1 /*
   2  * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2018, 2019 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "code/codeHeapState.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "runtime/safepoint.hpp"
  30 #include "runtime/sweeper.hpp"
  31 
  32 // -------------------------
  33 // |  General Description  |
  34 // -------------------------
  35 // The CodeHeap state analytics are divided in two parts.
  36 // The first part examines the entire CodeHeap and aggregates all
  37 // information that is believed useful/important.
  38 //
  39 // Aggregation condenses the information of a piece of the CodeHeap
  40 // (4096 bytes by default) into an analysis granule. These granules
  41 // contain enough detail to gain initial insight while keeping the
  42 // internal structure sizes in check.
  43 //
  44 // The second part, which consists of several, independent steps,
  45 // prints the previously collected information with emphasis on
  46 // various aspects.
  47 //
  48 // The CodeHeap is a living thing. Therefore, protection against concurrent
  49 // modification (by acquiring the CodeCache_lock) is necessary. It has
  50 // to be provided by the caller of the analysis functions.
  51 // If the CodeCache_lock is not held, the analysis functions may print
  52 // less detailed information or may just do nothing. It is by intention
  53 // that an unprotected invocation is not abnormally terminated.
  54 //
  55 // Data collection and printing is done on an "on request" basis.
  56 // While no request is being processed, there is no impact on performance.
  57 // The CodeHeap state analytics do have some memory footprint.
  58 // The "aggregate" step allocates some data structures to hold the aggregated
  59 // information for later output. These data structures live until they are
  60 // explicitly discarded (function "discard") or until the VM terminates.
  61 // There is one exception: the function "all" does not leave any data
  62 // structures allocated.
  63 //
  64 // Requests for real-time, on-the-fly analysis can be issued via
  65 //   jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>]
  66 //
  67 // If you are (only) interested in how the CodeHeap looks like after running
  68 // a sample workload, you can use the command line option
  69 //   -XX:+PrintCodeHeapAnalytics
  70 // It will cause a full analysis to be written to tty. In addition, a full
  71 // analysis will be written the first time a "CodeCache full" condition is
  72 // detected.
  73 //
  74 // The command line option produces output identical to the jcmd function
  75 //   jcmd <pid> Compiler.CodeHeap_Analytics all 4096
  76 // ---------------------------------------------------------------------------------
  77 
  78 // With this declaration macro, it is possible to switch between
  79 //  - direct output into an argument-passed outputStream and
  80 //  - buffered output into a bufferedStream with subsequent flush
  81 //    of the filled buffer to the outputStream.
  82 #define USE_BUFFEREDSTREAM
  83 
  84 // There are instances when composing an output line or a small set of
  85 // output lines out of many tty->print() calls creates significant overhead.
  86 // Writing to a bufferedStream buffer first has a significant advantage:
  87 // It uses noticeably less cpu cycles and reduces (when writing to a
  88 // network file) the required bandwidth by at least a factor of ten. Observed on MacOS.
  89 // That clearly makes up for the increased code complexity.
  90 //
  91 // Conversion of existing code is easy and straightforward, if the code already
  92 // uses a parameterized output destination, e.g. "outputStream st".
  93 //  - rename the formal parameter to any other name, e.g. out_st.
  94 //  - at a suitable place in your code, insert
  95 //      BUFFEREDSTEAM_DECL(buf_st, out_st)
  96 // This will provide all the declarations necessary. After that, all
  97 // buf_st->print() (and the like) calls will be directed to a bufferedStream object.
  98 // Once a block of output (a line or a small set of lines) is composed, insert
  99 //      BUFFEREDSTREAM_FLUSH(termstring)
 100 // to flush the bufferedStream to the final destination out_st. termstring is just
 101 // an arbitrary string (e.g. "\n") which is appended to the bufferedStream before
 102 // being written to out_st. Be aware that the last character written MUST be a '\n'.
 103 // Otherwise, buf_st->position() does not correspond to out_st->position() any longer.
 104 //      BUFFEREDSTREAM_FLUSH_LOCKED(termstring)
 105 // does the same thing, protected by the ttyLocker lock.
 106 //      BUFFEREDSTREAM_FLUSH_IF(termstring, remSize)
 107 // does a flush only if the remaining buffer space is less than remSize.
 108 //
 109 // To activate, #define USE_BUFFERED_STREAM before including this header.
 110 // If not activated, output will directly go to the originally used outputStream
 111 // with no additional overhead.
 112 //
 113 #if defined(USE_BUFFEREDSTREAM)
 114 // All necessary declarations to print via a bufferedStream
 115 // This macro must be placed before any other BUFFEREDSTREAM*
 116 // macro in the function.
 117 #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa)       \
 118     ResourceMark         _rm;                                 \
 119     /* _anyst  name of the stream as used in the code */      \
 120     /* _outst  stream where final output will go to   */      \
 121     /* _capa   allocated capacity of stream buffer    */      \
 122     size_t           _nflush = 0;                             \
 123     size_t     _nforcedflush = 0;                             \
 124     size_t      _nsavedflush = 0;                             \
 125     size_t     _nlockedflush = 0;                             \
 126     size_t     _nflush_bytes = 0;                             \
 127     size_t         _capacity = _capa;                         \
 128     bufferedStream   _sstobj(_capa);                          \
 129     bufferedStream*  _sstbuf = &_sstobj;                      \
 130     outputStream*    _outbuf = _outst;                        \
 131     bufferedStream*   _anyst = &_sstobj; /* any stream. Use this to just print - no buffer flush.  */
 132 
 133 // Same as above, but with fixed buffer size.
 134 #define BUFFEREDSTREAM_DECL(_anyst, _outst)                   \
 135     BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K);
 136 
 137 // Flush the buffer contents unconditionally.
 138 // No action if the buffer is empty.
 139 #define BUFFEREDSTREAM_FLUSH(_termString)                     \
 140     if (((_termString) != NULL) && (strlen(_termString) > 0)){\
 141       _sstbuf->print("%s", _termString);                      \
 142     }                                                         \
 143     if (_sstbuf != _outbuf) {                                 \
 144       if (_sstbuf->size() != 0) {                             \
 145         _nforcedflush++; _nflush_bytes += _sstbuf->size();    \
 146         _outbuf->print("%s", _sstbuf->as_string());           \
 147         _sstbuf->reset();                                     \
 148       }                                                       \
 149     }
 150 
 151 // Flush the buffer contents if the remaining capacity is
 152 // less than the given threshold.
 153 #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize)        \
 154     if (((_termString) != NULL) && (strlen(_termString) > 0)){\
 155       _sstbuf->print("%s", _termString);                      \
 156     }                                                         \
 157     if (_sstbuf != _outbuf) {                                 \
 158       if ((_capacity - _sstbuf->size()) < (size_t)(_remSize)){\
 159         _nflush++; _nforcedflush--;                           \
 160         BUFFEREDSTREAM_FLUSH("")                              \
 161       } else {                                                \
 162         _nsavedflush++;                                       \
 163       }                                                       \
 164     }
 165 
 166 // Flush the buffer contents if the remaining capacity is less
 167 // than the calculated threshold (256 bytes + capacity/16)
 168 // That should suffice for all reasonably sized output lines.
 169 #define BUFFEREDSTREAM_FLUSH_AUTO(_termString)                \
 170     BUFFEREDSTREAM_FLUSH_IF(_termString, 256+(_capacity>>4))
 171 
 172 #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString)              \
 173     { ttyLocker ttyl;/* keep this output block together */    \
 174       _nlockedflush++;                                        \
 175       BUFFEREDSTREAM_FLUSH(_termString)                       \
 176     }
 177 
 178 // #define BUFFEREDSTREAM_FLUSH_STAT()                           \
 179 //     if (_sstbuf != _outbuf) {                                 \
 180 //       _outbuf->print_cr("%ld flushes (buffer full), %ld forced, %ld locked, %ld bytes total, %ld flushes saved", _nflush, _nforcedflush, _nlockedflush, _nflush_bytes, _nsavedflush); \
 181 //    }
 182 
 183 #define BUFFEREDSTREAM_FLUSH_STAT()
 184 #else
 185 #define BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, _capa)       \
 186     size_t       _capacity = _capa;                           \
 187     outputStream*  _outbuf = _outst;                          \
 188     outputStream*  _anyst  = _outst;   /* any stream. Use this to just print - no buffer flush.  */
 189 
 190 #define BUFFEREDSTREAM_DECL(_anyst, _outst)                   \
 191     BUFFEREDSTREAM_DECL_SIZE(_anyst, _outst, 4*K)
 192 
 193 #define BUFFEREDSTREAM_FLUSH(_termString)                     \
 194     if (((_termString) != NULL) && (strlen(_termString) > 0)){\
 195       _outbuf->print("%s", _termString);                      \
 196     }
 197 
 198 #define BUFFEREDSTREAM_FLUSH_IF(_termString, _remSize)        \
 199     BUFFEREDSTREAM_FLUSH(_termString)
 200 
 201 #define BUFFEREDSTREAM_FLUSH_AUTO(_termString)                \
 202     BUFFEREDSTREAM_FLUSH(_termString)
 203 
 204 #define BUFFEREDSTREAM_FLUSH_LOCKED(_termString)              \
 205     BUFFEREDSTREAM_FLUSH(_termString)
 206 
 207 #define BUFFEREDSTREAM_FLUSH_STAT()
 208 #endif
 209 #define HEX32_FORMAT  "0x%x"  // just a helper format string used below multiple times
 210 
 211 const char  blobTypeChar[] = {' ', 'C', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' };
 212 const char* blobTypeName[] = {"noType"
 213                              ,     "nMethod (under construction), cannot be observed"
 214                              ,          "nMethod (active)"
 215                              ,               "nMethod (inactive)"
 216                              ,                    "nMethod (deopt)"
 217                              ,                         "nMethod (zombie)"
 218                              ,                              "nMethod (unloaded)"
 219                              ,                                   "runtime stub"
 220                              ,                                        "ricochet stub"
 221                              ,                                             "deopt stub"
 222                              ,                                                  "uncommon trap stub"
 223                              ,                                                       "exception stub"
 224                              ,                                                            "safepoint stub"
 225                              ,                                                                 "adapter blob"
 226                              ,                                                                      "MH adapter blob"
 227                              ,                                                                           "buffer blob"
 228                              ,                                                                                "lastType"
 229                              };
 230 const char* compTypeName[] = { "none", "c1", "c2", "jvmci" };
 231 
 232 // Be prepared for ten different CodeHeap segments. Should be enough for a few years.
 233 const  unsigned int        nSizeDistElements = 31;  // logarithmic range growth, max size: 2**32
 234 const  unsigned int        maxTopSizeBlocks  = 100;
 235 const  unsigned int        tsbStopper        = 2 * maxTopSizeBlocks;
 236 const  unsigned int        maxHeaps          = 10;
 237 static unsigned int        nHeaps            = 0;
 238 static struct CodeHeapStat CodeHeapStatArray[maxHeaps];
 239 
 240 // static struct StatElement *StatArray      = NULL;
 241 static StatElement* StatArray             = NULL;
 242 static int          log2_seg_size         = 0;
 243 static size_t       seg_size              = 0;
 244 static size_t       alloc_granules        = 0;
 245 static size_t       granule_size          = 0;
 246 static bool         segment_granules      = false;
 247 static unsigned int nBlocks_t1            = 0;  // counting "in_use" nmethods only.
 248 static unsigned int nBlocks_t2            = 0;  // counting "in_use" nmethods only.
 249 static unsigned int nBlocks_alive         = 0;  // counting "not_used" and "not_entrant" nmethods only.
 250 static unsigned int nBlocks_dead          = 0;  // counting "zombie" and "unloaded" methods only.
 251 static unsigned int nBlocks_unloaded      = 0;  // counting "unloaded" nmethods only. This is a transient state.
 252 static unsigned int nBlocks_stub          = 0;
 253 
 254 static struct FreeBlk*          FreeArray = NULL;
 255 static unsigned int      alloc_freeBlocks = 0;
 256 
 257 static struct TopSizeBlk*    TopSizeArray = NULL;
 258 static unsigned int   alloc_topSizeBlocks = 0;
 259 static unsigned int    used_topSizeBlocks = 0;
 260 
 261 static struct SizeDistributionElement*  SizeDistributionArray = NULL;
 262 
 263 // nMethod temperature (hotness) indicators.
 264 static int                     avgTemp    = 0;
 265 static int                     maxTemp    = 0;
 266 static int                     minTemp    = 0;
 267 
 268 static unsigned int  latest_compilation_id   = 0;
 269 static volatile bool initialization_complete = false;
 270 
 271 const char* CodeHeapState::get_heapName(CodeHeap* heap) {
 272   if (SegmentedCodeCache) {
 273     return heap->name();
 274   } else {
 275     return "CodeHeap";
 276   }
 277 }
 278 
 279 // returns the index for the heap being processed.
 280 unsigned int CodeHeapState::findHeapIndex(outputStream* out, const char* heapName) {
 281   if (heapName == NULL) {
 282     return maxHeaps;
 283   }
 284   if (SegmentedCodeCache) {
 285     // Search for a pre-existing entry. If found, return that index.
 286     for (unsigned int i = 0; i < nHeaps; i++) {
 287       if (CodeHeapStatArray[i].heapName != NULL && strcmp(heapName, CodeHeapStatArray[i].heapName) == 0) {
 288         return i;
 289       }
 290     }
 291 
 292     // check if there are more code heap segments than we can handle.
 293     if (nHeaps == maxHeaps) {
 294       out->print_cr("Too many heap segments for current limit(%d).", maxHeaps);
 295       return maxHeaps;
 296     }
 297 
 298     // allocate new slot in StatArray.
 299     CodeHeapStatArray[nHeaps].heapName = heapName;
 300     return nHeaps++;
 301   } else {
 302     nHeaps = 1;
 303     CodeHeapStatArray[0].heapName = heapName;
 304     return 0; // This is the default index if CodeCache is not segmented.
