< prev index next >

src/hotspot/share/code/codeHeapState.cpp

Print this page

        

*** 1,8 **** /* * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved. ! * Copyright (c) 2018 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. --- 1,8 ---- /* * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved. ! * Copyright (c) 2018, 2019 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation.
*** 24,33 **** --- 24,34 ---- */ #include "precompiled.hpp" #include "code/codeHeapState.hpp" #include "compiler/compileBroker.hpp" + #include "runtime/safepoint.hpp" #include "runtime/sweeper.hpp" // ------------------------- // | General Description | // -------------------------
*** 36,56 **** // information that is believed useful/important. // // Aggregation condenses the information of a piece of the CodeHeap // (4096 bytes by default) into an analysis granule. These granules // contain enough detail to gain initial insight while keeping the ! // internal sttructure sizes in check. ! // ! // The CodeHeap is a living thing. Therefore, the aggregate is collected ! // under the CodeCache_lock. The subsequent print steps are only locked ! // against concurrent aggregations. That keeps the impact on ! // "normal operation" (JIT compiler and sweeper activity) to a minimum. // // The second part, which consists of several, independent steps, // prints the previously collected information with emphasis on // various aspects. // // Data collection and printing is done on an "on request" basis. // While no request is being processed, there is no impact on performance. // The CodeHeap state analytics do have some memory footprint. // The "aggregate" step allocates some data structures to hold the aggregated // information for later output. These data structures live until they are --- 37,59 ---- // information that is believed useful/important. // // Aggregation condenses the information of a piece of the CodeHeap // (4096 bytes by default) into an analysis granule. These granules // contain enough detail to gain initial insight while keeping the ! // internal structure sizes in check. // // The second part, which consists of several, independent steps, // prints the previously collected information with emphasis on // various aspects. // + // The CodeHeap is a living thing. Therefore, protection against concurrent + // modification (by acquiring the CodeCache_lock) is necessary. It has + // to be provided by the caller of the analysis functions. + // If the CodeCache_lock is not held, the analysis functions may print + // less detailed information or may just do nothing. It is by intention + // that an unprotected invocation is not abnormally terminated. + // // Data collection and printing is done on an "on request" basis. // While no request is being processed, there is no impact on performance. // The CodeHeap state analytics do have some memory footprint. // The "aggregate" step allocates some data structures to hold the aggregated // information for later output. These data structures live until they are
*** 61,127 **** // Requests for real-time, on-the-fly analysis can be issued via // jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>] // // If you are (only) interested in how the CodeHeap looks like after running // a sample workload, you can use the command line option ! // -Xlog:codecache=Trace ! // ! // To see the CodeHeap state in case of a "CodeCache full" condition, start the ! // VM with the ! // -Xlog:codecache=Debug ! // command line option. It will produce output only for the first time the ! // condition is recognized. // ! // Both command line option variants produce output identical to the jcmd function // jcmd <pid> Compiler.CodeHeap_Analytics all 4096 // --------------------------------------------------------------------------------- // With this declaration macro, it is possible to switch between // - direct output into an argument-passed outputStream and // - buffered output into a bufferedStream with subsequent flush // of the filled buffer to the outputStream. ! #define USE_STRINGSTREAM ! #define HEX32_FORMAT "0x%x" // just a helper format string used below multiple times ! // // Writing to a bufferedStream buffer first has a significant advantage: ! // It uses noticeably less cpu cycles and reduces (when wirting to a ! // network file) the required bandwidth by at least a factor of ten. // That clearly makes up for the increased code complexity. ! #if defined(USE_STRINGSTREAM) ! #define STRINGSTREAM_DECL(_anyst, _outst) \ /* _anyst name of the stream as used in the code */ \ /* _outst stream where final output will go to */ \ ! ResourceMark rm; \ ! bufferedStream _sstobj(4*K); \ bufferedStream* _sstbuf = &_sstobj; \ outputStream* _outbuf = _outst; \ bufferedStream* _anyst = &_sstobj; /* any stream. Use this to just print - no buffer flush. */ ! #define STRINGSTREAM_FLUSH(termString) \ ! _sstbuf->print("%s", termString); \ _outbuf->print("%s", _sstbuf->as_string()); \ ! _sstbuf->reset(); ! ! #define STRINGSTREAM_FLUSH_LOCKED(termString) \ ! { ttyLocker ttyl;/* keep this output block together */\ ! STRINGSTREAM_FLUSH(termString) \ } #else ! #define STRINGSTREAM_DECL(_anyst, _outst) \ outputStream* _outbuf = _outst; \ outputStream* _anyst = _outst; /* any stream. Use this to just print - no buffer flush. */ ! #define STRINGSTREAM_FLUSH(termString) \ ! _outbuf->print("%s", termString); ! #define STRINGSTREAM_FLUSH_LOCKED(termString) \ ! _outbuf->print("%s", termString); #endif const char blobTypeChar[] = {' ', 'C', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' }; const char* blobTypeName[] = {"noType" ! , "nMethod (under construction)" , "nMethod (active)" , "nMethod (inactive)" , "nMethod (deopt)" , "nMethod (zombie)" , "nMethod (unloaded)" --- 64,218 ---- // Requests for real-time, on-the-fly analysis can be issued via // jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>] // // If you are (only) interested in how the CodeHeap looks like after running // a sample workload, you can use the command line option ! // -XX:+PrintCodeHeapAnalytics ! // It will cause a full analysis to be written to tty. In addition, a full ! // analysis will be written the first time a "CodeCache full" condition is ! // detected. // ! // The command line option produces output identical to the jcmd function // jcmd <pid> Compiler.CodeHeap_Analytics all 4096 // --------------------------------------------------------------------------------- // With this declaration macro, it is possible to switch between // - direct output into an argument-passed outputStream and // - buffered output into a bufferedStream with subsequent flush // of the filled buffer to the outputStream. ! #define USE_BUFFEREDSTREAM ! ! // There are instances when composing an output line or a small set of ! // output lines out of many tty->print() calls creates significant overhead. // Writing to a bufferedStream buffer first has a significant advantage: ! // It uses noticeably less cpu cycles and reduces (when writing to a ! // network file) the required bandwidth by at least a factor of ten. Observed on MacOS. // That clearly makes up for the increased code complexity. ! // ! // Conversion of existing code is easy and straightforward, if the code already ! // uses a parameterized output destination, e.g. "outputStream st". ! // - rename the formal parameter to any other name, e.g. out_st. ! // - at a suitable place in your code, insert ! // BUFFEREDSTEAM_DECL(buf_st, out_st) ! // This will provide all the declarations necessary. After that, all ! // buf_st->print() (and the like) calls will be directed to a bufferedStream object. ! // Once a block of output (a line or a small set of lines) is composed, insert ! // BUFFEREDSTREAM_FLUSH(termstring) ! // to flush the bufferedStream to the final destination out_st. termstring is just ! // an arbitrary string (e.g. "\n") which is appended to the bufferedStream before ! // being written to out_st. Be aware that the last character written MUST be a '\n'. ! // Otherwise, buf_st->position() does not correspond to out_st->position() any longer. ! // BUFFEREDSTREAM_FLUSH_LOCKED(termstring) ! // does the same thing, protected by the ttyLocker lock. ! // BUFFEREDSTREAM_FLUSH_IF(termstring, remSize) ! // does a flush only if the remaining buffer space is less than remSize. ! // ! // To activate, #define USE_BUFFERED_STREAM before including this header. ! // If not activated, output will directly go to the originally used outputStream ! // with no additional overhead. ! // ! #if defined(USE_BUFFEREDSTREAM) ! // All necessary declarations to print via a bufferedStream ! // This macro must be placed before any other BUFFEREDSTREAM* ! // macro in the function. ! #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa) \ ! ResourceMark _rm; \ /* _anyst name of the stream as used in the code */ \ /* _outst stream where final output will go to */ \ ! /* _capa allocated capacity of stream buffer */ \ ! size_t _nflush = 0; \ ! size_t _nforcedflush = 0; \ ! size_t _nsavedflush = 0; \ ! size_t _nlockedflush = 0; \ ! size_t _nflush_bytes = 0; \ ! size_t _capacity = _capa; \ ! bufferedStream _sstobj(_capa); \ bufferedStream* _sstbuf = &_sstobj; \ outputStream* _outbuf = _outst; \ bufferedStream* _anyst = &_sstobj; /* any stream. Use this to just print - no buffer