].dead_space;
1823         print_space_single(ast, space);
1824       }
1825     }
1826     STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1827   }
1828 
1829   {
1830     if (nBlocks_t1 > 0) {
1831       printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL);
1832       STRINGSTREAM_FLUSH_LOCKED("")
1833 
1834       granules_per_line = 128;
1835       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1836         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1837         if (segment_granules && StatArray[ix].t1_space > 0) {
1838           print_blobType_single(ast, StatArray[ix].type);
1839         } else {
1840           print_space_single(ast, StatArray[ix].t1_space);
1841         }
1842       }
1843       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1844     } else {
1845       ast->print("No Tier1 nMethods found in CodeHeap.");
1846       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1847     }
1848   }
1849 
1850   {
1851     if (nBlocks_t2 > 0) {
1852       printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL);
1853       STRINGSTREAM_FLUSH_LOCKED("")
1854 
1855       granules_per_line = 128;
1856       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1857         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1858         if (segment_granules && StatArray[ix].t2_space > 0) {
1859           print_blobType_single(ast, StatArray[ix].type);
1860         } else {
1861           print_space_single(ast, StatArray[ix].t2_space);
1862         }
1863       }
1864       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1865     } else {
1866       ast->print("No Tier2 nMethods found in CodeHeap.");
1867       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1868     }
1869   }
1870 
1871   {
1872     if (nBlocks_alive > 0) {
1873       printBox(ast, '-', "not_used/not_entrant/not_installed space consumption. ' ' indicates empty, '*' indicates full", NULL);
1874 
1875       granules_per_line = 128;
1876       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1877         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1878         if (segment_granules && StatArray[ix].tx_space > 0) {
1879           print_blobType_single(ast, StatArray[ix].type);
1880         } else {
1881           print_space_single(ast, StatArray[ix].tx_space);
1882         }
1883       }
1884       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1885     } else {
1886       ast->print("No Tier2 nMethods found in CodeHeap.");
1887       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1888     }
1889   }
1890 
1891   {
1892     if (nBlocks_stub > 0) {
1893       printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL);
1894       STRINGSTREAM_FLUSH_LOCKED("")
1895 
1896       granules_per_line = 128;
1897       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1898         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1899         if (segment_granules && StatArray[ix].stub_space > 0) {
1900           print_blobType_single(ast, StatArray[ix].type);
1901         } else {
1902           print_space_single(ast, StatArray[ix].stub_space);
1903         }
1904       }
1905       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1906     } else {
1907       ast->print("No Stubs and Blobs found in CodeHeap.");
1908       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1909     }
1910   }
1911 
1912   {
1913     if (nBlocks_dead > 0) {
1914       printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL);
1915       STRINGSTREAM_FLUSH_LOCKED("")
1916 
1917       granules_per_line = 128;
1918       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1919         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1920         print_space_single(ast, StatArray[ix].dead_space);
1921       }
1922       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1923     } else {
1924       ast->print("No dead nMethods found in CodeHeap.");
1925       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
1926     }
1927   }
1928 
1929   {
1930     if (!segment_granules) { // Prevent totally redundant printouts
1931       printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL);
1932       STRINGSTREAM_FLUSH_LOCKED("")
1933 
1934       granules_per_line = 24;
1935       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1936         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1937 
1938         if (segment_granules && StatArray[ix].t1_space > 0) {
1939           print_blobType_single(ast, StatArray[ix].type);
1940         } else {
1941           print_space_single(ast, StatArray[ix].t1_space);
1942         }
1943         ast->print(":");
1944         if (segment_granules && StatArray[ix].t2_space > 0) {
1945           print_blobType_single(ast, StatArray[ix].type);
1946         } else {
1947           print_space_single(ast, StatArray[ix].t2_space);
1948         }
1949         ast->print(":");
1950         if (segment_granules && StatArray[ix].stub_space > 0) {
1951           print_blobType_single(ast, StatArray[ix].type);
1952         } else {
1953           print_space_single(ast, StatArray[ix].stub_space);
1954         }
1955         ast->print(" ");
1956       }
1957       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
1958     }
1959   }
1960 }
1961 
1962 void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) {
1963   if (!initialization_complete) {
1964     return;
1965   }
1966 
1967   const char* heapName   = get_heapName(heap);
1968   get_HeapStatGlobals(out, heapName);
1969 
1970   if ((StatArray == NULL) || (alloc_granules == 0)) {
1971     return;
1972   }
1973   STRINGSTREAM_DECL(ast, out)
1974 
1975   unsigned int granules_per_line = 32;
1976   char*        low_bound         = heap->low_boundary();
1977 
1978   {
1979     printBox(ast, '=', "M E T H O D   A G E   by CompileID for ", heapName);
1980     ast->print_cr("  The age of a compiled method in the CodeHeap is not available as a\n"
1981                   "  time stamp. Instead, a relative age is deducted from the method's compilation ID.\n"