 305   }
 306 }
 307 
 308 void CodeHeapState::get_HeapStatGlobals(outputStream* out, const char* heapName) {
 309   unsigned int ix = findHeapIndex(out, heapName);
 310   if (ix < maxHeaps) {
 311     StatArray             = CodeHeapStatArray[ix].StatArray;
 312     seg_size              = CodeHeapStatArray[ix].segment_size;
 313     log2_seg_size         = seg_size == 0 ? 0 : exact_log2(seg_size);
 314     alloc_granules        = CodeHeapStatArray[ix].alloc_granules;
 315     granule_size          = CodeHeapStatArray[ix].granule_size;
 316     segment_granules      = CodeHeapStatArray[ix].segment_granules;
 317     nBlocks_t1            = CodeHeapStatArray[ix].nBlocks_t1;
 318     nBlocks_t2            = CodeHeapStatArray[ix].nBlocks_t2;
 319     nBlocks_alive         = CodeHeapStatArray[ix].nBlocks_alive;
 320     nBlocks_dead          = CodeHeapStatArray[ix].nBlocks_dead;
 321     nBlocks_unloaded      = CodeHeapStatArray[ix].nBlocks_unloaded;
 322     nBlocks_stub          = CodeHeapStatArray[ix].nBlocks_stub;
 323     FreeArray             = CodeHeapStatArray[ix].FreeArray;
 324     alloc_freeBlocks      = CodeHeapStatArray[ix].alloc_freeBlocks;
 325     TopSizeArray          = CodeHeapStatArray[ix].TopSizeArray;
 326     alloc_topSizeBlocks   = CodeHeapStatArray[ix].alloc_topSizeBlocks;
 327     used_topSizeBlocks    = CodeHeapStatArray[ix].used_topSizeBlocks;
 328     SizeDistributionArray = CodeHeapStatArray[ix].SizeDistributionArray;
 329     avgTemp               = CodeHeapStatArray[ix].avgTemp;
 330     maxTemp               = CodeHeapStatArray[ix].maxTemp;
 331     minTemp               = CodeHeapStatArray[ix].minTemp;
 332   } else {
 333     StatArray             = NULL;
 334     seg_size              = 0;
 335     log2_seg_size         = 0;
 336     alloc_granules        = 0;
 337     granule_size          = 0;
 338     segment_granules      = false;
 339     nBlocks_t1            = 0;
 340     nBlocks_t2            = 0;
 341     nBlocks_alive         = 0;
 342     nBlocks_dead          = 0;
 343     nBlocks_unloaded      = 0;
 344     nBlocks_stub          = 0;
 345     FreeArray             = NULL;
 346     alloc_freeBlocks      = 0;
 347     TopSizeArray          = NULL;
 348     alloc_topSizeBlocks   = 0;
 349     used_topSizeBlocks    = 0;
 350     SizeDistributionArray = NULL;
 351     avgTemp               = 0;
 352     maxTemp               = 0;
 353     minTemp               = 0;
 354   }
 355 }
 356 
 357 void CodeHeapState::set_HeapStatGlobals(outputStream* out, const char* heapName) {
 358   unsigned int ix = findHeapIndex(out, heapName);
 359   if (ix < maxHeaps) {
 360     CodeHeapStatArray[ix].StatArray             = StatArray;
 361     CodeHeapStatArray[ix].segment_size          = seg_size;
 362     CodeHeapStatArray[ix].alloc_granules        = alloc_granules;
 363     CodeHeapStatArray[ix].granule_size          = granule_size;
 364     CodeHeapStatArray[ix].segment_granules      = segment_granules;
 365     CodeHeapStatArray[ix].nBlocks_t1            = nBlocks_t1;
 366     CodeHeapStatArray[ix].nBlocks_t2            = nBlocks_t2;
 367     CodeHeapStatArray[ix].nBlocks_alive         = nBlocks_alive;
 368     CodeHeapStatArray[ix].nBlocks_dead          = nBlocks_dead;
 369     CodeHeapStatArray[ix].nBlocks_unloaded      = nBlocks_unloaded;
 370     CodeHeapStatArray[ix].nBlocks_stub          = nBlocks_stub;
 371     CodeHeapStatArray[ix].FreeArray             = FreeArray;
 372     CodeHeapStatArray[ix].alloc_freeBlocks      = alloc_freeBlocks;
 373     CodeHeapStatArray[ix].TopSizeArray          = TopSizeArray;
 374     CodeHeapStatArray[ix].alloc_topSizeBlocks   = alloc_topSizeBlocks;
 375     CodeHeapStatArray[ix].used_topSizeBlocks    = used_topSizeBlocks;
 376     CodeHeapStatArray[ix].SizeDistributionArray = SizeDistributionArray;
 377     CodeHeapStatArray[ix].avgTemp               = avgTemp;
 378     CodeHeapStatArray[ix].maxTemp               = maxTemp;
 379     CodeHeapStatArray[ix].minTemp               = minTemp;
 380   }
 381 }
 382 
 383 //---<  get a new statistics array  >---
 384 void CodeHeapState::prepare_StatArray(outputStream* out, size_t nElem, size_t granularity, const char* heapName) {
 385   if (StatArray == NULL) {
 386     StatArray      = new StatElement[nElem];
 387     //---<  reset some counts  >---
 388     alloc_granules = nElem;
 389     granule_size   = granularity;
 390   }
 391 
 392   if (StatArray == NULL) {
 393     //---<  just do nothing if allocation failed  >---
 394     out->print_cr("Statistics could not be collected for %s, probably out of memory.", heapName);
 395     out->print_cr("Current granularity is " SIZE_FORMAT " bytes. Try a coarser granularity.", granularity);
 396     alloc_granules = 0;
 397     granule_size   = 0;
 398   } else {
 399     //---<  initialize statistics array  >---
 400     memset((void*)StatArray, 0, nElem*sizeof(StatElement));
 401   }
 402 }
 403 
 404 //---<  get a new free block array  >---
 405 void CodeHeapState::prepare_FreeArray(outputStream* out, unsigned int nElem, const char* heapName) {
 406   if (FreeArray == NULL) {
 407     FreeArray      = new FreeBlk[nElem];
 408     //---<  reset some counts  >---
 409     alloc_freeBlocks = nElem;
 410   }
 411 
 412   if (FreeArray == NULL) {
 413     //---<  just do nothing if allocation failed  >---
 414     out->print_cr("Free space analysis cannot be done for %s, probably out of memory.", heapName);
 415     alloc_freeBlocks = 0;
 416   } else {
 417     //---<  initialize free block array  >---
 418     memset((void*)FreeArray, 0, alloc_freeBlocks*sizeof(FreeBlk));
 419   }
 420 }
 421 
 422 //---<  get a new TopSizeArray  >---
 423 void CodeHeapState::prepare_TopSizeArray(outputStream* out, unsigned int nElem, const char* heapName) {
 424   if (TopSizeArray == NULL) {
 425     TopSizeArray   = new TopSizeBlk[nElem];
 426     //---<  reset some counts  >---
 427     alloc_topSizeBlocks = nElem;
 428     used_topSizeBlocks  = 0;
 429   }
 430 
 431   if (TopSizeArray == NULL) {
 432     //---<  just do nothing if allocation failed  >---
 433     out->print_cr("Top-%d list of largest CodeHeap blocks can not be collected for %s, probably out of memory.", nElem, heapName);
 434     alloc_topSizeBlocks = 0;
 435   } else {
 436     //---<  initialize TopSizeArray  >---
 437     memset((void*)TopSizeArray, 0, nElem*sizeof(TopSizeBlk));
 438     used_topSizeBlocks  = 0;
 439   }
 440 }
 441 
 442 //---<  get a new SizeDistributionArray  >---
 443 void CodeHeapState::prepare_SizeDistArray(outputStream* out, unsigned int nElem, const char* heapName) {
 444   if (SizeDistributionArray == NULL) {
 445     SizeDistributionArray = new SizeDistributionElement[nElem];
 446   }
 447 
 448   if (SizeDistributionArray == NULL) {
 449     //---<  just do nothing if allocation failed  >---
 450     out->print_cr("Size distribution can not be collected for %s, probably out of memory.", heapName);
 451   } else {
 452     //---<  initialize SizeDistArray  >---
 453     memset((void*)SizeDistributionArray, 0, nElem*sizeof(SizeDistributionElement));
 454     // Logarithmic range growth. First range starts at _segment_size.
 455     SizeDistributionArray[log2_seg_size-1].rangeEnd = 1U;
 456     for (unsigned int i = log2_seg_size; i < nElem; i++) {
 457       SizeDistributionArray[i].rangeStart = 1U << (i     - log2_seg_size);
 458       SizeDistributionArray[i].rangeEnd   = 1U << ((i+1) - log2_seg_size);
 459     }
 460   }
 461 }
 462 
 463 //---<  get a new SizeDistributionArray  >---
 464 void CodeHeapState::update_SizeDistArray(outputStream* out, unsigned int len) {
 465   if (SizeDistributionArray != NULL) {
 466     for (unsigned int i = log2_seg_size-1; i < nSizeDistElements; i++) {
 467       if ((SizeDistributionArray[i].rangeStart <= len) && (len < SizeDistributionArray[i].rangeEnd)) {
 468         SizeDistributionArray[i].lenSum += len;
 469         SizeDistributionArray[i].count++;
 470         break;
 471       }
 472     }
 473   }
 474 }
 475 
 476 void CodeHeapState::discard_StatArray(outputStream* out) {
 477   if (StatArray != NULL) {
 478     delete StatArray;
 479     StatArray        = NULL;
 480     alloc_granules   = 0;
 481     granule_size     = 0;
 482   }
 483 }
 484 
 485 void CodeHeapState::discard_FreeArray(outputStream* out) {
 486   if (FreeArray != NULL) {
 487     delete[] FreeArray;
 488     FreeArray        = NULL;
 489     alloc_freeBlocks = 0;
 490   }
 491 }
 492 
 493 void CodeHeapState::discard_TopSizeArray(outputStream* out) {
 494   if (TopSizeArray != NULL) {
 495     for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
 496       if (TopSizeArray[i].blob_name != NULL) {
 497         os::free((void*)TopSizeArray[i].blob_name);
 498       }
 499     }
 500     delete[] TopSizeArray;
 501     TopSizeArray        = NULL;
 502     alloc_topSizeBlocks = 0;
 503     used_topSizeBlocks  = 0;
 504   }
 505 }
 506 
 507 void CodeHeapState::discard_SizeDistArray(outputStream* out) {
 508   if (SizeDistributionArray != NULL) {
 509     delete[] SizeDistributionArray;
 510     SizeDistributionArray = NULL;
 511   }
 512 }
 513 
 514 // Discard all allocated internal data structures.
 515 // This should be done after an analysis session is completed.
 516 void CodeHeapState::discard(outputStream* out, CodeHeap* heap) {
 517   if (!initialization_complete) {
 518     return;
 519   }
 520 
 521   if (nHeaps > 0) {
 522     for (unsigned int ix = 0; ix < nHeaps; ix++) {
 523       get_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
 524       discard_StatArray(out);
 525       discard_FreeArray(out);
 526       discard_TopSizeArray(out);
 527       discard_SizeDistArray(out);
 528       set_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
 529       CodeHeapStatArray[ix].heapName = NULL;
 530     }
 531     nHeaps = 0;
 532   }
 533 }
 534 
 535 void CodeHeapState::aggregate(outputStream* out, CodeHeap* heap, size_t granularity) {
 536   unsigned int nBlocks_free    = 0;
 537   unsigned int nBlocks_used    = 0;
 538   unsigned int nBlocks_zomb    = 0;
 539   unsigned int nBlocks_disconn = 0;
 540   unsigned int nBlocks_notentr = 0;
 541 
 542   //---<  max & min of TopSizeArray  >---
 543   //  it is sufficient to have these sizes as 32bit unsigned ints.
 544   //  The CodeHeap is limited in size to 4GB. Furthermore, the sizes
 545   //  are stored in _segment_size units, scaling them down by a factor of 64 (at least).
 546   unsigned int  currMax          = 0;
 547   unsigned int  currMin          = 0;
 548   unsigned int  currMin_ix       = 0;
 549   unsigned long total_iterations = 0;
 550 
 551   bool  done             = false;
 552   const int min_granules = 256;
 553   const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M
 554                                   // results in StatArray size of 24M (= max_granules * 48 Bytes per element)
 555                                   // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit.
 556   const char* heapName   = get_heapName(heap);
 557   BUFFEREDSTREAM_DECL(ast, out)
 558 
 559   if (!initialization_complete) {
 560     memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray));
 561     initialization_complete = true;
 562 
 563     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (general remarks)", NULL);
 564     ast->print_cr("   The code heap analysis function provides deep insights into\n"
 565                   "   the inner workings and the internal state of the Java VM's\n"
 566                   "   code cache - the place where all the JVM generated machine\n"
 567                   "   code is stored.\n"
 568                   "   \n"
 569                   "   This function is designed and provided for support engineers\n"
 570                   "   to help them understand and solve issues in customer systems.\n"
 571                   "   It is not intended for use and interpretation by other persons.\n"
 572                   "   \n");
 573     BUFFEREDSTREAM_FLUSH("")
 574   }
 575   get_HeapStatGlobals(out, heapName);
 576 
 577 
 578   // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock,
 579   // all heap information is "constant" and can be safely extracted/calculated before we
 580   // enter the while() loop. Actually, the loop will only be iterated once.
 581   char*  low_bound     = heap->low_boundary();
 582   size_t size          = heap->capacity();
 583   size_t res_size      = heap->max_capacity();
 584   seg_size             = heap->segment_size();
 585   log2_seg_size        = seg_size == 0 ? 0 : exact_log2(seg_size);  // This is a global static value.
 586 
 587   if (seg_size == 0) {
 588     printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment ", heapName);
 589     BUFFEREDSTREAM_FLUSH("")
 590     return;
 591   }
 592 
 593   if (!holding_required_locks()) {
 594     printBox(ast, '-', "Must be at safepoint or hold Compile_lock and CodeCache_lock when calling aggregate function for ", heapName);
 595     BUFFEREDSTREAM_FLUSH("")
 596     return;
 597   }
 598 
 599   // Calculate granularity of analysis (and output).