flush. */ ! // Same as above, but with fixed buffer size. ! #define BUFFEREDSTREAM_DECL(_anyst, _outst) \ ! BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K); ! ! // Flush the buffer contents unconditionally. ! // No action if the buffer is empty. ! #define BUFFEREDSTREAM_FLUSH(_termString) \ ! if (((_termString) != NULL) && (strlen(_termString) > 0)){\ ! _sstbuf->print("%s", _termString); \ ! } \ ! if (_sstbuf != _outbuf) { \ ! if (_sstbuf->size() != 0) { \ ! _nforcedflush++; _nflush_bytes += _sstbuf->size(); \ _outbuf->print("%s", _sstbuf->as_string()); \ ! _sstbuf->reset(); \ ! } \ } + + // Flush the buffer contents if the remaining capacity is + // less than the given threshold. + #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize) \ + if (((_termString) != NULL) && (strlen(_termString) > 0)){\ + _sstbuf->print("%s", _termString); \ + } \ + if (_sstbuf != _outbuf) { \ + if ((_capacity - _sstbuf->size()) < (size_t)(_remSize)){\ + _nflush++; _nforcedflush--; \ + BUFFEREDSTREAM_FLUSH("") \ + } else { \ + _nsavedflush++; \ + } \ + } + + // Flush the buffer contents if the remaining capacity is less + // than the calculated threshold (256 bytes + capacity/16) + // That should suffice for all reasonably sized output lines. + #define BUFFEREDSTREAM_FLUSH_AUTO(_termString) \ + BUFFEREDSTREAM_FLUSH_IF(_termString, 256+(_capacity>>4)) + + #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString) \ + { ttyLocker ttyl;/* keep this output block together */ \ + _nlockedflush++; \ + BUFFEREDSTREAM_FLUSH(_termString) \ + } + + // #define BUFFEREDSTREAM_FLUSH_STAT() \ + // if (_sstbuf != _outbuf) { \ + // _outbuf->print_cr("%ld flushes (buffer full), %ld forced, %ld locked, %ld bytes total, %ld flushes saved", _nflush, _nforcedflush, _nlockedflush, _nflush_bytes, _nsavedflush); \ + // } + + #define BUFFEREDSTREAM_FLUSH_STAT() #else ! #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa) \ ! size_t _capacity = _capa; \ outputStream* _outbuf = _outst; \ outputStream* _anyst = _outst; /* any stream. Use this to just print - no buffer flush. */ ! #define BUFFEREDSTREAM_DECL(_anyst, _outst) \ ! BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K) ! ! #define BUFFEREDSTREAM_FLUSH(_termString) \ ! if (((_termString) != NULL) && (strlen(_termString) > 0)){\ ! _outbuf->print("%s", _termString); \ ! } ! ! #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize) \ ! BUFFEREDSTREAM_FLUSH(_termString) ! ! #define BUFFEREDSTREAM_FLUSH_AUTO(_termString) \ ! BUFFEREDSTREAM_FLUSH(_termString) ! ! #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString) \ ! BUFFEREDSTREAM_FLUSH(_termString) ! #define BUFFEREDSTREAM_FLUSH_STAT() #endif + #define HEX32_FORMAT "0x%x" // just a helper format string used below multiple times const char blobTypeChar[] = {' ', 'C', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' }; const char* blobTypeName[] = {"noType" ! , "nMethod (under construction), cannot be observed" , "nMethod (active)" , "nMethod (inactive)" , "nMethod (deopt)" , "nMethod (zombie)" , "nMethod (unloaded)"
*** 138,148 **** }; const char* compTypeName[] = { "none", "c1", "c2", "jvmci" }; // Be prepared for ten different CodeHeap segments. Should be enough for a few years. const unsigned int nSizeDistElements = 31; // logarithmic range growth, max size: 2**32 ! const unsigned int maxTopSizeBlocks = 50; const unsigned int tsbStopper = 2 * maxTopSizeBlocks; const unsigned int maxHeaps = 10; static unsigned int nHeaps = 0; static struct CodeHeapStat CodeHeapStatArray[maxHeaps]; --- 229,239 ---- }; const char* compTypeName[] = { "none", "c1", "c2", "jvmci" }; // Be prepared for ten different CodeHeap segments. Should be enough for a few years. const unsigned int nSizeDistElements = 31; // logarithmic range growth, max size: 2**32 ! const unsigned int maxTopSizeBlocks = 100; const unsigned int tsbStopper = 2 * maxTopSizeBlocks; const unsigned int maxHeaps = 10; static unsigned int nHeaps = 0; static struct CodeHeapStat CodeHeapStatArray[maxHeaps];
*** 155,165 **** static bool segment_granules = false; static unsigned int nBlocks_t1 = 0; // counting "in_use" nmethods only. static unsigned int nBlocks_t2 = 0; // counting "in_use" nmethods only. static unsigned int nBlocks_alive = 0; // counting "not_used" and "not_entrant" nmethods only. static unsigned int nBlocks_dead = 0; // counting "zombie" and "unloaded" methods only. - static unsigned int nBlocks_inconstr = 0; // counting "inconstruction" nmethods only. This is a transient state. static unsigned int nBlocks_unloaded = 0; // counting "unloaded" nmethods only. This is a transient state. static unsigned int nBlocks_stub = 0; static struct FreeBlk* FreeArray = NULL; static unsigned int alloc_freeBlocks = 0; --- 246,255 ----
*** 226,236 **** segment_granules = CodeHeapStatArray[ix].segment_granules; nBlocks_t1 = CodeHeapStatArray[ix].nBlocks_t1; nBlocks_t2 = CodeHeapStatArray[ix].nBlocks_t2; nBlocks_alive = CodeHeapStatArray[ix].nBlocks_alive; nBlocks_dead = CodeHeapStatArray[ix].nBlocks_dead; - nBlocks_inconstr = CodeHeapStatArray[ix].nBlocks_inconstr; nBlocks_unloaded = CodeHeapStatArray[ix].nBlocks_unloaded; nBlocks_stub = CodeHeapStatArray[ix].nBlocks_stub; FreeArray = CodeHeapStatArray[ix].FreeArray; alloc_freeBlocks = CodeHeapStatArray[ix].alloc_freeBlocks; TopSizeArray = CodeHeapStatArray[ix].TopSizeArray; --- 316,325 ----
*** 249,259 **** segment_granules = false; nBlocks_t1 = 0; nBlocks_t2 = 0; nBlocks_alive = 0; nBlocks_dead = 0; - nBlocks_inconstr = 0; nBlocks_unloaded = 0; nBlocks_stub = 0; FreeArray = NULL; alloc_freeBlocks = 0; TopSizeArray = NULL; --- 338,347 ----
*** 276,286 **** CodeHeapStatArray[ix].segment_granules = segment_granules; CodeHeapStatArray[ix].nBlocks_t1 = nBlocks_t1; CodeHeapStatArray[ix].nBlocks_t2 = nBlocks_t2; CodeHeapStatArray[ix].nBlocks_alive = nBlocks_alive; CodeHeapStatArray[ix].nBlocks_dead = nBlocks_dead; - CodeHeapStatArray[ix].nBlocks_inconstr = nBlocks_inconstr; CodeHeapStatArray[ix].nBlocks_unloaded = nBlocks_unloaded; CodeHeapStatArray[ix].nBlocks_stub = nBlocks_stub; CodeHeapStatArray[ix].FreeArray = FreeArray; CodeHeapStatArray[ix].alloc_freeBlocks = alloc_freeBlocks; CodeHeapStatArray[ix].TopSizeArray = TopSizeArray; --- 364,373 ----
*** 403,412 **** --- 490,504 ---- } } void CodeHeapState::discard_TopSizeArray(outputStream* out) { if (TopSizeArray != NULL) { + for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) { + if (TopSizeArray[i].blob_name != NULL) { + os::free((void*)TopSizeArray[i].blob_name); + } + } delete[] TopSizeArray; TopSizeArray = NULL; alloc_topSizeBlocks = 0; used_topSizeBlocks = 0; }
*** 457,470 **** unsigned long total_iterations = 0; bool done = false; const int min_granules = 256; const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M ! // results in StatArray size of 20M (= max_granules * 40 Bytes per element) // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit. const char* heapName = get_heapName(heap); ! STRINGSTREAM_DECL(ast, out) if (!initialization_complete) { memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray)); initialization_complete = true; --- 549,562 ---- unsigned long total_iterations = 0; bool done = false; const int min_granules = 256; const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M ! // results in StatArray size of 24M (= max_granules * 48 Bytes per element) // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit. const char* heapName = get_heapName(heap); ! BUFFEREDSTREAM_DECL(ast, out) if (!initialization_complete) { memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray)); initialization_complete = true;
*** 476,486 **** " \n" " This function is designed and provided for support engineers\n" " to help them understand and solve issues in customer systems.\n" " It is not intended for use and interpretation by other persons.\n" " \n"); ! STRINGSTREAM_FLUSH("") } get_HeapStatGlobals(out, heapName); // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock, --- 568,578 ---- " \n" " This function is designed and provided for support engineers\n" " to help them understand and solve issues in customer systems.\n" " It is not intended for use and interpretation by other persons.\n" " \n"); ! BUFFEREDSTREAM_FLUSH("") } get_HeapStatGlobals(out, heapName); // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock,
*** 492,502 **** seg_size = heap->segment_size(); log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size); // This is a global static value. if (seg_size == 0) { printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment ", heapName); ! STRINGSTREAM_FLUSH("") return; } // Calculate granularity of analysis (and output). // The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize. --- 584,600 ---- seg_size = heap->segment_size(); log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size); // This is a global static value. if (seg_size == 0) { printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment ", heapName); ! BUFFEREDSTREAM_FLUSH("") ! return; ! } ! ! if (!holding_required_locks()) { ! printBox(ast, '-', "Must be at safepoint or hold Compile_lock and CodeCache_lock when calling aggregate function for ", heapName); ! BUFFEREDSTREAM_FLUSH("") return; } // Calculate granularity of analysis (and output). // The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize.
