1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "code/compiledMethod.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/compiledIC.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/abstractCompiler.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "compiler/disassembler.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/interpreterRuntime.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "logging/log.hpp"
  45 #include "memory/metaspaceShared.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.hpp"
  48 #include "oops/klass.hpp"
  49 #include "oops/method.inline.hpp"
  50 #include "oops/objArrayKlass.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "prims/forte.hpp"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "prims/methodHandles.hpp"
  55 #include "prims/nativeLookup.hpp"
  56 #include "runtime/arguments.hpp"
  57 #include "runtime/atomic.hpp"
  58 #include "runtime/biasedLocking.hpp"
  59 #include "runtime/compilationPolicy.hpp"
  60 #include "runtime/frame.inline.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/init.hpp"
  63 #include "runtime/interfaceSupport.inline.hpp"
  64 #include "runtime/java.hpp"
  65 #include "runtime/javaCalls.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/vframe.inline.hpp"
  69 #include "runtime/vframeArray.hpp"
  70 #include "utilities/copy.hpp"
  71 #include "utilities/dtrace.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/hashtable.inline.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/xmlstream.hpp"
  76 #ifdef COMPILER1
  77 #include "c1/c1_Runtime1.hpp"
  78 #endif
  79 
  80 // Shared stub locations
  81 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  82 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  83 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  84 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  85 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  87 address             SharedRuntime::_resolve_static_call_entry;
  88 
  89 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  90 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  93 
  94 #ifdef COMPILER2
  95 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  96 #endif // COMPILER2
  97 
  98 
  99 //----------------------------generate_stubs-----------------------------------
 100 void SharedRuntime::generate_stubs() {
 101   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 102   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 103   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 104   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 105   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 106   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 107   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 108 
 109 #if COMPILER2_OR_JVMCI
 110   // Vectors are generated only by C2 and JVMCI.
 111   bool support_wide = is_wide_vector(MaxVectorSize);
 112   if (support_wide) {
 113     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 114   }
 115 #endif // COMPILER2_OR_JVMCI
 116   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 117   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 118 
 119   generate_deopt_blob();
 120 
 121 #ifdef COMPILER2
 122   generate_uncommon_trap_blob();
 123 #endif // COMPILER2
 124 }
 125 
 126 #include <math.h>
 127 
 128 // Implementation of SharedRuntime
 129 
 130 #ifndef PRODUCT
 131 // For statistics
 132 int SharedRuntime::_ic_miss_ctr = 0;
 133 int SharedRuntime::_wrong_method_ctr = 0;
 134 int SharedRuntime::_resolve_static_ctr = 0;
 135 int SharedRuntime::_resolve_virtual_ctr = 0;
 136 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 137 int SharedRuntime::_implicit_null_throws = 0;
 138 int SharedRuntime::_implicit_div0_throws = 0;
 139 int SharedRuntime::_throw_null_ctr = 0;
 140 
 141 int SharedRuntime::_nof_normal_calls = 0;
 142 int SharedRuntime::_nof_optimized_calls = 0;
 143 int SharedRuntime::_nof_inlined_calls = 0;
 144 int SharedRuntime::_nof_megamorphic_calls = 0;
 145 int SharedRuntime::_nof_static_calls = 0;
 146 int SharedRuntime::_nof_inlined_static_calls = 0;
 147 int SharedRuntime::_nof_interface_calls = 0;
 148 int SharedRuntime::_nof_optimized_interface_calls = 0;
 149 int SharedRuntime::_nof_inlined_interface_calls = 0;
 150 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 151 int SharedRuntime::_nof_removable_exceptions = 0;
 152 
 153 int SharedRuntime::_new_instance_ctr=0;
 154 int SharedRuntime::_new_array_ctr=0;
 155 int SharedRuntime::_multi1_ctr=0;
 156 int SharedRuntime::_multi2_ctr=0;
 157 int SharedRuntime::_multi3_ctr=0;
 158 int SharedRuntime::_multi4_ctr=0;
 159 int SharedRuntime::_multi5_ctr=0;
 160 int SharedRuntime::_mon_enter_stub_ctr=0;
 161 int SharedRuntime::_mon_exit_stub_ctr=0;
 162 int SharedRuntime::_mon_enter_ctr=0;
 163 int SharedRuntime::_mon_exit_ctr=0;
 164 int SharedRuntime::_partial_subtype_ctr=0;
 165 int SharedRuntime::_jbyte_array_copy_ctr=0;
 166 int SharedRuntime::_jshort_array_copy_ctr=0;
 167 int SharedRuntime::_jint_array_copy_ctr=0;
 168 int SharedRuntime::_jlong_array_copy_ctr=0;
 169 int SharedRuntime::_oop_array_copy_ctr=0;
 170 int SharedRuntime::_checkcast_array_copy_ctr=0;
 171 int SharedRuntime::_unsafe_array_copy_ctr=0;
 172 int SharedRuntime::_generic_array_copy_ctr=0;
 173 int SharedRuntime::_slow_array_copy_ctr=0;
 174 int SharedRuntime::_find_handler_ctr=0;
 175 int SharedRuntime::_rethrow_ctr=0;
 176 
 177 int     SharedRuntime::_ICmiss_index                    = 0;
 178 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 179 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 180 
 181 
 182 void SharedRuntime::trace_ic_miss(address at) {
 183   for (int i = 0; i < _ICmiss_index; i++) {
 184     if (_ICmiss_at[i] == at) {
 185       _ICmiss_count[i]++;
 186       return;
 187     }
 188   }
 189   int index = _ICmiss_index++;
 190   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 191   _ICmiss_at[index] = at;
 192   _ICmiss_count[index] = 1;
 193 }
 194 
 195 void SharedRuntime::print_ic_miss_histogram() {
 196   if (ICMissHistogram) {
 197     tty->print_cr("IC Miss Histogram:");
 198     int tot_misses = 0;
 199     for (int i = 0; i < _ICmiss_index; i++) {
 200       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 201       tot_misses += _ICmiss_count[i];
 202     }
 203     tty->print_cr("Total IC misses: %7d", tot_misses);
 204   }
 205 }
 206 #endif // PRODUCT
 207 
 208 
 209 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 210   return x * y;
 211 JRT_END
 212 
 213 
 214 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 215   if (x == min_jlong && y == CONST64(-1)) {
 216     return x;
 217   } else {
 218     return x / y;
 219   }
 220 JRT_END
 221 
 222 
 223 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 224   if (x == min_jlong && y == CONST64(-1)) {
 225     return 0;
 226   } else {
 227     return x % y;
 228   }
 229 JRT_END
 230 
 231 
 232 const juint  float_sign_mask  = 0x7FFFFFFF;
 233 const juint  float_infinity   = 0x7F800000;
 234 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 235 const julong double_infinity  = CONST64(0x7FF0000000000000);
 236 
 237 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 238 #ifdef _WIN64
 239   // 64-bit Windows on amd64 returns the wrong values for
 240   // infinity operands.
 241   union { jfloat f; juint i; } xbits, ybits;
 242   xbits.f = x;
 243   ybits.f = y;
 244   // x Mod Infinity == x unless x is infinity
 245   if (((xbits.i & float_sign_mask) != float_infinity) &&
 246        ((ybits.i & float_sign_mask) == float_infinity) ) {
 247     return x;
 248   }
 249   return ((jfloat)fmod_winx64((double)x, (double)y));
 250 #else
 251   return ((jfloat)fmod((double)x,(double)y));
 252 #endif
 253 JRT_END
 254 
 255 
 256 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 257 #ifdef _WIN64
 258   union { jdouble d; julong l; } xbits, ybits;
 259   xbits.d = x;
 260   ybits.d = y;
 261   // x Mod Infinity == x unless x is infinity
 262   if (((xbits.l & double_sign_mask) != double_infinity) &&
 263        ((ybits.l & double_sign_mask) == double_infinity) ) {
 264     return x;
 265   }
 266   return ((jdouble)fmod_winx64((double)x, (double)y));
 267 #else
 268   return ((jdouble)fmod((double)x,(double)y));
 269 #endif
 270 JRT_END
 271 
 272 #ifdef __SOFTFP__
 273 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 274   return x + y;
 275 JRT_END
 276 
 277 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 278   return x - y;
 279 JRT_END
 280 
 281 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 282   return x * y;
 283 JRT_END
 284 
 285 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 286   return x / y;
 287 JRT_END
 288 
 289 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 290   return x + y;
 291 JRT_END
 292 
 293 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 294   return x - y;
 295 JRT_END
 296 
 297 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 298   return x * y;
 299 JRT_END
 300 
 301 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 302   return x / y;
 303 JRT_END
 304 
 305 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 306   return (jfloat)x;
 307 JRT_END
 308 
 309 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 310   return (jdouble)x;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 314   return (jdouble)x;
 315 JRT_END
 316 
 317 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 318   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 319 JRT_END
 320 
 321 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 322   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 323 JRT_END
 324 
 325 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 326   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 327 JRT_END
 328 
 329 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 330   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 331 JRT_END
 332 
 333 // Functions to return the opposite of the aeabi functions for nan.
 334 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 335   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 336 JRT_END
 337 
 338 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 339   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 340 JRT_END
 341 
 342 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 343   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 344 JRT_END
 345 
 346 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 347   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 348 JRT_END
 349 
 350 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 351   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 355   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 359   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 363   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 // Intrinsics make gcc generate code for these.
 367 float  SharedRuntime::fneg(float f)   {
 368   return -f;
 369 }
 370 
 371 double SharedRuntime::dneg(double f)  {
 372   return -f;
 373 }
 374 
 375 #endif // __SOFTFP__
 376 
 377 #if defined(__SOFTFP__) || defined(E500V2)
 378 // Intrinsics make gcc generate code for these.
 379 double SharedRuntime::dabs(double f)  {
 380   return (f <= (double)0.0) ? (double)0.0 - f : f;
 381 }
 382 
 383 #endif
 384 
 385 #if defined(__SOFTFP__) || defined(PPC)
 386 double SharedRuntime::dsqrt(double f) {
 387   return sqrt(f);
 388 }
 389 #endif
 390 
 391 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 392   if (g_isnan(x))
 393     return 0;
 394   if (x >= (jfloat) max_jint)
 395     return max_jint;
 396   if (x <= (jfloat) min_jint)
 397     return min_jint;
 398   return (jint) x;
 399 JRT_END
 400 
 401 
 402 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 403   if (g_isnan(x))
 404     return 0;
 405   if (x >= (jfloat) max_jlong)
 406     return max_jlong;
 407   if (x <= (jfloat) min_jlong)
 408     return min_jlong;
 409   return (jlong) x;
 410 JRT_END
 411 
 412 
 413 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 414   if (g_isnan(x))
 415     return 0;
 416   if (x >= (jdouble) max_jint)
 417     return max_jint;
 418   if (x <= (jdouble) min_jint)
 419     return min_jint;
 420   return (jint) x;
 421 JRT_END
 422 
 423 
 424 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 425   if (g_isnan(x))
 426     return 0;
 427   if (x >= (jdouble) max_jlong)
 428     return max_jlong;
 429   if (x <= (jdouble) min_jlong)
 430     return min_jlong;
 431   return (jlong) x;
 432 JRT_END
 433 
 434 
 435 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 436   return (jfloat)x;
 437 JRT_END
 438 
 439 
 440 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 441   return (jfloat)x;
 442 JRT_END
 443 
 444 
 445 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 446   return (jdouble)x;
 447 JRT_END
 448 
 449 // Exception handling across interpreter/compiler boundaries
 450 //
 451 // exception_handler_for_return_address(...) returns the continuation address.
 452 // The continuation address is the entry point of the exception handler of the
 453 // previous frame depending on the return address.
 454 
 455 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 456   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 457   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 458 
 459   // Reset method handle flag.
 460   thread->set_is_method_handle_return(false);
 461 
 462 #if INCLUDE_JVMCI
 463   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 464   // and other exception handler continuations do not read it
 465   thread->set_exception_pc(NULL);
 466 #endif // INCLUDE_JVMCI
 467 
 468   // The fastest case first
 469   CodeBlob* blob = CodeCache::find_blob(return_address);
 470   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 471   if (nm != NULL) {
 472     // Set flag if return address is a method handle call site.