 600   //   The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize.
 601   //   The CodeHeap can become fairly large, in particular in productive real-life systems.
 602   //
 603   //   It is often neither feasible nor desirable to aggregate the data with the highest possible
 604   //   level of detail, i.e. inspecting and printing each segment on its own.
 605   //
 606   //   The granularity parameter allows to specify the level of detail available in the analysis.
 607   //   It must be a positive multiple of the segment size and should be selected such that enough
 608   //   detail is provided while, at the same time, the printed output does not explode.
 609   //
 610   //   By manipulating the granularity value, we enforce that at least min_granules units
 611   //   of analysis are available. We also enforce an upper limit of max_granules units to
 612   //   keep the amount of allocated storage in check.
 613   //
 614   //   Finally, we adjust the granularity such that each granule covers at most 64k-1 segments.
 615   //   This is necessary to prevent an unsigned short overflow while accumulating space information.
 616   //
 617   assert(granularity > 0, "granularity should be positive.");
 618 
 619   if (granularity > size) {
 620     granularity = size;
 621   }
 622   if (size/granularity < min_granules) {
 623     granularity = size/min_granules;                                   // at least min_granules granules
 624   }
 625   granularity = granularity & (~(seg_size - 1));                       // must be multiple of seg_size
 626   if (granularity < seg_size) {
 627     granularity = seg_size;                                            // must be at least seg_size
 628   }
 629   if (size/granularity > max_granules) {
 630     granularity = size/max_granules;                                   // at most max_granules granules
 631   }
 632   granularity = granularity & (~(seg_size - 1));                       // must be multiple of seg_size
 633   if (granularity>>log2_seg_size >= (1L<<sizeof(unsigned short)*8)) {
 634     granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<log2_seg_size; // Limit: (64k-1) * seg_size
 635   }
 636   segment_granules = granularity == seg_size;
 637   size_t granules  = (size + (granularity-1))/granularity;
 638 
 639   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (used blocks) for segment ", heapName);
 640   ast->print_cr("   The aggregate step takes an aggregated snapshot of the CodeHeap.\n"
 641                 "   Subsequent print functions create their output based on this snapshot.\n"
 642                 "   The CodeHeap is a living thing, and every effort has been made for the\n"
 643                 "   collected data to be consistent. Only the method names and signatures\n"
 644                 "   are retrieved at print time. That may lead to rare cases where the\n"
 645                 "   name of a method is no longer available, e.g. because it was unloaded.\n");
 646   ast->print_cr("   CodeHeap committed size " SIZE_FORMAT "K (" SIZE_FORMAT "M), reserved size " SIZE_FORMAT "K (" SIZE_FORMAT "M), %d%% occupied.",
 647                 size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size));
 648   ast->print_cr("   CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity.", seg_size);
 649   ast->print_cr("   CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes.", granules, granularity);
 650   ast->print_cr("   Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K);
 651   ast->print_cr("   The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules));
 652   BUFFEREDSTREAM_FLUSH("\n")
 653 
 654 
 655   while (!done) {
 656     //---<  reset counters with every aggregation  >---
 657     nBlocks_t1       = 0;
 658     nBlocks_t2       = 0;
 659     nBlocks_alive    = 0;
 660     nBlocks_dead     = 0;
 661     nBlocks_unloaded = 0;
 662     nBlocks_stub     = 0;
 663 
 664     nBlocks_free     = 0;
 665     nBlocks_used     = 0;
 666     nBlocks_zomb     = 0;
 667     nBlocks_disconn  = 0;
 668     nBlocks_notentr  = 0;
 669 
 670     //---<  discard old arrays if size does not match  >---
 671     if (granules != alloc_granules) {
 672       discard_StatArray(out);
 673       discard_TopSizeArray(out);
 674     }
 675 
 676     //---<  allocate arrays if they don't yet exist, initialize  >---
 677     prepare_StatArray(out, granules, granularity, heapName);
 678     if (StatArray == NULL) {
 679       set_HeapStatGlobals(out, heapName);
 680       return;
 681     }
 682     prepare_TopSizeArray(out, maxTopSizeBlocks, heapName);
 683     prepare_SizeDistArray(out, nSizeDistElements, heapName);
 684 
 685     latest_compilation_id = CompileBroker::get_compilation_id();
 686     unsigned int highest_compilation_id = 0;
 687     size_t       usedSpace     = 0;
 688     size_t       t1Space       = 0;
 689     size_t       t2Space       = 0;
 690     size_t       aliveSpace    = 0;
 691     size_t       disconnSpace  = 0;
 692     size_t       notentrSpace  = 0;
 693     size_t       deadSpace     = 0;
 694     size_t       unloadedSpace = 0;
 695     size_t       stubSpace     = 0;
 696     size_t       freeSpace     = 0;
 697     size_t       maxFreeSize   = 0;
 698     HeapBlock*   maxFreeBlock  = NULL;
 699     bool         insane        = false;
 700 
 701     int64_t hotnessAccumulator = 0;
 702     unsigned int n_methods     = 0;
 703     avgTemp       = 0;
 704     minTemp       = (int)(res_size > M ? (res_size/M)*2 : 1);
 705     maxTemp       = -minTemp;
 706 
 707     for (HeapBlock *h = heap->first_block(); h != NULL && !insane; h = heap->next_block(h)) {
 708       unsigned int hb_len     = (unsigned int)h->length();  // despite being size_t, length can never overflow an unsigned int.
 709       size_t       hb_bytelen = ((size_t)hb_len)<<log2_seg_size;
 710       unsigned int ix_beg     = (unsigned int)(((char*)h-low_bound)/granule_size);
 711       unsigned int ix_end     = (unsigned int)(((char*)h-low_bound+(hb_bytelen-1))/granule_size);
 712       unsigned int compile_id = 0;
 713       CompLevel    comp_lvl   = CompLevel_none;
 714       compType     cType      = noComp;
 715       blobType     cbType     = noType;
 716 
 717       //---<  some sanity checks  >---
 718       // Do not assert here, just check, print error message and return.
 719       // This is a diagnostic function. It is not supposed to tear down the VM.
 720       if ((char*)h <  low_bound) {
 721         insane = true; ast->print_cr("Sanity check: HeapBlock @%p below low bound (%p)", (char*)h, low_bound);
 722       }
 723       if ((char*)h >  (low_bound + res_size)) {
 724         insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside reserved range (%p)", (char*)h, low_bound + res_size);
 725       }
 726       if ((char*)h >  (low_bound + size)) {
 727         insane = true; ast->print_cr("Sanity check: HeapBlock @%p outside used range (%p)", (char*)h, low_bound + size);
 728       }
 729       if (ix_end   >= granules) {
 730         insane = true; ast->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")", ix_end, granules);
 731       }
 732       if (size     != heap->capacity()) {
 733         insane = true; ast->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)", size/(size_t)K, heap->capacity()/(size_t)K);
 734       }
 735       if (ix_beg   >  ix_end) {
 736         insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg);
 737       }
 738       if (insane) {
 739         BUFFEREDSTREAM_FLUSH("")
 740         continue;
 741       }
 742 
 743       if (h->free()) {
 744         nBlocks_free++;
 745         freeSpace    += hb_bytelen;
 746         if (hb_bytelen > maxFreeSize) {
 747           maxFreeSize   = hb_bytelen;
 748           maxFreeBlock  = h;
 749         }
 750       } else {
 751         update_SizeDistArray(out, hb_len);
 752         nBlocks_used++;
 753         usedSpace    += hb_bytelen;
 754         CodeBlob* cb  = (CodeBlob*)heap->find_start(h);
 755         cbType = get_cbType(cb);  // Will check for cb == NULL and other safety things.
 756         if (cbType != noType) {
 757           const char* blob_name  = os::strdup(cb->name());
 758           unsigned int nm_size   = 0;
 759           int temperature        = 0;
 760           nmethod*  nm = cb->as_nmethod_or_null();
 761           if (nm != NULL) { // no is_readable check required, nm = (nmethod*)cb.
 762             ResourceMark rm;
 763             Method* method = nm->method();
 764             if (nm->is_in_use()) {
 765               blob_name = os::strdup(method->name_and_sig_as_C_string());
 766             }
 767             if (nm->is_not_entrant()) {
 768               blob_name = os::strdup(method->name_and_sig_as_C_string());
 769             }
 770 
 771             nm_size    = nm->total_size();
 772             compile_id = nm->compile_id();
 773             comp_lvl   = (CompLevel)(nm->comp_level());
 774             if (nm->is_compiled_by_c1()) {
 775               cType = c1;
 776             }
 777             if (nm->is_compiled_by_c2()) {
 778               cType = c2;
 779             }
 780             if (nm->is_compiled_by_jvmci()) {
 781               cType = jvmci;
 782             }
 783             switch (cbType) {
 784               case nMethod_inuse: { // only for executable methods!!!
 785                 // space for these cbs is accounted for later.
 786                 temperature = nm->hotness_counter();
 787                 hotnessAccumulator += temperature;
 788                 n_methods++;
 789                 maxTemp = (temperature > maxTemp) ? temperature : maxTemp;
 790                 minTemp = (temperature < minTemp) ? temperature : minTemp;
 791                 break;
 792               }
 793               case nMethod_notused:
 794                 nBlocks_alive++;
 795                 nBlocks_disconn++;
 796                 aliveSpace     += hb_bytelen;
 797                 disconnSpace   += hb_bytelen;
 798                 break;
 799               case nMethod_notentrant:  // equivalent to nMethod_alive
 800                 nBlocks_alive++;
 801                 nBlocks_notentr++;
 802                 aliveSpace     += hb_bytelen;
 803                 notentrSpace   += hb_bytelen;
 804                 break;
 805               case nMethod_unloaded:
 806                 nBlocks_unloaded++;
 807                 unloadedSpace  += hb_bytelen;
 808                 break;
 809               case nMethod_dead:
 810                 nBlocks_dead++;
 811                 deadSpace      += hb_bytelen;
 812                 break;
 813               default:
 814                 break;
 815             }
 816           }
 817 
 818           //------------------------------------------
 819           //---<  register block in TopSizeArray  >---
 820           //------------------------------------------
 821           if (alloc_topSizeBlocks > 0) {
 822             if (used_topSizeBlocks == 0) {
 823               TopSizeArray[0].start       = h;
 824               TopSizeArray[0].blob_name   = blob_name;
 825               TopSizeArray[0].len         = hb_len;
 826               TopSizeArray[0].index       = tsbStopper;
 827               TopSizeArray[0].nm_size     = nm_size;
 828               TopSizeArray[0].temperature = temperature;
 829               TopSizeArray[0].compiler    = cType;
 830               TopSizeArray[0].level       = comp_lvl;
 831               TopSizeArray[0].type        = cbType;
 832               currMax    = hb_len;
 833               currMin    = hb_len;
 834               currMin_ix = 0;
 835               used_topSizeBlocks++;
 836               blob_name  = NULL; // indicate blob_name was consumed
 837             // This check roughly cuts 5000 iterations (JVM98, mixed, dbg, termination stats):
 838             } else if ((used_topSizeBlocks < alloc_topSizeBlocks) && (hb_len < currMin)) {
 839               //---<  all blocks in list are larger, but there is room left in array  >---
 840               TopSizeArray[currMin_ix].index = used_topSizeBlocks;
 841               TopSizeArray[used_topSizeBlocks].start       = h;
 842               TopSizeArray[used_topSizeBlocks].blob_name   = blob_name;
 843               TopSizeArray[used_topSizeBlocks].len         = hb_len;
 844               TopSizeArray[used_topSizeBlocks].index       = tsbStopper;
 845               TopSizeArray[used_topSizeBlocks].nm_size     = nm_size;
 846               TopSizeArray[used_topSizeBlocks].temperature = temperature;
 847               TopSizeArray[used_topSizeBlocks].compiler    = cType;
 848               TopSizeArray[used_topSizeBlocks].level       = comp_lvl;
 849               TopSizeArray[used_topSizeBlocks].type        = cbType;
 850               currMin    = hb_len;
 851               currMin_ix = used_topSizeBlocks;
 852               used_topSizeBlocks++;
 853               blob_name  = NULL; // indicate blob_name was consumed
 854             } else {
 855               // This check cuts total_iterations by a factor of 6 (JVM98, mixed, dbg, termination stats):
 856               //   We don't need to search the list if we know beforehand that the current block size is
 857               //   smaller than the currently recorded minimum and there is no free entry left in the list.
 858               if (!((used_topSizeBlocks == alloc_topSizeBlocks) && (hb_len <= currMin))) {
 859                 if (currMax < hb_len) {
 860                   currMax = hb_len;
 861                 }
 862                 unsigned int i;
 863                 unsigned int prev_i  = tsbStopper;
 864                 unsigned int limit_i =  0;
 865                 for (i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
 866                   if (limit_i++ >= alloc_topSizeBlocks) {
 867                     insane = true; break; // emergency exit
 868                   }
 869                   if (i >= used_topSizeBlocks)  {
 870                     insane = true; break; // emergency exit
 871                   }
 872                   total_iterations++;
 873                   if (TopSizeArray[i].len < hb_len) {
 874                     //---<  We want to insert here, element <i> is smaller than the current one  >---
 875                     if (used_topSizeBlocks < alloc_topSizeBlocks) { // still room for a new entry to insert
 876                       // old entry gets moved to the next free element of the array.
 877                       // That's necessary to keep the entry for the largest block at index 0.
 878                       // This move might cause the current minimum to be moved to another place
 879                       if (i == currMin_ix) {
 880                         assert(TopSizeArray[i].len == currMin, "sort error");
 881                         currMin_ix = used_topSizeBlocks;
 882                       }
 883                       memcpy((void*)&TopSizeArray[used_topSizeBlocks], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
 884                       TopSizeArray[i].start       = h;
 885                       TopSizeArray[i].blob_name   = blob_name;
 886                       TopSizeArray[i].len         = hb_len;
 887                       TopSizeArray[i].index       = used_topSizeBlocks;
 888                       TopSizeArray[i].nm_size     = nm_size;
 889                       TopSizeArray[i].temperature = temperature;
 890                       TopSizeArray[i].compiler    = cType;
 891                       TopSizeArray[i].level       = comp_lvl;
 892                       TopSizeArray[i].type        = cbType;
 893                       used_topSizeBlocks++;
 894                       blob_name  = NULL; // indicate blob_name was consumed
 895                     } else { // no room for new entries, current block replaces entry for smallest block
 896                       //---<  Find last entry (entry for smallest remembered block)  >---
 897                       // We either want to insert right before the smallest entry, which is when <i>
 898                       // indexes the smallest entry. We then just overwrite the smallest entry.