*** 549,568 **** size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size)); ast->print_cr(" CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity.", seg_size); ast->print_cr(" CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes.", granules, granularity); ast->print_cr(" Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K); ast->print_cr(" The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules)); ! STRINGSTREAM_FLUSH("\n") while (!done) { //---< reset counters with every aggregation >--- nBlocks_t1 = 0; nBlocks_t2 = 0; nBlocks_alive = 0; nBlocks_dead = 0; - nBlocks_inconstr = 0; nBlocks_unloaded = 0; nBlocks_stub = 0; nBlocks_free = 0; nBlocks_used = 0; --- 647,665 ---- size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size)); ast->print_cr(" CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity.", seg_size); ast->print_cr(" CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes.", granules, granularity); ast->print_cr(" Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K); ast->print_cr(" The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules)); ! BUFFEREDSTREAM_FLUSH("\n") while (!done) { //---< reset counters with every aggregation >--- nBlocks_t1 = 0; nBlocks_t2 = 0; nBlocks_alive = 0; nBlocks_dead = 0; nBlocks_unloaded = 0; nBlocks_stub = 0; nBlocks_free = 0; nBlocks_used = 0;
*** 592,602 **** size_t t2Space = 0; size_t aliveSpace = 0; size_t disconnSpace = 0; size_t notentrSpace = 0; size_t deadSpace = 0; - size_t inconstrSpace = 0; size_t unloadedSpace = 0; size_t stubSpace = 0; size_t freeSpace = 0; size_t maxFreeSize = 0; HeapBlock* maxFreeBlock = NULL; --- 689,698 ----
*** 638,648 **** } if (ix_beg > ix_end) { insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg); } if (insane) { ! STRINGSTREAM_FLUSH("") continue; } if (h->free()) { nBlocks_free++; --- 734,744 ---- } if (ix_beg > ix_end) { insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg); } if (insane) { ! BUFFEREDSTREAM_FLUSH("") continue; } if (h->free()) { nBlocks_free++;
*** 654,681 **** } else { update_SizeDistArray(out, hb_len); nBlocks_used++; usedSpace += hb_bytelen; CodeBlob* cb = (CodeBlob*)heap->find_start(h); ! if (cb != NULL) { ! cbType = get_cbType(cb); ! if (cb->is_nmethod()) { ! compile_id = ((nmethod*)cb)->compile_id(); ! comp_lvl = (CompLevel)((nmethod*)cb)->comp_level(); ! if (((nmethod*)cb)->is_compiled_by_c1()) { cType = c1; } ! if (((nmethod*)cb)->is_compiled_by_c2()) { cType = c2; } ! if (((nmethod*)cb)->is_compiled_by_jvmci()) { cType = jvmci; } switch (cbType) { case nMethod_inuse: { // only for executable methods!!! // space for these cbs is accounted for later. ! int temperature = ((nmethod*)cb)->hotness_counter(); hotnessAccumulator += temperature; n_methods++; maxTemp = (temperature > maxTemp) ? temperature : maxTemp; minTemp = (temperature < minTemp) ? temperature : minTemp; break; --- 750,791 ---- } else { update_SizeDistArray(out, hb_len); nBlocks_used++; usedSpace += hb_bytelen; CodeBlob* cb = (CodeBlob*)heap->find_start(h); ! cbType = get_cbType(cb); // Will check for cb == NULL and other safety things. ! if (cbType != noType) { ! const char* blob_name = os::strdup(cb->name()); ! unsigned int nm_size = 0; ! int temperature = 0; ! nmethod* nm = cb->as_nmethod_or_null(); ! if (nm != NULL) { // no is_readable check required, nm = (nmethod*)cb. ! ResourceMark rm; ! Method* method = nm->method(); ! if (nm->is_in_use()) { ! blob_name = os::strdup(method->name_and_sig_as_C_string()); ! } ! if (nm->is_not_entrant()) { ! blob_name = os::strdup(method->name_and_sig_as_C_string()); ! } ! ! nm_size = nm->total_size(); ! compile_id = nm->compile_id(); ! comp_lvl = (CompLevel)(nm->comp_level()); ! if (nm->is_compiled_by_c1()) { cType = c1; } ! if (nm->is_compiled_by_c2()) { cType = c2; } ! if (nm->is_compiled_by_jvmci()) { cType = jvmci; } switch (cbType) { case nMethod_inuse: { // only for executable methods!!! // space for these cbs is accounted for later. ! temperature = nm->hotness_counter(); hotnessAccumulator += temperature; n_methods++; maxTemp = (temperature > maxTemp) ? temperature : maxTemp; minTemp = (temperature < minTemp) ? temperature : minTemp; break;
*** 698,711 **** break; case nMethod_dead: nBlocks_dead++; deadSpace += hb_bytelen; break; - case nMethod_inconstruction: - nBlocks_inconstr++; - inconstrSpace += hb_bytelen; - break; default: break; } } --- 808,817 ----
*** 713,744 **** --- 819,858 ---- //---< register block in TopSizeArray >--- //------------------------------------------ if (alloc_topSizeBlocks > 0) { if (used_topSizeBlocks == 0) { TopSizeArray[0].start = h; + TopSizeArray[0].blob_name = blob_name; TopSizeArray[0].len = hb_len; TopSizeArray[0].index = tsbStopper; + TopSizeArray[0].nm_size = nm_size; + TopSizeArray[0].temperature = temperature; TopSizeArray[0].compiler = cType; TopSizeArray[0].level = comp_lvl; TopSizeArray[0].type = cbType; currMax = hb_len; currMin = hb_len; currMin_ix = 0; used_topSizeBlocks++; + blob_name = NULL; // indicate blob_name was consumed // This check roughly cuts 5000 iterations (JVM98, mixed, dbg, termination stats): } else if ((used_topSizeBlocks < alloc_topSizeBlocks) && (hb_len < currMin)) { //---< all blocks in list are larger, but there is room left in array >--- TopSizeArray[currMin_ix].index = used_topSizeBlocks; TopSizeArray[used_topSizeBlocks].start = h; + TopSizeArray[used_topSizeBlocks].blob_name = blob_name; TopSizeArray[used_topSizeBlocks].len = hb_len; TopSizeArray[used_topSizeBlocks].index = tsbStopper; + TopSizeArray[used_topSizeBlocks].nm_size = nm_size; + TopSizeArray[used_topSizeBlocks].temperature = temperature; TopSizeArray[used_topSizeBlocks].compiler = cType; TopSizeArray[used_topSizeBlocks].level = comp_lvl; TopSizeArray[used_topSizeBlocks].type = cbType; currMin = hb_len; currMin_ix = used_topSizeBlocks; used_topSizeBlocks++; + blob_name = NULL; // indicate blob_name was consumed } else { // This check cuts total_iterations by a factor of 6 (JVM98, mixed, dbg, termination stats): // We don't need to search the list if we know beforehand that the current block size is // smaller than the currently recorded minimum and there is no free entry left in the list. if (!((used_topSizeBlocks == alloc_topSizeBlocks) && (hb_len <= currMin))) {
*** 766,783 **** --- 880,907 ---- assert(TopSizeArray[i].len == currMin, "sort error"); currMin_ix = used_topSizeBlocks; } memcpy((void*)&TopSizeArray[used_topSizeBlocks], (void*)&TopSizeArray[i], sizeof(TopSizeBlk)); TopSizeArray[i].start = h; + TopSizeArray[i].blob_name = blob_name; TopSizeArray[i].len = hb_len; TopSizeArray[i].index = used_topSizeBlocks; + TopSizeArray[i].nm_size = nm_size; + TopSizeArray[i].temperature = temperature; TopSizeArray[i].compiler = cType; TopSizeArray[i].level = comp_lvl; TopSizeArray[i].type = cbType; used_topSizeBlocks++; + blob_name = NULL; // indicate blob_name was consumed } else { // no room for new entries, current block replaces entry for smallest block //---< Find last entry (entry for smallest remembered block) >--- + // We either want to insert right before the smallest entry, which is when <i> + // indexes the smallest entry. We then just overwrite the smallest entry. + // What's more likely: + // We want to insert somewhere in the list. The smallest entry (@<j>) then falls off the cliff. + // The element at the insert point <i> takes it's slot. The second-smallest entry now becomes smallest. + // Data of the current block is filled in at index <i>. unsigned int j = i; unsigned int prev_j = tsbStopper; unsigned int limit_j = 0; while (TopSizeArray[j].index != tsbStopper) { if (limit_j++ >= alloc_topSizeBlocks) {
*** 789,823 **** total_iterations++; prev_j = j; j = TopSizeArray[j].index; } if (!insane) { if (prev_j == tsbStopper) { //---< Above while loop did not iterate, we already are the min entry >--- //---< We have to just replace the smallest entry >--- currMin = hb_len; currMin_ix = j; TopSizeArray[j].start = h; TopSizeArray[j].len = hb_len; TopSizeArray[j].index = tsbStopper; // already set!! TopSizeArray[j].compiler = cType; TopSizeArray[j].level = comp_lvl; TopSizeArray[j].type = cbType; } else { //---< second-smallest entry is now smallest >--- TopSizeArray[prev_j].index = tsbStopper; currMin = TopSizeArray[prev_j].len; currMin_ix = prev_j; ! //---< smallest entry gets overwritten >--- memcpy((void*)&TopSizeArray[j], (void*)&TopSizeArray[i], sizeof(TopSizeBlk)); TopSizeArray[i].start = h; TopSizeArray[i].len = hb_len; TopSizeArray[i].index = j; TopSizeArray[i].compiler = cType; TopSizeArray[i].level = comp_lvl; TopSizeArray[i].type = cbType; } } // insane } break; } prev_i = i; --- 913,957 ---- total_iterations++; prev_j = j; j = TopSizeArray[j].index; } if (!insane) { + if (TopSizeArray[j].blob_name != NULL) { + os::free((void*)TopSizeArray[j].blob_name); + } if (prev_j == tsbStopper) { //---< Above while loop did not iterate, we already are the min entry >--- //---< We have to just replace the smallest entry >--- currMin = hb_len; currMin_ix = j; TopSizeArray[j].start = h; + TopSizeArray[j].blob_name = blob_name; TopSizeArray[j].len = hb_len; TopSizeArray[j].index = tsbStopper; // already set!! + TopSizeArray[i].nm_size = nm_size; + TopSizeArray[i].temperature = temperature; TopSizeArray[j].compiler = cType; TopSizeArray[j].level = comp_lvl; TopSizeArray[j].type = cbType; } else { //---< second-smallest entry is now smallest >--- TopSizeArray[prev_j].index = tsbStopper; currMin = TopSizeArray[prev_j].len; currMin_ix = prev_j; ! //---< previously smallest entry gets overwritten >--- memcpy((void*)&TopSizeArray[j], (void*)&TopSizeArray[i], sizeof(TopSizeBlk)); TopSizeArray[i].start = h; + TopSizeArray[i].blob_name = blob_name; TopSizeArray[i].len = hb_len; TopSizeArray[i].index = j; + TopSizeArray[i].nm_size = nm_size; + TopSizeArray[i].temperature = temperature; TopSizeArray[i].compiler = cType; TopSizeArray[i].level = comp_lvl; TopSizeArray[i].type = cbType; } + blob_name = NULL; // indicate blob_name was consumed } // insane } break; } prev_i = i;
*** 828,837 **** --- 962,975 ---- discard_TopSizeArray(out); } } } } + if (blob_name != NULL) { + os::free((void*)blob_name); + blob_name = NULL; + } //---------------------------------------------- //---< END register block in TopSizeArray >--- //---------------------------------------------- } else { nBlocks_zomb++;
*** 856,866 **** StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age; } StatArray[ix_beg].level = comp_lvl; StatArray[ix_beg].compiler = cType; break; - case nMethod_inconstruction: // let's count "in construction" nmethods here. case nMethod_alive: StatArray[ix_beg].tx_count++; StatArray[ix_beg].tx_space += (unsigned short)hb_len; StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age; StatArray[ix_beg].level = comp_lvl; --- 994,1003 ----
*** 913,923 **** StatArray[ix_beg].level = comp_lvl; StatArray[ix_beg].compiler = cType; StatArray[ix_end].level = comp_lvl; StatArray[ix_end].compiler = cType; break; - case nMethod_inconstruction: // let's count "in construction" nmethods here. case nMethod_alive: StatArray[ix_beg].tx_count++; StatArray[ix_beg].tx_space += (unsigned