 473     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 474     // native nmethods don't have exception handlers
 475     assert(!nm->is_native_method(), "no exception handler");
 476     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 477     if (nm->is_deopt_pc(return_address)) {
 478       // If we come here because of a stack overflow, the stack may be
 479       // unguarded. Reguard the stack otherwise if we return to the
 480       // deopt blob and the stack bang causes a stack overflow we
 481       // crash.
 482       bool guard_pages_enabled = thread->stack_guards_enabled();
 483       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 484       if (thread->reserved_stack_activation() != thread->stack_base()) {
 485         thread->set_reserved_stack_activation(thread->stack_base());
 486       }
 487       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 488       return SharedRuntime::deopt_blob()->unpack_with_exception();
 489     } else {
 490       return nm->exception_begin();
 491     }
 492   }
 493 
 494   // Entry code
 495   if (StubRoutines::returns_to_call_stub(return_address)) {
 496     return StubRoutines::catch_exception_entry();
 497   }
 498   // Interpreted code
 499   if (Interpreter::contains(return_address)) {
 500     return Interpreter::rethrow_exception_entry();
 501   }
 502 
 503   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 504   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 505 
 506 #ifndef PRODUCT
 507   { ResourceMark rm;
 508     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 509     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 510     tty->print_cr("b) other problem");
 511   }
 512 #endif // PRODUCT
 513 
 514   ShouldNotReachHere();
 515   return NULL;
 516 }
 517 
 518 
 519 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 520   return raw_exception_handler_for_return_address(thread, return_address);
 521 JRT_END
 522 
 523 
 524 address SharedRuntime::get_poll_stub(address pc) {
 525   address stub;
 526   // Look up the code blob
 527   CodeBlob *cb = CodeCache::find_blob(pc);
 528 
 529   // Should be an nmethod
 530   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 531 
 532   // Look up the relocation information
 533   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 534     "safepoint polling: type must be poll");
 535 
 536 #ifdef ASSERT
 537   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 538     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 539     Disassembler::decode(cb);
 540     fatal("Only polling locations are used for safepoint");
 541   }
 542 #endif
 543 
 544   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 545   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 546   if (at_poll_return) {
 547     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 548            "polling page return stub not created yet");
 549     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 550   } else if (has_wide_vectors) {
 551     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 552            "polling page vectors safepoint stub not created yet");
 553     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 554   } else {
 555     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 556            "polling page safepoint stub not created yet");
 557     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 558   }
 559   log_debug(safepoint)("... found polling page %s exception at pc = "
 560                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 561                        at_poll_return ? "return" : "loop",
 562                        (intptr_t)pc, (intptr_t)stub);
 563   return stub;
 564 }
 565 
 566 
 567 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 568   assert(caller.is_interpreted_frame(), "");
 569   int args_size = ArgumentSizeComputer(sig).size() + 1;
 570   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 571   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 572   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 573   return result;
 574 }
 575 
 576 
 577 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 578   if (JvmtiExport::can_post_on_exceptions()) {
 579     vframeStream vfst(thread, true);
 580     methodHandle method = methodHandle(thread, vfst.method());
 581     address bcp = method()->bcp_from(vfst.bci());
 582     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 583   }
 584 
 585 #if INCLUDE_JVMCI
 586   if (EnableJVMCI && UseJVMCICompiler) {
 587     vframeStream vfst(thread, true);
 588     methodHandle method = methodHandle(thread, vfst.method());
 589     int bci = vfst.bci();
 590     MethodData* trap_mdo = method->method_data();
 591     if (trap_mdo != NULL) {
 592       // Set exception_seen if the exceptional bytecode is an invoke
 593       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
 594       if (call.is_valid()) {
 595         ResourceMark rm(thread);
 596         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, NULL);
 597         if (pdata != NULL && pdata->is_BitData()) {
 598           BitData* bit_data = (BitData*) pdata;
 599           bit_data->set_exception_seen();
 600         }
 601       }
 602     }
 603   }
 604 #endif
 605 
 606   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 607 }
 608 
 609 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 610   Handle h_exception = Exceptions::new_exception(thread, name, message);
 611   throw_and_post_jvmti_exception(thread, h_exception);
 612 }
 613 
 614 // The interpreter code to call this tracing function is only
 615 // called/generated when UL is on for redefine, class and has the right level
 616 // and tags. Since obsolete methods are never compiled, we don't have
 617 // to modify the compilers to generate calls to this function.
 618 //
 619 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 620     JavaThread* thread, Method* method))
 621   if (method->is_obsolete()) {
 622     // We are calling an obsolete method, but this is not necessarily
 623     // an error. Our method could have been redefined just after we
 624     // fetched the Method* from the constant pool.
 625     ResourceMark rm;
 626     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 627   }
 628   return 0;
 629 JRT_END
 630 
 631 // ret_pc points into caller; we are returning caller's exception handler
 632 // for given exception
 633 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 634                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 635   assert(cm != NULL, "must exist");
 636   ResourceMark rm;
 637 
 638 #if INCLUDE_JVMCI
 639   if (cm->is_compiled_by_jvmci()) {
 640     // lookup exception handler for this pc
 641     int catch_pco = ret_pc - cm->code_begin();
 642     ExceptionHandlerTable table(cm);
 643     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 644     if (t != NULL) {
 645       return cm->code_begin() + t->pco();
 646     } else {
 647       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 648     }
 649   }
 650 #endif // INCLUDE_JVMCI
 651 
 652   nmethod* nm = cm->as_nmethod();
 653   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 654   // determine handler bci, if any
 655   EXCEPTION_MARK;
 656 
 657   int handler_bci = -1;
 658   int scope_depth = 0;
 659   if (!force_unwind) {
 660     int bci = sd->bci();
 661     bool recursive_exception = false;
 662     do {
 663       bool skip_scope_increment = false;
 664       // exception handler lookup
 665       Klass* ek = exception->klass();
 666       methodHandle mh(THREAD, sd->method());
 667       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 668       if (HAS_PENDING_EXCEPTION) {
 669         recursive_exception = true;
 670         // We threw an exception while trying to find the exception handler.
 671         // Transfer the new exception to the exception handle which will
 672         // be set into thread local storage, and do another lookup for an
 673         // exception handler for this exception, this time starting at the
 674         // BCI of the exception handler which caused the exception to be
 675         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 676         // argument to ensure that the correct exception is thrown (4870175).
 677         recursive_exception_occurred = true;
 678         exception = Handle(THREAD, PENDING_EXCEPTION);
 679         CLEAR_PENDING_EXCEPTION;
 680         if (handler_bci >= 0) {
 681           bci = handler_bci;
 682           handler_bci = -1;
 683           skip_scope_increment = true;
 684         }
 685       }
 686       else {
 687         recursive_exception = false;
 688       }
 689       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 690         sd = sd->sender();
 691         if (sd != NULL) {
 692           bci = sd->bci();
 693         }
 694         ++scope_depth;
 695       }
 696     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 697   }
 698 
 699   // found handling method => lookup exception handler
 700   int catch_pco = ret_pc - nm->code_begin();
 701 
 702   ExceptionHandlerTable table(nm);
 703   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 704   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 705     // Allow abbreviated catch tables.  The idea is to allow a method
 706     // to materialize its exceptions without committing to the exact
 707     // routing of exceptions.  In particular this is needed for adding
 708     // a synthetic handler to unlock monitors when inlining
 709     // synchronized methods since the unlock path isn't represented in
 710     // the bytecodes.
 711     t = table.entry_for(catch_pco, -1, 0);
 712   }
 713 
 714 #ifdef COMPILER1
 715   if (t == NULL && nm->is_compiled_by_c1()) {
 716     assert(nm->unwind_handler_begin() != NULL, "");
 717     return nm->unwind_handler_begin();
 718   }
 719 #endif
 720 
 721   if (t == NULL) {
 722     ttyLocker ttyl;
 723     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 724     tty->print_cr("   Exception:");
 725     exception->print();
 726     tty->cr();
 727     tty->print_cr(" Compiled exception table :");
 728     table.print();
 729     nm->print_code();
 730     guarantee(false, "missing exception handler");
 731     return NULL;
 732   }
 733 
 734   return nm->code_begin() + t->pco();
 735 }
 736 
 737 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 738   // These errors occur only at call sites
 739   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 740 JRT_END
 741 
 742 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 743   // These errors occur only at call sites
 744   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 745 JRT_END
 746 
 747 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 748   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 749 JRT_END
 750 
 751 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 752   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 753 JRT_END
 754 
 755 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 756   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 757   // cache sites (when the callee activation is not yet set up) so we are at a call site
 758   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 759 JRT_END
 760 
 761 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 762   throw_StackOverflowError_common(thread, false);
 763 JRT_END
 764 
 765 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 766   throw_StackOverflowError_common(thread, true);
 767 JRT_END
 768 
 769 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 770   // We avoid using the normal exception construction in this case because
 771   // it performs an upcall to Java, and we're already out of stack space.
 772   Thread* THREAD = thread;
 773   Klass* k = SystemDictionary::StackOverflowError_klass();
 774   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 775   if (delayed) {
 776     java_lang_Throwable::set_message(exception_oop,
 777                                      Universe::delayed_stack_overflow_error_message());
 778   }
 779   Handle exception (thread, exception_oop);
 780   if (StackTraceInThrowable) {
 781     java_lang_Throwable::fill_in_stack_trace(exception);
 782   }
 783   // Increment counter for hs_err file reporting
 784   Atomic::inc(&Exceptions::_stack_overflow_errors);
 785   throw_and_post_jvmti_exception(thread, exception);
 786 }
 787 
 788 #if INCLUDE_JVMCI
 789 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 790   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 791   thread->set_jvmci_implicit_exception_pc(pc);
 792   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 793   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 794 }
 795 #endif // INCLUDE_JVMCI
 796 
 797 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 798                                                            address pc,
 799                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 800 {
 801   address target_pc = NULL;
 802 
 803   if (Interpreter::contains(pc)) {
 804 #ifdef CC_INTERP
 805     // C++ interpreter doesn't throw implicit exceptions
 806     ShouldNotReachHere();
 807 #else
 808     switch (exception_kind) {
 809       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 810       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 811       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 812       default:                      ShouldNotReachHere();
 813     }
 814 #endif // !CC_INTERP
 815   } else {
 816     switch (exception_kind) {
 817       case STACK_OVERFLOW: {
 818         // Stack overflow only occurs upon frame setup; the callee is
 819         // going to be unwound. Dispatch to a shared runtime stub
 820         // which will cause the StackOverflowError to be fabricated
 821         // and processed.
 822         // Stack overflow should never occur during deoptimization:
 823         // the compiled method bangs the stack by as much as the
 824         // interpreter would need in case of a deoptimization. The
 825         // deoptimization blob and uncommon trap blob bang the stack
 826         // in a debug VM to verify the correctness of the compiled
 827         // method stack banging.
 828         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 829         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 830         return StubRoutines::throw_StackOverflowError_entry();
 831       }
 832 
 833       case IMPLICIT_NULL: {
 834         if (VtableStubs::contains(pc)) {
 835           // We haven't yet entered the callee frame. Fabricate an
 836           // exception and begin dispatching it in the caller. Since
 837           // the caller was at a call site, it's safe to destroy all
 838           // caller-saved registers, as these entry points do.
 839           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 840 
 841           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 842           if (vt_stub == NULL) return NULL;
 843 
 844           if (vt_stub->is_abstract_method_error(pc)) {
 845             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 846             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 847             // Instead of throwing the abstract method error here directly, we re-resolve
 848             // and will throw the AbstractMethodError during resolve. As a result, we'll
 849             // get a more detailed error message.
 850             return SharedRuntime::get_handle_wrong_method_stub();
 851           } else {
 852             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 853             // Assert that the signal comes from the expected location in stub code.
 854             assert(vt_stub->is_null_pointer_exception(pc),
 855                    "obtained signal from unexpected location in stub code");
 856             return StubRoutines::throw_NullPointerException_at_call_entry();
 857           }
 858         } else {
 859           CodeBlob* cb = CodeCache::find_blob(pc);
 860 
 861           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 862           if (cb == NULL) return NULL;
 863 
 864           // Exception happened in CodeCache. Must be either:
 865           // 1. Inline-cache check in C2I handler blob,
 866           // 2. Inline-cache check in nmethod, or
 867           // 3. Implicit null exception in nmethod
 868 
 869           if (!cb->is_compiled()) {
 870             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 871             if (!is_in_blob) {
 872               // Allow normal crash reporting to handle this
 873               return NULL;
 874             }
 875             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 876             // There is no handler here, so we will simply unwind.