 899                       // What's more likely:
 900                       // We want to insert somewhere in the list. The smallest entry (@<j>) then falls off the cliff.
 901                       // The element at the insert point <i> takes it's slot. The second-smallest entry now becomes smallest.
 902                       // Data of the current block is filled in at index <i>.
 903                       unsigned int      j  = i;
 904                       unsigned int prev_j  = tsbStopper;
 905                       unsigned int limit_j = 0;
 906                       while (TopSizeArray[j].index != tsbStopper) {
 907                         if (limit_j++ >= alloc_topSizeBlocks) {
 908                           insane = true; break; // emergency exit
 909                         }
 910                         if (j >= used_topSizeBlocks)  {
 911                           insane = true; break; // emergency exit
 912                         }
 913                         total_iterations++;
 914                         prev_j = j;
 915                         j      = TopSizeArray[j].index;
 916                       }
 917                       if (!insane) {
 918                         if (TopSizeArray[j].blob_name != NULL) {
 919                           os::free((void*)TopSizeArray[j].blob_name);
 920                         }
 921                         if (prev_j == tsbStopper) {
 922                           //---<  Above while loop did not iterate, we already are the min entry  >---
 923                           //---<  We have to just replace the smallest entry                      >---
 924                           currMin    = hb_len;
 925                           currMin_ix = j;
 926                           TopSizeArray[j].start       = h;
 927                           TopSizeArray[j].blob_name   = blob_name;
 928                           TopSizeArray[j].len         = hb_len;
 929                           TopSizeArray[j].index       = tsbStopper; // already set!!
 930                           TopSizeArray[i].nm_size     = nm_size;
 931                           TopSizeArray[i].temperature = temperature;
 932                           TopSizeArray[j].compiler    = cType;
 933                           TopSizeArray[j].level       = comp_lvl;
 934                           TopSizeArray[j].type        = cbType;
 935                         } else {
 936                           //---<  second-smallest entry is now smallest  >---
 937                           TopSizeArray[prev_j].index = tsbStopper;
 938                           currMin    = TopSizeArray[prev_j].len;
 939                           currMin_ix = prev_j;
 940                           //---<  previously smallest entry gets overwritten  >---
 941                           memcpy((void*)&TopSizeArray[j], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
 942                           TopSizeArray[i].start       = h;
 943                           TopSizeArray[i].blob_name   = blob_name;
 944                           TopSizeArray[i].len         = hb_len;
 945                           TopSizeArray[i].index       = j;
 946                           TopSizeArray[i].nm_size     = nm_size;
 947                           TopSizeArray[i].temperature = temperature;
 948                           TopSizeArray[i].compiler    = cType;
 949                           TopSizeArray[i].level       = comp_lvl;
 950                           TopSizeArray[i].type        = cbType;
 951                         }
 952                         blob_name  = NULL; // indicate blob_name was consumed
 953                       } // insane
 954                     }
 955                     break;
 956                   }
 957                   prev_i = i;
 958                 }
 959                 if (insane) {
 960                   // Note: regular analysis could probably continue by resetting "insane" flag.
 961                   out->print_cr("Possible loop in TopSizeBlocks list detected. Analysis aborted.");
 962                   discard_TopSizeArray(out);
 963                 }
 964               }
 965             }
 966           }
 967           if (blob_name != NULL) {
 968             os::free((void*)blob_name);
 969             blob_name = NULL;
 970           }
 971           //----------------------------------------------
 972           //---<  END register block in TopSizeArray  >---
 973           //----------------------------------------------
 974         } else {
 975           nBlocks_zomb++;
 976         }
 977 
 978         if (ix_beg == ix_end) {
 979           StatArray[ix_beg].type = cbType;
 980           switch (cbType) {
 981             case nMethod_inuse:
 982               highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
 983               if (comp_lvl < CompLevel_full_optimization) {
 984                 nBlocks_t1++;
 985                 t1Space   += hb_bytelen;
 986                 StatArray[ix_beg].t1_count++;
 987                 StatArray[ix_beg].t1_space += (unsigned short)hb_len;
 988                 StatArray[ix_beg].t1_age    = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
 989               } else {
 990                 nBlocks_t2++;
 991                 t2Space   += hb_bytelen;
 992                 StatArray[ix_beg].t2_count++;
 993                 StatArray[ix_beg].t2_space += (unsigned short)hb_len;
 994                 StatArray[ix_beg].t2_age    = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
 995               }
 996               StatArray[ix_beg].level     = comp_lvl;
 997               StatArray[ix_beg].compiler  = cType;
 998               break;
 999             case nMethod_alive:
1000               StatArray[ix_beg].tx_count++;
1001               StatArray[ix_beg].tx_space += (unsigned short)hb_len;
1002               StatArray[ix_beg].tx_age    = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
1003               StatArray[ix_beg].level     = comp_lvl;
1004               StatArray[ix_beg].compiler  = cType;
1005               break;
1006             case nMethod_dead:
1007             case nMethod_unloaded:
1008               StatArray[ix_beg].dead_count++;
1009               StatArray[ix_beg].dead_space += (unsigned short)hb_len;
1010               break;
1011             default:
1012               // must be a stub, if it's not a dead or alive nMethod
1013               nBlocks_stub++;
1014               stubSpace   += hb_bytelen;
1015               StatArray[ix_beg].stub_count++;
1016               StatArray[ix_beg].stub_space += (unsigned short)hb_len;
1017               break;
1018           }
1019         } else {
1020           unsigned int beg_space = (unsigned int)(granule_size - ((char*)h - low_bound - ix_beg*granule_size));
1021           unsigned int end_space = (unsigned int)(hb_bytelen - beg_space - (ix_end-ix_beg-1)*granule_size);
1022           beg_space = beg_space>>log2_seg_size;  // store in units of _segment_size
1023           end_space = end_space>>log2_seg_size;  // store in units of _segment_size
1024           StatArray[ix_beg].type = cbType;
1025           StatArray[ix_end].type = cbType;
1026           switch (cbType) {
1027             case nMethod_inuse:
1028               highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
1029               if (comp_lvl < CompLevel_full_optimization) {
1030                 nBlocks_t1++;
1031                 t1Space   += hb_bytelen;
1032                 StatArray[ix_beg].t1_count++;
1033                 StatArray[ix_beg].t1_space += (unsigned short)beg_space;
1034                 StatArray[ix_beg].t1_age    = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
1035 
1036                 StatArray[ix_end].t1_count++;
1037                 StatArray[ix_end].t1_space += (unsigned short)end_space;
1038                 StatArray[ix_end].t1_age    = StatArray[ix_end].t1_age < compile_id ? compile_id : StatArray[ix_end].t1_age;
1039               } else {
1040                 nBlocks_t2++;
1041                 t2Space   += hb_bytelen;
1042                 StatArray[ix_beg].t2_count++;
1043                 StatArray[ix_beg].t2_space += (unsigned short)beg_space;
1044                 StatArray[ix_beg].t2_age    = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
1045 
1046                 StatArray[ix_end].t2_count++;
1047                 StatArray[ix_end].t2_space += (unsigned short)end_space;
1048                 StatArray[ix_end].t2_age    = StatArray[ix_end].t2_age < compile_id ? compile_id : StatArray[ix_end].t2_age;
1049               }
1050               StatArray[ix_beg].level     = comp_lvl;
1051               StatArray[ix_beg].compiler  = cType;
1052               StatArray[ix_end].level     = comp_lvl;
1053               StatArray[ix_end].compiler  = cType;
1054               break;
1055             case nMethod_alive:
1056               StatArray[ix_beg].tx_count++;
1057               StatArray[ix_beg].tx_space += (unsigned short)beg_space;
1058               StatArray[ix_beg].tx_age    = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
1059 
1060               StatArray[ix_end].tx_count++;
1061               StatArray[ix_end].tx_space += (unsigned short)end_space;
1062               StatArray[ix_end].tx_age    = StatArray[ix_end].tx_age < compile_id ? compile_id : StatArray[ix_end].tx_age;
1063 
1064               StatArray[ix_beg].level     = comp_lvl;
1065               StatArray[ix_beg].compiler  = cType;
1066               StatArray[ix_end].level     = comp_lvl;
1067               StatArray[ix_end].compiler  = cType;
1068               break;
1069             case nMethod_dead:
1070             case nMethod_unloaded:
1071               StatArray[ix_beg].dead_count++;
1072               StatArray[ix_beg].dead_space += (unsigned short)beg_space;
1073               StatArray[ix_end].dead_count++;
1074               StatArray[ix_end].dead_space += (unsigned short)end_space;
1075               break;
1076             default:
1077               // must be a stub, if it's not a dead or alive nMethod
1078               nBlocks_stub++;
1079               stubSpace   += hb_bytelen;
1080               StatArray[ix_beg].stub_count++;
1081               StatArray[ix_beg].stub_space += (unsigned short)beg_space;
1082               StatArray[ix_end].stub_count++;
1083               StatArray[ix_end].stub_space += (unsigned short)end_space;
1084               break;
1085           }
1086           for (unsigned int ix = ix_beg+1; ix < ix_end; ix++) {
1087             StatArray[ix].type = cbType;
1088             switch (cbType) {
1089               case nMethod_inuse:
1090                 if (comp_lvl < CompLevel_full_optimization) {
1091                   StatArray[ix].t1_count++;
1092                   StatArray[ix].t1_space += (unsigned short)(granule_size>>log2_seg_size);
1093                   StatArray[ix].t1_age    = StatArray[ix].t1_age < compile_id ? compile_id : StatArray[ix].t1_age;
1094                 } else {
1095                   StatArray[ix].t2_count++;
1096                   StatArray[ix].t2_space += (unsigned short)(granule_size>>log2_seg_size);
1097                   StatArray[ix].t2_age    = StatArray[ix].t2_age < compile_id ? compile_id : StatArray[ix].t2_age;
1098                 }
1099                 StatArray[ix].level     = comp_lvl;
1100                 StatArray[ix].compiler  = cType;
1101                 break;
1102               case nMethod_alive:
1103                 StatArray[ix].tx_count++;
1104                 StatArray[ix].tx_space += (unsigned short)(granule_size>>log2_seg_size);
1105                 StatArray[ix].tx_age    = StatArray[ix].tx_age < compile_id ? compile_id : StatArray[ix].tx_age;
1106                 StatArray[ix].level     = comp_lvl;
1107                 StatArray[ix].compiler  = cType;
1108                 break;
1109               case nMethod_dead:
1110               case nMethod_unloaded:
1111                 StatArray[ix].dead_count++;
1112                 StatArray[ix].dead_space += (unsigned short)(granule_size>>log2_seg_size);
1113                 break;
1114               default:
1115                 // must be a stub, if it's not a dead or alive nMethod
1116                 StatArray[ix].stub_count++;
1117                 StatArray[ix].stub_space += (unsigned short)(granule_size>>log2_seg_size);
1118                 break;
1119             }
1120           }
1121         }
1122       }
1123     }
1124     done = true;
1125 
1126     if (!insane) {
1127       // There is a risk for this block (because it contains many print statements) to get
1128       // interspersed with print data from other threads. We take this risk intentionally.
1129       // Getting stalled waiting for tty_lock while holding the CodeCache_lock is not desirable.