1982                   "  Age information is available for tier1 and tier2 methods only. There is no\n"
1983                   "  age information for stubs and blobs, because they have no compilation ID assigned.\n"
1984                   "  Information for the youngest method (highest ID) in the granule is printed.\n"
1985                   "  Refer to the legend to learn how method age is mapped to the displayed digit.");
1986     print_age_legend(ast);
1987     STRINGSTREAM_FLUSH_LOCKED("")
1988   }
1989 
1990   {
1991     printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
1992     STRINGSTREAM_FLUSH_LOCKED("")
1993 
1994     granules_per_line = 128;
1995     for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1996       print_line_delim(out, ast, low_bound, ix, granules_per_line);
1997       unsigned int age1      = StatArray[ix].t1_age;
1998       unsigned int age2      = StatArray[ix].t2_age;
1999       unsigned int agex      = StatArray[ix].tx_age;
2000       unsigned int age       = age1 > age2 ? age1 : age2;
2001       age       = age > agex ? age : agex;
2002       print_age_single(ast, age);
2003     }
2004     STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
2005   }
2006 
2007   {
2008     if (nBlocks_t1 > 0) {
2009       printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2010       STRINGSTREAM_FLUSH_LOCKED("")
2011 
2012       granules_per_line = 128;
2013       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2014         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2015         print_age_single(ast, StatArray[ix].t1_age);
2016       }
2017       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
2018     } else {
2019       ast->print("No Tier1 nMethods found in CodeHeap.");
2020       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
2021     }
2022   }
2023 
2024   {
2025     if (nBlocks_t2 > 0) {
2026       printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2027       STRINGSTREAM_FLUSH_LOCKED("")
2028 
2029       granules_per_line = 128;
2030       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2031         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2032         print_age_single(ast, StatArray[ix].t2_age);
2033       }
2034       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
2035     } else {
2036       ast->print("No Tier2 nMethods found in CodeHeap.");
2037       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
2038     }
2039   }
2040 
2041   {
2042     if (nBlocks_alive > 0) {
2043       printBox(ast, '-', "not_used/not_entrant/not_installed age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2044       STRINGSTREAM_FLUSH_LOCKED("")
2045 
2046       granules_per_line = 128;
2047       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2048         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2049         print_age_single(ast, StatArray[ix].tx_age);
2050       }
2051       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
2052     } else {
2053       ast->print("No Tier2 nMethods found in CodeHeap.");
2054       STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
2055     }
2056   }
2057 
2058   {
2059     if (!segment_granules) { // Prevent totally redundant printouts
2060       printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2061       STRINGSTREAM_FLUSH_LOCKED("")
2062 
2063       granules_per_line = 32;
2064       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2065         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2066         print_age_single(ast, StatArray[ix].t1_age);
2067         ast->print(":");
2068         print_age_single(ast, StatArray[ix].t2_age);
2069         ast->print(" ");
2070       }
2071       STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
2072     }
2073   }
2074 }
2075 
2076 
2077 void CodeHeapState::print_names(outputStream* out, CodeHeap* heap) {
2078   if (!initialization_complete) {
2079     return;
2080   }
2081 
2082   const char* heapName   = get_heapName(heap);
2083   get_HeapStatGlobals(out, heapName);
2084 
2085   if ((StatArray == NULL) || (alloc_granules == 0)) {
2086     return;
2087   }
2088   STRINGSTREAM_DECL(ast, out)
2089 
2090   unsigned int granules_per_line  = 128;
2091   char*        low_bound          = heap->low_boundary();
2092   CodeBlob*    last_blob          = NULL;
2093   bool         name_in_addr_range = true;
2094 
2095   //---<  print at least 128K per block (i.e. between headers)  >---
2096   if (granules_per_line*granule_size < 128*K) {
2097     granules_per_line = (unsigned int)((128*K)/granule_size);
2098   }
2099 
2100   printBox(ast, '=', "M E T H O D   N A M E S   for ", heapName);
2101   ast->print_cr("  Method names are dynamically retrieved from the code cache at print time.\n"
2102                 "  Due to the living nature of the code heap and because the CodeCache_lock\n"
2103                 "  is not continuously held, the displayed name might be wrong or no name\n"
2104                 "  might be found at all. The likelihood for that to happen increases\n"
2105                 "  over time passed between aggregtion and print steps.\n");
2106   STRINGSTREAM_FLUSH_LOCKED("")
2107 
2108   for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2109     //---<  print a new blob on a new line  >---
2110     if (ix%granules_per_line == 0) {
2111       if (!name_in_addr_range) {
2112         ast->print_cr("No methods, blobs, or stubs found in this address range");
2113       }
2114       name_in_addr_range = false;
2115 
2116       size_t end_ix = (ix+granules_per_line <= alloc_granules) ? ix+granules_per_line : alloc_granules;
2117       ast->cr();
2118       ast->print_cr("--------------------------------------------------------------------");
2119       ast->print_cr("Address range [" INTPTR_FORMAT "," INTPTR_FORMAT "), " SIZE_FORMAT "k", p2i(low_bound+ix*granule_size), p2i(low_bound + end_ix*granule_size), (end_ix - ix)*granule_size/(size_t)K);
2120       ast->print_cr("--------------------------------------------------------------------");
2121       STRINGSTREAM_FLUSH_LOCKED("")
2122     }
2123     // Only check granule if it contains at least one blob.