short)beg_space; StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age; --- 1050,1059 ----
*** 961,971 **** StatArray[ix].t2_age = StatArray[ix].t2_age < compile_id ? compile_id : StatArray[ix].t2_age; } StatArray[ix].level = comp_lvl; StatArray[ix].compiler = cType; break; - case nMethod_inconstruction: // let's count "in construction" nmethods here. case nMethod_alive: StatArray[ix].tx_count++; StatArray[ix].tx_space += (unsigned short)(granule_size>>log2_seg_size); StatArray[ix].tx_age = StatArray[ix].tx_age < compile_id ? compile_id : StatArray[ix].tx_age; StatArray[ix].level = comp_lvl; --- 1097,1106 ----
*** 998,1008 **** ast->print_cr(" Tier1 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t1 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t1Space/(size_t)K, nBlocks_t1, (100.0*t1Space)/size, (100.0*t1Space)/res_size); ast->print_cr(" Tier2 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t2 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t2Space/(size_t)K, nBlocks_t2, (100.0*t2Space)/size, (100.0*t2Space)/res_size); ast->print_cr(" Alive Space = " SIZE_FORMAT_W(8) "k, nBlocks_alive = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", aliveSpace/(size_t)K, nBlocks_alive, (100.0*aliveSpace)/size, (100.0*aliveSpace)/res_size); ast->print_cr(" disconnected = " SIZE_FORMAT_W(8) "k, nBlocks_disconn = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", disconnSpace/(size_t)K, nBlocks_disconn, (100.0*disconnSpace)/size, (100.0*disconnSpace)/res_size); ast->print_cr(" not entrant = " SIZE_FORMAT_W(8) "k, nBlocks_notentr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", notentrSpace/(size_t)K, nBlocks_notentr, (100.0*notentrSpace)/size, (100.0*notentrSpace)/res_size); - ast->print_cr(" inconstrSpace = " SIZE_FORMAT_W(8) "k, nBlocks_inconstr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", inconstrSpace/(size_t)K, nBlocks_inconstr, (100.0*inconstrSpace)/size, (100.0*inconstrSpace)/res_size); ast->print_cr(" unloadedSpace = " SIZE_FORMAT_W(8) "k, nBlocks_unloaded = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", unloadedSpace/(size_t)K, nBlocks_unloaded, (100.0*unloadedSpace)/size, (100.0*unloadedSpace)/res_size); ast->print_cr(" deadSpace = " SIZE_FORMAT_W(8) "k, nBlocks_dead = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", deadSpace/(size_t)K, nBlocks_dead, (100.0*deadSpace)/size, (100.0*deadSpace)/res_size); ast->print_cr(" stubSpace = " SIZE_FORMAT_W(8) "k, nBlocks_stub = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", stubSpace/(size_t)K, nBlocks_stub, (100.0*stubSpace)/size, (100.0*stubSpace)/res_size); ast->print_cr("ZombieBlocks = %8d. These are HeapBlocks which could not be identified as CodeBlobs.", nBlocks_zomb); ast->cr(); --- 1133,1142 ----
*** 1027,1039 **** ast->print_cr("max. hotness = %6d", maxTemp); } else { avgTemp = 0; ast->print_cr("No hotness data available"); } ! STRINGSTREAM_FLUSH("\n") // This loop is intentionally printing directly to "out". out->print("Verifying collected data..."); size_t granule_segs = granule_size>>log2_seg_size; for (unsigned int ix = 0; ix < granules; ix++) { if (StatArray[ix].t1_count > granule_segs) { out->print_cr("t1_count[%d] = %d", ix, StatArray[ix].t1_count); --- 1161,1174 ---- ast->print_cr("max. hotness = %6d", maxTemp); } else { avgTemp = 0; ast->print_cr("No hotness data available"); } ! BUFFEREDSTREAM_FLUSH("\n") // This loop is intentionally printing directly to "out". + // It should not print anything, anyway. out->print("Verifying collected data..."); size_t granule_segs = granule_size>>log2_seg_size; for (unsigned int ix = 0; ix < granules; ix++) { if (StatArray[ix].t1_count > granule_segs) { out->print_cr("t1_count[%d] = %d", ix, StatArray[ix].t1_count);
*** 1073,1082 **** --- 1208,1218 ---- out->print_cr("t1_space[%d] = %d, t2_space[%d] = %d, tx_space[%d] = %d, stub_space[%d] = %d", ix, StatArray[ix].t1_space, ix, StatArray[ix].t2_space, ix, StatArray[ix].tx_space, ix, StatArray[ix].stub_space); } } // This loop is intentionally printing directly to "out". + // It should not print anything, anyway. if (used_topSizeBlocks > 0) { unsigned int j = 0; if (TopSizeArray[0].len != currMax) { out->print_cr("currMax(%d) differs from TopSizeArray[0].len(%d)", currMax, TopSizeArray[0].len); }
*** 1107,1117 **** printBox(ast, '=', "C O D E H E A P A N A L Y S I S (free blocks) for segment ", heapName); ast->print_cr(" The aggregate step collects information about all free blocks in CodeHeap.\n" " Subsequent print functions create their output based on this snapshot.\n"); ast->print_cr(" Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free); ast->print_cr(" Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K); ! STRINGSTREAM_FLUSH("\n") //---------------------------------------- //-- Prepare the FreeArray of FreeBlks -- //---------------------------------------- --- 1243,1253 ---- printBox(ast, '=', "C O D E H E A P A N A L Y S I S (free blocks) for segment ", heapName); ast->print_cr(" The aggregate step collects information about all free blocks in CodeHeap.\n" " Subsequent print functions create their output based on this snapshot.\n"); ast->print_cr(" Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free); ast->print_cr(" Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K); ! BUFFEREDSTREAM_FLUSH("\n") //---------------------------------------- //-- Prepare the FreeArray of FreeBlks -- //----------------------------------------
*** 1143,1153 **** ix++; } if (ix != alloc_freeBlocks) { ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix); ast->print_cr("I will update the counter and retry data collection"); ! STRINGSTREAM_FLUSH("\n") nBlocks_free = ix; continue; } done = true; } --- 1279,1289 ---- ix++; } if (ix != alloc_freeBlocks) { ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix); ast->print_cr("I will update the counter and retry data collection"); ! BUFFEREDSTREAM_FLUSH("\n") nBlocks_free = ix; continue; } done = true; }
*** 1157,1183 **** printBox(ast, '-', "no free blocks found in ", heapName); } else if (!done) { ast->print_cr("Free block count mismatch could not be resolved."); ast->print_cr("Try to run \"aggregate\" function to update counters"); } ! STRINGSTREAM_FLUSH("") //---< discard old array and update global values >--- discard_FreeArray(out); set_HeapStatGlobals(out, heapName); return; } //---< calculate and fill remaining fields >--- if (FreeArray != NULL) { // This loop is intentionally printing directly to "out". for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) { size_t lenSum = 0; FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len)); for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) { CodeBlob *cb = (CodeBlob*)(heap->find_start(h)); ! if ((cb != NULL) && !cb->is_nmethod()) { FreeArray[ix].stubs_in_gap = true; } FreeArray[ix].n_gapBlocks++; lenSum += h->length()<<log2_seg_size; if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) { --- 1293,1320 ---- printBox(ast, '-', "no free blocks found in ", heapName); } else if (!done) { ast->print_cr("Free block count mismatch could not be resolved."); ast->print_cr("Try to run \"aggregate\" function to update counters"); } ! BUFFEREDSTREAM_FLUSH("") //---< discard old array and update global values >--- discard_FreeArray(out); set_HeapStatGlobals(out, heapName); return; } //---< calculate and fill remaining fields >--- if (FreeArray != NULL) { // This loop is intentionally printing directly to "out". + // It should not print anything, anyway. for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) { size_t lenSum = 0; FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len)); for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) { CodeBlob *cb = (CodeBlob*)(heap->find_start(h)); ! if ((cb != NULL) && !cb->is_nmethod()) { // checks equivalent to those in get_cbType() FreeArray[ix].stubs_in_gap = true; } FreeArray[ix].n_gapBlocks++; lenSum += h->length()<<log2_seg_size; if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) {
*** 1190,1200 **** } } set_HeapStatGlobals(out, heapName); printBox(ast, '=', "C O D E H E A P A N A L Y S I S C O M P L E T E for segment ", heapName); ! STRINGSTREAM_FLUSH("\n") } void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) { if (!initialization_complete) { --- 1327,1337 ---- } } set_HeapStatGlobals(out, heapName); printBox(ast, '=', "C O D E H E A P A N A L Y S I S C O M P L E T E for segment ", heapName); ! BUFFEREDSTREAM_FLUSH("\n") } void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) { if (!initialization_complete) {
*** 1205,1215 **** get_HeapStatGlobals(out, heapName); if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) { return; } ! STRINGSTREAM_DECL(ast, out) { printBox(ast, '=', "U S E D S P A C E S T A T I S T I C S for ", heapName); ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n" " and other identifying information with the block size data.\n" --- 1342,1352 ---- get_HeapStatGlobals(out, heapName); if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) { return; } ! BUFFEREDSTREAM_DECL(ast, out) { printBox(ast, '=', "U S E D S P A C E S T A T I S T I C S for ", heapName); ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n" " and other identifying information with the block size data.\n"
*** 1217,1227 **** " Method names are dynamically retrieved from the code cache at print time.\n" " Due to the living nature of the code cache and because the CodeCache_lock\n" " is not continuously held, the displayed name might be wrong or no name\n" " might be found at all. The likelihood for that to happen increases\n" " over time passed between analysis and print step.\n", used_topSizeBlocks); ! STRINGSTREAM_FLUSH_LOCKED("\n") } //---------------------------- //-- Print Top Used Blocks -- //---------------------------- --- 1354,1364 ---- " Method names are dynamically retrieved from the code cache at print time.\n" " Due to the living nature of the code cache and because the CodeCache_lock\n" " is not continuously held, the displayed name might be wrong or no name\n" " might be found at all. The likelihood for that to happen increases\n" " over time passed between analysis and print step.