1130       printBox(ast, '-', "Global CodeHeap statistics for segment ", heapName);
1131       ast->print_cr("freeSpace        = " SIZE_FORMAT_W(8) "k, nBlocks_free     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", freeSpace/(size_t)K,     nBlocks_free,     (100.0*freeSpace)/size,     (100.0*freeSpace)/res_size);
1132       ast->print_cr("usedSpace        = " SIZE_FORMAT_W(8) "k, nBlocks_used     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", usedSpace/(size_t)K,     nBlocks_used,     (100.0*usedSpace)/size,     (100.0*usedSpace)/res_size);
1133       ast->print_cr("  Tier1 Space    = " SIZE_FORMAT_W(8) "k, nBlocks_t1       = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t1Space/(size_t)K,       nBlocks_t1,       (100.0*t1Space)/size,       (100.0*t1Space)/res_size);
1134       ast->print_cr("  Tier2 Space    = " SIZE_FORMAT_W(8) "k, nBlocks_t2       = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t2Space/(size_t)K,       nBlocks_t2,       (100.0*t2Space)/size,       (100.0*t2Space)/res_size);
1135       ast->print_cr("  Alive Space    = " SIZE_FORMAT_W(8) "k, nBlocks_alive    = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", aliveSpace/(size_t)K,    nBlocks_alive,    (100.0*aliveSpace)/size,    (100.0*aliveSpace)/res_size);
1136       ast->print_cr("    disconnected = " SIZE_FORMAT_W(8) "k, nBlocks_disconn  = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", disconnSpace/(size_t)K,  nBlocks_disconn,  (100.0*disconnSpace)/size,  (100.0*disconnSpace)/res_size);
1137       ast->print_cr("    not entrant  = " SIZE_FORMAT_W(8) "k, nBlocks_notentr  = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", notentrSpace/(size_t)K,  nBlocks_notentr,  (100.0*notentrSpace)/size,  (100.0*notentrSpace)/res_size);
1138       ast->print_cr("  unloadedSpace  = " SIZE_FORMAT_W(8) "k, nBlocks_unloaded = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", unloadedSpace/(size_t)K, nBlocks_unloaded, (100.0*unloadedSpace)/size, (100.0*unloadedSpace)/res_size);
1139       ast->print_cr("  deadSpace      = " SIZE_FORMAT_W(8) "k, nBlocks_dead     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", deadSpace/(size_t)K,     nBlocks_dead,     (100.0*deadSpace)/size,     (100.0*deadSpace)/res_size);
1140       ast->print_cr("  stubSpace      = " SIZE_FORMAT_W(8) "k, nBlocks_stub     = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", stubSpace/(size_t)K,     nBlocks_stub,     (100.0*stubSpace)/size,     (100.0*stubSpace)/res_size);
1141       ast->print_cr("ZombieBlocks     = %8d. These are HeapBlocks which could not be identified as CodeBlobs.", nBlocks_zomb);
1142       ast->cr();
1143       ast->print_cr("Segment start          = " INTPTR_FORMAT ", used space      = " SIZE_FORMAT_W(8)"k", p2i(low_bound), size/K);
1144       ast->print_cr("Segment end (used)     = " INTPTR_FORMAT ", remaining space = " SIZE_FORMAT_W(8)"k", p2i(low_bound) + size, (res_size - size)/K);
1145       ast->print_cr("Segment end (reserved) = " INTPTR_FORMAT ", reserved space  = " SIZE_FORMAT_W(8)"k", p2i(low_bound) + res_size, res_size/K);
1146       ast->cr();
1147       ast->print_cr("latest allocated compilation id = %d", latest_compilation_id);
1148       ast->print_cr("highest observed compilation id = %d", highest_compilation_id);
1149       ast->print_cr("Building TopSizeList iterations = %ld", total_iterations);
1150       ast->cr();
1151 
1152       int             reset_val = NMethodSweeper::hotness_counter_reset_val();
1153       double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size;
1154       printBox(ast, '-', "Method hotness information at time of this analysis", NULL);
1155       ast->print_cr("Highest possible method temperature:          %12d", reset_val);
1156       ast->print_cr("Threshold for method to be considered 'cold': %12.3f", -reset_val + reverse_free_ratio * NmethodSweepActivity);
1157       if (n_methods > 0) {
1158         avgTemp = hotnessAccumulator/n_methods;
1159         ast->print_cr("min. hotness = %6d", minTemp);
1160         ast->print_cr("avg. hotness = %6d", avgTemp);
1161         ast->print_cr("max. hotness = %6d", maxTemp);
1162       } else {
1163         avgTemp = 0;
1164         ast->print_cr("No hotness data available");
1165       }
1166       BUFFEREDSTREAM_FLUSH("\n")
1167 
1168       // This loop is intentionally printing directly to "out".
1169       // It should not print anything, anyway.
1170       out->print("Verifying collected data...");
1171       size_t granule_segs = granule_size>>log2_seg_size;
1172       for (unsigned int ix = 0; ix < granules; ix++) {
1173         if (StatArray[ix].t1_count   > granule_segs) {
1174           out->print_cr("t1_count[%d]   = %d", ix, StatArray[ix].t1_count);
1175         }
1176         if (StatArray[ix].t2_count   > granule_segs) {
1177           out->print_cr("t2_count[%d]   = %d", ix, StatArray[ix].t2_count);
1178         }
1179         if (StatArray[ix].tx_count   > granule_segs) {
1180           out->print_cr("tx_count[%d]   = %d", ix, StatArray[ix].tx_count);
1181         }
1182         if (StatArray[ix].stub_count > granule_segs) {
1183           out->print_cr("stub_count[%d] = %d", ix, StatArray[ix].stub_count);
1184         }
1185         if (StatArray[ix].dead_count > granule_segs) {
1186           out->print_cr("dead_count[%d] = %d", ix, StatArray[ix].dead_count);
1187         }
1188         if (StatArray[ix].t1_space   > granule_segs) {
1189           out->print_cr("t1_space[%d]   = %d", ix, StatArray[ix].t1_space);
1190         }
1191         if (StatArray[ix].t2_space   > granule_segs) {
1192           out->print_cr("t2_space[%d]   = %d", ix, StatArray[ix].t2_space);
1193         }
1194         if (StatArray[ix].tx_space   > granule_segs) {
1195           out->print_cr("tx_space[%d]   = %d", ix, StatArray[ix].tx_space);
1196         }
1197         if (StatArray[ix].stub_space > granule_segs) {
1198           out->print_cr("stub_space[%d] = %d", ix, StatArray[ix].stub_space);
1199         }
1200         if (StatArray[ix].dead_space > granule_segs) {
1201           out->print_cr("dead_space[%d] = %d", ix, StatArray[ix].dead_space);
1202         }
1203         //   this cast is awful! I need it because NT/Intel reports a signed/unsigned mismatch.
1204         if ((size_t)(StatArray[ix].t1_count+StatArray[ix].t2_count+StatArray[ix].tx_count+StatArray[ix].stub_count+StatArray[ix].dead_count) > granule_segs) {
1205           out->print_cr("t1_count[%d] = %d, t2_count[%d] = %d, tx_count[%d] = %d, stub_count[%d] = %d", ix, StatArray[ix].t1_count, ix, StatArray[ix].t2_count, ix, StatArray[ix].tx_count, ix, StatArray[ix].stub_count);
1206         }
1207         if ((size_t)(StatArray[ix].t1_space+StatArray[ix].t2_space+StatArray[ix].tx_space+StatArray[ix].stub_space+StatArray[ix].dead_space) > granule_segs) {
1208           out->print_cr("t1_space[%d] = %d, t2_space[%d] = %d, tx_space[%d] = %d, stub_space[%d] = %d", ix, StatArray[ix].t1_space, ix, StatArray[ix].t2_space, ix, StatArray[ix].tx_space, ix, StatArray[ix].stub_space);
1209         }
1210       }
1211 
1212       // This loop is intentionally printing directly to "out".
1213       // It should not print anything, anyway.
1214       if (used_topSizeBlocks > 0) {
1215         unsigned int j = 0;
1216         if (TopSizeArray[0].len != currMax) {
1217           out->print_cr("currMax(%d) differs from TopSizeArray[0].len(%d)", currMax, TopSizeArray[0].len);
1218         }
1219         for (unsigned int i = 0; (TopSizeArray[i].index != tsbStopper) && (j++ < alloc_topSizeBlocks); i = TopSizeArray[i].index) {
1220           if (TopSizeArray[i].len < TopSizeArray[TopSizeArray[i].index].len) {
1221             out->print_cr("sort error at index %d: %d !>= %d", i, TopSizeArray[i].len, TopSizeArray[TopSizeArray[i].index].len);
1222           }
1223         }
1224         if (j >= alloc_topSizeBlocks) {
1225           out->print_cr("Possible loop in TopSizeArray chaining!\n  allocBlocks = %d, usedBlocks = %d", alloc_topSizeBlocks, used_topSizeBlocks);
1226           for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
1227             out->print_cr("  TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
1228           }
1229         }
1230       }
1231       out->print_cr("...done\n\n");
1232     } else {
1233       // insane heap state detected. Analysis data incomplete. Just throw it away.
1234       discard_StatArray(out);
1235       discard_TopSizeArray(out);
1236     }
1237   }
1238 
1239 
1240   done        = false;
1241   while (!done && (nBlocks_free > 0)) {
1242 
1243     printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   (free blocks) for segment ", heapName);
1244     ast->print_cr("   The aggregate step collects information about all free blocks in CodeHeap.\n"
1245                   "   Subsequent print functions create their output based on this snapshot.\n");
1246     ast->print_cr("   Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free);
1247     ast->print_cr("   Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K);
1248     BUFFEREDSTREAM_FLUSH("\n")
1249 
1250     //----------------------------------------
1251     //--  Prepare the FreeArray of FreeBlks --
1252     //----------------------------------------
1253 
1254     //---< discard old array if size does not match  >---
1255     if (nBlocks_free != alloc_freeBlocks) {
1256       discard_FreeArray(out);
1257     }
1258 
1259     prepare_FreeArray(out, nBlocks_free, heapName);
1260     if (FreeArray == NULL) {
1261       done = true;
1262       continue;
1263     }
1264 
1265     //----------------------------------------
1266     //--  Collect all FreeBlks in FreeArray --
1267     //----------------------------------------
1268 
1269     unsigned int ix = 0;
1270     FreeBlock* cur  = heap->freelist();
1271 
1272     while (cur != NULL) {
1273       if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated
1274         FreeArray[ix].start = cur;
1275         FreeArray[ix].len   = (unsigned int)(cur->length()<<log2_seg_size);
1276         FreeArray[ix].index = ix;
1277       }
1278       cur  = cur->link();
1279       ix++;
1280     }
1281     if (ix != alloc_freeBlocks) {
1282       ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix);
1283       ast->print_cr("I will update the counter and retry data collection");
1284       BUFFEREDSTREAM_FLUSH("\n")
1285       nBlocks_free = ix;
1286       continue;
1287     }
1288     done = true;
1289   }
1290 
1291   if (!done || (nBlocks_free == 0)) {
1292     if (nBlocks_free == 0) {
1293       printBox(ast, '-', "no free blocks found in ", heapName);
1294     } else if (!done) {
1295       ast->print_cr("Free block count mismatch could not be resolved.");
1296       ast->print_cr("Try to run \"aggregate\" function to update counters");
1297     }
1298     BUFFEREDSTREAM_FLUSH("")
1299 
1300     //---< discard old array and update global values  >---
1301     discard_FreeArray(out);
1302     set_HeapStatGlobals(out, heapName);
1303     return;
1304   }
1305 
1306   //---<  calculate and fill remaining fields  >---
1307   if (FreeArray != NULL) {
1308     // This loop is intentionally printing directly to "out".
1309     // It should not print anything, anyway.
1310     for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1311       size_t lenSum = 0;
1312       FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len));
1313       for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) {
1314         CodeBlob *cb  = (CodeBlob*)(heap->find_start(h));
1315         if ((cb != NULL) && !cb->is_nmethod()) { // checks equivalent to those in get_cbType()
1316           FreeArray[ix].stubs_in_gap = true;
1317         }
1318         FreeArray[ix].n_gapBlocks++;
1319         lenSum += h->length()<<log2_seg_size;
1320         if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) {
1321           out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)", h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start);
1322         }
1323       }
1324       if (lenSum != FreeArray[ix].gap) {
1325         out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d.", ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum);
1326       }
1327     }
1328   }
1329   set_HeapStatGlobals(out, heapName);
1330 
1331   printBox(ast, '=', "C O D E   H E A P   A N A L Y S I S   C O M P L E T E   for segment ", heapName);
1332   BUFFEREDSTREAM_FLUSH("\n")
1333 }
1334 
1335 
1336 void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) {
1337   if (!initialization_complete) {
1338     return;
1339   }
1340 
1341   const char* heapName   = get_heapName(heap);
1342   get_HeapStatGlobals(out, heapName);
1343 
1344   if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) {
1345     return;
1346   }
1347   BUFFEREDSTREAM_DECL(ast, out)
1348 
1349   {
1350     printBox(ast, '=', "U S E D   S P A C E   S T A T I S T I C S   for ", heapName);
1351     ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n"
1352                   "      and other identifying information with the block size data.\n"
1353                   "\n"
1354                   "      Method names are dynamically retrieved from the code cache at print time.\n"
1355                   "      Due to the living nature of the code cache and because the CodeCache_lock\n"
1356                   "      is not continuously held, the displayed name might be wrong or no name\n"
1357                   "      might be found at all. The likelihood for that to happen increases\n"
1358                   "      over time passed between analysis and print step.\n", used_topSizeBlocks);
1359     BUFFEREDSTREAM_FLUSH_LOCKED("\n")
1360   }
1361 
1362   //----------------------------
1363   //--  Print Top Used Blocks --
1364   //----------------------------
1365   {
1366     char*     low_bound  = heap->low_boundary();
1367 
1368     printBox(ast, '-', "Largest Used Blocks in ", heapName);
1369     print_blobType_legend(ast);
1370 
1371     ast->fill_to(51);
1372     ast->print("%4s", "blob");
1373     ast->fill_to(56);
1374     ast->print("%9s", "compiler");
1375     ast->fill_to(66);
1376     ast->print_cr("%6s", "method");
1377     ast->print_cr("%18s %13s %17s %4s %9s  %5s %s",      "Addr(module)      ", "offset", "size", "type", " type lvl", " temp", "Name");
1378     BUFFEREDSTREAM_FLUSH_LOCKED("")
1379 
1380     //---<  print Top Ten Used Blocks  >---
1381     if (used_topSizeBlocks > 0) {
1382       unsigned int printed_topSizeBlocks = 0;
1383       for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
1384         printed_topSizeBlocks++;
1385         if (TopSizeArray[i].blob_name == NULL) {
1386           TopSizeArray[i].blob_name = os::strdup("unnamed blob or blob name unavailable");
1387         }
1388         // heap->find_start() is safe. Only works on _segmap.
1389         // Returns NULL or void*. Returned CodeBlob may be uninitialized.