2124     unsigned int nBlobs  = StatArray[ix].t1_count   + StatArray[ix].t2_count + StatArray[ix].tx_count +
2125                            StatArray[ix].stub_count + StatArray[ix].dead_count;
2126     if (nBlobs > 0 ) {
2127     for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) {
2128       // heap->find_start() is safe. Only working with _segmap. Returns NULL or void*. Returned CodeBlob may be uninitialized.
2129       CodeBlob* this_blob = (CodeBlob *)(heap->find_start(low_bound+ix*granule_size+is));
2130       bool blob_initialized = (this_blob != NULL) && (this_blob->header_size() >= 0) && (this_blob->relocation_size() >= 0) &&
2131                               ((address)this_blob + this_blob->header_size() == (address)(this_blob->relocation_begin())) &&
2132                               ((address)this_blob + CodeBlob::align_code_offset(this_blob->header_size() + this_blob->relocation_size()) == (address)(this_blob->content_begin())) &&
2133                               os::is_readable_pointer((address)(this_blob->relocation_begin())) &&
2134                               os::is_readable_pointer(this_blob->content_begin());
2135       // blob could have been flushed, freed, and merged.
2136       // this_blob < last_blob is an indicator for that.
2137       if (blob_initialized && (this_blob > last_blob)) {
2138         last_blob          = this_blob;
2139 
2140         //---<  get type and name  >---
2141         blobType       cbType = noType;
2142         if (segment_granules) {
2143           cbType = (blobType)StatArray[ix].type;
2144         } else {
2145           cbType = get_cbType(this_blob);
2146         }
2147         // this_blob->name() could return NULL if no name was given to CTOR. Inlined, maybe invisible on stack
2148         const char* blob_name = this_blob->name();
2149         if ((blob_name == NULL) || !os::is_readable_pointer(blob_name)) {
2150           blob_name = "<unavailable>";
2151         }
2152 
2153         //---<  print table header for new print range  >---
2154         if (!name_in_addr_range) {
2155           name_in_addr_range = true;
2156           ast->fill_to(51);
2157           ast->print("%9s", "compiler");
2158           ast->fill_to(61);
2159           ast->print_cr("%6s", "method");
2160           ast->print_cr("%18s %13s %17s %9s  %5s %18s  %s", "Addr(module)      ", "offset", "size", " type lvl", " temp", "blobType          ", "Name");
2161           STRINGSTREAM_FLUSH_LOCKED("")
2162         }
2163 
2164         //---<  print line prefix (address and offset from CodeHeap start)  >---
2165         ast->print(INTPTR_FORMAT, p2i(this_blob));
2166         ast->fill_to(19);
2167         ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
2168         ast->fill_to(33);
2169 
2170         // this_blob->as_nmethod_or_null() is safe. Inlined, maybe invisible on stack.