\n", used_topSizeBlocks); ! BUFFEREDSTREAM_FLUSH_LOCKED("\n") } //---------------------------- //-- Print Top Used Blocks -- //----------------------------
*** 1236,1258 **** ast->fill_to(56); ast->print("%9s", "compiler"); ast->fill_to(66); ast->print_cr("%6s", "method"); ast->print_cr("%18s %13s %17s %4s %9s %5s %s", "Addr(module) ", "offset", "size", "type", " type lvl", " temp", "Name"); ! STRINGSTREAM_FLUSH_LOCKED("") //---< print Top Ten Used Blocks >--- if (used_topSizeBlocks > 0) { unsigned int printed_topSizeBlocks = 0; for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) { printed_topSizeBlocks++; ! CodeBlob* this_blob = (CodeBlob*)(heap->find_start(TopSizeArray[i].start)); ! nmethod* nm = NULL; ! const char* blob_name = "unnamed blob"; if (this_blob != NULL) { ! blob_name = this_blob->name(); ! nm = this_blob->as_nmethod_or_null(); //---< blob address >--- ast->print(INTPTR_FORMAT, p2i(this_blob)); ast->fill_to(19); //---< blob offset from CodeHeap begin >--- ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound)); --- 1373,1398 ---- ast->fill_to(56); ast->print("%9s", "compiler"); ast->fill_to(66); ast->print_cr("%6s", "method"); ast->print_cr("%18s %13s %17s %4s %9s %5s %s", "Addr(module) ", "offset", "size", "type", " type lvl", " temp", "Name"); ! BUFFEREDSTREAM_FLUSH_LOCKED("") //---< print Top Ten Used Blocks >--- if (used_topSizeBlocks > 0) { unsigned int printed_topSizeBlocks = 0; for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) { printed_topSizeBlocks++; ! if (TopSizeArray[i].blob_name == NULL) { ! TopSizeArray[i].blob_name = os::strdup("unnamed blob or blob name unavailable"); ! } ! // heap->find_start() is safe. Only works on _segmap. ! // Returns NULL or void*. Returned CodeBlob may be uninitialized. ! HeapBlock* heapBlock = TopSizeArray[i].start; ! CodeBlob* this_blob = (CodeBlob*)(heap->find_start(heapBlock)); if (this_blob != NULL) { ! //---< access these fields only if we own the CodeCache_lock >--- //---< blob address >--- ast->print(INTPTR_FORMAT, p2i(this_blob)); ast->fill_to(19); //---< blob offset from CodeHeap begin >--- ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
*** 1264,1317 **** //---< block offset from CodeHeap begin >--- ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)TopSizeArray[i].start-low_bound)); ast->fill_to(33); } - //---< print size, name, and signature (for nMethods) >--- ! if ((nm != NULL) && (nm->method() != NULL)) { ! ResourceMark rm; //---< nMethod size in hex >--- ! unsigned int total_size = nm->total_size(); ! ast->print(PTR32_FORMAT, total_size); ! ast->print("(" SIZE_FORMAT_W(4) "K)", total_size/K); ast->fill_to(51); ast->print(" %c", blobTypeChar[TopSizeArray[i].type]); //---< compiler information >--- ast->fill_to(56); ast->print("%5s %3d", compTypeName[TopSizeArray[i].compiler], TopSizeArray[i].level); //---< method temperature >--- ast->fill_to(67); ! ast->print("%5d", nm->hotness_counter()); //---< name and signature >--- ast->fill_to(67+6); ! if (nm->is_in_use()) {blob_name = nm->method()->name_and_sig_as_C_string(); } ! if (nm->is_not_entrant()) {blob_name = nm->method()->name_and_sig_as_C_string(); } ! if (nm->is_not_installed()) {ast->print("%s", " not (yet) installed method "); } ! if (nm->is_zombie()) {ast->print("%s", " zombie method "); } ! ast->print("%s", blob_name); } else { //---< block size in hex >--- ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size)); ast->print("(" SIZE_FORMAT_W(4) "K)", (TopSizeArray[i].len<<log2_seg_size)/K); //---< no compiler information >--- ast->fill_to(56); //---< name and signature >--- ast->fill_to(67+6); ! ast->print("%s", blob_name); } ! STRINGSTREAM_FLUSH_LOCKED("\n") } if (used_topSizeBlocks != printed_topSizeBlocks) { ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks); - STRINGSTREAM_FLUSH("") for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) { ast->print_cr(" TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len); ! STRINGSTREAM_FLUSH("") } } ! STRINGSTREAM_FLUSH_LOCKED("\n\n") } } //----------------------------- //-- Print Usage Histogram -- --- 1404,1454 ---- //---< block offset from CodeHeap begin >--- ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)TopSizeArray[i].start-low_bound)); ast->fill_to(33); } //---< print size, name, and signature (for nMethods) >--- ! bool is_nmethod = TopSizeArray[i].nm_size > 0; ! if (is_nmethod) { //---< nMethod size in hex >--- ! ast->print(PTR32_FORMAT, TopSizeArray[i].nm_size); ! ast->print("(" SIZE_FORMAT_W(4) "K)", TopSizeArray[i].nm_size/K); ast->fill_to(51); ast->print(" %c", blobTypeChar[TopSizeArray[i].type]); //---< compiler information >--- ast->fill_to(56); ast->print("%5s %3d", compTypeName[TopSizeArray[i].compiler], TopSizeArray[i].level); //---< method temperature >--- ast->fill_to(67); ! ast->print("%5d", TopSizeArray[i].temperature); //---< name and signature >--- ast->fill_to(67+6); ! if (TopSizeArray[i].type == nMethod_dead) { ! ast->print(" zombie method "); ! } ! ast->print("%s", TopSizeArray[i].blob_name); } else { //---< block size in hex >--- ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size)); ast->print("(" SIZE_FORMAT_W(4) "K)", (TopSizeArray[i].len<<log2_seg_size)/K); //---< no compiler information >--- ast->fill_to(56); //---< name and signature >--- ast->fill_to(67+6); ! ast->print("%s", TopSizeArray[i].blob_name); } ! ast->cr(); ! BUFFEREDSTREAM_FLUSH_AUTO("") } if (used_topSizeBlocks != printed_topSizeBlocks) { ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks); for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) { ast->print_cr(" TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len); ! BUFFEREDSTREAM_FLUSH_AUTO("") } } ! BUFFEREDSTREAM_FLUSH("\n\n") } } //----------------------------- //-- Print Usage Histogram --
*** 1332,1342 **** ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n" " of all blocks) have a size in the given range.\n" " %ld characters are printed per percentage point.\n", pctFactor/100); ast->print_cr("total size of all blocks: %7ldM", (total_size<<log2_seg_size)/M); ast->print_cr("total number of all blocks: %7ld\n", total_count); ! STRINGSTREAM_FLUSH_LOCKED("") ast->print_cr("[Size Range)------avg.-size-+----count-+"); for (unsigned int i = 0; i < nSizeDistElements; i++) { if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) { ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): " --- 1469,1479 ---- ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n" " of all blocks) have a size in the given range.\n" " %ld characters are printed per percentage point.\n", pctFactor/100); ast->print_cr("total size of all blocks: %7ldM", (total_size<<log2_seg_size)/M); ast->print_cr("total number of all blocks: %7ld\n", total_count); ! BUFFEREDSTREAM_FLUSH_LOCKED("") ast->print_cr("[Size Range)------avg.-size-+----count-+"); for (unsigned int i = 0; i < nSizeDistElements; i++) { if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) { ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
*** 1361,1381 **** unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count; for (unsigned int j = 1; j <= percent; j++) { ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*'); } ast->cr(); } ! ast->print_cr("----------------------------+----------+\n\n"); ! STRINGSTREAM_FLUSH_LOCKED("\n") printBox(ast, '-', "Contribution per size range to total size for ", heapName); ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n" " occupied space) is used by the blocks in the given size range.\n" " %ld characters are printed per percentage point.\n", pctFactor/100); ast->print_cr("total size of all blocks: %7ldM", (total_size<<log2_seg_size)/M); ast->print_cr("total number of all blocks: %7ld\n", total_count); ! STRINGSTREAM_FLUSH_LOCKED("") ast->print_cr("[Size Range)------avg.-size-+----count-+"); for (unsigned int i = 0; i < nSizeDistElements; i++) { if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) { ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): " --- 1498,1519 ---- unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count; for (unsigned int j = 1; j <= percent; j++) { ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*'); } ast->cr(); + BUFFEREDSTREAM_FLUSH_AUTO("") } ! ast->print_cr("----------------------------+----------+"); ! BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") printBox(ast, '-', "Contribution per size range to total size for ", heapName); ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n" " occupied space) is used by the blocks in the given size range.\n" " %ld characters are printed per percentage point.\n", pctFactor/100); ast->print_cr("total size of all blocks: %7ldM", (total_size<<log2_seg_size)/M); ast->print_cr("total number of all blocks: %7ld\n", total_count); ! BUFFEREDSTREAM_FLUSH_LOCKED("") ast->print_cr("[Size Range)------avg.-size-+----count-+"); for (unsigned int i = 0; i < nSizeDistElements; i++) { if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) { ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
*** 1400,1412 **** unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size; for (unsigned int j = 1; j <= percent; j++) { ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*'); } ast->cr(); } ast->print_cr("----------------------------+----------+"); ! STRINGSTREAM_FLUSH_LOCKED("\n\n\n") } } } --- 1538,1551 ---- unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size; for (unsigned int j = 1; j <= percent; j++) { ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*'); } ast->cr(); + BUFFEREDSTREAM_FLUSH_AUTO("") } ast->print_cr("----------------------------+----------+"); ! BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } } }
*** 1419,1443 **** get_HeapStatGlobals(out, heapName); if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) { return; } ! STRINGSTREAM_DECL(ast, out) { printBox(ast, '=', "F R E E S P A C E S T A T I S T I C S for ", heapName); ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n" " Those gaps are of interest if there is a chance that they become\n" " unoccupied, e.g. by class unloading. Then, the two adjacent free\n" " blocks, together with the now unoccupied space, form a new, large\n" " free block."); ! STRINGSTREAM_FLUSH_LOCKED("\n") } { printBox(ast, '-', "List of all Free Blocks in ", heapName); - STRINGSTREAM_FLUSH_LOCKED("") unsigned int ix = 0; for (ix = 0; ix < alloc_freeBlocks-1; ix++) { ast->print(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT ",", p2i(FreeArray[ix].start), ix, FreeArray[ix].len); ast->fill_to(38); --- 1558,1581 ---- get_HeapStatGlobals(out, heapName); if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) { return; } ! BUFFEREDSTREAM_DECL(ast, out) { printBox(ast, '=', "F R E E S P A C E S T A T I S T I C S for ", heapName); ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n" " Those gaps are of interest if there is a chance that they become\n" " unoccupied, e.g. by class unloading. Then, the two adjacent free\n" " blocks, together with the now unoccupied space, form a new, large\n" " free block."); ! BUFFEREDSTREAM_FLUSH_LOCKED("\n") } { printBox(ast, '-', "List of all Free Blocks in ", heapName); unsigned int ix = 0; for (ix = 0; ix < alloc_freeBlocks-1; ix++) { ast->print(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT ",", p2i(FreeArray[ix].start), ix, FreeArray[ix].len); ast->fill_to(38);
*** 1445,1458 **** ast->fill_to(71); ast->print("block count: %6d", FreeArray[ix].n_gapBlocks); if (FreeArray[ix].stubs_in_gap) { ast->print(" !! permanent gap, contains stubs and/or blobs !!"); } ! STRINGSTREAM_FLUSH_LOCKED("\n") } ast->print_cr(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT, p2i(FreeArray[ix].start), ix, FreeArray[ix].len); ! STRINGSTREAM_FLUSH_LOCKED("\n\n") } //----------------------------------------- //-- Find and Print Top Ten Free Blocks -- --- 1583,1597 ---- ast->fill_to(71); ast->print("block count: %6d", FreeArray[ix].n_gapBlocks); if (FreeArray[ix].stubs_in_gap) { ast->print(" !! permanent gap, contains stubs and/or blobs !!"); } ! ast->cr(); ! BUFFEREDSTREAM_FLUSH_AUTO("") } ast->print_cr(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT, p2i(FreeArray[ix].start), ix, FreeArray[ix].len); ! BUFFEREDSTREAM_FLUSH_LOCKED("\n\n") } //----------------------------------------- //-- Find and Print Top Ten Free Blocks --
*** 1492,1502 **** currMax10 = currSize; } } } } ! STRINGSTREAM_FLUSH_LOCKED("") { printBox(ast, '-', "Top Ten Free Blocks in ", heapName); //---< print Top Ten Free Blocks >--- --- 1631,1641 ---- currMax10 = currSize; } } } } ! BUFFEREDSTREAM_FLUSH_AUTO("") { printBox(ast, '-', "Top Ten Free Blocks in ", heapName); //---< print Top Ten Free Blocks >---
*** 1509,1521 **** ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap); ast->fill_to(63); ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks); } ast->cr(); } - STRINGSTREAM_FLUSH_LOCKED("\n\n") } //-------------------------------------------------------- //-- Find and Print Top Ten Free-Occupied-Free Triples -- //-------------------------------------------------------- --- 1648,1661 ---- ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap); ast->fill_to(63); ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks); } ast->cr(); + BUFFEREDSTREAM_FLUSH_AUTO("") } } + BUFFEREDSTREAM_FLUSH_LOCKED("\n\n") //-------------------------------------------------------- //-- Find and Print Top Ten Free-Occupied-Free Triples -- //--------------------------------------------------------
*** 1556,1566 **** currMax10 = lenTriple; } } } } ! STRINGSTREAM_FLUSH_LOCKED("") { printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in ", heapName); ast->print_cr(" Use this information to judge how likely it is that a large(r) free block\n" " might get created by code cache sweeping.