1390         HeapBlock* heapBlock = TopSizeArray[i].start;
1391         CodeBlob*  this_blob = (CodeBlob*)(heap->find_start(heapBlock));
1392         if (this_blob != NULL) {
1393           //---<  access these fields only if we own the CodeCache_lock  >---
1394           //---<  blob address  >---
1395           ast->print(INTPTR_FORMAT, p2i(this_blob));
1396           ast->fill_to(19);
1397           //---<  blob offset from CodeHeap begin  >---
1398           ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
1399           ast->fill_to(33);
1400         } else {
1401           //---<  block address  >---
1402           ast->print(INTPTR_FORMAT, p2i(TopSizeArray[i].start));
1403           ast->fill_to(19);
1404           //---<  block offset from CodeHeap begin  >---
1405           ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)TopSizeArray[i].start-low_bound));
1406           ast->fill_to(33);
1407         }
1408 
1409         //---<  print size, name, and signature (for nMethods)  >---
1410         bool is_nmethod = TopSizeArray[i].nm_size > 0;
1411         if (is_nmethod) {
1412           //---<  nMethod size in hex  >---
1413           ast->print(PTR32_FORMAT, TopSizeArray[i].nm_size);
1414           ast->print("(" SIZE_FORMAT_W(4) "K)", TopSizeArray[i].nm_size/K);
1415           ast->fill_to(51);
1416           ast->print("  %c", blobTypeChar[TopSizeArray[i].type]);
1417           //---<  compiler information  >---
1418           ast->fill_to(56);
1419           ast->print("%5s %3d", compTypeName[TopSizeArray[i].compiler], TopSizeArray[i].level);
1420           //---<  method temperature  >---
1421           ast->fill_to(67);
1422           ast->print("%5d", TopSizeArray[i].temperature);
1423           //---<  name and signature  >---
1424           ast->fill_to(67+6);
1425           if (TopSizeArray[i].type == nMethod_dead) {
1426             ast->print(" zombie method ");
1427           }
1428           ast->print("%s", TopSizeArray[i].blob_name);
1429         } else {
1430           //---<  block size in hex  >---
1431           ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size));
1432           ast->print("(" SIZE_FORMAT_W(4) "K)", (TopSizeArray[i].len<<log2_seg_size)/K);
1433           //---<  no compiler information  >---
1434           ast->fill_to(56);
1435           //---<  name and signature  >---
1436           ast->fill_to(67+6);
1437           ast->print("%s", TopSizeArray[i].blob_name);
1438         }
1439         ast->cr();
1440         BUFFEREDSTREAM_FLUSH_AUTO("")
1441       }
1442       if (used_topSizeBlocks != printed_topSizeBlocks) {
1443         ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks);
1444         for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
1445           ast->print_cr("  TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
1446           BUFFEREDSTREAM_FLUSH_AUTO("")
1447         }
1448       }
1449       BUFFEREDSTREAM_FLUSH("\n\n")
1450     }
1451   }
1452 
1453   //-----------------------------
1454   //--  Print Usage Histogram  --
1455   //-----------------------------
1456 
1457   if (SizeDistributionArray != NULL) {
1458     unsigned long total_count = 0;
1459     unsigned long total_size  = 0;
1460     const unsigned long pctFactor = 200;
1461 
1462     for (unsigned int i = 0; i < nSizeDistElements; i++) {
1463       total_count += SizeDistributionArray[i].count;
1464       total_size  += SizeDistributionArray[i].lenSum;
1465     }
1466 
1467     if ((total_count > 0) && (total_size > 0)) {
1468       printBox(ast, '-', "Block count histogram for ", heapName);
1469       ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n"
1470                     "      of all blocks) have a size in the given range.\n"
1471                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
1472       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1473       ast->print_cr("total number of all blocks: %7ld\n", total_count);
1474       BUFFEREDSTREAM_FLUSH_LOCKED("")
1475 
1476       ast->print_cr("[Size Range)------avg.-size-+----count-+");
1477       for (unsigned int i = 0; i < nSizeDistElements; i++) {
1478         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1479           ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1480                     ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1481                     ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1482                     );
1483         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1484           ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1485                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1486                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1487                     );
1488         } else {
1489           ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1490                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1491                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1492                     );
1493         }
1494         ast->print(" %8d | %8d |",
1495                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1496                    SizeDistributionArray[i].count);
1497 
1498         unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count;
1499         for (unsigned int j = 1; j <= percent; j++) {
1500           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1501         }
1502         ast->cr();
1503         BUFFEREDSTREAM_FLUSH_AUTO("")
1504       }
1505       ast->print_cr("----------------------------+----------+");
1506       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1507 
1508       printBox(ast, '-', "Contribution per size range to total size for ", heapName);
1509       ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n"
1510                     "      occupied space) is used by the blocks in the given size range.\n"
1511                     "      %ld characters are printed per percentage point.\n", pctFactor/100);
1512       ast->print_cr("total size   of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
1513       ast->print_cr("total number of all blocks: %7ld\n", total_count);
1514       BUFFEREDSTREAM_FLUSH_LOCKED("")
1515 
1516       ast->print_cr("[Size Range)------avg.-size-+----count-+");
1517       for (unsigned int i = 0; i < nSizeDistElements; i++) {
1518         if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
1519           ast->print("[" SIZE_FORMAT_W(5) " .." SIZE_FORMAT_W(5) " ): "
1520                     ,(size_t)(SizeDistributionArray[i].rangeStart<<log2_seg_size)
1521                     ,(size_t)(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
1522                     );
1523         } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
1524           ast->print("[" SIZE_FORMAT_W(5) "K.." SIZE_FORMAT_W(5) "K): "
1525                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
1526                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
1527                     );
1528         } else {
1529           ast->print("[" SIZE_FORMAT_W(5) "M.." SIZE_FORMAT_W(5) "M): "
1530                     ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
1531                     ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
1532                     );
1533         }
1534         ast->print(" %8d | %8d |",
1535                    SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
1536                    SizeDistributionArray[i].count);
1537 
1538         unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size;
1539         for (unsigned int j = 1; j <= percent; j++) {
1540           ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
1541         }
1542         ast->cr();
1543         BUFFEREDSTREAM_FLUSH_AUTO("")
1544       }
1545       ast->print_cr("----------------------------+----------+");
1546       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1547     }
1548   }
1549 }
1550 
1551 
1552 void CodeHeapState::print_freeSpace(outputStream* out, CodeHeap* heap) {
1553   if (!initialization_complete) {
1554     return;
1555   }
1556 
1557   const char* heapName   = get_heapName(heap);
1558   get_HeapStatGlobals(out, heapName);
1559 
1560   if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) {
1561     return;
1562   }
1563   BUFFEREDSTREAM_DECL(ast, out)
1564 
1565   {
1566     printBox(ast, '=', "F R E E   S P A C E   S T A T I S T I C S   for ", heapName);
1567     ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n"
1568                   "      Those gaps are of interest if there is a chance that they become\n"
1569                   "      unoccupied, e.g. by class unloading. Then, the two adjacent free\n"
1570                   "      blocks, together with the now unoccupied space, form a new, large\n"
1571                   "      free block.");
1572     BUFFEREDSTREAM_FLUSH_LOCKED("\n")
1573   }
1574 
1575   {
1576     printBox(ast, '-', "List of all Free Blocks in ", heapName);
1577 
1578     unsigned int ix = 0;
1579     for (ix = 0; ix < alloc_freeBlocks-1; ix++) {
1580       ast->print(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT ",", p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1581       ast->fill_to(38);
1582       ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes,", ix, ix+1, FreeArray[ix].gap);
1583       ast->fill_to(71);
1584       ast->print("block count: %6d", FreeArray[ix].n_gapBlocks);
1585       if (FreeArray[ix].stubs_in_gap) {
1586         ast->print(" !! permanent gap, contains stubs and/or blobs !!");
1587       }
1588       ast->cr();
1589       BUFFEREDSTREAM_FLUSH_AUTO("")
1590     }
1591     ast->print_cr(INTPTR_FORMAT ": Len[%4d] = " HEX32_FORMAT, p2i(FreeArray[ix].start), ix, FreeArray[ix].len);
1592     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1593   }
1594 
1595 
1596   //-----------------------------------------
1597   //--  Find and Print Top Ten Free Blocks --
1598   //-----------------------------------------
1599 
1600   //---<  find Top Ten Free Blocks  >---
1601   const unsigned int nTop = 10;
1602   unsigned int  currMax10 = 0;
1603   struct FreeBlk* FreeTopTen[nTop];
1604   memset(FreeTopTen, 0, sizeof(FreeTopTen));
1605 
1606   for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) {
1607     if (FreeArray[ix].len > currMax10) {  // larger than the ten largest found so far
1608       unsigned int currSize = FreeArray[ix].len;
1609 
1610       unsigned int iy;
1611       for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) {
1612         if (FreeTopTen[iy]->len < currSize) {
1613           for (unsigned int iz = nTop-1; iz > iy; iz--) { // make room to insert new free block
1614             FreeTopTen[iz] = FreeTopTen[iz-1];
1615           }
1616           FreeTopTen[iy] = &FreeArray[ix];        // insert new free block
1617           if (FreeTopTen[nTop-1] != NULL) {
1618             currMax10 = FreeTopTen[nTop-1]->len;
1619           }
1620           break; // done with this, check next free block
1621         }
1622       }
1623       if (iy >= nTop) {
1624         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1625                       currSize, currMax10);
1626         continue;
1627       }
1628       if (FreeTopTen[iy] == NULL) {
1629         FreeTopTen[iy] = &FreeArray[ix];
1630         if (iy == (nTop-1)) {
1631           currMax10 = currSize;
1632         }
1633       }
1634     }
1635   }
1636   BUFFEREDSTREAM_FLUSH_AUTO("")
1637 
1638   {
1639     printBox(ast, '-', "Top Ten Free Blocks in ", heapName);
1640 
1641     //---<  print Top Ten Free Blocks  >---
1642     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) {
1643       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len);
1644       ast->fill_to(39);
1645       if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) {
1646         ast->print("last free block in list.");
1647       } else {
1648         ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap);
1649         ast->fill_to(63);
1650         ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks);
1651       }
1652       ast->cr();
1653       BUFFEREDSTREAM_FLUSH_AUTO("")
1654     }
1655   }
1656   BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1657 
1658 
1659   //--------------------------------------------------------
1660   //--  Find and Print Top Ten Free-Occupied-Free Triples --
1661   //--------------------------------------------------------
1662 
1663   //---<  find and print Top Ten Triples (Free-Occupied-Free)  >---
1664   currMax10 = 0;
1665   struct FreeBlk  *FreeTopTenTriple[nTop];
1666   memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple));
1667 
1668   for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
1669     // If there are stubs in the gap, this gap will never become completely free.
1670     // The triple will thus never merge to one free block.
1671     unsigned int lenTriple  = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len);
1672     FreeArray[ix].len = lenTriple;
1673     if (lenTriple > currMax10) {  // larger than the ten largest found so far
1674 
1675       unsigned int iy;
1676       for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
1677         if (FreeTopTenTriple[iy]->len < lenTriple) {
1678           for (unsigned int iz = nTop-1; iz > iy; iz--) {
1679             FreeTopTenTriple[iz] = FreeTopTenTriple[iz-1];
1680           }
1681           FreeTopTenTriple[iy] = &FreeArray[ix];
1682           if (FreeTopTenTriple[nTop-1] != NULL) {
1683             currMax10 = FreeTopTenTriple[nTop-1]->len;
1684           }
1685           break;
1686         }
1687       }
1688       if (iy == nTop) {
1689         ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
1690                       lenTriple, currMax10);
1691         continue;
1692       }
1693       if (FreeTopTenTriple[iy] == NULL) {
1694         FreeTopTenTriple[iy] = &FreeArray[ix];
1695         if (iy == (nTop-1)) {
1696           currMax10 = lenTriple;
1697         }
1698       }
1699     }
1700   }
1701   BUFFEREDSTREAM_FLUSH_AUTO("")
1702 
1703   {
1704     printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in ", heapName);
1705     ast->print_cr("  Use this information to judge how likely it is that a large(r) free block\n"
1706                   "  might get created by code cache sweeping.\n"
1707                   "  If all the occupied blocks can be swept, the three free blocks will be\n"
1708                   "  merged into one (much larger) free block. That would reduce free space\n"
1709                   "  fragmentation.\n");
1710 
1711     //---<  print Top Ten Free-Occupied-Free Triples  >---
1712     for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
1713       ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len);
1714       ast->fill_to(39);
1715       ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap);
1716       ast->fill_to(63);
1717       ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks);
1718       ast->cr();
1719       BUFFEREDSTREAM_FLUSH_AUTO("")
1720     }
1721   }
1722   BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
1723 }
1724 
1725 
1726 void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) {
1727   if (!initialization_complete) {
1728     return;
1729   }
1730 
1731   const char* heapName   = get_heapName(heap);
1732   get_HeapStatGlobals(out, heapName);
1733 
1734   if ((StatArray == NULL) || (alloc_granules == 0)) {
1735     return;
1736   }
1737   BUFFEREDSTREAM_DECL(ast, out)
1738 
1739   unsigned int granules_per_line = 32;
1740   char*        low_bound         = heap->low_boundary();
1741 
1742   {
1743     printBox(ast, '=', "B L O C K   C O U N T S   for ", heapName);
1744     ast->print_cr("  Each granule contains an individual number of heap blocks. Large blocks\n"
1745                   "  may span multiple granules and are counted for each granule they touch.\n");
1746     if (segment_granules) {
1747       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
1748                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
1749                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1750                     "  Occupied granules show their BlobType character, see legend.\n");
1751       print_blobType_legend(ast);
1752     }
1753     BUFFEREDSTREAM_FLUSH_LOCKED("")
1754   }
1755 
1756   {
1757     if (segment_granules) {
1758       printBox(ast, '-', "Total (all types) count for granule size == segment size", NULL);
1759 
1760       granules_per_line = 128;
1761       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1762         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1763         print_blobType_single(ast, StatArray[ix].type);
1764       }
1765     } else {
1766       printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1767 
1768       granules_per_line = 128;
1769       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1770         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1771         unsigned int count = StatArray[ix].t1_count   + StatArray[ix].t2_count   + StatArray[ix].tx_count
1772                            + StatArray[ix].stub_count + StatArray[ix].dead_count;
1773         print_count_single(ast, count);
1774       }
1775     }
1776     BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1777   }
1778 
1779   {
1780     if (nBlocks_t1 > 0) {
1781       printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1782 
1783       granules_per_line = 128;
1784       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1785         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1786         if (segment_granules && StatArray[ix].t1_count > 0) {
1787           print_blobType_single(ast, StatArray[ix].type);
1788         } else {
1789           print_count_single(ast, StatArray[ix].t1_count);
1790         }
1791       }
1792       ast->print("|");
1793     } else {