2171         nmethod*    nm     = this_blob->as_nmethod_or_null();
2172         if (CompiledMethod::nmethod_access_is_safe(nm)) {
2173           Method* method = nm->method();
2174           ResourceMark rm;
2175           //---<  collect all data to locals as quickly as possible  >---
2176           unsigned int total_size = nm->total_size();
2177           int          hotness    = nm->hotness_counter();
2178           bool         get_name   = (cbType == nMethod_inuse) || (cbType == nMethod_notused);
2179           //---<  nMethod size in hex  >---
2180           ast->print(PTR32_FORMAT, total_size);
2181           ast->print("(" SIZE_FORMAT_W(4) "K)", total_size/K);
2182           //---<  compiler information  >---
2183           ast->fill_to(51);
2184           ast->print("%5s %3d", compTypeName[StatArray[ix].compiler], StatArray[ix].level);
2185           //---<  method temperature  >---
2186           ast->fill_to(62);
2187           ast->print("%5d", hotness);
2188           //---<  name and signature  >---
2189           ast->fill_to(62+6);
2190           ast->print("%s", blobTypeName[cbType]);
2191           ast->fill_to(82+6);
2192           if (cbType == nMethod_dead) {
2193             ast->print("%14s", " zombie method");
2194           }
2195 
2196           if (get_name) {
2197             Symbol* methName  = method->name();
2198             const char*   methNameS = (methName == NULL) ? NULL : methName->as_C_string();
2199             methNameS = (methNameS == NULL) ? "<method name unavailable>" : methNameS;
2200             Symbol* methSig   = method->signature();
2201             const char*   methSigS  = (methSig  == NULL) ? NULL : methSig->as_C_string();
2202             methSigS  = (methSigS  == NULL) ? "<method signature unavailable>" : methSigS;
2203             ast->print("%s", methNameS);
2204             ast->print("%s", methSigS);
2205           } else {
2206             ast->print("%s", blob_name);
2207           }
2208         } else {
2209           ast->fill_to(62+6);
2210           ast->print("%s", blobTypeName[cbType]);
2211           ast->fill_to(82+6);
2212           ast->print("%s", blob_name);
2213         }
2214         STRINGSTREAM_FLUSH_LOCKED("\n")
2215       } else if (!blob_initialized && (this_blob != last_blob) && (this_blob != NULL)) {
2216         last_blob          = this_blob;
2217         STRINGSTREAM_FLUSH_LOCKED("\n")
2218       }
2219     }
2220     } // nBlobs > 0
2221   }
2222   STRINGSTREAM_FLUSH_LOCKED("\n\n")
2223 }
2224 
2225 
2226 void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) {
2227   unsigned int lineLen = 1 + 2 + 2 + 1;
2228   char edge, frame;
2229 
2230   if (text1 != NULL) {
2231     lineLen += (unsigned int)strlen(text1); // text1 is much shorter than MAX_INT chars.
2232   }
2233   if (text2 != NULL) {
2234     lineLen += (unsigned int)strlen(text2); // text2 is much shorter than MAX_INT chars.
2235   }
2236   if (border == '-') {
2237     edge  = '+';
2238     frame = '|';
2239   } else {
2240     edge  = border;
2241     frame = border;
2242   }
2243 
2244   ast->print("%c", edge);
2245   for (unsigned int i = 0; i < lineLen-2; i++) {
2246     ast->print("%c", border);
2247   }
2248   ast->print_cr("%c", edge);
2249 
2250   ast->print("%c  ", frame);
2251   if (text1 != NULL) {
2252     ast->print("%s", text1);
2253   }
2254   if (text2 != NULL) {
2255     ast->print("%s", text2);
2256   }
2257   ast->print_cr("  %c", frame);
2258 
2259   ast->print("%c", edge);
2260   for (unsigned int i = 0; i < lineLen-2; i++) {
2261     ast->print("%c", border);
2262   }
2263   ast->print_cr("%c", edge);
2264 }
2265 
2266 void CodeHeapState::print_blobType_legend(outputStream* out) {
2267   out->cr();
2268   printBox(out, '-', "Block types used in the following CodeHeap dump", NULL);
2269   for (int type = noType; type < lastType; type += 1) {
2270     out->print_cr("  %c - %s", blobTypeChar[type], blobTypeName[type]);
2271   }
2272   out->print_cr("  -----------------------------------------------------");
2273   out->cr();
2274 }
2275 
2276 void CodeHeapState::print_space_legend(outputStream* out) {
2277   unsigned int indicator = 0;
2278   unsigned int age_range = 256;
2279   unsigned int range_beg = latest_compilation_id;
2280   out->cr();
2281   printBox(out, '-', "Space ranges, based on granule occupancy", NULL);
2282   out->print_cr("    -   0%% == occupancy");
2283   for (int i=0; i<=9; i++) {
2284     out->print_cr("  %d - %3d%% < occupancy < %3d%%", i, 10*i, 10*(i+1));