\n" --- 1696,1706 ---- currMax10 = lenTriple; } } } } ! BUFFEREDSTREAM_FLUSH_AUTO("") { printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in ", heapName); ast->print_cr(" Use this information to judge how likely it is that a large(r) free block\n" " might get created by code cache sweeping.\n"
*** 1574,1586 **** ast->fill_to(39); ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap); ast->fill_to(63); ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks); ast->cr(); } - STRINGSTREAM_FLUSH_LOCKED("\n\n") } } void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) { if (!initialization_complete) { --- 1714,1727 ---- ast->fill_to(39); ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap); ast->fill_to(63); ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks); ast->cr(); + BUFFEREDSTREAM_FLUSH_AUTO("") } } + BUFFEREDSTREAM_FLUSH_LOCKED("\n\n") } void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) { if (!initialization_complete) {
*** 1591,1601 **** get_HeapStatGlobals(out, heapName); if ((StatArray == NULL) || (alloc_granules == 0)) { return; } ! STRINGSTREAM_DECL(ast, out) unsigned int granules_per_line = 32; char* low_bound = heap->low_boundary(); { --- 1732,1742 ---- get_HeapStatGlobals(out, heapName); if ((StatArray == NULL) || (alloc_granules == 0)) { return; } ! BUFFEREDSTREAM_DECL(ast, out) unsigned int granules_per_line = 32; char* low_bound = heap->low_boundary(); {
*** 1607,1753 **** " As a result, each granule contains exactly one block (or a part of one block)\n" " or is displayed as empty (' ') if it's BlobType does not match the selection.\n" " Occupied granules show their BlobType character, see legend.\n"); print_blobType_legend(ast); } ! STRINGSTREAM_FLUSH_LOCKED("") } { if (segment_granules) { printBox(ast, '-', "Total (all types) count for granule size == segment size", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); print_blobType_single(ast, StatArray[ix].type); } } else { printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); unsigned int count = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count + StatArray[ix].stub_count + StatArray[ix].dead_count; print_count_single(ast, count); } } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } { if (nBlocks_t1 > 0) { printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].t1_count > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_count_single(ast, StatArray[ix].t1_count); } } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } else { ast->print("No Tier1 nMethods found in CodeHeap."); - STRINGSTREAM_FLUSH_LOCKED("\n\n\n") } } { if (nBlocks_t2 > 0) { printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].t2_count > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_count_single(ast, StatArray[ix].t2_count); } } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } else { ast->print("No Tier2 nMethods found in CodeHeap."); - STRINGSTREAM_FLUSH_LOCKED("\n\n\n") } } { if (nBlocks_alive > 0) { printBox(ast, '-', "not_used/not_entrant/not_installed nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].tx_count > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_count_single(ast, StatArray[ix].tx_count); } } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } else { ast->print("No not_used/not_entrant nMethods found in CodeHeap."); - STRINGSTREAM_FLUSH_LOCKED("\n\n\n") } } { if (nBlocks_stub > 0) { printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].stub_count > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_count_single(ast, StatArray[ix].stub_count); } } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } else { ast->print("No Stubs and Blobs found in CodeHeap."); - STRINGSTREAM_FLUSH_LOCKED("\n\n\n") } } { if (nBlocks_dead > 0) { printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].dead_count > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_count_single(ast, StatArray[ix].dead_count); } } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } else { ast->print("No dead nMethods found in CodeHeap."); - STRINGSTREAM_FLUSH_LOCKED("\n\n\n") } } { if (!segment_granules) { // Prevent totally redundant printouts printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 24; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); --- 1748,1886 ---- " As a result, each granule contains exactly one block (or a part of one block)\n" " or is displayed as empty (' ') if it's BlobType does not match the selection.\n" " Occupied granules show their BlobType character, see legend.\n"); print_blobType_legend(ast); } ! BUFFEREDSTREAM_FLUSH_LOCKED("") } { if (segment_granules) { printBox(ast, '-', "Total (all types) count for granule size == segment size", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); print_blobType_single(ast, StatArray[ix].type); } } else { printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); unsigned int count = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count + StatArray[ix].stub_count + StatArray[ix].dead_count; print_count_single(ast, count); } } ! BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n") } { if (nBlocks_t1 > 0) { printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].t1_count > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_count_single(ast, StatArray[ix].t1_count); } } ! ast->print("|"); } else { ast->print("No Tier1 nMethods found in CodeHeap."); } + BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } { if (nBlocks_t2 > 0) { printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].t2_count > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_count_single(ast, StatArray[ix].t2_count); } } ! ast->print("|"); } else { ast->print("No Tier2 nMethods found in CodeHeap."); } + BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } { if (nBlocks_alive > 0) { printBox(ast, '-', "not_used/not_entrant/not_installed nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].tx_count > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_count_single(ast, StatArray[ix].tx_count); } } ! ast->print("|"); } else { ast->print("No not_used/not_entrant nMethods found in CodeHeap."); } + BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } { if (nBlocks_stub > 0) { printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].stub_count > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_count_single(ast, StatArray[ix].stub_count); } } ! ast->print("|"); } else { ast->print("No Stubs and Blobs found in CodeHeap."); } + BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } { if (nBlocks_dead > 0) { printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].dead_count > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_count_single(ast, StatArray[ix].dead_count); } } ! ast->print("|"); } else { ast->print("No dead nMethods found in CodeHeap."); } + BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } { if (!segment_granules) { // Prevent totally redundant printouts printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL); granules_per_line = 24; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line);
*** 1760,1770 **** } else { print_count_single(ast, StatArray[ix].stub_count); } ast->print(" "); } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } } } --- 1893,1903 ---- } else { print_count_single(ast, StatArray[ix].stub_count); } ast->print(" "); } ! BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n") } } }
*** 1777,1787 **** get_HeapStatGlobals(out, heapName); if ((StatArray == NULL) || (alloc_granules == 0)) { return; } ! STRINGSTREAM_DECL(ast, out) unsigned int granules_per_line = 32; char* low_bound = heap->low_boundary(); { --- 1910,1920 ---- get_HeapStatGlobals(out, heapName); if ((StatArray == NULL) || (alloc_granules == 0)) { return; } ! BUFFEREDSTREAM_DECL(ast, out) unsigned int granules_per_line = 32; char* low_bound = heap->low_boundary(); {
*** 1796,1873 **** print_blobType_legend(ast); } else { ast->print_cr(" These digits represent a fill percentage range (see legend).\n"); print_space_legend(ast); } ! STRINGSTREAM_FLUSH_LOCKED("") } { if (segment_granules) { printBox(ast, '-', "Total (all types) space consumption for granule size == segment size", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); print_blobType_single(ast, StatArray[ix].type); } } else { printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); unsigned int space = StatArray[ix].t1_space + StatArray[ix].t2_space + StatArray[ix].tx_space + StatArray[ix].stub_space + StatArray[ix].dead_space; print_space_single(ast, space); } } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } { if (nBlocks_t1 > 0) { printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].t1_space > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_space_single(ast, StatArray[ix].t1_space); } } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } else { ast->print("No Tier1 nMethods found in CodeHeap."); - STRINGSTREAM_FLUSH_LOCKED("\n\n\n") } } { if (nBlocks_t2 > 0) { printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].t2_space > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_space_single(ast, StatArray[ix].t2_space); } } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } else { ast->print("No Tier2 nMethods found in CodeHeap."); - STRINGSTREAM_FLUSH_LOCKED("\n\n\n") } } { if (nBlocks_alive > 0) { printBox(ast, '-', "not_used/not_entrant/not_installed space consumption. ' ' indicates empty, '*' indicates full", NULL); --- 1929,2002 ---- print_blobType_legend(ast); } else { ast->print_cr(" These digits represent a fill percentage range (see legend).