1794       ast->print("No Tier1 nMethods found in CodeHeap.");
1795     }
1796     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1797   }
1798 
1799   {
1800     if (nBlocks_t2 > 0) {
1801       printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1802 
1803       granules_per_line = 128;
1804       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1805         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1806         if (segment_granules && StatArray[ix].t2_count > 0) {
1807           print_blobType_single(ast, StatArray[ix].type);
1808         } else {
1809           print_count_single(ast, StatArray[ix].t2_count);
1810         }
1811       }
1812       ast->print("|");
1813     } else {
1814       ast->print("No Tier2 nMethods found in CodeHeap.");
1815     }
1816     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1817   }
1818 
1819   {
1820     if (nBlocks_alive > 0) {
1821       printBox(ast, '-', "not_used/not_entrant/not_installed nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1822 
1823       granules_per_line = 128;
1824       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1825         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1826         if (segment_granules && StatArray[ix].tx_count > 0) {
1827           print_blobType_single(ast, StatArray[ix].type);
1828         } else {
1829           print_count_single(ast, StatArray[ix].tx_count);
1830         }
1831       }
1832       ast->print("|");
1833     } else {
1834       ast->print("No not_used/not_entrant nMethods found in CodeHeap.");
1835     }
1836     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1837   }
1838 
1839   {
1840     if (nBlocks_stub > 0) {
1841       printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1842 
1843       granules_per_line = 128;
1844       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1845         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1846         if (segment_granules && StatArray[ix].stub_count > 0) {
1847           print_blobType_single(ast, StatArray[ix].type);
1848         } else {
1849           print_count_single(ast, StatArray[ix].stub_count);
1850         }
1851       }
1852       ast->print("|");
1853     } else {
1854       ast->print("No Stubs and Blobs found in CodeHeap.");
1855     }
1856     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1857   }
1858 
1859   {
1860     if (nBlocks_dead > 0) {
1861       printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
1862 
1863       granules_per_line = 128;
1864       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1865         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1866         if (segment_granules && StatArray[ix].dead_count > 0) {
1867           print_blobType_single(ast, StatArray[ix].type);
1868         } else {
1869           print_count_single(ast, StatArray[ix].dead_count);
1870         }
1871       }
1872       ast->print("|");
1873     } else {
1874       ast->print("No dead nMethods found in CodeHeap.");
1875     }
1876     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1877   }
1878 
1879   {
1880     if (!segment_granules) { // Prevent totally redundant printouts
1881       printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL);
1882 
1883       granules_per_line = 24;
1884       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1885         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1886 
1887         print_count_single(ast, StatArray[ix].t1_count);
1888         ast->print(":");
1889         print_count_single(ast, StatArray[ix].t2_count);
1890         ast->print(":");
1891         if (segment_granules && StatArray[ix].stub_count > 0) {
1892           print_blobType_single(ast, StatArray[ix].type);
1893         } else {
1894           print_count_single(ast, StatArray[ix].stub_count);
1895         }
1896         ast->print(" ");
1897       }
1898       BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1899     }
1900   }
1901 }
1902 
1903 
1904 void CodeHeapState::print_space(outputStream* out, CodeHeap* heap) {
1905   if (!initialization_complete) {
1906     return;
1907   }
1908 
1909   const char* heapName   = get_heapName(heap);
1910   get_HeapStatGlobals(out, heapName);
1911 
1912   if ((StatArray == NULL) || (alloc_granules == 0)) {
1913     return;
1914   }
1915   BUFFEREDSTREAM_DECL(ast, out)
1916 
1917   unsigned int granules_per_line = 32;
1918   char*        low_bound         = heap->low_boundary();
1919 
1920   {
1921     printBox(ast, '=', "S P A C E   U S A G E  &  F R A G M E N T A T I O N   for ", heapName);
1922     ast->print_cr("  The heap space covered by one granule is occupied to a various extend.\n"
1923                   "  The granule occupancy is displayed by one decimal digit per granule.\n");
1924     if (segment_granules) {
1925       ast->print_cr("  You have selected granule size to be as small as segment size.\n"
1926                     "  As a result, each granule contains exactly one block (or a part of one block)\n"
1927                     "  or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
1928                     "  Occupied granules show their BlobType character, see legend.\n");
1929       print_blobType_legend(ast);
1930     } else {
1931       ast->print_cr("  These digits represent a fill percentage range (see legend).\n");
1932       print_space_legend(ast);
1933     }
1934     BUFFEREDSTREAM_FLUSH_LOCKED("")
1935   }
1936 
1937   {
1938     if (segment_granules) {
1939       printBox(ast, '-', "Total (all types) space consumption for granule size == segment size", NULL);
1940 
1941       granules_per_line = 128;
1942       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1943         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1944         print_blobType_single(ast, StatArray[ix].type);
1945       }
1946     } else {
1947       printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL);
1948 
1949       granules_per_line = 128;
1950       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1951         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1952         unsigned int space    = StatArray[ix].t1_space   + StatArray[ix].t2_space  + StatArray[ix].tx_space
1953                               + StatArray[ix].stub_space + StatArray[ix].dead_space;
1954         print_space_single(ast, space);
1955       }
1956     }
1957     BUFFEREDSTREAM_FLUSH_LOCKED("|\n\n\n")
1958   }
1959 
1960   {
1961     if (nBlocks_t1 > 0) {
1962       printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL);
1963 
1964       granules_per_line = 128;
1965       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1966         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1967         if (segment_granules && StatArray[ix].t1_space > 0) {
1968           print_blobType_single(ast, StatArray[ix].type);
1969         } else {
1970           print_space_single(ast, StatArray[ix].t1_space);
1971         }
1972       }
1973       ast->print("|");
1974     } else {
1975       ast->print("No Tier1 nMethods found in CodeHeap.");
1976     }
1977     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1978   }
1979 
1980   {
1981     if (nBlocks_t2 > 0) {
1982       printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL);
1983 
1984       granules_per_line = 128;
1985       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
1986         print_line_delim(out, ast, low_bound, ix, granules_per_line);
1987         if (segment_granules && StatArray[ix].t2_space > 0) {
1988           print_blobType_single(ast, StatArray[ix].type);
1989         } else {
1990           print_space_single(ast, StatArray[ix].t2_space);
1991         }
1992       }
1993       ast->print("|");
1994     } else {
1995       ast->print("No Tier2 nMethods found in CodeHeap.");
1996     }
1997     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
1998   }
1999 
2000   {
2001     if (nBlocks_alive > 0) {
2002       printBox(ast, '-', "not_used/not_entrant/not_installed space consumption. ' ' indicates empty, '*' indicates full", NULL);
2003 
2004       granules_per_line = 128;
2005       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2006         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2007         if (segment_granules && StatArray[ix].tx_space > 0) {
2008           print_blobType_single(ast, StatArray[ix].type);
2009         } else {
2010           print_space_single(ast, StatArray[ix].tx_space);
2011         }
2012       }
2013       ast->print("|");
2014     } else {
2015       ast->print("No Tier2 nMethods found in CodeHeap.");
2016     }
2017     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2018   }
2019 
2020   {
2021     if (nBlocks_stub > 0) {
2022       printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL);
2023 
2024       granules_per_line = 128;
2025       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2026         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2027         if (segment_granules && StatArray[ix].stub_space > 0) {
2028           print_blobType_single(ast, StatArray[ix].type);
2029         } else {
2030           print_space_single(ast, StatArray[ix].stub_space);
2031         }
2032       }
2033       ast->print("|");
2034     } else {
2035       ast->print("No Stubs and Blobs found in CodeHeap.");
2036     }
2037     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2038   }
2039 
2040   {
2041     if (nBlocks_dead > 0) {
2042       printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL);
2043 
2044       granules_per_line = 128;
2045       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2046         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2047         print_space_single(ast, StatArray[ix].dead_space);
2048       }
2049       ast->print("|");
2050     } else {
2051       ast->print("No dead nMethods found in CodeHeap.");
2052     }
2053     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2054   }
2055 
2056   {
2057     if (!segment_granules) { // Prevent totally redundant printouts
2058       printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL);
2059 
2060       granules_per_line = 24;
2061       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2062         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2063 
2064         if (segment_granules && StatArray[ix].t1_space > 0) {
2065           print_blobType_single(ast, StatArray[ix].type);
2066         } else {
2067           print_space_single(ast, StatArray[ix].t1_space);
2068         }
2069         ast->print(":");
2070         if (segment_granules && StatArray[ix].t2_space > 0) {
2071           print_blobType_single(ast, StatArray[ix].type);
2072         } else {
2073           print_space_single(ast, StatArray[ix].t2_space);
2074         }
2075         ast->print(":");
2076         if (segment_granules && StatArray[ix].stub_space > 0) {
2077           print_blobType_single(ast, StatArray[ix].type);
2078         } else {
2079           print_space_single(ast, StatArray[ix].stub_space);
2080         }
2081         ast->print(" ");
2082       }
2083       ast->print("|");
2084       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2085     }
2086   }
2087 }
2088 
2089 void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) {
2090   if (!initialization_complete) {
2091     return;
2092   }
2093 
2094   const char* heapName   = get_heapName(heap);
2095   get_HeapStatGlobals(out, heapName);
2096 
2097   if ((StatArray == NULL) || (alloc_granules == 0)) {
2098     return;
2099   }
2100   BUFFEREDSTREAM_DECL(ast, out)
2101 
2102   unsigned int granules_per_line = 32;
2103   char*        low_bound         = heap->low_boundary();
2104 
2105   {
2106     printBox(ast, '=', "M E T H O D   A G E   by CompileID for ", heapName);
2107     ast->print_cr("  The age of a compiled method in the CodeHeap is not available as a\n"
2108                   "  time stamp. Instead, a relative age is deducted from the method's compilation ID.\n"
2109                   "  Age information is available for tier1 and tier2 methods only. There is no\n"
2110                   "  age information for stubs and blobs, because they have no compilation ID assigned.\n"
2111                   "  Information for the youngest method (highest ID) in the granule is printed.\n"
2112                   "  Refer to the legend to learn how method age is mapped to the displayed digit.");
2113     print_age_legend(ast);
2114     BUFFEREDSTREAM_FLUSH_LOCKED("")
2115   }
2116 
2117   {
2118     printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2119 
2120     granules_per_line = 128;
2121     for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2122       print_line_delim(out, ast, low_bound, ix, granules_per_line);
2123       unsigned int age1      = StatArray[ix].t1_age;
2124       unsigned int age2      = StatArray[ix].t2_age;
2125       unsigned int agex      = StatArray[ix].tx_age;
2126       unsigned int age       = age1 > age2 ? age1 : age2;
2127       age       = age > agex ? age : agex;
2128       print_age_single(ast, age);
2129     }
2130     ast->print("|");
2131     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2132   }
2133 
2134   {
2135     if (nBlocks_t1 > 0) {
2136       printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2137 
2138       granules_per_line = 128;
2139       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2140         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2141         print_age_single(ast, StatArray[ix].t1_age);
2142       }
2143       ast->print("|");
2144     } else {
2145       ast->print("No Tier1 nMethods found in CodeHeap.");
2146     }
2147     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2148   }
2149 
2150   {
2151     if (nBlocks_t2 > 0) {
2152       printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2153 
2154       granules_per_line = 128;
2155       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2156         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2157         print_age_single(ast, StatArray[ix].t2_age);
2158       }
2159       ast->print("|");
2160     } else {
2161       ast->print("No Tier2 nMethods found in CodeHeap.");
2162     }
2163     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2164   }
2165 
2166   {
2167     if (nBlocks_alive > 0) {
2168       printBox(ast, '-', "not_used/not_entrant/not_installed age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2169 
2170       granules_per_line = 128;
2171       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2172         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2173         print_age_single(ast, StatArray[ix].tx_age);
2174       }
2175       ast->print("|");
2176     } else {
2177       ast->print("No Tier2 nMethods found in CodeHeap.");
2178     }
2179     BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2180   }
2181 
2182   {
2183     if (!segment_granules) { // Prevent totally redundant printouts
2184       printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
2185 
2186       granules_per_line = 32;
2187       for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2188         print_line_delim(out, ast, low_bound, ix, granules_per_line);
2189         print_age_single(ast, StatArray[ix].t1_age);
2190         ast->print(":");
2191         print_age_single(ast, StatArray[ix].t2_age);
2192         ast->print(" ");
2193       }
2194       ast->print("|");
2195       BUFFEREDSTREAM_FLUSH_LOCKED("\n\n\n")
2196     }
2197   }
2198 }
2199 
2200 
2201 void CodeHeapState::print_names(outputStream* out, CodeHeap* heap) {
2202   if (!initialization_complete) {
2203     return;
2204   }
2205 
2206   const char* heapName   = get_heapName(heap);
2207   get_HeapStatGlobals(out, heapName);
2208 
2209   if ((StatArray == NULL) || (alloc_granules == 0)) {
2210     return;
2211   }
2212   BUFFEREDSTREAM_DECL(ast, out)
2213 
2214   unsigned int granules_per_line   = 128;
2215   char*        low_bound           = heap->low_boundary();
2216   CodeBlob*    last_blob           = NULL;
2217   bool         name_in_addr_range  = true;
2218   bool         have_locks          = holding_required_locks();
2219 
2220   //---<  print at least 128K per block (i.e. between headers)  >---
2221   if (granules_per_line*granule_size < 128*K) {
2222     granules_per_line = (unsigned int)((128*K)/granule_size);
2223   }
2224 
2225   printBox(ast, '=', "M E T H O D   N A M E S   for ", heapName);
2226   ast->print_cr("  Method names are dynamically retrieved from the code cache at print time.\n"
2227                 "  Due to the living nature of the code heap and because the CodeCache_lock\n"
2228                 "  is not continuously held, the displayed name might be wrong or no name\n"
2229                 "  might be found at all. The likelihood for that to happen increases\n"
2230                 "  over time passed between aggregation and print steps.\n");
2231   BUFFEREDSTREAM_FLUSH_LOCKED("")
2232 
2233   for (unsigned int ix = 0; ix < alloc_granules; ix++) {
2234     //---<  print a new blob on a new line  >---
2235     if (ix%granules_per_line == 0) {
2236       if (!name_in_addr_range) {
2237         ast->print_cr("No methods, blobs, or stubs found in this address range");
2238       }
2239       name_in_addr_range = false;
2240 
2241       size_t end_ix = (ix+granules_per_line <= alloc_granules) ? ix+granules_per_line : alloc_granules;
2242       ast->cr();
2243       ast->print_cr("--------------------------------------------------------------------");
2244       ast->print_cr("Address range [" INTPTR_FORMAT "," INTPTR_FORMAT "), " SIZE_FORMAT "k", p2i(low_bound+ix*granule_size), p2i(low_bound + end_ix*granule_size), (end_ix - ix)*granule_size/(size_t)K);
2245       ast->print_cr("--------------------------------------------------------------------");
2246       BUFFEREDSTREAM_FLUSH_AUTO("")
2247     }
2248     // Only check granule if it contains at least one blob.