 877             return StubRoutines::throw_NullPointerException_at_call_entry();
 878           }
 879 
 880           // Otherwise, it's a compiled method.  Consult its exception handlers.
 881           CompiledMethod* cm = (CompiledMethod*)cb;
 882           if (cm->inlinecache_check_contains(pc)) {
 883             // exception happened inside inline-cache check code
 884             // => the nmethod is not yet active (i.e., the frame
 885             // is not set up yet) => use return address pushed by
 886             // caller => don't push another return address
 887             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 888             return StubRoutines::throw_NullPointerException_at_call_entry();
 889           }
 890 
 891           if (cm->method()->is_method_handle_intrinsic()) {
 892             // exception happened inside MH dispatch code, similar to a vtable stub
 893             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 894             return StubRoutines::throw_NullPointerException_at_call_entry();
 895           }
 896 
 897 #ifndef PRODUCT
 898           _implicit_null_throws++;
 899 #endif
 900 #if INCLUDE_JVMCI
 901           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 902             // If there's no PcDesc then we'll die way down inside of
 903             // deopt instead of just getting normal error reporting,
 904             // so only go there if it will succeed.
 905             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 906           } else {
 907 #endif // INCLUDE_JVMCI
 908           assert (cm->is_nmethod(), "Expect nmethod");
 909           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 910 #if INCLUDE_JVMCI
 911           }
 912 #endif // INCLUDE_JVMCI
 913           // If there's an unexpected fault, target_pc might be NULL,
 914           // in which case we want to fall through into the normal
 915           // error handling code.
 916         }
 917 
 918         break; // fall through
 919       }
 920 
 921 
 922       case IMPLICIT_DIVIDE_BY_ZERO: {
 923         CompiledMethod* cm = CodeCache::find_compiled(pc);
 924         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 925 #ifndef PRODUCT
 926         _implicit_div0_throws++;
 927 #endif
 928 #if INCLUDE_JVMCI
 929         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 930           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 931         } else {
 932 #endif // INCLUDE_JVMCI
 933         target_pc = cm->continuation_for_implicit_exception(pc);
 934 #if INCLUDE_JVMCI
 935         }
 936 #endif // INCLUDE_JVMCI
 937         // If there's an unexpected fault, target_pc might be NULL,
 938         // in which case we want to fall through into the normal
 939         // error handling code.
 940         break; // fall through
 941       }
 942 
 943       default: ShouldNotReachHere();
 944     }
 945 
 946     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 947 
 948     if (exception_kind == IMPLICIT_NULL) {
 949 #ifndef PRODUCT
 950       // for AbortVMOnException flag
 951       Exceptions::debug_check_abort("java.lang.NullPointerException");
 952 #endif //PRODUCT
 953       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 954     } else {
 955 #ifndef PRODUCT
 956       // for AbortVMOnException flag
 957       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 958 #endif //PRODUCT
 959       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 960     }
 961     return target_pc;
 962   }
 963 
 964   ShouldNotReachHere();
 965   return NULL;
 966 }
 967 
 968 
 969 /**
 970  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 971  * installed in the native function entry of all native Java methods before
 972  * they get linked to their actual native methods.
 973  *
 974  * \note
 975  * This method actually never gets called!  The reason is because
 976  * the interpreter's native entries call NativeLookup::lookup() which
 977  * throws the exception when the lookup fails.  The exception is then
 978  * caught and forwarded on the return from NativeLookup::lookup() call
 979  * before the call to the native function.  This might change in the future.
 980  */
 981 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 982 {
 983   // We return a bad value here to make sure that the exception is
 984   // forwarded before we look at the return value.
 985   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 986 }
 987 JNI_END
 988 
 989 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 990   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 991 }
 992 
 993 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 994 #if INCLUDE_JVMCI
 995   if (!obj->klass()->has_finalizer()) {
 996     return;
 997   }
 998 #endif // INCLUDE_JVMCI
 999   assert(oopDesc::is_oop(obj), "must be a valid oop");
1000   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1001   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1002 JRT_END
1003 
1004 
1005 jlong SharedRuntime::get_java_tid(Thread* thread) {
1006   if (thread != NULL) {
1007     if (thread->is_Java_thread()) {
1008       oop obj = ((JavaThread*)thread)->threadObj();
1009       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1010     }
1011   }
1012   return 0;
1013 }
1014 
1015 /**
1016  * This function ought to be a void function, but cannot be because
1017  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1018  * 6254741.  Once that is fixed we can remove the dummy return value.
1019  */
1020 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1021   return dtrace_object_alloc_base(Thread::current(), o, size);
1022 }
1023 
1024 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1025   assert(DTraceAllocProbes, "wrong call");
1026   Klass* klass = o->klass();
1027   Symbol* name = klass->name();
1028   HOTSPOT_OBJECT_ALLOC(
1029                    get_java_tid(thread),
1030                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1031   return 0;
1032 }
1033 
1034 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1035     JavaThread* thread, Method* method))
1036   assert(DTraceMethodProbes, "wrong call");
1037   Symbol* kname = method->klass_name();
1038   Symbol* name = method->name();
1039   Symbol* sig = method->signature();
1040   HOTSPOT_METHOD_ENTRY(
1041       get_java_tid(thread),
1042       (char *) kname->bytes(), kname->utf8_length(),
1043       (char *) name->bytes(), name->utf8_length(),
1044       (char *) sig->bytes(), sig->utf8_length());
1045   return 0;
1046 JRT_END
1047 
1048 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1049     JavaThread* thread, Method* method))
1050   assert(DTraceMethodProbes, "wrong call");
1051   Symbol* kname = method->klass_name();
1052   Symbol* name = method->name();
1053   Symbol* sig = method->signature();
1054   HOTSPOT_METHOD_RETURN(
1055       get_java_tid(thread),
1056       (char *) kname->bytes(), kname->utf8_length(),
1057       (char *) name->bytes(), name->utf8_length(),
1058       (char *) sig->bytes(), sig->utf8_length());
1059   return 0;
1060 JRT_END
1061 
1062 
1063 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1064 // for a call current in progress, i.e., arguments has been pushed on stack
1065 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1066 // vtable updates, etc.  Caller frame must be compiled.
1067 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1068   ResourceMark rm(THREAD);
1069 
1070   // last java frame on stack (which includes native call frames)
1071   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1072 
1073   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1074 }
1075 
1076 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1077   CompiledMethod* caller = vfst.nm();
1078 
1079   nmethodLocker caller_lock(caller);
1080 
1081   address pc = vfst.frame_pc();
1082   { // Get call instruction under lock because another thread may be busy patching it.
1083     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1084     return caller->attached_method_before_pc(pc);
1085   }
1086   return NULL;
1087 }
1088 
1089 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1090 // for a call current in progress, i.e., arguments has been pushed on stack
1091 // but callee has not been invoked yet.  Caller frame must be compiled.
1092 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1093                                               vframeStream& vfst,
1094                                               Bytecodes::Code& bc,
1095                                               CallInfo& callinfo, TRAPS) {
1096   Handle receiver;
1097   Handle nullHandle;  //create a handy null handle for exception returns
1098 
1099   assert(!vfst.at_end(), "Java frame must exist");
1100 
1101   // Find caller and bci from vframe
1102   methodHandle caller(THREAD, vfst.method());
1103   int          bci   = vfst.bci();
1104 
1105   Bytecode_invoke bytecode(caller, bci);
1106   int bytecode_index = bytecode.index();
1107   bc = bytecode.invoke_code();
1108 
1109   methodHandle attached_method = extract_attached_method(vfst);
1110   if (attached_method.not_null()) {
1111     methodHandle callee = bytecode.static_target(CHECK_NH);
1112     vmIntrinsics::ID id = callee->intrinsic_id();
1113     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1114     // it attaches statically resolved method to the call site.
1115     if (MethodHandles::is_signature_polymorphic(id) &&
1116         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1117       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1118 
1119       // Adjust invocation mode according to the attached method.
1120       switch (bc) {
1121         case Bytecodes::_invokevirtual:
1122           if (attached_method->method_holder()->is_interface()) {
1123             bc = Bytecodes::_invokeinterface;
1124           }
1125           break;
1126         case Bytecodes::_invokeinterface:
1127           if (!attached_method->method_holder()->is_interface()) {
1128             bc = Bytecodes::_invokevirtual;
1129           }
1130           break;
1131         case Bytecodes::_invokehandle:
1132           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1133             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1134                                               : Bytecodes::_invokevirtual;
1135           }
1136           break;
1137         default:
1138           break;
1139       }
1140     }
1141   }
1142 
1143   assert(bc != Bytecodes::_illegal, "not initialized");
1144 
1145   bool has_receiver = bc != Bytecodes::_invokestatic &&
1146                       bc != Bytecodes::_invokedynamic &&
1147                       bc != Bytecodes::_invokehandle;
1148 
1149   // Find receiver for non-static call
1150   if (has_receiver) {
1151     // This register map must be update since we need to find the receiver for
1152     // compiled frames. The receiver might be in a register.
1153     RegisterMap reg_map2(thread);
1154     frame stubFrame   = thread->last_frame();
1155     // Caller-frame is a compiled frame
1156     frame callerFrame = stubFrame.sender(&reg_map2);
1157 
1158     if (attached_method.is_null()) {
1159       methodHandle callee = bytecode.static_target(CHECK_NH);
1160       if (callee.is_null()) {
1161         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1162       }
1163     }
1164 
1165     // Retrieve from a compiled argument list
1166     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1167 
1168     if (receiver.is_null()) {
1169       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1170     }
1171   }
1172 
1173   // Resolve method
1174   if (attached_method.not_null()) {
1175     // Parameterized by attached method.
1176     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1177   } else {
1178     // Parameterized by bytecode.
1179     constantPoolHandle constants(THREAD, caller->constants());
1180     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1181   }
1182 
1183 #ifdef ASSERT
1184   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1185   if (has_receiver) {
1186     assert(receiver.not_null(), "should have thrown exception");
1187     Klass* receiver_klass = receiver->klass();
1188     Klass* rk = NULL;
1189     if (attached_method.not_null()) {
1190       // In case there's resolved method attached, use its holder during the check.
1191       rk = attached_method->method_holder();
1192     } else {
1193       // Klass is already loaded.
1194       constantPoolHandle constants(THREAD, caller->constants());
1195       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1196     }
1197     Klass* static_receiver_klass = rk;
1198     methodHandle callee = callinfo.selected_method();
1199     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1200            "actual receiver must be subclass of static receiver klass");
1201     if (receiver_klass->is_instance_klass()) {
1202       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1203         tty->print_cr("ERROR: Klass not yet initialized!!");
1204         receiver_klass->print();
1205       }
1206       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1207     }
1208   }
1209 #endif
1210 
1211   return receiver;
1212 }
1213 
1214 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1215   ResourceMark rm(THREAD);
1216   // We need first to check if any Java activations (compiled, interpreted)
1217   // exist on the stack since last JavaCall.  If not, we need
1218   // to get the target method from the JavaCall wrapper.
1219   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1220   methodHandle callee_method;
1221   if (vfst.at_end()) {
1222     // No Java frames were found on stack since we did the JavaCall.
1223     // Hence the stack can only contain an entry_frame.  We need to
1224     // find the target method from the stub frame.
1225     RegisterMap reg_map(thread, false);
1226     frame fr = thread->last_frame();
1227     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1228     fr = fr.sender(&reg_map);
1229     assert(fr.is_entry_frame(), "must be");
1230     // fr is now pointing to the entry frame.
1231     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1232   } else {
1233     Bytecodes::Code bc;
1234     CallInfo callinfo;
1235     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1236     callee_method = callinfo.selected_method();
1237   }
1238   assert(callee_method()->is_method(), "must be");
1239   return callee_method;
1240 }
1241 
1242 // Resolves a call.
1243 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1244                                            bool is_virtual,
1245                                            bool is_optimized, TRAPS) {
1246   methodHandle callee_method;
1247   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1248   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1249     int retry_count = 0;
1250     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1251            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1252       // If has a pending exception then there is no need to re-try to
1253       // resolve this method.