2285   }
2286   out->print_cr("  * - 100%% == occupancy");
2287   out->print_cr("  ----------------------------------------------");
2288   out->cr();
2289 }
2290 
2291 void CodeHeapState::print_age_legend(outputStream* out) {
2292   unsigned int indicator = 0;
2293   unsigned int age_range = 256;
2294   unsigned int range_beg = latest_compilation_id;
2295   out->cr();
2296   printBox(out, '-', "Age ranges, based on compilation id", NULL);
2297   while (age_range > 0) {
2298     out->print_cr("  %d - %6d to %6d", indicator, range_beg, latest_compilation_id - latest_compilation_id/age_range);
2299     range_beg = latest_compilation_id - latest_compilation_id/age_range;
2300     age_range /= 2;
2301     indicator += 1;
2302   }
2303   out->print_cr("  -----------------------------------------");
2304   out->cr();
2305 }
2306 
2307 void CodeHeapState::print_blobType_single(outputStream* out, u2 /* blobType */ type) {
2308   out->print("%c", blobTypeChar[type]);
2309 }
2310 
2311 void CodeHeapState::print_count_single(outputStream* out, unsigned short count) {
2312   if (count >= 16)    out->print("*");
2313   else if (count > 0) out->print("%1.1x", count);
2314   else                out->print(" ");
2315 }
2316 
2317 void CodeHeapState::print_space_single(outputStream* out, unsigned short space) {
2318   size_t  space_in_bytes = ((unsigned int)space)<<log2_seg_size;
2319   char    fraction       = (space == 0) ? ' ' : (space_in_bytes >= granule_size-1) ? '*' : char('0'+10*space_in_bytes/granule_size);
2320   out->print("%c", fraction);
2321 }
2322 
2323 void CodeHeapState::print_age_single(outputStream* out, unsigned int age) {
2324   unsigned int indicator = 0;
2325   unsigned int age_range = 256;
2326   if (age > 0) {
2327     while ((age_range > 0) && (latest_compilation_id-age > latest_compilation_id/age_range)) {
2328       age_range /= 2;
2329       indicator += 1;
2330     }
2331     out->print("%c", char('0'+indicator));
2332   } else {
2333     out->print(" ");
2334   }
2335 }
2336 
2337 void CodeHeapState::print_line_delim(outputStream* out, outputStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
2338   if (ix % gpl == 0) {
2339     if (ix > 0) {
2340       ast->print("|");
2341     }
2342     ast->cr();
2343     assert(out == ast, "must use the same stream!");
2344 
2345     ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2346     ast->fill_to(19);
2347     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2348   }
2349 }
2350 
2351 void CodeHeapState::print_line_delim(outputStream* out, bufferedStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
2352   assert(out != ast, "must not use the same stream!");
2353   if (ix % gpl == 0) {
2354     if (ix > 0) {
2355       ast->print("|");
2356     }
2357     ast->cr();
2358 
2359     { // can't use STRINGSTREAM_FLUSH_LOCKED("") here.
2360       ttyLocker ttyl;
2361       out->print("%s", ast->as_string());
2362       ast->reset();
2363     }
2364 
2365     ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2366     ast->fill_to(19);
2367     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2368   }
2369 }
2370 
2371 CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) {
2372   if ((cb != NULL) && os::is_readable_pointer(cb)) {
2373     if (cb->is_runtime_stub())                return runtimeStub;
2374     if (cb->is_deoptimization_stub())         return deoptimizationStub;
2375     if (cb->is_uncommon_trap_stub())          return uncommonTrapStub;
2376     if (cb->is_exception_stub())              return exceptionStub;
2377     if (cb->is_safepoint_stub())              return safepointStub;
2378     if (cb->is_adapter_blob())                return adapterBlob;
2379     if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob;
2380     if (cb->is_buffer_blob())                 return bufferBlob;
2381 
2382     nmethod*  nm = cb->as_nmethod_or_null();
2383     if (nm != NULL) { // no is_readable check required, nm = (nmethod*)cb.
2384       if (nm->is_not_installed()) return nMethod_inconstruction;
2385       if (nm->is_zombie())        return nMethod_dead;
2386       if (nm->is_unloaded())      return nMethod_unloaded;
2387       if (nm->is_in_use())        return nMethod_inuse;
2388       if (nm->is_alive() && !(nm->is_not_entrant()))   return nMethod_notused;
2389       if (nm->is_alive())         return nMethod_alive;
2390       return nMethod_dead;
2391     }
2392   }
2393   return noType;
2394 }