2249     unsigned int nBlobs  = StatArray[ix].t1_count   + StatArray[ix].t2_count + StatArray[ix].tx_count +
2250                            StatArray[ix].stub_count + StatArray[ix].dead_count;
2251     if (nBlobs > 0 ) {
2252     for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) {
2253       // heap->find_start() is safe. Only works on _segmap.
2254       // Returns NULL or void*. Returned CodeBlob may be uninitialized.
2255       char*     this_seg  = low_bound + ix*granule_size + is;
2256       CodeBlob* this_blob = (CodeBlob*)(heap->find_start(this_seg));
2257       bool   blob_is_safe = blob_access_is_safe(this_blob);
2258       // blob could have been flushed, freed, and merged.
2259       // this_blob < last_blob is an indicator for that.
2260       if (blob_is_safe && (this_blob > last_blob)) {
2261         last_blob          = this_blob;
2262 
2263         //---<  get type and name  >---
2264         blobType       cbType = noType;
2265         if (segment_granules) {
2266           cbType = (blobType)StatArray[ix].type;
2267         } else {
2268           //---<  access these fields only if we own the CodeCache_lock  >---
2269           if (have_locks) {
2270             cbType = get_cbType(this_blob);
2271           }
2272         }
2273 
2274         //---<  access these fields only if we own the CodeCache_lock  >---
2275         const char* blob_name = "<unavailable>";
2276         nmethod*           nm = NULL;
2277         if (have_locks) {
2278           blob_name = this_blob->name();
2279           nm        = this_blob->as_nmethod_or_null();
2280           // this_blob->name() could return NULL if no name was given to CTOR. Inlined, maybe invisible on stack
2281           if (blob_name == NULL) {
2282             blob_name = "<unavailable>";
2283           }
2284         }
2285 
2286         //---<  print table header for new print range  >---
2287         if (!name_in_addr_range) {
2288           name_in_addr_range = true;
2289           ast->fill_to(51);
2290           ast->print("%9s", "compiler");
2291           ast->fill_to(61);
2292           ast->print_cr("%6s", "method");
2293           ast->print_cr("%18s %13s %17s %9s  %5s %18s  %s", "Addr(module)      ", "offset", "size", " type lvl", " temp", "blobType          ", "Name");
2294           BUFFEREDSTREAM_FLUSH_AUTO("")
2295         }
2296 
2297         //---<  print line prefix (address and offset from CodeHeap start)  >---
2298         ast->print(INTPTR_FORMAT, p2i(this_blob));
2299         ast->fill_to(19);
2300         ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
2301         ast->fill_to(33);
2302 
2303         // access nmethod and Method fields only if we own the CodeCache_lock.
2304         // This fact is implicitly transported via nm != NULL.
2305         if (nmethod_access_is_safe(nm)) {
2306           Method* method = nm->method();
2307           ResourceMark rm;
2308           //---<  collect all data to locals as quickly as possible  >---
2309           unsigned int total_size = nm->total_size();
2310           int          hotness    = nm->hotness_counter();
2311           bool         get_name   = (cbType == nMethod_inuse) || (cbType == nMethod_notused);
2312           //---<  nMethod size in hex  >---
2313           ast->print(PTR32_FORMAT, total_size);
2314           ast->print("(" SIZE_FORMAT_W(4) "K)", total_size/K);
2315           //---<  compiler information  >---
2316           ast->fill_to(51);
2317           ast->print("%5s %3d", compTypeName[StatArray[ix].compiler], StatArray[ix].level);
2318           //---<  method temperature  >---
2319           ast->fill_to(62);
2320           ast->print("%5d", hotness);
2321           //---<  name and signature  >---
2322           ast->fill_to(62+6);
2323           ast->print("%s", blobTypeName[cbType]);
2324           ast->fill_to(82+6);
2325           if (cbType == nMethod_dead) {
2326             ast->print("%14s", " zombie method");
2327           }
2328 
2329           if (get_name) {
2330             Symbol* methName  = method->name();
2331             const char*   methNameS = (methName == NULL) ? NULL : methName->as_C_string();
2332             methNameS = (methNameS == NULL) ? "<method name unavailable>" : methNameS;
2333             Symbol* methSig   = method->signature();
2334             const char*   methSigS  = (methSig  == NULL) ? NULL : methSig->as_C_string();
2335             methSigS  = (methSigS  == NULL) ? "<method signature unavailable>" : methSigS;
2336             ast->print("%s", methNameS);
2337             ast->print("%s", methSigS);
2338           } else {
2339             ast->print("%s", blob_name);
2340           }
2341         } else if (blob_is_safe) {
2342           ast->fill_to(62+6);
2343           ast->print("%s", blobTypeName[cbType]);
2344           ast->fill_to(82+6);
2345           ast->print("%s", blob_name);
2346         } else {
2347           ast->fill_to(62+6);
2348           ast->print("<stale blob>");
2349         }
2350         ast->cr();
2351         BUFFEREDSTREAM_FLUSH_AUTO("")
2352       } else if (!blob_is_safe && (this_blob != last_blob) && (this_blob != NULL)) {
2353         last_blob          = this_blob;
2354       }
2355     }
2356     } // nBlobs > 0
2357   }
2358   BUFFEREDSTREAM_FLUSH_LOCKED("\n\n")
2359 }
2360 
2361 
2362 void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) {
2363   unsigned int lineLen = 1 + 2 + 2 + 1;
2364   char edge, frame;
2365 
2366   if (text1 != NULL) {
2367     lineLen += (unsigned int)strlen(text1); // text1 is much shorter than MAX_INT chars.
2368   }
2369   if (text2 != NULL) {
2370     lineLen += (unsigned int)strlen(text2); // text2 is much shorter than MAX_INT chars.
2371   }
2372   if (border == '-') {
2373     edge  = '+';
2374     frame = '|';
2375   } else {
2376     edge  = border;
2377     frame = border;
2378   }
2379 
2380   ast->print("%c", edge);
2381   for (unsigned int i = 0; i < lineLen-2; i++) {
2382     ast->print("%c", border);
2383   }
2384   ast->print_cr("%c", edge);
2385 
2386   ast->print("%c  ", frame);
2387   if (text1 != NULL) {
2388     ast->print("%s", text1);
2389   }
2390   if (text2 != NULL) {
2391     ast->print("%s", text2);
2392   }
2393   ast->print_cr("  %c", frame);
2394 
2395   ast->print("%c", edge);
2396   for (unsigned int i = 0; i < lineLen-2; i++) {
2397     ast->print("%c", border);
2398   }
2399   ast->print_cr("%c", edge);
2400 }
2401 
2402 void CodeHeapState::print_blobType_legend(outputStream* out) {
2403   out->cr();
2404   printBox(out, '-', "Block types used in the following CodeHeap dump", NULL);
2405   for (int type = noType; type < lastType; type += 1) {
2406     out->print_cr("  %c - %s", blobTypeChar[type], blobTypeName[type]);
2407   }
2408   out->print_cr("  -----------------------------------------------------");
2409   out->cr();
2410 }
2411 
2412 void CodeHeapState::print_space_legend(outputStream* out) {
2413   unsigned int indicator = 0;
2414   unsigned int age_range = 256;
2415   unsigned int range_beg = latest_compilation_id;
2416   out->cr();
2417   printBox(out, '-', "Space ranges, based on granule occupancy", NULL);
2418   out->print_cr("    -   0%% == occupancy");
2419   for (int i=0; i<=9; i++) {
2420     out->print_cr("  %d - %3d%% < occupancy < %3d%%", i, 10*i, 10*(i+1));
2421   }
2422   out->print_cr("  * - 100%% == occupancy");
2423   out->print_cr("  ----------------------------------------------");
2424   out->cr();
2425 }
2426 
2427 void CodeHeapState::print_age_legend(outputStream* out) {
2428   unsigned int indicator = 0;
2429   unsigned int age_range = 256;
2430   unsigned int range_beg = latest_compilation_id;
2431   out->cr();
2432   printBox(out, '-', "Age ranges, based on compilation id", NULL);
2433   while (age_range > 0) {
2434     out->print_cr("  %d - %6d to %6d", indicator, range_beg, latest_compilation_id - latest_compilation_id/age_range);
2435     range_beg = latest_compilation_id - latest_compilation_id/age_range;
2436     age_range /= 2;
2437     indicator += 1;
2438   }
2439   out->print_cr("  -----------------------------------------");
2440   out->cr();
2441 }
2442 
2443 void CodeHeapState::print_blobType_single(outputStream* out, u2 /* blobType */ type) {
2444   out->print("%c", blobTypeChar[type]);
2445 }
2446 
2447 void CodeHeapState::print_count_single(outputStream* out, unsigned short count) {
2448   if (count >= 16)    out->print("*");
2449   else if (count > 0) out->print("%1.1x", count);
2450   else                out->print(" ");
2451 }
2452 
2453 void CodeHeapState::print_space_single(outputStream* out, unsigned short space) {
2454   size_t  space_in_bytes = ((unsigned int)space)<<log2_seg_size;
2455   char    fraction       = (space == 0) ? ' ' : (space_in_bytes >= granule_size-1) ? '*' : char('0'+10*space_in_bytes/granule_size);
2456   out->print("%c", fraction);
2457 }
2458 
2459 void CodeHeapState::print_age_single(outputStream* out, unsigned int age) {
2460   unsigned int indicator = 0;
2461   unsigned int age_range = 256;
2462   if (age > 0) {
2463     while ((age_range > 0) && (latest_compilation_id-age > latest_compilation_id/age_range)) {
2464       age_range /= 2;
2465       indicator += 1;
2466     }
2467     out->print("%c", char('0'+indicator));
2468   } else {
2469     out->print(" ");
2470   }
2471 }
2472 
2473 void CodeHeapState::print_line_delim(outputStream* out, outputStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
2474   if (ix % gpl == 0) {
2475     if (ix > 0) {
2476       ast->print("|");
2477     }
2478     ast->cr();
2479     assert(out == ast, "must use the same stream!");
2480 
2481     ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2482     ast->fill_to(19);
2483     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2484   }
2485 }
2486 
2487 void CodeHeapState::print_line_delim(outputStream* out, bufferedStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
2488   assert(out != ast, "must not use the same stream!");
2489   if (ix % gpl == 0) {
2490     if (ix > 0) {
2491       ast->print("|");
2492     }
2493     ast->cr();
2494 
2495     // can't use BUFFEREDSTREAM_FLUSH_IF("", 512) here.
2496     // can't use this expression. bufferedStream::capacity() does not exist.
2497     // if ((ast->capacity() - ast->size()) < 512) {
2498     // Assume instead that default bufferedStream capacity (4K) was used.
2499     if (ast->size() > 3*K) {
2500       ttyLocker ttyl;
2501       out->print("%s", ast->as_string());
2502       ast->reset();
2503     }
2504 
2505     ast->print(INTPTR_FORMAT, p2i(low_bound + ix*granule_size));
2506     ast->fill_to(19);
2507     ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
2508   }
2509 }
2510 
2511 // Find out which blob type we have at hand.
2512 // Return "noType" if anything abnormal is detected.
2513 CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) {
2514   if (cb != NULL) {
2515     if (cb->is_runtime_stub())                return runtimeStub;
2516     if (cb->is_deoptimization_stub())         return deoptimizationStub;
2517     if (cb->is_uncommon_trap_stub())          return uncommonTrapStub;
2518     if (cb->is_exception_stub())              return exceptionStub;
2519     if (cb->is_safepoint_stub())              return safepointStub;
2520     if (cb->is_adapter_blob())                return adapterBlob;
2521     if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob;
2522     if (cb->is_buffer_blob())                 return bufferBlob;
2523 
2524     //---<  access these fields only if we own CodeCache_lock and Compile_lock  >---
2525     // Should be ensured by caller. aggregate() and print_names() do that.
2526     if (holding_required_locks()) {
2527       nmethod*  nm = cb->as_nmethod_or_null();
2528       if (nm != NULL) { // no is_readable check required, nm = (nmethod*)cb.
2529         if (nm->is_zombie())        return nMethod_dead;
2530         if (nm->is_unloaded())      return nMethod_unloaded;
2531         if (nm->is_in_use())        return nMethod_inuse;
2532         if (nm->is_alive() && !(nm->is_not_entrant()))   return nMethod_notused;
2533         if (nm->is_alive())         return nMethod_alive;
2534         return nMethod_dead;
2535       }
2536     }
2537   }
2538   return noType;
2539 }
2540 
2541 // make sure the blob at hand is not garbage.
2542 bool CodeHeapState::blob_access_is_safe(CodeBlob* this_blob) {
2543   return (this_blob != NULL) && // a blob must have been found, obviously
2544          (this_blob->header_size() >= 0) &&
2545          (this_blob->relocation_size() >= 0) &&
2546          ((address)this_blob + this_blob->header_size() == (address)(this_blob->relocation_begin())) &&
2547          ((address)this_blob + CodeBlob::align_code_offset(this_blob->header_size() + this_blob->relocation_size()) == (address)(this_blob->content_begin()));
2548 }
2549 
2550 // make sure the nmethod at hand (and the linked method) is not garbage.
2551 bool CodeHeapState::nmethod_access_is_safe(nmethod* nm) {
2552   Method* method = (nm == NULL) ? NULL : nm->method(); // nm->method() was found to be uninitialized, i.e. != NULL, but invalid.
2553   return (nm != NULL) && (method != NULL) && nm->is_alive() && (method->signature() != NULL);
2554 }
2555 
2556 bool CodeHeapState::holding_required_locks() {
2557   return SafepointSynchronize::is_at_safepoint() ||
2558         (CodeCache_lock->owned_by_self() && Compile_lock->owned_by_self());
2559 }