1254       // If the method has been redefined, we need to try again.
1255       // Hack: we have no way to update the vtables of arrays, so don't
1256       // require that java.lang.Object has been updated.
1257 
1258       // It is very unlikely that method is redefined more than 100 times
1259       // in the middle of resolve. If it is looping here more than 100 times
1260       // means then there could be a bug here.
1261       guarantee((retry_count++ < 100),
1262                 "Could not resolve to latest version of redefined method");
1263       // method is redefined in the middle of resolve so re-try.
1264       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1265     }
1266   }
1267   return callee_method;
1268 }
1269 
1270 // Resolves a call.  The compilers generate code for calls that go here
1271 // and are patched with the real destination of the call.
1272 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1273                                            bool is_virtual,
1274                                            bool is_optimized, TRAPS) {
1275 
1276   ResourceMark rm(thread);
1277   RegisterMap cbl_map(thread, false);
1278   frame caller_frame = thread->last_frame().sender(&cbl_map);
1279 
1280   CodeBlob* caller_cb = caller_frame.cb();
1281   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1282   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1283 
1284   // make sure caller is not getting deoptimized
1285   // and removed before we are done with it.
1286   // CLEANUP - with lazy deopt shouldn't need this lock
1287   nmethodLocker caller_lock(caller_nm);
1288 
1289   // determine call info & receiver
1290   // note: a) receiver is NULL for static calls
1291   //       b) an exception is thrown if receiver is NULL for non-static calls
1292   CallInfo call_info;
1293   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1294   Handle receiver = find_callee_info(thread, invoke_code,
1295                                      call_info, CHECK_(methodHandle()));
1296   methodHandle callee_method = call_info.selected_method();
1297 
1298   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1299          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1300          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1301          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1302          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1303 
1304   assert(caller_nm->is_alive(), "It should be alive");
1305 
1306 #ifndef PRODUCT
1307   // tracing/debugging/statistics
1308   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1309                 (is_virtual) ? (&_resolve_virtual_ctr) :
1310                                (&_resolve_static_ctr);
1311   Atomic::inc(addr);
1312 
1313   if (TraceCallFixup) {
1314     ResourceMark rm(thread);
1315     tty->print("resolving %s%s (%s) call to",
1316       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1317       Bytecodes::name(invoke_code));
1318     callee_method->print_short_name(tty);
1319     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1320                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1321   }
1322 #endif
1323 
1324   // Do not patch call site for static call when the class is not
1325   // fully initialized.
1326   if (invoke_code == Bytecodes::_invokestatic &&
1327       !callee_method->method_holder()->is_initialized()) {
1328     assert(callee_method->method_holder()->is_linked(), "must be");
1329     return callee_method;
1330   }
1331 
1332   // JSR 292 key invariant:
1333   // If the resolved method is a MethodHandle invoke target, the call
1334   // site must be a MethodHandle call site, because the lambda form might tail-call
1335   // leaving the stack in a state unknown to either caller or callee
1336   // TODO detune for now but we might need it again
1337 //  assert(!callee_method->is_compiled_lambda_form() ||
1338 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1339 
1340   // Compute entry points. This might require generation of C2I converter
1341   // frames, so we cannot be holding any locks here. Furthermore, the
1342   // computation of the entry points is independent of patching the call.  We
1343   // always return the entry-point, but we only patch the stub if the call has
1344   // not been deoptimized.  Return values: For a virtual call this is an
1345   // (cached_oop, destination address) pair. For a static call/optimized
1346   // virtual this is just a destination address.
1347 
1348   StaticCallInfo static_call_info;
1349   CompiledICInfo virtual_call_info;
1350 
1351   // Make sure the callee nmethod does not get deoptimized and removed before
1352   // we are done patching the code.
1353   CompiledMethod* callee = callee_method->code();
1354 
1355   if (callee != NULL) {
1356     assert(callee->is_compiled(), "must be nmethod for patching");
1357   }
1358 
1359   if (callee != NULL && !callee->is_in_use()) {
1360     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1361     callee = NULL;
1362   }
1363   nmethodLocker nl_callee(callee);
1364 #ifdef ASSERT
1365   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1366 #endif
1367 
1368   bool is_nmethod = caller_nm->is_nmethod();
1369 
1370   if (is_virtual) {
1371     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1372     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1373     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1374     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1375                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1376                      CHECK_(methodHandle()));
1377   } else {
1378     // static call
1379     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1380   }
1381 
1382   // grab lock, check for deoptimization and potentially patch caller
1383   {
1384     MutexLocker ml_patch(CompiledIC_lock);
1385 
1386     // Lock blocks for safepoint during which both nmethods can change state.
1387 
1388     // Now that we are ready to patch if the Method* was redefined then
1389     // don't update call site and let the caller retry.
1390     // Don't update call site if callee nmethod was unloaded or deoptimized.
1391     // Don't update call site if callee nmethod was replaced by an other nmethod
1392     // which may happen when multiply alive nmethod (tiered compilation)
1393     // will be supported.
1394     if (!callee_method->is_old() &&
1395         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1396 #ifdef ASSERT
1397       // We must not try to patch to jump to an already unloaded method.
1398       if (dest_entry_point != 0) {
1399         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1400         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1401                "should not call unloaded nmethod");
1402       }
1403 #endif
1404       if (is_virtual) {
1405         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1406         if (inline_cache->is_clean()) {
1407           inline_cache->set_to_monomorphic(virtual_call_info);
1408         }
1409       } else {
1410         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1411         if (ssc->is_clean()) ssc->set(static_call_info);
1412       }
1413     }
1414 
1415   } // unlock CompiledIC_lock
1416 
1417   return callee_method;
1418 }
1419 
1420 
1421 // Inline caches exist only in compiled code
1422 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1423 #ifdef ASSERT
1424   RegisterMap reg_map(thread, false);
1425   frame stub_frame = thread->last_frame();
1426   assert(stub_frame.is_runtime_frame(), "sanity check");
1427   frame caller_frame = stub_frame.sender(&reg_map);
1428   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1429 #endif /* ASSERT */
1430 
1431   methodHandle callee_method;
1432   JRT_BLOCK
1433     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1434     // Return Method* through TLS
1435     thread->set_vm_result_2(callee_method());
1436   JRT_BLOCK_END
1437   // return compiled code entry point after potential safepoints
1438   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1439   return callee_method->verified_code_entry();
1440 JRT_END
1441 
1442 
1443 // Handle call site that has been made non-entrant
1444 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1445   // 6243940 We might end up in here if the callee is deoptimized
1446   // as we race to call it.  We don't want to take a safepoint if
1447   // the caller was interpreted because the caller frame will look
1448   // interpreted to the stack walkers and arguments are now
1449   // "compiled" so it is much better to make this transition
1450   // invisible to the stack walking code. The i2c path will
1451   // place the callee method in the callee_target. It is stashed
1452   // there because if we try and find the callee by normal means a
1453   // safepoint is possible and have trouble gc'ing the compiled args.
1454   RegisterMap reg_map(thread, false);
1455   frame stub_frame = thread->last_frame();
1456   assert(stub_frame.is_runtime_frame(), "sanity check");
1457   frame caller_frame = stub_frame.sender(&reg_map);
1458 
1459   if (caller_frame.is_interpreted_frame() ||
1460       caller_frame.is_entry_frame()) {
1461     Method* callee = thread->callee_target();
1462     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1463     thread->set_vm_result_2(callee);
1464     thread->set_callee_target(NULL);
1465     return callee->get_c2i_entry();
1466   }
1467 
1468   // Must be compiled to compiled path which is safe to stackwalk
1469   methodHandle callee_method;
1470   JRT_BLOCK
1471     // Force resolving of caller (if we called from compiled frame)
1472     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1473     thread->set_vm_result_2(callee_method());
1474   JRT_BLOCK_END
1475   // return compiled code entry point after potential safepoints
1476   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1477   return callee_method->verified_code_entry();
1478 JRT_END
1479 
1480 // Handle abstract method call
1481 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1482   // Verbose error message for AbstractMethodError.
1483   // Get the called method from the invoke bytecode.
1484   vframeStream vfst(thread, true);
1485   assert(!vfst.at_end(), "Java frame must exist");
1486   methodHandle caller(vfst.method());
1487   Bytecode_invoke invoke(caller, vfst.bci());
1488   DEBUG_ONLY( invoke.verify(); )
1489 
1490   // Find the compiled caller frame.
1491   RegisterMap reg_map(thread);
1492   frame stubFrame = thread->last_frame();
1493   assert(stubFrame.is_runtime_frame(), "must be");
1494   frame callerFrame = stubFrame.sender(&reg_map);
1495   assert(callerFrame.is_compiled_frame(), "must be");
1496 
1497   // Install exception and return forward entry.
1498   address res = StubRoutines::throw_AbstractMethodError_entry();
1499   JRT_BLOCK
1500     methodHandle callee = invoke.static_target(thread);
1501     if (!callee.is_null()) {
1502       oop recv = callerFrame.retrieve_receiver(&reg_map);
1503       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1504       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1505       res = StubRoutines::forward_exception_entry();
1506     }
1507   JRT_BLOCK_END
1508   return res;
1509 JRT_END
1510 
1511 
1512 // resolve a static call and patch code
1513 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1514   methodHandle callee_method;
1515   JRT_BLOCK
1516     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1517     thread->set_vm_result_2(callee_method());
1518   JRT_BLOCK_END
1519   // return compiled code entry point after potential safepoints
1520   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1521   return callee_method->verified_code_entry();
1522 JRT_END
1523 
1524 
1525 // resolve virtual call and update inline cache to monomorphic
1526 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1527   methodHandle callee_method;
1528   JRT_BLOCK
1529     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1530     thread->set_vm_result_2(callee_method());
1531   JRT_BLOCK_END
1532   // return compiled code entry point after potential safepoints
1533   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1534   return callee_method->verified_code_entry();
1535 JRT_END
1536 
1537 
1538 // Resolve a virtual call that can be statically bound (e.g., always
1539 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1540 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1541   methodHandle callee_method;
1542   JRT_BLOCK
1543     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1544     thread->set_vm_result_2(callee_method());
1545   JRT_BLOCK_END
1546   // return compiled code entry point after potential safepoints
1547   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1548   return callee_method->verified_code_entry();
1549 JRT_END
1550 
1551 
1552 
1553 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1554   ResourceMark rm(thread);
1555   CallInfo call_info;
1556   Bytecodes::Code bc;
1557 
1558   // receiver is NULL for static calls. An exception is thrown for NULL
1559   // receivers for non-static calls
1560   Handle receiver = find_callee_info(thread, bc, call_info,
1561                                      CHECK_(methodHandle()));
1562   // Compiler1 can produce virtual call sites that can actually be statically bound
1563   // If we fell thru to below we would think that the site was going megamorphic
1564   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1565   // we'd try and do a vtable dispatch however methods that can be statically bound
1566   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1567   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1568   // plain ic_miss) and the site will be converted to an optimized virtual call site
1569   // never to miss again. I don't believe C2 will produce code like this but if it
1570   // did this would still be the correct thing to do for it too, hence no ifdef.
1571   //
1572   if (call_info.resolved_method()->can_be_statically_bound()) {
1573     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1574     if (TraceCallFixup) {
1575       RegisterMap reg_map(thread, false);
1576       frame caller_frame = thread->last_frame().sender(&reg_map);
1577       ResourceMark rm(thread);
1578       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1579       callee_method->print_short_name(tty);
1580       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1581       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1582     }
1583     return callee_method;
1584   }
1585 
1586   methodHandle callee_method = call_info.selected_method();
1587 
1588   bool should_be_mono = false;
1589 
1590 #ifndef PRODUCT
1591   Atomic::inc(&_ic_miss_ctr);
1592 
1593   // Statistics & Tracing
1594   if (TraceCallFixup) {
1595     ResourceMark rm(thread);
1596     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1597     callee_method->print_short_name(tty);
1598     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1599   }
1600 
1601   if (ICMissHistogram) {
1602     MutexLocker m(VMStatistic_lock);
1603     RegisterMap reg_map(thread, false);
1604     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1605     // produce statistics under the lock
1606     trace_ic_miss(f.pc());
1607   }
1608 #endif
1609 
1610   // install an event collector so that when a vtable stub is created the
1611   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1612   // event can't be posted when the stub is created as locks are held
1613   // - instead the event will be deferred until the event collector goes
1614   // out of scope.