\n"); print_space_legend(ast); } ! BUFFEREDSTREAM_FLUSH_LOCKED("") } { if (segment_granules) { printBox(ast, '-', "Total (all types) space consumption for granule size == segment size", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); print_blobType_single(ast, StatArray[ix].type); } } else { printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); unsigned int space = StatArray[ix].t1_space + StatArray[ix].t2_space + StatArray[ix].tx_space + StatArray[ix].stub_space + StatArray[ix].dead_space; print_space_single(ast, space); } } ! BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n") } { if (nBlocks_t1 > 0) { printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].t1_space > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_space_single(ast, StatArray[ix].t1_space); } } ! ast->print("|"); } else { ast->print("No Tier1 nMethods found in CodeHeap."); } + BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } { if (nBlocks_t2 > 0) { printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].t2_space > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_space_single(ast, StatArray[ix].t2_space); } } ! ast->print("|"); } else { ast->print("No Tier2 nMethods found in CodeHeap."); } + BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } { if (nBlocks_alive > 0) { printBox(ast, '-', "not_used/not_entrant/not_installed space consumption. ' ' indicates empty, '*' indicates full", NULL);
*** 1879,1937 **** print_blobType_single(ast, StatArray[ix].type); } else { print_space_single(ast, StatArray[ix].tx_space); } } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } else { ast->print("No Tier2 nMethods found in CodeHeap."); - STRINGSTREAM_FLUSH_LOCKED("\n\n\n") } } { if (nBlocks_stub > 0) { printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].stub_space > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_space_single(ast, StatArray[ix].stub_space); } } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } else { ast->print("No Stubs and Blobs found in CodeHeap."); - STRINGSTREAM_FLUSH_LOCKED("\n\n\n") } } { if (nBlocks_dead > 0) { printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); print_space_single(ast, StatArray[ix].dead_space); } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } else { ast->print("No dead nMethods found in CodeHeap."); - STRINGSTREAM_FLUSH_LOCKED("\n\n\n") } } { if (!segment_granules) { // Prevent totally redundant printouts printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 24; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); --- 2008,2063 ---- print_blobType_single(ast, StatArray[ix].type); } else { print_space_single(ast, StatArray[ix].tx_space); } } ! ast->print("|"); } else { ast->print("No Tier2 nMethods found in CodeHeap."); } + BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } { if (nBlocks_stub > 0) { printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); if (segment_granules && StatArray[ix].stub_space > 0) { print_blobType_single(ast, StatArray[ix].type); } else { print_space_single(ast, StatArray[ix].stub_space); } } ! ast->print("|"); } else { ast->print("No Stubs and Blobs found in CodeHeap."); } + BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } { if (nBlocks_dead > 0) { printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); print_space_single(ast, StatArray[ix].dead_space); } ! ast->print("|"); } else { ast->print("No dead nMethods found in CodeHeap."); } + BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } { if (!segment_granules) { // Prevent totally redundant printouts printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL); granules_per_line = 24; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line);
*** 1952,1962 **** } else { print_space_single(ast, StatArray[ix].stub_space); } ast->print(" "); } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } } } void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) { --- 2078,2089 ---- } else { print_space_single(ast, StatArray[ix].stub_space); } ast->print(" "); } ! ast->print("|"); ! BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } } } void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) {
*** 1968,1978 **** get_HeapStatGlobals(out, heapName); if ((StatArray == NULL) || (alloc_granules == 0)) { return; } ! STRINGSTREAM_DECL(ast, out) unsigned int granules_per_line = 32; char* low_bound = heap->low_boundary(); { --- 2095,2105 ---- get_HeapStatGlobals(out, heapName); if ((StatArray == NULL) || (alloc_granules == 0)) { return; } ! BUFFEREDSTREAM_DECL(ast, out) unsigned int granules_per_line = 32; char* low_bound = heap->low_boundary(); {
*** 1982,1997 **** " Age information is available for tier1 and tier2 methods only. There is no\n" " age information for stubs and blobs, because they have no compilation ID assigned.\n" " Information for the youngest method (highest ID) in the granule is printed.\n" " Refer to the legend to learn how method age is mapped to the displayed digit."); print_age_legend(ast); ! STRINGSTREAM_FLUSH_LOCKED("") } { printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); unsigned int age1 = StatArray[ix].t1_age; --- 2109,2123 ---- " Age information is available for tier1 and tier2 methods only. There is no\n" " age information for stubs and blobs, because they have no compilation ID assigned.\n" " Information for the youngest method (highest ID) in the granule is printed.\n" " Refer to the legend to learn how method age is mapped to the displayed digit."); print_age_legend(ast); ! BUFFEREDSTREAM_FLUSH_LOCKED("") } { printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); unsigned int age1 = StatArray[ix].t1_age;
*** 1999,2076 **** unsigned int agex = StatArray[ix].tx_age; unsigned int age = age1 > age2 ? age1 : age2; age = age > agex ? age : agex; print_age_single(ast, age); } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } { if (nBlocks_t1 > 0) { printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); print_age_single(ast, StatArray[ix].t1_age); } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } else { ast->print("No Tier1 nMethods found in CodeHeap."); - STRINGSTREAM_FLUSH_LOCKED("\n\n\n") } } { if (nBlocks_t2 > 0) { printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); print_age_single(ast, StatArray[ix].t2_age); } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } else { ast->print("No Tier2 nMethods found in CodeHeap."); - STRINGSTREAM_FLUSH_LOCKED("\n\n\n") } } { if (nBlocks_alive > 0) { printBox(ast, '-', "not_used/not_entrant/not_installed age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); print_age_single(ast, StatArray[ix].tx_age); } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } else { ast->print("No Tier2 nMethods found in CodeHeap."); - STRINGSTREAM_FLUSH_LOCKED("\n\n\n") } } { if (!segment_granules) { // Prevent totally redundant printouts printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL); - STRINGSTREAM_FLUSH_LOCKED("") granules_per_line = 32; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); print_age_single(ast, StatArray[ix].t1_age); ast->print(":"); print_age_single(ast, StatArray[ix].t2_age); ast->print(" "); } ! STRINGSTREAM_FLUSH_LOCKED("|\n\n\n") } } } --- 2125,2200 ---- unsigned int agex = StatArray[ix].tx_age; unsigned int age = age1 > age2 ? age1 : age2; age = age > agex ? age : agex; print_age_single(ast, age); } ! ast->print("|"); ! BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } { if (nBlocks_t1 > 0) { printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); print_age_single(ast, StatArray[ix].t1_age); } ! ast->print("|"); } else { ast->print("No Tier1 nMethods found in CodeHeap."); } + BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } { if (nBlocks_t2 > 0) { printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); print_age_single(ast, StatArray[ix].t2_age); } ! ast->print("|"); } else { ast->print("No Tier2 nMethods found in CodeHeap."); } + BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } { if (nBlocks_alive > 0) { printBox(ast, '-', "not_used/not_entrant/not_installed age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL); granules_per_line = 128; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); print_age_single(ast, StatArray[ix].tx_age); } ! ast->print("|"); } else { ast->print("No Tier2 nMethods found in CodeHeap."); } + BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } { if (!segment_granules) { // Prevent totally redundant printouts printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL); granules_per_line = 32; for (unsigned int ix = 0; ix < alloc_granules; ix++) { print_line_delim(out, ast, low_bound, ix, granules_per_line); print_age_single(ast, StatArray[ix].t1_age); ast->print(":"); print_age_single(ast, StatArray[ix].t2_age); ast->print(" "); } ! ast->print("|"); ! BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n") } } }
*** 2083,2098 **** get_HeapStatGlobals(out, heapName); if ((StatArray == NULL) || (alloc_granules == 0)) { return; } ! STRINGSTREAM_DECL(ast, out) unsigned int granules_per_line = 128; char* low_bound = heap->low_boundary(); CodeBlob* last_blob = NULL; bool name_in_addr_range = true; //---< print at least 128K per block (i.e. between headers) >--- if (granules_per_line*granule_size < 128*K) { granules_per_line = (unsigned int)((128*K)/granule_size); } --- 2207,2223 ---- get_HeapStatGlobals(out, heapName); if ((StatArray == NULL) || (alloc_granules == 0)) { return; } ! BUFFEREDSTREAM_DECL(ast, out) unsigned int granules_per_line = 128; char* low_bound = heap->low_boundary(); CodeBlob* last_blob = NULL; bool name_in_addr_range = true; + bool have_locks = holding_required_locks(); //---< print at least 128K per block (i.e. between headers) >--- if (granules_per_line*granule_size < 128*K) { granules_per_line = (unsigned int)((128*K)/granule_size); }
*** 2100,2111 **** printBox(ast, '=', "M E T H O D N A M E S for ", heapName); ast->print_cr(" Method names are dynamically retrieved from the code cache at print time.\n" " Due to the living nature of the code heap and because the CodeCache_lock\n" " is not continuously held, the displayed name might be wrong or no name\n" " might be found at all. The likelihood for that to happen increases\n" ! " over time passed between aggregtion and print steps.\n"); ! STRINGSTREAM_FLUSH_LOCKED("") for (unsigned int ix = 0; ix < alloc_granules; ix++) { //---< print a new blob on a new line >--- if (ix%granules_per_line == 0) { if (!name_in_addr_range) { --- 2225,2236 ---- printBox(ast, '=', "M E T H O D N A M E S for ", heapName); ast->print_cr(" Method names are dynamically retrieved from the code cache at print time.\n" " Due to the living nature of the code heap and because the CodeCache_lock\n" " is not continuously held, the displayed name might be wrong or no name\n" " might be found at all. The likelihood for that to happen increases\n" ! " over time passed between aggregation and print steps.