1615   JvmtiDynamicCodeEventCollector event_collector;
1616 
1617   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1618   { MutexLocker ml_patch (CompiledIC_lock);
1619     RegisterMap reg_map(thread, false);
1620     frame caller_frame = thread->last_frame().sender(&reg_map);
1621     CodeBlob* cb = caller_frame.cb();
1622     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1623     if (cb->is_compiled()) {
1624       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1625       bool should_be_mono = false;
1626       if (inline_cache->is_optimized()) {
1627         if (TraceCallFixup) {
1628           ResourceMark rm(thread);
1629           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1630           callee_method->print_short_name(tty);
1631           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1632         }
1633         should_be_mono = true;
1634       } else if (inline_cache->is_icholder_call()) {
1635         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1636         if (ic_oop != NULL) {
1637 
1638           if (receiver()->klass() == ic_oop->holder_klass()) {
1639             // This isn't a real miss. We must have seen that compiled code
1640             // is now available and we want the call site converted to a
1641             // monomorphic compiled call site.
1642             // We can't assert for callee_method->code() != NULL because it
1643             // could have been deoptimized in the meantime
1644             if (TraceCallFixup) {
1645               ResourceMark rm(thread);
1646               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1647               callee_method->print_short_name(tty);
1648               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1649             }
1650             should_be_mono = true;
1651           }
1652         }
1653       }
1654 
1655       if (should_be_mono) {
1656 
1657         // We have a path that was monomorphic but was going interpreted
1658         // and now we have (or had) a compiled entry. We correct the IC
1659         // by using a new icBuffer.
1660         CompiledICInfo info;
1661         Klass* receiver_klass = receiver()->klass();
1662         inline_cache->compute_monomorphic_entry(callee_method,
1663                                                 receiver_klass,
1664                                                 inline_cache->is_optimized(),
1665                                                 false, caller_nm->is_nmethod(),
1666                                                 info, CHECK_(methodHandle()));
1667         inline_cache->set_to_monomorphic(info);
1668       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1669         // Potential change to megamorphic
1670         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1671         if (!successful) {
1672           inline_cache->set_to_clean();
1673         }
1674       } else {
1675         // Either clean or megamorphic
1676       }
1677     } else {
1678       fatal("Unimplemented");
1679     }
1680   } // Release CompiledIC_lock
1681 
1682   return callee_method;
1683 }
1684 
1685 //
1686 // Resets a call-site in compiled code so it will get resolved again.
1687 // This routines handles both virtual call sites, optimized virtual call
1688 // sites, and static call sites. Typically used to change a call sites
1689 // destination from compiled to interpreted.
1690 //
1691 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1692   ResourceMark rm(thread);
1693   RegisterMap reg_map(thread, false);
1694   frame stub_frame = thread->last_frame();
1695   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1696   frame caller = stub_frame.sender(&reg_map);
1697 
1698   // Do nothing if the frame isn't a live compiled frame.
1699   // nmethod could be deoptimized by the time we get here
1700   // so no update to the caller is needed.
1701 
1702   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1703 
1704     address pc = caller.pc();
1705 
1706     // Check for static or virtual call
1707     bool is_static_call = false;
1708     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1709 
1710     // Default call_addr is the location of the "basic" call.
1711     // Determine the address of the call we a reresolving. With
1712     // Inline Caches we will always find a recognizable call.
1713     // With Inline Caches disabled we may or may not find a
1714     // recognizable call. We will always find a call for static
1715     // calls and for optimized virtual calls. For vanilla virtual
1716     // calls it depends on the state of the UseInlineCaches switch.
1717     //
1718     // With Inline Caches disabled we can get here for a virtual call
1719     // for two reasons:
1720     //   1 - calling an abstract method. The vtable for abstract methods
1721     //       will run us thru handle_wrong_method and we will eventually
1722     //       end up in the interpreter to throw the ame.
1723     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1724     //       call and between the time we fetch the entry address and
1725     //       we jump to it the target gets deoptimized. Similar to 1
1726     //       we will wind up in the interprter (thru a c2i with c2).
1727     //
1728     address call_addr = NULL;
1729     {
1730       // Get call instruction under lock because another thread may be
1731       // busy patching it.
1732       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1733       // Location of call instruction
1734       call_addr = caller_nm->call_instruction_address(pc);
1735     }
1736     // Make sure nmethod doesn't get deoptimized and removed until
1737     // this is done with it.
1738     // CLEANUP - with lazy deopt shouldn't need this lock
1739     nmethodLocker nmlock(caller_nm);
1740 
1741     if (call_addr != NULL) {
1742       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1743       int ret = iter.next(); // Get item
1744       if (ret) {
1745         assert(iter.addr() == call_addr, "must find call");
1746         if (iter.type() == relocInfo::static_call_type) {
1747           is_static_call = true;
1748         } else {
1749           assert(iter.type() == relocInfo::virtual_call_type ||
1750                  iter.type() == relocInfo::opt_virtual_call_type
1751                 , "unexpected relocInfo. type");
1752         }
1753       } else {
1754         assert(!UseInlineCaches, "relocation info. must exist for this address");
1755       }
1756 
1757       // Cleaning the inline cache will force a new resolve. This is more robust
1758       // than directly setting it to the new destination, since resolving of calls
1759       // is always done through the same code path. (experience shows that it
1760       // leads to very hard to track down bugs, if an inline cache gets updated
1761       // to a wrong method). It should not be performance critical, since the
1762       // resolve is only done once.
1763 
1764       bool is_nmethod = caller_nm->is_nmethod();
1765       MutexLocker ml(CompiledIC_lock);
1766       if (is_static_call) {
1767         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1768         ssc->set_to_clean();
1769       } else {
1770         // compiled, dispatched call (which used to call an interpreted method)
1771         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1772         inline_cache->set_to_clean();
1773       }
1774     }
1775   }
1776 
1777   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1778 
1779 
1780 #ifndef PRODUCT
1781   Atomic::inc(&_wrong_method_ctr);
1782 
1783   if (TraceCallFixup) {
1784     ResourceMark rm(thread);
1785     tty->print("handle_wrong_method reresolving call to");
1786     callee_method->print_short_name(tty);
1787     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1788   }
1789 #endif
1790 
1791   return callee_method;
1792 }
1793 
1794 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1795   // The faulting unsafe accesses should be changed to throw the error
1796   // synchronously instead. Meanwhile the faulting instruction will be
1797   // skipped over (effectively turning it into a no-op) and an
1798   // asynchronous exception will be raised which the thread will
1799   // handle at a later point. If the instruction is a load it will
1800   // return garbage.
1801 
1802   // Request an async exception.
1803   thread->set_pending_unsafe_access_error();
1804 
1805   // Return address of next instruction to execute.
1806   return next_pc;
1807 }
1808 
1809 #ifdef ASSERT
1810 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1811                                                                 const BasicType* sig_bt,
1812                                                                 const VMRegPair* regs) {
1813   ResourceMark rm;
1814   const int total_args_passed = method->size_of_parameters();
1815   const VMRegPair*    regs_with_member_name = regs;
1816         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1817 
1818   const int member_arg_pos = total_args_passed - 1;
1819   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1820   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1821 
1822   const bool is_outgoing = method->is_method_handle_intrinsic();
1823   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1824 
1825   for (int i = 0; i < member_arg_pos; i++) {
1826     VMReg a =    regs_with_member_name[i].first();
1827     VMReg b = regs_without_member_name[i].first();
1828     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1829   }
1830   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1831 }
1832 #endif
1833 
1834 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1835   if (destination != entry_point) {
1836     CodeBlob* callee = CodeCache::find_blob(destination);
1837     // callee == cb seems weird. It means calling interpreter thru stub.
1838     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1839       // static call or optimized virtual
1840       if (TraceCallFixup) {
1841         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1842         moop->print_short_name(tty);
1843         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1844       }
1845       return true;
1846     } else {
1847       if (TraceCallFixup) {
1848         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1849         moop->print_short_name(tty);
1850         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1851       }
1852       // assert is too strong could also be resolve destinations.
1853       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1854     }
1855   } else {
1856     if (TraceCallFixup) {
1857       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1858       moop->print_short_name(tty);
1859       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1860     }
1861   }
1862   return false;
1863 }
1864 
1865 // ---------------------------------------------------------------------------
1866 // We are calling the interpreter via a c2i. Normally this would mean that
1867 // we were called by a compiled method. However we could have lost a race
1868 // where we went int -> i2c -> c2i and so the caller could in fact be
1869 // interpreted. If the caller is compiled we attempt to patch the caller
1870 // so he no longer calls into the interpreter.
1871 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1872   Method* moop(method);
1873 
1874   address entry_point = moop->from_compiled_entry_no_trampoline();
1875 
1876   // It's possible that deoptimization can occur at a call site which hasn't
1877   // been resolved yet, in which case this function will be called from
1878   // an nmethod that has been patched for deopt and we can ignore the
1879   // request for a fixup.
1880   // Also it is possible that we lost a race in that from_compiled_entry
1881   // is now back to the i2c in that case we don't need to patch and if
1882   // we did we'd leap into space because the callsite needs to use
1883   // "to interpreter" stub in order to load up the Method*. Don't
1884   // ask me how I know this...
1885 
1886   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1887   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1888     return;
1889   }
1890 
1891   // The check above makes sure this is a nmethod.
1892   CompiledMethod* nm = cb->as_compiled_method_or_null();
1893   assert(nm, "must be");
1894 
1895   // Get the return PC for the passed caller PC.
1896   address return_pc = caller_pc + frame::pc_return_offset;
1897 
1898   // There is a benign race here. We could be attempting to patch to a compiled
1899   // entry point at the same time the callee is being deoptimized. If that is
1900   // the case then entry_point may in fact point to a c2i and we'd patch the
1901   // call site with the same old data. clear_code will set code() to NULL
1902   // at the end of it. If we happen to see that NULL then we can skip trying
1903   // to patch. If we hit the window where the callee has a c2i in the
1904   // from_compiled_entry and the NULL isn't present yet then we lose the race
1905   // and patch the code with the same old data. Asi es la vida.
1906 
1907   if (moop->code() == NULL) return;
1908 
1909   if (nm->is_in_use()) {
1910 
1911     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1912     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1913     if (NativeCall::is_call_before(return_pc)) {
1914       ResourceMark mark;
1915       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1916       //
1917       // bug 6281185. We might get here after resolving a call site to a vanilla
1918       // virtual call. Because the resolvee uses the verified entry it may then
1919       // see compiled code and attempt to patch the site by calling us. This would
1920       // then incorrectly convert the call site to optimized and its downhill from
1921       // there. If you're lucky you'll get the assert in the bugid, if not you've
1922       // just made a call site that could be megamorphic into a monomorphic site
1923       // for the rest of its life! Just another racing bug in the life of
1924       // fixup_callers_callsite ...
1925       //
1926       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1927       iter.next();
1928       assert(iter.has_current(), "must have a reloc at java call site");
1929       relocInfo::relocType typ = iter.reloc()->type();
1930       if (typ != relocInfo::static_call_type &&
1931            typ != relocInfo::opt_virtual_call_type &&
1932            typ != relocInfo::static_stub_type) {
1933         return;
1934       }
1935       address destination = call->destination();
1936       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1937         call->set_destination_mt_safe(entry_point);
1938       }
1939     }
1940   }
1941 IRT_END
1942 
1943 
1944 // same as JVM_Arraycopy, but called directly from compiled code
1945 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1946                                                 oopDesc* dest, jint dest_pos,
1947                                                 jint length,
1948                                                 JavaThread* thread)) {
1949 #ifndef PRODUCT
1950   _slow_array_copy_ctr++;
1951 #endif
1952   // Check if we have null pointers
1953   if (src == NULL || dest == NULL) {
1954     THROW(vmSymbols::java_lang_NullPointerException());
1955   }
1956   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1957   // even though the copy_array API also performs dynamic checks to ensure
1958   // that src and dest are truly arrays (and are conformable).
1959   // The copy_array mechanism is awkward and could be removed, but
1960   // the compilers don't call this function except as a last resort,
1961   // so it probably doesn't matter.
1962   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1963                                         (arrayOopDesc*)dest, dest_pos,
1964                                         length, thread);
1965 }
1966 JRT_END
1967 
1968 // The caller of generate_class_cast_message() (or one of its callers)
1969 // must use a ResourceMark in order to correctly free the result.
1970 char* SharedRuntime::generate_class_cast_message(
1971     JavaThread* thread, Klass* caster_klass) {
1972 
1973   // Get target class name from the checkcast instruction
1974   vframeStream vfst(thread, true);
1975   assert(!vfst.at_end(), "Java frame must exist");
1976   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1977   constantPoolHandle cpool(thread, vfst.method()->constants());
1978   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1979   Symbol* target_klass_name = NULL;
1980   if (target_klass == NULL) {
1981     // This klass should be resolved, but just in case, get the name in the klass slot.
1982     target_klass_name = cpool->klass_name_at(cc.index());
1983   }
1984   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1985 }
1986 
1987 
1988 // The caller of generate_class_cast_message() (or one of its callers)
1989 // must use a ResourceMark in order to correctly free the result.
1990 char* SharedRuntime::generate_class_cast_message(
1991     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1992   const char* caster_name = caster_klass->external_name();
1993 
1994   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
1995   const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
1996                                                    target_klass->external_name();
1997 
1998   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1999 
2000   const char* caster_klass_description = "";
2001   const char* target_klass_description = "";
2002   const char* klass_separator = "";
2003   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2004     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2005   } else {
2006     caster_klass_description = caster_klass->class_in_module_of_loader();
2007     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2008     klass_separator = (target_klass != NULL) ? "; " : "";
2009   }
2010 
2011   // add 3 for parenthesis and preceeding space
2012   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2013 
2014   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2015   if (message == NULL) {
2016     // Shouldn't happen, but don't cause even more problems if it does
2017     message = const_cast<char*>(caster_klass->external_name());
2018   } else {
2019     jio_snprintf(message,
2020                  msglen,
2021                  "class %s cannot be cast to class %s (%s%s%s)",
2022                  caster_name,
2023                  target_name,
2024                  caster_klass_description,
2025                  klass_separator,
2026                  target_klass_description
2027                  );
2028   }
2029   return message;
2030 }
2031 
2032 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2033   (void) JavaThread::current()->reguard_stack();
2034 JRT_END
2035 
2036 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* thread,
2037                                          bool use_inlined_fast_locking) {
2038   if (!SafepointSynchronize::is_synchronizing()) {
2039     // Only try quick_enter() if we're not trying to reach a safepoint
2040     // so that the calling thread reaches the safepoint more quickly.
2041     if (ObjectSynchronizer::quick_enter(obj, thread, lock)) return;
2042   }
2043   // NO_ASYNC required because an async exception on the state transition destructor
2044   // would leave you with the lock held and it would never be released.
2045   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2046   // and the model is that an exception implies the method failed.
2047   JRT_BLOCK_NO_ASYNC
2048 
2049   if (PrintBiasedLockingStatistics) {
2050     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2051   }
2052   Handle h_obj(THREAD, obj);
2053   if (UseBiasedLocking) {
2054     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2055     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2056   } else {
2057     if (use_inlined_fast_locking) {
2058       ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2059     } else {
2060       ObjectSynchronizer::fast_enter(h_obj, lock, false, CHECK);
2061     }
2062   }
2063   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2064   JRT_BLOCK_END
2065 }
2066 
2067 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2068 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* thread))
2069   SharedRuntime::monitor_enter_helper(obj, lock, thread, true);
2070 JRT_END
2071 
2072 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* thread,
2073                                         bool use_inlined_fast_locking) {
2074   assert(JavaThread::current() == thread, "invariant");
2075   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2076   EXCEPTION_MARK;
2077   if (use_inlined_fast_locking) {
2078     // When using fast locking, the compiled code has already tried the fast case
2079     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2080   } else {
2081     ObjectSynchronizer::fast_exit(obj, lock, THREAD);
2082   }
2083 }
2084 
2085 // Handles the uncommon cases of monitor unlocking in compiled code
2086 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* thread))
2087   SharedRuntime::monitor_exit_helper(obj, lock, thread, true);
2088 JRT_END
2089 
2090 #ifndef PRODUCT
2091 
2092 void SharedRuntime::print_statistics() {
2093   ttyLocker ttyl;
2094   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2095 
2096   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2097 
2098   SharedRuntime::print_ic_miss_histogram();
2099 
2100   if (CountRemovableExceptions) {
2101     if (_nof_removable_exceptions > 0) {
2102       Unimplemented(); // this counter is not yet incremented
2103       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2104     }
2105   }
2106 
2107   // Dump the JRT_ENTRY counters
2108   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2109   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2110   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2111   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2112   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2113   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2114   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2115 
2116   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2117   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2118   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2119   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2120   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2121 
2122   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2123   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2124   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2125   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2126   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2127   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2128   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2129   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2130   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2131   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2132   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2133   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2134   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2135   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2136   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2137   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2138 
2139   AdapterHandlerLibrary::print_statistics();
2140 
2141   if (xtty != NULL)  xtty->tail("statistics");
2142 }
2143 
2144 inline double percent(int x, int y) {
2145   return 100.0 * x / MAX2(y, 1);
2146 }
2147 
2148 class MethodArityHistogram {
2149  public:
2150   enum { MAX_ARITY = 256 };
2151  private:
2152   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2153   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2154   static int _max_arity;                      // max. arity seen
2155   static int _max_size;                       // max. arg size seen
2156 
2157   static void add_method_to_histogram(nmethod* nm) {
2158     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2159       Method* method = nm->method();
2160       ArgumentCount args(method->signature());
2161       int arity   = args.size() + (method->is_static() ? 0 : 1);
2162       int argsize = method->size_of_parameters();
2163       arity   = MIN2(arity, MAX_ARITY-1);
2164       argsize = MIN2(argsize, MAX_ARITY-1);
2165       int count = method->compiled_invocation_count();
2166       _arity_histogram[arity]  += count;
2167       _size_histogram[argsize] += count;
2168       _max_arity = MAX2(_max_arity, arity);
2169       _max_size  = MAX2(_max_size, argsize);
2170     }
2171   }
2172 
2173   void print_histogram_helper(int n, int* histo, const char* name) {
2174     const int N = MIN2(5, n);
2175     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2176     double sum = 0;
2177     double weighted_sum = 0;
2178     int i;
2179     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2180     double rest = sum;
2181     double percent = sum / 100;
2182     for (i = 0; i <= N; i++) {
2183       rest -= histo[i];
2184       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2185     }
2186     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2187     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2188   }
2189 
2190   void print_histogram() {
2191     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2192     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2193     tty->print_cr("\nSame for parameter size (in words):");
2194     print_histogram_helper(_max_size, _size_histogram, "size");
2195     tty->cr();
2196   }
2197 
2198  public:
2199   MethodArityHistogram() {
2200     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2201     _max_arity = _max_size = 0;
2202     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2203     CodeCache::nmethods_do(add_method_to_histogram);
2204     print_histogram();
2205   }
2206 };
2207 
2208 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2209 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2210 int MethodArityHistogram::_max_arity;
2211 int MethodArityHistogram::_max_size;
2212 
2213 void SharedRuntime::print_call_statistics(int comp_total) {
2214   tty->print_cr("Calls from compiled code:");
2215   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2216   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2217   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2218   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2219   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2220   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2221   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2222   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2223   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2224   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2225   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2226   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2227   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2228   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2229   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2230   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2231   tty->cr();
2232   tty->print_cr("Note 1: counter updates are not MT-safe.");
2233   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2234   tty->print_cr("        %% in nested categories are relative to their category");
2235   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2236   tty->cr();
2237 
2238   MethodArityHistogram h;
2239 }
2240 #endif
2241 
2242 
2243 // A simple wrapper class around the calling convention information
2244 // that allows sharing of adapters for the same calling convention.
2245 class AdapterFingerPrint : public CHeapObj<mtCode> {
2246  private:
2247   enum {
2248     _basic_type_bits = 4,
2249     _basic_type_mask = right_n_bits(_basic_type_bits),
2250     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2251     _compact_int_count = 3
2252   };
2253   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2254   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2255 
2256   union {
2257     int  _compact[_compact_int_count];
2258     int* _fingerprint;
2259   } _value;
2260   int _length; // A negative length indicates the fingerprint is in the compact form,
2261                // Otherwise _value._fingerprint is the array.
2262 
2263   // Remap BasicTypes that are handled equivalently by the adapters.
2264   // These are correct for the current system but someday it might be
2265   // necessary to make this mapping platform dependent.
2266   static int adapter_encoding(BasicType in) {
2267     switch (in) {
2268       case T_BOOLEAN:
2269       case T_BYTE:
2270       case T_SHORT:
2271       case T_CHAR:
2272         // There are all promoted to T_INT in the calling convention
2273         return T_INT;
2274 
2275       case T_OBJECT:
2276       case T_ARRAY:
2277         // In other words, we assume that any register good enough for
2278         // an int or long is good enough for a managed pointer.
2279 #ifdef _LP64
2280         return T_LONG;
2281 #else
2282         return T_INT;
2283 #endif
2284 
2285       case T_INT:
2286       case T_LONG:
2287       case T_FLOAT:
2288       case T_DOUBLE:
2289       case T_VOID:
2290         return in;
2291 
2292       default:
2293         ShouldNotReachHere();
2294         return T_CONFLICT;
2295     }
2296   }
2297 
2298  public:
2299   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2300     // The fingerprint is based on the BasicType signature encoded
2301     // into an array of ints with eight entries per int.
2302     int* ptr;
2303     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2304     if (len <= _compact_int_count) {
2305       assert(_compact_int_count == 3, "else change next line");
2306       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2307       // Storing the signature encoded as signed chars hits about 98%
2308       // of the time.