\n"); ! BUFFEREDSTREAM_FLUSH_LOCKED("") for (unsigned int ix = 0; ix < alloc_granules; ix++) { //---< print a new blob on a new line >--- if (ix%granules_per_line == 0) { if (!name_in_addr_range) {
*** 2116,2177 **** size_t end_ix = (ix+granules_per_line <= alloc_granules) ? ix+granules_per_line : alloc_granules; ast->cr(); ast->print_cr("--------------------------------------------------------------------"); ast->print_cr("Address range [" INTPTR_FORMAT "," INTPTR_FORMAT "), " SIZE_FORMAT "k", p2i(low_bound+ix*granule_size), p2i(low_bound + end_ix*granule_size), (end_ix - ix)*granule_size/(size_t)K); ast->print_cr("--------------------------------------------------------------------"); ! STRINGSTREAM_FLUSH_LOCKED("") } // Only check granule if it contains at least one blob. unsigned int nBlobs = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count + StatArray[ix].stub_count + StatArray[ix].dead_count; if (nBlobs > 0 ) { for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) { ! // heap->find_start() is safe. Only working with _segmap. Returns NULL or void*. Returned CodeBlob may be uninitialized. ! CodeBlob* this_blob = (CodeBlob *)(heap->find_start(low_bound+ix*granule_size+is)); ! bool blob_initialized = (this_blob != NULL) && (this_blob->header_size() >= 0) && (this_blob->relocation_size() >= 0) && ! ((address)this_blob + this_blob->header_size() == (address)(this_blob->relocation_begin())) && ! ((address)this_blob + CodeBlob::align_code_offset(this_blob->header_size() + this_blob->relocation_size()) == (address)(this_blob->content_begin())) && ! os::is_readable_pointer((address)(this_blob->relocation_begin())) && ! os::is_readable_pointer(this_blob->content_begin()); // blob could have been flushed, freed, and merged. // this_blob < last_blob is an indicator for that. ! if (blob_initialized && (this_blob > last_blob)) { last_blob = this_blob; //---< get type and name >--- blobType cbType = noType; if (segment_granules) { cbType = (blobType)StatArray[ix].type; } else { cbType = get_cbType(this_blob); } // this_blob->name() could return NULL if no name was given to CTOR. Inlined, maybe invisible on stack ! const char* blob_name = this_blob->name(); ! if ((blob_name == NULL) || !os::is_readable_pointer(blob_name)) { blob_name = "<unavailable>"; } //---< print table header for new print range >--- if (!name_in_addr_range) { name_in_addr_range = true; ast->fill_to(51); ast->print("%9s", "compiler"); ast->fill_to(61); ast->print_cr("%6s", "method"); ast->print_cr("%18s %13s %17s %9s %5s %18s %s", "Addr(module) ", "offset", "size", " type lvl", " temp", "blobType ", "Name"); ! STRINGSTREAM_FLUSH_LOCKED("") } //---< print line prefix (address and offset from CodeHeap start) >--- ast->print(INTPTR_FORMAT, p2i(this_blob)); ast->fill_to(19); ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound)); ast->fill_to(33); ! // this_blob->as_nmethod_or_null() is safe. Inlined, maybe invisible on stack. ! nmethod* nm = this_blob->as_nmethod_or_null(); ! if (CompiledMethod::nmethod_access_is_safe(nm)) { Method* method = nm->method(); ResourceMark rm; //---< collect all data to locals as quickly as possible >--- unsigned int total_size = nm->total_size(); int hotness = nm->hotness_counter(); --- 2241,2310 ---- size_t end_ix = (ix+granules_per_line <= alloc_granules) ? ix+granules_per_line : alloc_granules; ast->cr(); ast->print_cr("--------------------------------------------------------------------"); ast->print_cr("Address range [" INTPTR_FORMAT "," INTPTR_FORMAT "), " SIZE_FORMAT "k", p2i(low_bound+ix*granule_size), p2i(low_bound + end_ix*granule_size), (end_ix - ix)*granule_size/(size_t)K); ast->print_cr("--------------------------------------------------------------------"); ! BUFFEREDSTREAM_FLUSH_AUTO("") } // Only check granule if it contains at least one blob. unsigned int nBlobs = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count + StatArray[ix].stub_count + StatArray[ix].dead_count; if (nBlobs > 0 ) { for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) { ! // heap->find_start() is safe. Only works on _segmap. ! // Returns NULL or void*. Returned CodeBlob may be uninitialized. ! char* this_seg = low_bound + ix*granule_size + is; ! CodeBlob* this_blob = (CodeBlob*)(heap->find_start(this_seg)); ! bool blob_is_safe = blob_access_is_safe(this_blob); // blob could have been flushed, freed, and merged. // this_blob < last_blob is an indicator for that. ! if (blob_is_safe && (this_blob > last_blob)) { last_blob = this_blob; //---< get type and name >--- blobType cbType = noType; if (segment_granules) { cbType = (blobType)StatArray[ix].type; } else { + //---< access these fields only if we own the CodeCache_lock >--- + if (have_locks) { cbType = get_cbType(this_blob); } + } + + //---< access these fields only if we own the CodeCache_lock >--- + const char* blob_name = "<unavailable>"; + nmethod* nm = NULL; + if (have_locks) { + blob_name = this_blob->name(); + nm = this_blob->as_nmethod_or_null(); // this_blob->name() could return NULL if no name was given to CTOR. Inlined, maybe invisible on stack ! if (blob_name == NULL) { blob_name = "<unavailable>"; } + } //---< print table header for new print range >--- if (!name_in_addr_range) { name_in_addr_range = true; ast->fill_to(51); ast->print("%9s", "compiler"); ast->fill_to(61); ast->print_cr("%6s", "method"); ast->print_cr("%18s %13s %17s %9s %5s %18s %s", "Addr(module) ", "offset", "size", " type lvl", " temp", "blobType ", "Name"); ! BUFFEREDSTREAM_FLUSH_AUTO("") } //---< print line prefix (address and offset from CodeHeap start) >--- ast->print(INTPTR_FORMAT, p2i(this_blob)); ast->fill_to(19); ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound)); ast->fill_to(33); ! // access nmethod and Method fields only if we own the CodeCache_lock. ! // This fact is implicitly transported via nm != NULL. ! if (nmethod_access_is_safe(nm)) { Method* method = nm->method(); ResourceMark rm; //---< collect all data to locals as quickly as possible >--- unsigned int total_size = nm->total_size(); int hotness = nm->hotness_counter();
*** 2203,2227 **** ast->print("%s", methNameS); ast->print("%s", methSigS); } else { ast->print("%s", blob_name); } ! } else { ast->fill_to(62+6); ast->print("%s", blobTypeName[cbType]); ast->fill_to(82+6); ast->print("%s", blob_name); } ! STRINGSTREAM_FLUSH_LOCKED("\n") ! } else if (!blob_initialized && (this_blob != last_blob) && (this_blob != NULL)) { last_blob = this_blob; - STRINGSTREAM_FLUSH_LOCKED("\n") } } } // nBlobs > 0 } ! STRINGSTREAM_FLUSH_LOCKED("\n\n") } void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) { unsigned int lineLen = 1 + 2 + 2 + 1; --- 2336,2363 ---- ast->print("%s", methNameS); ast->print("%s", methSigS); } else { ast->print("%s", blob_name); } ! } else if (blob_is_safe) { ast->fill_to(62+6); ast->print("%s", blobTypeName[cbType]); ast->fill_to(82+6); ast->print("%s", blob_name); + } else { + ast->fill_to(62+6); + ast->print("<stale blob>"); } ! ast->cr(); ! BUFFEREDSTREAM_FLUSH_AUTO("") ! } else if (!blob_is_safe && (this_blob != last_blob) && (this_blob != NULL)) { last_blob = this_blob; } } } // nBlobs > 0 } ! BUFFEREDSTREAM_FLUSH_LOCKED("\n\n") } void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) { unsigned int lineLen = 1 + 2 + 2 + 1;
*** 2354,2364 **** if (ix > 0) { ast->print("|"); } ast->cr(); ! { // can't use STRINGSTREAM_FLUSH_LOCKED("") here. ttyLocker ttyl; out->print("%s", ast->as_string()); ast->reset(); } --- 2490,2504 ---- if (ix > 0) { ast->print("|"); } ast->cr(); ! // can't use BUFFEREDSTREAM_FLUSH_IF("", 512) here. ! // can't use this expression. bufferedStream::capacity() does not exist. ! // if ((ast->capacity() - ast->size()) < 512) { ! // Assume instead that default bufferedStream capacity (4K) was used. ! if (ast->size() > 3*K) { ttyLocker ttyl; out->print("%s", ast->as_string()); ast->reset(); }
*** 2366,2394 **** ast->fill_to(19); ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size)); } } CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) { ! if ((cb != NULL) && os::is_readable_pointer(cb)) { if (cb->is_runtime_stub()) return runtimeStub; if (cb->is_deoptimization_stub()) return deoptimizationStub; if (cb->is_uncommon_trap_stub()) return uncommonTrapStub; if (cb->is_exception_stub()) return exceptionStub; if (cb->is_safepoint_stub()) return safepointStub; if (cb->is_adapter_blob()) return adapterBlob; if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob; if (cb->is_buffer_blob()) return bufferBlob; nmethod* nm = cb->as_nmethod_or_null(); if (nm != NULL) { // no is_readable check required, nm = (nmethod*)cb. - if (nm->is_not_installed()) return nMethod_inconstruction; if (nm->is_zombie()) return nMethod_dead; if (nm->is_unloaded()) return nMethod_unloaded; if (nm->is_in_use()) return nMethod_inuse; if (nm->is_alive() && !(nm->is_not_entrant())) return nMethod_notused; if (nm->is_alive()) return nMethod_alive; return nMethod_dead; } } return noType; } --- 2506,2559 ---- ast->fill_to(19); ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size)); } } + // Find out which blob type we have at hand. + // Return "noType" if anything abnormal is detected. CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) { ! if (cb != NULL) { if (cb->is_runtime_stub()) return runtimeStub; if (cb->is_deoptimization_stub()) return deoptimizationStub; if (cb->is_uncommon_trap_stub()) return uncommonTrapStub; if (cb->is_exception_stub()) return exceptionStub; if (cb->is_safepoint_stub()) return safepointStub; if (cb->is_adapter_blob()) return adapterBlob; if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob; if (cb->is_buffer_blob()) return bufferBlob; + //---< access these fields only if we own CodeCache_lock and Compile_lock >--- + // Should be ensured by caller. aggregate() and print_names() do that. + if (holding_required_locks()) { nmethod* nm = cb->as_nmethod_or_null(); if (nm != NULL) { // no is_readable check required, nm = (nmethod*)cb. if (nm->is_zombie()) return nMethod_dead; if (nm->is_unloaded()) return nMethod_unloaded; if (nm->is_in_use()) return nMethod_inuse; if (nm->is_alive() && !(nm->is_not_entrant())) return nMethod_notused; if (nm->is_alive()) return nMethod_alive; return nMethod_dead; } } + } return noType; } + + // make sure the blob at hand is not garbage. + bool CodeHeapState::blob_access_is_safe(CodeBlob* this_blob) { + return (this_blob != NULL) && // a blob must have been found, obviously + (this_blob->header_size() >= 0) && + (this_blob->relocation_size() >= 0) && + ((address)this_blob + this_blob->header_size() == (address)(this_blob->relocation_begin())) && + ((address)this_blob + CodeBlob::align_code_offset(this_blob->header_size() + this_blob->relocation_size()) == (address)(this_blob->content_begin())); + } + + // make sure the nmethod at hand (and the linked method) is not garbage. + bool CodeHeapState::nmethod_access_is_safe(nmethod* nm) { + Method* method = (nm == NULL) ? NULL : nm->method(); // nm->method() was found to be uninitialized, i.e. != NULL, but invalid. + return (nm != NULL) && (method != NULL) && nm->is_alive() && (method->signature() != NULL); + } + + bool CodeHeapState::holding_required_locks() { + return SafepointSynchronize::is_at_safepoint() || + (CodeCache_lock->owned_by_self() && Compile_lock->owned_by_self()); + }
< prev index next >