2309       _length = -len;
2310       ptr = _value._compact;
2311     } else {
2312       _length = len;
2313       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2314       ptr = _value._fingerprint;
2315     }
2316 
2317     // Now pack the BasicTypes with 8 per int
2318     int sig_index = 0;
2319     for (int index = 0; index < len; index++) {
2320       int value = 0;
2321       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2322         int bt = ((sig_index < total_args_passed)
2323                   ? adapter_encoding(sig_bt[sig_index++])
2324                   : 0);
2325         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2326         value = (value << _basic_type_bits) | bt;
2327       }
2328       ptr[index] = value;
2329     }
2330   }
2331 
2332   ~AdapterFingerPrint() {
2333     if (_length > 0) {
2334       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2335     }
2336   }
2337 
2338   int value(int index) {
2339     if (_length < 0) {
2340       return _value._compact[index];
2341     }
2342     return _value._fingerprint[index];
2343   }
2344   int length() {
2345     if (_length < 0) return -_length;
2346     return _length;
2347   }
2348 
2349   bool is_compact() {
2350     return _length <= 0;
2351   }
2352 
2353   unsigned int compute_hash() {
2354     int hash = 0;
2355     for (int i = 0; i < length(); i++) {
2356       int v = value(i);
2357       hash = (hash << 8) ^ v ^ (hash >> 5);
2358     }
2359     return (unsigned int)hash;
2360   }
2361 
2362   const char* as_string() {
2363     stringStream st;
2364     st.print("0x");
2365     for (int i = 0; i < length(); i++) {
2366       st.print("%08x", value(i));
2367     }
2368     return st.as_string();
2369   }
2370 
2371   bool equals(AdapterFingerPrint* other) {
2372     if (other->_length != _length) {
2373       return false;
2374     }
2375     if (_length < 0) {
2376       assert(_compact_int_count == 3, "else change next line");
2377       return _value._compact[0] == other->_value._compact[0] &&
2378              _value._compact[1] == other->_value._compact[1] &&
2379              _value._compact[2] == other->_value._compact[2];
2380     } else {
2381       for (int i = 0; i < _length; i++) {
2382         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2383           return false;
2384         }
2385       }
2386     }
2387     return true;
2388   }
2389 };
2390 
2391 
2392 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2393 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2394   friend class AdapterHandlerTableIterator;
2395 
2396  private:
2397 
2398 #ifndef PRODUCT
2399   static int _lookups; // number of calls to lookup
2400   static int _buckets; // number of buckets checked
2401   static int _equals;  // number of buckets checked with matching hash
2402   static int _hits;    // number of successful lookups
2403   static int _compact; // number of equals calls with compact signature
2404 #endif
2405 
2406   AdapterHandlerEntry* bucket(int i) {
2407     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2408   }
2409 
2410  public:
2411   AdapterHandlerTable()
2412     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2413 
2414   // Create a new entry suitable for insertion in the table
2415   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2416     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2417     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2418     if (DumpSharedSpaces) {
2419       ((CDSAdapterHandlerEntry*)entry)->init();
2420     }
2421     return entry;
2422   }
2423 
2424   // Insert an entry into the table
2425   void add(AdapterHandlerEntry* entry) {
2426     int index = hash_to_index(entry->hash());
2427     add_entry(index, entry);
2428   }
2429 
2430   void free_entry(AdapterHandlerEntry* entry) {
2431     entry->deallocate();
2432     BasicHashtable<mtCode>::free_entry(entry);
2433   }
2434 
2435   // Find a entry with the same fingerprint if it exists
2436   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2437     NOT_PRODUCT(_lookups++);
2438     AdapterFingerPrint fp(total_args_passed, sig_bt);
2439     unsigned int hash = fp.compute_hash();
2440     int index = hash_to_index(hash);
2441     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2442       NOT_PRODUCT(_buckets++);
2443       if (e->hash() == hash) {
2444         NOT_PRODUCT(_equals++);
2445         if (fp.equals(e->fingerprint())) {
2446 #ifndef PRODUCT
2447           if (fp.is_compact()) _compact++;
2448           _hits++;
2449 #endif
2450           return e;
2451         }
2452       }
2453     }
2454     return NULL;
2455   }
2456 
2457 #ifndef PRODUCT
2458   void print_statistics() {
2459     ResourceMark rm;
2460     int longest = 0;
2461     int empty = 0;
2462     int total = 0;
2463     int nonempty = 0;
2464     for (int index = 0; index < table_size(); index++) {
2465       int count = 0;
2466       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2467         count++;
2468       }
2469       if (count != 0) nonempty++;
2470       if (count == 0) empty++;
2471       if (count > longest) longest = count;
2472       total += count;
2473     }
2474     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2475                   empty, longest, total, total / (double)nonempty);
2476     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2477                   _lookups, _buckets, _equals, _hits, _compact);
2478   }
2479 #endif
2480 };
2481 
2482 
2483 #ifndef PRODUCT
2484 
2485 int AdapterHandlerTable::_lookups;
2486 int AdapterHandlerTable::_buckets;
2487 int AdapterHandlerTable::_equals;
2488 int AdapterHandlerTable::_hits;
2489 int AdapterHandlerTable::_compact;
2490 
2491 #endif
2492 
2493 class AdapterHandlerTableIterator : public StackObj {
2494  private:
2495   AdapterHandlerTable* _table;
2496   int _index;
2497   AdapterHandlerEntry* _current;
2498 
2499   void scan() {
2500     while (_index < _table->table_size()) {
2501       AdapterHandlerEntry* a = _table->bucket(_index);
2502       _index++;
2503       if (a != NULL) {
2504         _current = a;
2505         return;
2506       }
2507     }
2508   }
2509 
2510  public:
2511   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2512     scan();
2513   }
2514   bool has_next() {
2515     return _current != NULL;
2516   }
2517   AdapterHandlerEntry* next() {
2518     if (_current != NULL) {
2519       AdapterHandlerEntry* result = _current;
2520       _current = _current->next();
2521       if (_current == NULL) scan();
2522       return result;
2523     } else {
2524       return NULL;
2525     }
2526   }
2527 };
2528 
2529 
2530 // ---------------------------------------------------------------------------
2531 // Implementation of AdapterHandlerLibrary
2532 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2533 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2534 const int AdapterHandlerLibrary_size = 16*K;
2535 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2536 
2537 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2538   // Should be called only when AdapterHandlerLibrary_lock is active.
2539   if (_buffer == NULL) // Initialize lazily
2540       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2541   return _buffer;
2542 }
2543 
2544 extern "C" void unexpected_adapter_call() {
2545   ShouldNotCallThis();
2546 }
2547 
2548 void AdapterHandlerLibrary::initialize() {
2549   if (_adapters != NULL) return;
2550   _adapters = new AdapterHandlerTable();
2551 
2552   // Create a special handler for abstract methods.  Abstract methods
2553   // are never compiled so an i2c entry is somewhat meaningless, but
2554   // throw AbstractMethodError just in case.
2555   // Pass wrong_method_abstract for the c2i transitions to return
2556   // AbstractMethodError for invalid invocations.
2557   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2558   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2559                                                               StubRoutines::throw_AbstractMethodError_entry(),
2560                                                               wrong_method_abstract, wrong_method_abstract);
2561 }
2562 
2563 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2564                                                       address i2c_entry,
2565                                                       address c2i_entry,
2566                                                       address c2i_unverified_entry) {
2567   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2568 }
2569 
2570 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2571   AdapterHandlerEntry* entry = get_adapter0(method);
2572   if (entry != NULL && method->is_shared()) {
2573     // See comments around Method::link_method()
2574     MutexLocker mu(AdapterHandlerLibrary_lock);
2575     if (method->adapter() == NULL) {
2576       method->update_adapter_trampoline(entry);
2577     }
2578     address trampoline = method->from_compiled_entry();
2579     if (*(int*)trampoline == 0) {
2580       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2581       MacroAssembler _masm(&buffer);
2582       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2583       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2584       _masm.flush();
2585 
2586       if (PrintInterpreter) {
2587         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2588       }
2589     }
2590   }
2591 
2592   return entry;
2593 }
2594 
2595 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2596   // Use customized signature handler.  Need to lock around updates to
2597   // the AdapterHandlerTable (it is not safe for concurrent readers
2598   // and a single writer: this could be fixed if it becomes a
2599   // problem).
2600 
2601   ResourceMark rm;
2602 
2603   NOT_PRODUCT(int insts_size);
2604   AdapterBlob* new_adapter = NULL;
2605   AdapterHandlerEntry* entry = NULL;
2606   AdapterFingerPrint* fingerprint = NULL;
2607   {
2608     MutexLocker mu(AdapterHandlerLibrary_lock);
2609     // make sure data structure is initialized
2610     initialize();
2611 
2612     if (method->is_abstract()) {
2613       return _abstract_method_handler;
2614     }
2615 
2616     // Fill in the signature array, for the calling-convention call.
2617     int total_args_passed = method->size_of_parameters(); // All args on stack
2618 
2619     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2620     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2621     int i = 0;
2622     if (!method->is_static())  // Pass in receiver first
2623       sig_bt[i++] = T_OBJECT;
2624     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2625       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2626       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2627         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2628     }
2629     assert(i == total_args_passed, "");
2630 
2631     // Lookup method signature's fingerprint
2632     entry = _adapters->lookup(total_args_passed, sig_bt);
2633 
2634 #ifdef ASSERT
2635     AdapterHandlerEntry* shared_entry = NULL;
2636     // Start adapter sharing verification only after the VM is booted.
2637     if (VerifyAdapterSharing && (entry != NULL)) {
2638       shared_entry = entry;
2639       entry = NULL;
2640     }
2641 #endif
2642 
2643     if (entry != NULL) {
2644       return entry;
2645     }
2646 
2647     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2648     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2649 
2650     // Make a C heap allocated version of the fingerprint to store in the adapter
2651     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2652 
2653     // StubRoutines::code2() is initialized after this function can be called. As a result,
2654     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2655     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2656     // stub that ensure that an I2C stub is called from an interpreter frame.
2657     bool contains_all_checks = StubRoutines::code2() != NULL;
2658 
2659     // Create I2C & C2I handlers
2660     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2661     if (buf != NULL) {
2662       CodeBuffer buffer(buf);
2663       short buffer_locs[20];
2664       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2665                                              sizeof(buffer_locs)/sizeof(relocInfo));
2666 
2667       MacroAssembler _masm(&buffer);
2668       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2669                                                      total_args_passed,
2670                                                      comp_args_on_stack,
2671                                                      sig_bt,
2672                                                      regs,
2673                                                      fingerprint);
2674 #ifdef ASSERT
2675       if (VerifyAdapterSharing) {
2676         if (shared_entry != NULL) {
2677           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2678           // Release the one just created and return the original
2679           _adapters->free_entry(entry);
2680           return shared_entry;
2681         } else  {
2682           entry->save_code(buf->code_begin(), buffer.insts_size());
2683         }
2684       }
2685 #endif
2686 
2687       new_adapter = AdapterBlob::create(&buffer);
2688       NOT_PRODUCT(insts_size = buffer.insts_size());
2689     }
2690     if (new_adapter == NULL) {
2691       // CodeCache is full, disable compilation
2692       // Ought to log this but compile log is only per compile thread
2693       // and we're some non descript Java thread.
2694       return NULL; // Out of CodeCache space
2695     }
2696     entry->relocate(new_adapter->content_begin());
2697 #ifndef PRODUCT
2698     // debugging suppport
2699     if (PrintAdapterHandlers || PrintStubCode) {
2700       ttyLocker ttyl;
2701       entry->print_adapter_on(tty);
2702       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2703                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2704                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2705       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2706       if (Verbose || PrintStubCode) {
2707         address first_pc = entry->base_address();
2708         if (first_pc != NULL) {
2709           Disassembler::decode(first_pc, first_pc + insts_size);
2710           tty->cr();
2711         }
2712       }
2713     }
2714 #endif
2715     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2716     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2717     if (contains_all_checks || !VerifyAdapterCalls) {
2718       _adapters->add(entry);
2719     }
2720   }
2721   // Outside of the lock
2722   if (new_adapter != NULL) {
2723     char blob_id[256];
2724     jio_snprintf(blob_id,
2725                  sizeof(blob_id),
2726                  "%s(%s)@" PTR_FORMAT,
2727                  new_adapter->name(),
2728                  fingerprint->as_string(),
2729                  new_adapter->content_begin());
2730     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2731 
2732     if (JvmtiExport::should_post_dynamic_code_generated()) {
2733       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2734     }
2735   }
2736   return entry;
2737 }
2738 
2739 address AdapterHandlerEntry::base_address() {
2740   address base = _i2c_entry;
2741   if (base == NULL)  base = _c2i_entry;
2742   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2743   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2744   return base;
2745 }
2746 
2747 void AdapterHandlerEntry::relocate(address new_base) {
2748   address old_base = base_address();
2749   assert(old_base != NULL, "");
2750   ptrdiff_t delta = new_base - old_base;
2751   if (_i2c_entry != NULL)
2752     _i2c_entry += delta;
2753   if (_c2i_entry != NULL)
2754     _c2i_entry += delta;
2755   if (_c2i_unverified_entry != NULL)
2756     _c2i_unverified_entry += delta;
2757   assert(base_address() == new_base, "");
2758 }
2759 
2760 
2761 void AdapterHandlerEntry::deallocate() {
2762   delete _fingerprint;
2763 #ifdef ASSERT
2764   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2765 #endif
2766 }
2767 
2768 
2769 #ifdef ASSERT
2770 // Capture the code before relocation so that it can be compared
2771 // against other versions.  If the code is captured after relocation
2772 // then relative instructions won't be equivalent.
2773 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2774   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2775   _saved_code_length = length;
2776   memcpy(_saved_code, buffer, length);
2777 }
2778 
2779 
2780 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2781   if (length != _saved_code_length) {
2782     return false;
2783   }
2784 
2785   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2786 }
2787 #endif
2788 
2789 
2790 /**
2791  * Create a native wrapper for this native method.  The wrapper converts the
2792  * Java-compiled calling convention to the native convention, handles
2793  * arguments, and transitions to native.  On return from the native we transition
2794  * back to java blocking if a safepoint is in progress.
2795  */
2796 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2797   ResourceMark rm;
2798   nmethod* nm = NULL;
2799   address critical_entry = NULL;
2800 
2801   assert(method->is_native(), "must be native");
2802   assert(method->is_method_handle_intrinsic() ||
2803          method->has_native_function(), "must have something valid to call!");
2804 
2805   if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
2806     // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
2807     critical_entry = NativeLookup::lookup_critical_entry(method);
2808   }
2809 
2810   {
2811     // Perform the work while holding the lock, but perform any printing outside the lock
2812     MutexLocker mu(AdapterHandlerLibrary_lock);
2813     // See if somebody beat us to it
2814     if (method->code() != NULL) {
2815       return;
2816     }
2817 
2818     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2819     assert(compile_id > 0, "Must generate native wrapper");
2820 
2821 
2822     ResourceMark rm;
2823     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2824     if (buf != NULL) {
2825       CodeBuffer buffer(buf);
2826       struct { double data[20]; } locs_buf;
2827       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2828       MacroAssembler _masm(&buffer);
2829 
2830       // Fill in the signature array, for the calling-convention call.
2831       const int total_args_passed = method->size_of_parameters();
2832 
2833       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2834       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2835       int i=0;
2836       if (!method->is_static())  // Pass in receiver first
2837         sig_bt[i++] = T_OBJECT;
2838       SignatureStream ss(method->signature());
2839       for (; !ss.at_return_type(); ss.next()) {
2840         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2841         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2842           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2843       }
2844       assert(i == total_args_passed, "");
2845       BasicType ret_type = ss.type();
2846 
2847       // Now get the compiled-Java layout as input (or output) arguments.
2848       // NOTE: Stubs for compiled entry points of method handle intrinsics
2849       // are just trampolines so the argument registers must be outgoing ones.
2850       const bool is_outgoing = method->is_method_handle_intrinsic();
2851       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2852 
2853       // Generate the compiled-to-native wrapper code
2854       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
2855 
2856       if (nm != NULL) {
2857         method->set_code(method, nm);
2858 
2859         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2860         if (directive->PrintAssemblyOption) {
2861           nm->print_code();
2862         }
2863         DirectivesStack::release(directive);
2864       }
2865     }
2866   } // Unlock AdapterHandlerLibrary_lock
2867 
2868 
2869   // Install the generated code.
2870   if (nm != NULL) {
2871     const char *msg = method->is_static() ? "(static)" : "";
2872     CompileTask::print_ul(nm, msg);
2873     if (PrintCompilation) {
2874       ttyLocker ttyl;
2875       CompileTask::print(tty, nm, msg);
2876     }
2877     nm->post_compiled_method_load_event();
2878   }
2879 }
2880 
2881 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2882   assert(thread == JavaThread::current(), "must be");
2883   // The code is about to enter a JNI lazy critical native method and
2884   // _needs_gc is true, so if this thread is already in a critical
2885   // section then just return, otherwise this thread should block
2886   // until needs_gc has been cleared.
2887   if (thread->in_critical()) {
2888     return;
2889   }
2890   // Lock and unlock a critical section to give the system a chance to block
2891   GCLocker::lock_critical(thread);
2892   GCLocker::unlock_critical(thread);
2893 JRT_END
2894 
2895 #if INCLUDE_SHENANDOAHGC
2896 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2897   assert(Universe::heap()->supports_object_pinning(), "Why we here?");
2898   assert(obj != NULL, "Should not be null");
2899   oop o(obj);
2900   o = Universe::heap()->pin_object(thread, o);
2901   assert(o != NULL, "Should not be null");
2902   return o;
2903 JRT_END
2904 
2905 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2906   assert(Universe::heap()->supports_object_pinning(), "Why we here?");
2907   assert(obj != NULL, "Should not be null");
2908   oop o(obj);
2909   Universe::heap()->unpin_object(thread, o);
2910 JRT_END
2911 #endif
2912 
2913 // -------------------------------------------------------------------------
2914 // Java-Java calling convention
2915 // (what you use when Java calls Java)
2916 
2917 //------------------------------name_for_receiver----------------------------------
2918 // For a given signature, return the VMReg for parameter 0.
2919 VMReg SharedRuntime::name_for_receiver() {
2920   VMRegPair regs;
2921   BasicType sig_bt = T_OBJECT;
2922   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2923   // Return argument 0 register.  In the LP64 build pointers
2924   // take 2 registers, but the VM wants only the 'main' name.
2925   return regs.first();
2926 }
2927 
2928 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2929   // This method is returning a data structure allocating as a
2930   // ResourceObject, so do not put any ResourceMarks in here.
2931   char *s = sig->as_C_string();
2932   int len = (int)strlen(s);
2933   s++; len--;                   // Skip opening paren
2934 
2935   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2936   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2937   int cnt = 0;
2938   if (has_receiver) {
2939     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2940   }
2941 
2942   while (*s != ')') {          // Find closing right paren
2943     switch (*s++) {            // Switch on signature character
2944     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2945     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2946     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2947     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2948     case 'I': sig_bt[cnt++] = T_INT;     break;
2949     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2950     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2951     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2952     case 'V': sig_bt[cnt++] = T_VOID;    break;
2953     case 'L':                   // Oop
2954       while (*s++ != ';');   // Skip signature
2955       sig_bt[cnt++] = T_OBJECT;
2956       break;
2957     case '[': {                 // Array
2958       do {                      // Skip optional size
2959         while (*s >= '0' && *s <= '9') s++;
2960       } while (*s++ == '[');   // Nested arrays?
2961       // Skip element type
2962       if (s[-1] == 'L')
2963         while (*s++ != ';'); // Skip signature
2964       sig_bt[cnt++] = T_ARRAY;
2965       break;
2966     }
2967     default : ShouldNotReachHere();
2968     }
2969   }
2970 
2971   if (has_appendix) {
2972     sig_bt[cnt++] = T_OBJECT;
2973   }
2974 
2975   assert(cnt < 256, "grow table size");
2976 
2977   int comp_args_on_stack;
2978   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2979 
2980   // the calling convention doesn't count out_preserve_stack_slots so
2981   // we must add that in to get "true" stack offsets.
2982 
2983   if (comp_args_on_stack) {
2984     for (int i = 0; i < cnt; i++) {
2985       VMReg reg1 = regs[i].first();
2986       if (reg1->is_stack()) {
2987         // Yuck
2988         reg1 = reg1->bias(out_preserve_stack_slots());
2989       }
2990       VMReg reg2 = regs[i].second();
2991       if (reg2->is_stack()) {
2992         // Yuck
2993         reg2 = reg2->bias(out_preserve_stack_slots());
2994       }
2995       regs[i].set_pair(reg2, reg1);
2996     }
2997   }
2998 
2999   // results
3000   *arg_size = cnt;
3001   return regs;
3002 }
3003 
3004 // OSR Migration Code
3005 //
3006 // This code is used convert interpreter frames into compiled frames.  It is
3007 // called from very start of a compiled OSR nmethod.  A temp array is
3008 // allocated to hold the interesting bits of the interpreter frame.  All
3009 // active locks are inflated to allow them to move.  The displaced headers and
3010 // active interpreter locals are copied into the temp buffer.  Then we return
3011 // back to the compiled code.  The compiled code then pops the current
3012 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3013 // copies the interpreter locals and displaced headers where it wants.
3014 // Finally it calls back to free the temp buffer.
3015 //
3016 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3017 
3018 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3019 
3020   //
3021   // This code is dependent on the memory layout of the interpreter local
3022   // array and the monitors. On all of our platforms the layout is identical
3023   // so this code is shared. If some platform lays the their arrays out
3024   // differently then this code could move to platform specific code or
3025   // the code here could be modified to copy items one at a time using
3026   // frame accessor methods and be platform independent.
3027 
3028   frame fr = thread->last_frame();
3029   assert(fr.is_interpreted_frame(), "");
3030   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3031 
3032   // Figure out how many monitors are active.
3033   int active_monitor_count = 0;
3034   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3035        kptr < fr.interpreter_frame_monitor_begin();
3036        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3037     if (kptr->obj() != NULL) active_monitor_count++;
3038   }
3039 
3040   // QQQ we could place number of active monitors in the array so that compiled code
3041   // could double check it.
3042 
3043   Method* moop = fr.interpreter_frame_method();
3044   int max_locals = moop->max_locals();
3045   // Allocate temp buffer, 1 word per local & 2 per active monitor
3046   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3047   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3048 
3049   // Copy the locals.  Order is preserved so that loading of longs works.
3050   // Since there's no GC I can copy the oops blindly.
3051   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3052   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3053                        (HeapWord*)&buf[0],
3054                        max_locals);
3055 
3056   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3057   int i = max_locals;
3058   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3059        kptr2 < fr.interpreter_frame_monitor_begin();
3060        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3061     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3062       BasicLock *lock = kptr2->lock();
3063       // Inflate so the displaced header becomes position-independent
3064       if (lock->displaced_header()->is_unlocked())
3065         ObjectSynchronizer::inflate_helper(kptr2->obj());
3066       // Now the displaced header is free to move
3067       buf[i++] = (intptr_t)lock->displaced_header();
3068       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3069     }
3070   }
3071   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3072 
3073   return buf;
3074 JRT_END
3075 
3076 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3077   FREE_C_HEAP_ARRAY(intptr_t, buf);
3078 JRT_END
3079 
3080 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3081   AdapterHandlerTableIterator iter(_adapters);
3082   while (iter.has_next()) {
3083     AdapterHandlerEntry* a = iter.next();
3084     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3085   }
3086   return false;
3087 }
3088 
3089 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3090   AdapterHandlerTableIterator iter(_adapters);
3091   while (iter.has_next()) {
3092     AdapterHandlerEntry* a = iter.next();
3093     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3094       st->print("Adapter for signature: ");
3095       a->print_adapter_on(tty);
3096       return;
3097     }
3098   }
3099   assert(false, "Should have found handler");
3100 }
3101 
3102 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3103   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3104                p2i(this), fingerprint()->as_string(),
3105                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3106 
3107 }
3108 
3109 #if INCLUDE_CDS
3110 
3111 void CDSAdapterHandlerEntry::init() {
3112   assert(DumpSharedSpaces, "used during dump time only");
3113   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3114   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3115 };
3116 
3117 #endif // INCLUDE_CDS
3118 
3119 
3120 #ifndef PRODUCT
3121 
3122 void AdapterHandlerLibrary::print_statistics() {
3123   _adapters->print_statistics();
3124 }
3125 
3126 #endif /* PRODUCT */
3127 
3128 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3129   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3130   if (thread->stack_reserved_zone_disabled()) {
3131   thread->enable_stack_reserved_zone();
3132   }
3133   thread->set_reserved_stack_activation(thread->stack_base());
3134 JRT_END
3135 
3136 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3137   ResourceMark rm(thread);
3138   frame activation;
3139   CompiledMethod* nm = NULL;
3140   int count = 1;
3141 
3142   assert(fr.is_java_frame(), "Must start on Java frame");
3143 
3144   while (true) {
3145     Method* method = NULL;
3146     bool found = false;
3147     if (fr.is_interpreted_frame()) {
3148       method = fr.interpreter_frame_method();
3149       if (method != NULL && method->has_reserved_stack_access()) {
3150         found = true;
3151       }
3152     } else {
3153       CodeBlob* cb = fr.cb();
3154       if (cb != NULL && cb->is_compiled()) {
3155         nm = cb->as_compiled_method();
3156         method = nm->method();
3157         // scope_desc_near() must be used, instead of scope_desc_at() because on
3158         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3159         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3160           method = sd->method();
3161           if (method != NULL && method->has_reserved_stack_access()) {
3162             found = true;
3163       }
3164     }
3165       }
3166     }
3167     if (found) {
3168       activation = fr;
3169       warning("Potentially dangerous stack overflow in "
3170               "ReservedStackAccess annotated method %s [%d]",
3171               method->name_and_sig_as_C_string(), count++);
3172       EventReservedStackActivation event;
3173       if (event.should_commit()) {
3174         event.set_method(method);
3175         event.commit();
3176       }
3177     }
3178     if (fr.is_first_java_frame()) {
3179       break;
3180     } else {
3181       fr = fr.java_sender();
3182     }
3183   }
3184   return activation;
3185 }
3186 
3187 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3188   // After any safepoint, just before going back to compiled code,
3189   // we inform the GC that we will be doing initializing writes to
3190   // this object in the future without emitting card-marks, so
3191   // GC may take any compensating steps.
3192 
3193   oop new_obj = thread->vm_result();
3194   if (new_obj == NULL) return;
3195 
3196   BarrierSet *bs = BarrierSet::barrier_set();
3197   bs->on_slowpath_allocation_exit(thread, new_obj);
3198 }